
Physics 411: Homework 5

1. Pivoting: Grab yourself a copy of the program gausselim.py from the on-line resources.

(a) Modify the program to incorporate partial pivoting. (You’re also welcome to write

your own program from scratch if you prefer.) Use your program to solve the prob-

lem in Eq. (6.1) and check that it gives the same answer as the original program

without pivoting (which is given in Eq. (6.16)).

(b) Now use your program to solve the equations in Eq. (6.17) and show that it can find

the solution to these as well, even though Gaussian elimination without pivoting

fails.

For full credit turn in a printout of your program, plus your results from part (b).

2. A circuit of resistors: Consider a long chain of resistors arranged like this:

V+

V1

VN

VN − 1

V

V3

2 VN − 2

0  Volts

All the resistors have the same resistance R. The power rail at the top is at voltage V+ =
5V. The problem is to find the voltages V1 . . .VN at the internal points in the circuit.

(a) Using Ohm’s law and the Kirchhoff current law, which says that the total net current

flow out of (or into) any junction in a circuit must be zero, show that the voltages

V1 . . .VN satisfy the equations

3V1 −V2 −V3 = V+,

−V1 + 4V2 −V3 −V4 = V+,

...

−Vi−2 −Vi−1 + 4Vi −Vi+1 −Vi+2 = 0,

...

−VN−3 −VN−2 + 4VN−1 −VN = 0,

−VN−2 −VN−1 + 3VN = 0.

Express these equations in vector form Av = w and find the values of the matrix A

and the vector w.
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(b) Write a program to solve for the values of the Vi when there are N = 6 internal

junctions with unknown voltages. Use any method you like to find the solution,

including the solve function from numpy or your own Gaussian elimination code.

Make a graph of the values of Vi along the chain. (Hint: All the values of Vi should

lie between zero and 5V. If they don’t, something is wrong.)

(c) Now repeat your calculation for the case where there are N = 10 000 internal junc-

tions. This part is not possible using standard tools like the solve function. You

need to make use of the fact that the matrix A is banded and use the banded function

that we discussed in class. A copy of this function can be found on the course web

page.

For full credit turn in your working from part (a), a printout of your final program,

and a printout your plot from part (b) for the N = 6 case.

3. The Lagrange point: There is a magical point between the Earth and the Moon, called

the L1 Lagrange point, at which a satellite will orbit the Earth in perfect synchrony with

the Moon, staying always in between the two. This works because the inward pull of the

Earth and the outward pull of the Moon combine to create exactly the needed centripetal

force that keeps the satellite in its orbit. Here’s the setup:

m

R

r

Satellite

Earth MoonM

(a) Assuming circular orbits, and assuming that the Earth is much more massive than

either the Moon or the satellite, show that the distance r from the center of the Earth

to the L1 point satisfies
GM

r2
−

Gm

(R− r)2
= ω2

r,

where M and m are the Earth and Moon masses, G is Newton’s gravitational con-

stant, and ω is the angular velocity of both the Moon and the satellite.

(b) The equation above is a fifth-order polynomial equation in r (also called a quintic

equation). Such equations cannot be solved exactly in closed form, but it’s straight-

forward to solve them numerically. Write a program to solve for the distance r from

the Earth to the L1 point. You can use any of the methods we have studied—binary

search, the fixed point method, Newton’s method, or the secant method all work
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well for this problem. Compute a solution accurate to at least four significant fig-

ures.

The values of the various parameters are:

G = 6.674× 10−11 m3 kg−1 s−2,

M = 5.974× 1024 kg,

m = 7.348× 1022 kg,

R = 3.844× 108 m,

ω = 2.662× 10−6 s−1.

You will also need to choose a suitable starting value for r, or two starting values if

you use the binary search or secant methods.

For full credit turn in a copy of your program and your result for the distance r.

