
Physics 411: Homework 8

1. The driven pendulum: A pendulum can be driven by, for example, exerting a small

oscillating force horizontally on the mass. Then the equation of motion for the pendulum

becomes
d2θ

dt2
= −

g

ℓ
sin θ + C cos θ sin Ωt,

where C and Ω are constants.

(a) Write a program to solve this equation for θ as a function of time with ℓ = 10 cm,

C = 2 s−2 and Ω = 5 s−1 and make a plot of θ as a function of time from t = 0 to

t = 100 s. Start the pendulum at rest, θ = 0 and dθ/dt = 0.

(b) Now change the value of Ω, while keeping C the same, to find a value for which

the pendulum resonates with the driving force and swings widely from side to side.

Make a plot for this case also.

For full credit turn in a printout of your program, your plots of θ(t) from parts (a)

and (b) and a note of the approximate value of Ω at which you found the resonance.

2. Cometary orbits: Many comets travel in highly elongated orbits around the Sun. For

much of their lives they are far out in the solar system, moving very slowly, but on rare

occasions their orbit brings them close to the Sun for a fly-by and for a brief period of

time they move very fast indeed:

Sun

Comet

slow herefast here

This is a classic example of a system for which an adaptive step size method is useful,

because for the large periods of time when the comet is moving slowly we can use long

time-steps, so that the program runs quickly, but short time-steps are crucial in the brief

but fast-moving period close to the Sun.

The differential equation obeyed by a comet is straightforward to derive. The force be-

tween the Sun, with mass M at the origin, and a comet of mass m with position vector r

is GMm/r2 in direction −r/r (i.e., the direction towards the Sun), and hence Newton’s

second law tells us that

m
d2r

dt2
= −

(

GMm

r2

)

r

r
.
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Canceling the m and taking the x component we have

d2x

dt2
= −GM

x

r3
,

and similarly for the other two coordinates. We can, however, throw out one of the coor-

dinates because the comet stays in a single plane as it orbits. If we orient our axes so that

this plane is perpendicular to the z-axis, we can forget about the z coordinate and we are

left with just two second-order equations to solve:

d2x

dt2
= −GM

x

r3
,

d2y

dt2
= −GM

y

r3
,

where r =
√

x2 + y2.

(a) Turn these two second-order equations into four first-order equations, using the

methods you have learned.

(b) Write a program to solve your equations using the fourth-order Runge–Kutta method

with a fixed step size. You will need to look up the mass of the Sun and New-

ton’s gravitational constant G. As an initial condition, take a comet at coordinates

x = 4 billion kilometers and y = 0 (which is somewhere out around the orbit of

Neptune) with initial velocity vx = 0 and vy = 500 m s−1. Make a graph showing

the trajectory of the comet (i.e., a plot of y against x).

Choose a fixed step size h that allows you to accurately calculate at least two full

orbits of the comet. Since orbits are periodic, a good indicator of an accurate calcu-

lation is that successive orbits of the comet lie on top of one another on your plot.

If they do not then you need a smaller value of h. Give a short description of your

findings. What value of h did you use? What did you observe in your simulation?

How long did the calculation take?

(c) Make a copy of your program and modify the copy to do the calculation using an

adaptive step size. Set a target accuracy of δ = 1 kilometer per year in the position

of the comet and again plot the trajectory. What do you see? How do the speed,

accuracy, and step size of the calculation compare with those in part (b)?

(d) Modify your program to place dots on your graph showing the position of the comet

at each Runge–Kutta step around a single orbit. You should see the steps getting

closer together when the comet is close to the Sun and further apart when it is far

out in the solar system.

Calculations like this can be extended to cases where we have more than one orbiting

body. We can include planets, moons, asteroids, and others. Analytic calculations are

impossible for such complex systems, but with careful numerical solution of differential

equations we can calculate the motions of objects throughout the entire solar system.

For full credit turn in a printout of your final program, your plots from parts (a)

and (c), and your answers to the questions in parts (b) and (c).
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3. Quantumoscillators: Consider the one-dimensional, time-independent Schrödinger equa-

tion in a harmonic (i.e., quadratic) potential V(x) = V0x
2/a2, where V0 and a are con-

stants.

(a) Write down the Schrödinger equation for this problem and convert it from a second-

order equation to two first-order ones. Write a program, or modify the one from

Example 8.8, to find the energies of the ground state and the first two excited states

for these equations to an accuracy of 0.001 eV when m is the electron mass, V0 =
50 eV, and a = 10−11 m. The wavefunction goes to x = ±∞, but you can get good

answers by using a large but finite interval. Try using x = −10a to +10a, with the

wavefunction ψ = 0 at both boundaries. (In effect, you are putting the harmonic

oscillator in a box with impenetrable walls.) The wavefunction is real everywhere,

so you don’t need to use complex variables, and you can use evenly spaced points

for the solution—no need to use an adaptive method for this problem.

The quantum harmonic oscillator is known to have energy states that are equally

spaced. Check that this is true, to the precision of your calculation, for your answers.

(Hint: The ground state has energy in the range 100 to 200 eV.)

(b) Now modify your program to calculate the energies of the same three states for the

anharmonic oscillator with V(x) = V0x
4/a4, with the same parameter values.

(c) Modify your program further to calculate the properly normalized wavefunctions

of the anharmonic oscillator for the three states and make a plot of them, all on the

same axes, as a function of x over a modest range near the origin—say x = −5a to

x = 5a.

To normalize the wavefunctions you will have to calculate the integral
∫

∞

−∞
|ψ(x)|2 dx

and then rescale ψ appropriately to ensure that the wavefunctions integrate to 1. Ei-

ther the trapezoidal rule or Simpson’s rule will give you a reasonable value for the

integral. Note, however, that you may find a few very large values at the end of the

array holding the wavefunction. Where do these large values come from? Are they

real, or spurious?

One simple way to deal with the large values is to make use of the fact that the sys-

tem is symmetric about its midpoint and calculate the integral of the wavefunction

over only the left-hand half of the system, then double the result. This neatly misses

out the large values.

For full credit turn in a printout of your final program, your results for the ener-

gies in parts (a) and (b), your answer to the questions in part (c) and your plot of the

wavefunctions.
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