
Complex Systems 535/Physics 508: Homework 7

Because of the Thanksgiving Break, you have longer than usual to do this homework. It is due in class
on December 1.

1. When we introduced the maximum likelihood method, we illustrated it with an applica-
tion to ordinary scalar data drawn from a Gaussian distribution. Let us do a similar thing
with the expectation–maximization (EM) algorithm and illustrate it with Poisson data.

Suppose we have a set of n measurements xi which are integer numbers drawn indepen-
dently from Poisson distributions. But here’s the catch: each number is drawn from one
of two different Poisson distributions with different means µ1 and µ2 and we’re not told
which distribution each number is drawn from, nor are we told the means. All we know
is that the probability distributions have the Poisson form

P(xi|µ1) =
µ

xi
1

xi!
e−µ1 , P(xi|µ2) =

µ
xi
2

xi!
e−µ2 .

So they might look something like this:
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For example, the numbers might be the degrees of vertices in a network, where there are
two different types of nodes with different average degrees. The goal is to work the type
of each vertex by looking only at the degrees. If we knew the means, this would be easy,
but we don’t.

(i) Let ci ∈ {1, 2} denote the type for xi, i.e., the distribution from which xi was drawn.
Write down an expression for the total likelihood P(x|µ, c) of the entire data set x,
given the values of the ci and the two µ parameters. Take the logarithm to get an
expression for the log-likelihood.



(ii) The best values of the µ parameters are given by maximizing the likelihood of the
whole data set x given only the two parameters µ:

P(x|µ) = ∑
c

P(x, c|µ) = ∑
c

P(x|µ, c)P(c),

where the sum is over all sets of values of c and P(c) is the prior probability of the
set c, which we assume to be uniform (i.e., constant) over all sets and hence can be
ignored (since we don’t care about constants when we are maximizing).

Equivalently, we can, if we prefer, maximize the log-likelihood log P(x|µ). Recall
Jensen’s inequality, which says that for any set of positive quantities zi and any set
of probabilities qi such that ∑i qi = 1, we have log ∑i zi ≥ ∑i qi log(zi/qi). Apply
Jensen’s inequality to the log-likelihood to show that (ignoring constants again)

log P(x|µ) ≥ ∑
c

q(c) log P(x|µ, c)− ∑
c

q(c) log q(c),

where q(c) is any probability distribution over sets of types c such that ∑c q(c) = 1.
Also show that the exact equality—i.e., the maximum of the right-hand side over all
choices of q(c)—is achieved when

q(c) =
P(x|µ, c)

∑c P(x|µ, c)
.

(iii) Using your expression from part (i), show that this choice of q(c) factors as q(c) =
∏i qi(ci), where

qi(r) =
P(xi|µr)

P(xi|µ1) + P(xi|µ2)
=
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(iv) Thus, if the right-hand side of our inequality is maximized over q(c) by making this
choice, it becomes equal to the left-hand size, and if we maximize the left-hand side
we get the answer to our question, “What is the best value of µ?” The EM algorithm
consists of doing these steps, but in the opposite order (since order doesn’t matter
anyway). We maximize with respect to µ first.

Taking your expression for the log-likelihood from part (i), putting it into the right-
hand side of the inequality above and maximizing with fixed q(c), show that the
optimal value of µr is given by

µr =
∑i xiqi(r)

∑i qi(r)
.

You now have all the elements of the algorithm. Given the data, you would make an
initial random guess about the values of the two parameters µ1 and µ2 and from them
calculate the 2n quantities qi(r) as above. Then you would use those values to calculate
a new value of µr, and repeat until you reach convergence. The end result would be the
optimal values of the means µ1 and µ2, plus the probabilities qi(r) that each data point
belongs to each of the two Poisson distributions.



2. Consider a network of n nodes generated using the standard random graph model G(n, p)
and let us divide this network at random into two equally sized parts of 1

2 n nodes each.
You can assume that n is large.

(i) Show that on average half of the edges in the graph will run between the two parts,
i.e., the cut size is R = 1

2 m, where m is the total number of edges.

(ii) Since the edges are independent, the actual number of edges between the two parts
will be Poisson distribution with mean µ = 1

2 m. Since m is a large number this
Poisson distribution is well approximated by a normal distribution with the same
mean and standard deviation

√
µ. Hence what is the probability that the actual

cut size will satisfy R ≤ am for some constant a <
1
2? Hint: there is no closed-form

answer for this question—write your answer in terms of the Gaussian error function,
erf x.

(iii) There are 2n different ways to divide the network into two equally sized parts.
Hence show that among those, the smallest cut size is about am where

erf
[

(a − 1
2)
√

m
]

≃ −1 + 2−n+1.

(iv) For values of erf x very close to −1, a good approximation for the error function is

erf x ≃ −1 − e−x2

√
πx

.

Using this approximation, and neglecting terms O(1) and O(log m) by comparison
with terms O(m) or O(n), show that

1
2 − a ≃

√

2 ln 2

c
.

(v) Given that the expected cut size is 1
2 m, show that the modularity corresponding the

division with smallest cut size is Q = 1
2 − a, and hence that for a random graph with

mean degree c = 8 there should exist at least one division with modularity around
Q = 0.42.

Thus it is possible for a division of a random graph to have large modularity, even though
the random graph obviously doesn’t contain any communities. This is a cautionary
tale: high modularity may tell you the best division of a network, but it doesn’t tell you
whether it’s a good division.

3. On the course web site you’ll find a file called polblogs.gml, which contains a copy of a
network in GML format. This is a network of Internet blogs on the subject of US politics,
along with the hyperlinks between them. The data were compiled by former Michigan
Professor of Information Lada Adamic. Each node is also accompanied by a single scalar
value which is either 0, for Democratic (liberal) blogs, or 1 for Republican (conservative)
ones.

You can use any tools you like to do the following operations, or a combination of tools
if you prefer. Gephi, Matlab, Mathematica, R, Python, or any general-purpose program-
ming language would be good choices.



(i) Read the network file and create an adjacency matrix representing the edges. Hy-
perlinks are directed, but you should ignore the directions, treating the edges as
undirected, so that the matrix you get is symmetric.

(ii) Calculate the degrees of all the nodes and the total number of edges.

(iii) Hence calculate the modularity matrix for the network.

(iv) Calculate the leading eigenvector of the modularity matrix, and split the nodes into
two groups according to the signs of the vector elements.

(v) Compare the two groups you get with the real-life classification of the nodes as
Democratic and Republican. What fraction of the nodes does the algorithm classify
correctly? (Hint: You should find it’s pretty high—over 80%.)