4. Nonlinear circuits: Consider the following simple circuit, a variation on the classicWheat-

stone bridge:

R1

R2 R4

R3

V1

V

0

+

V2

The resistors obey the normal Ohm law, but the diode obeys the diode equation:

I = I0(e
V/VT

− 1),

where V is the voltage across the diode and I0 and VT are constants.

(a) The Kirchhoff current law says that the total net current flowing into or out of every

point in a circuit must be zero. Applying the law to voltage V1 in the circuit above

we get
V1 −V+

R1

+
V1

R2

+ I0

[

e(V1−V2)/VT
− 1

]

= 0.

Derive the corresponding equation for voltage V2.
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(b) Solve the two nonlinear equations for the voltages V1 and V2 with the conditions

V+ = 5V,

R1 = 1 kΩ, R2 = 4 kΩ, R3 = 3 kΩ, R4 = 2 kΩ,

I0 = 3 nA, VT = 0.05V.

You can use either the relaxation method or Newton’s method to solve the equa-

tions. If you use Newton’s method you can solve Eq. (6.80) for ∆x using the function

solve() from numpy.linalg if you want to, but in this case the matrix is only a 2× 2

matrix, so it’s easy to calculate the inverse directly too.

(c) The electronic engineer’s rule of thumb for diodes is that the voltage across a (for-

ward biased) diode is always about 0.6 volts. Confirm that your results agree with

this rule.

For full credit turn in your derivation from part (a) and your program from part (b)

along with a printout showing the answers it gives.

5. The temperature of a light bulb: An incandescent light bulb is a simple device—it con-

tains a resistive filament, usually made of tungsten, heated by the flow of electricity until

it becomes hot enough to radiate thermally. Essentially all of the power consumed by

such a bulb is radiated as electromagnetic energy, but some of the radiation is not in the

visible wavelengths, which means it is useless for lighting purposes.

Let us define the efficiency of a light bulb to be the fraction of the radiated energy that

falls in the visible band. It’s a good approximation to assume that the radiation obeys the

Planck radiation law, meaning that the power radiated per unit wavelength λ obeys

I(λ) = 2πAhc
2 λ−5

ehc/λkBT − 1
,

where A is the surface area of the filament, T is the temperature, h is Planck’s constant, c is

the speed of light, and kB is Boltzmann’s constant. The visible wavelengths run from λ1 =

390 nm to λ2 = 750 nm, so the total energy radiated in the visible window is
∫ λ2

λ1
I(λ) dλ

and the total energy at all wavelengths is
∫

∞

0
I(λ) dλ. Dividing one expression by the

other and substituting for I(λ) from above, we get an expression for the efficiency η of

the light bulb thus:

η =

∫ λ2

λ1
λ−5/(ehc/λkBT − 1) dλ

∫

∞

0
λ−5/(ehc/λkBT − 1) dλ

,

where the leading constants and the area A have canceled out. Making the substitution

x = hc/λkBT, this can also be written as

η =

∫

hc/λ1kBT

hc/λ2kBT
x3/(ex − 1) dx

∫

∞

0
x3/(ex − 1) dx

=
15

π4

∫

hc/λ1kBT

hc/λ2kBT

x3

ex − 1
dx,

where we have made use of the known exact value of the integral in the denominator.
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(a) Write a Python function that takes a temperature T as its argument and calculates the

value of η for that temperature from the formula above. The integral in the formula

cannot be done analytically, but you can do it numerically using any method of

your choice. (For instance, Gaussian quadrature with 100 sample points works fine.)

Use your function to make a graph of η as a function of temperature between 300K

and 10 000K. You should see that there is an intermediate temperature where the

efficiency is a maximum.

(b) Calculate the temperature of maximum efficiency of the light bulb to within 1K

using golden ratio search. What efficiency does the bulb achieve at this temperature?

(c) Is it practical to run a tungsten-filament light bulb at the temperature you found? If

not, why not?

For full credit turn in a printout of your final (golden-ratio search) program, your

plot from part (a), and your results and discussion from parts (b) and (c).
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