
Complex Systems 535/Physics 508: Homework 7

1. (a) The Fibonacci numbers are 1, 1, 2, 3, 5, 8 . . . They have the definitive property
that each is the sum of the previous two. The generating function for the Fibonacci
numbers is the power series whose coefficients are the Fibonacci numbers: f (z) =
1 + z + 2z2 + 3z3 + 5z4 + . . . Show that f (z) = 1/(1 − z − z2).

(b) A sequence of numbers ak with k = 1, 2, 3, . . . satisfies the recurrence

ak =

{

1 for k = 1,

∑
k−1
j=1 ajak−j for k > 1.

Show that the generating function h(z) = ∑
∞
k=1 akzk = 1

2(1 −
√

1 − 4z).

2. Consider a bipartite version of the configuration model, as described in Section 12.11.2,
in which there are two types of nodes, and edges run only between nodes of unlike types.
There are nA nodes of type A with mean degree cA and nB nodes of type B with mean
degree cB.

(a) Given that every edge joins a node of type A to a node of type B, show that nAcA =
nBcB.

(b) Depending on the exact form of the degree distributions of the two types of nodes,
the network may or may not contain a giant component. Derive a condition in terms
of the mean and mean-square degrees of the two types, equivalent to the Molloy-
Reed condition for the ordinary configuration model, that tells us when a giant com-
ponent exists.

(c) Define uA to be the probability that the node of type A at the end of an edge is
not in the giant component, and similarly for uB and nodes of type B. Show that
uA = gA

1 (uB) and uB = gB
1 (uA) where gA

1 and gB
1 are the generating functions for the

excess degrees of nodes of type A and B respectively.

(d) Give an expression for the fraction SA of nodes of type A in the giant component.

3. Consider a model of a growing directed network similar to Price’s model described in
Section 13.1 of the course pack, but without preferential attachment. That is, nodes are
added one by one to the growing network and each has c outgoing edges, but those
edges now attach to existing nodes uniformly at random, without regard for degrees or
any other node property.

(a) Derive master equations, the equivalent of Eqs. (13.7) and (13.8), that govern the
distribution of in-degrees q in the limit of large network size.

(b) Hence show that in the limit of large size the in-degrees have a geometric distribu-
tion pq = Crq, where C is a normalization constant and r = c/(c + 1).

4. Consider a model network similar to the model of Barabási and Albert described in Sec-
tion 13.2, in which undirected edges are added between nodes according to a preferential
attachment rule, but suppose that the network does not grow—it starts off with a given
number n of nodes and neither gains nor loses any nodes thereafter. In this model, start-
ing with an initial network of n nodes and some specified arrangement of edges, we add



at each step one undirected edge between two nodes, both of which are chosen at random
in direct proportion to degree k. Let pk(m) be the fraction of nodes with degree k when
the network has m edges in total.

(a) Show that, when the network has m edges, the probability that the next edge added
will attach to node i is ki/m.

(b) Write down a master equation giving pk(m+ 1) in terms of pk−1(m) and pk(m). Give
the equation for the special case of k = 0 also.

(c) Eliminate m from the master equation in favor of the mean degree c = 2m/n and
take the limit n → ∞ with c held constant to show that pk(c) satisfies the differential
equation

c
dpk

dc
= (k − 1)pk−1 − kpk.

(d) Define a generating function g(c, z) = ∑
∞
k=0 pk(c) zk and show that it satisfies the

partial differential equation

c
∂g

∂c
+ z(1 − z)

∂g

∂z
= 0.

(e) Show that g(c, z) = f (c − c/z) is a solution of this differential equation, where f (x)
is any differentiable function of x.

(f) The particular choice of f depends on the initial conditions on the network. Suppose
the network starts off in a state where every node has degree one, which means c = 1
and g(1, z) = z. Find the function f that corresponds to this initial condition and
hence find g(c, z) for all values of c and z.

(g) Show that, for this solution, the degree distribution as a function of c takes the form

pk(c) =
(c − 1)k−1

ck
,

except for k = 0, for which p0(c) = 0 for all c.

Note that the degree distributions in both this model and the model of question 3 decay
exponentially in k, implying that neither preferential attachment nor network growth
alone can account for a power-law degree distribution. One must have both growth and
preferential attachment to get a power law.


