
CHAPTER 4

ACCURACY AND SPEED

WE HAVE now seen the basic elements of programming in Python: input

and output, variables and arithmetic, loops and if statements. With

these we can perform a wide variety of calculations. We have also seen how to

visualize our results using various types of computer graphics. There are many

additional features of the Python language that we haven’t covered. In later

chapters of the book, for example, we will introduce a number of specialized

features, such as facilities for doing linear algebra and Fourier transforms. But

for now we have the main components in place to start doing physics.

There is, however, one fundamental issue that we have not touched upon.

Computers have limitations. They cannot store real numbers with an infinite

number of decimal places. There is a limit to the largest and smallest num-

bers they can store. They can perform calculations quickly, but not infinitely

quickly. In many cases these issues need not bother us—the computer is fast

enough and accurate enough for many of the calculations we do in physics.

However, there are also situations in which the computer’s limitations will af-

fect us significantly, so it will be crucial that we understand those limitations,

as well as methods for mitigating them or working around them when neces-

sary.

4.1 VARIABLES AND RANGES

We have seen examples of the use of variables in computer programs, includ-

ing integer, floating-point, and complex variables, as well as lists and arrays.

Python variables can hold numbers that span a wide range of values, including

very large numbers, but they cannot hold numbers that are arbitrarily large.

For instance, the largest value you can give a floating-point variable is about

10308. (There is also a corresponding largest negative value of about −10308.)

This is enough for most physics calculations, but we will see occasional ex-

126

4.1 | VARIABLES AND RANGES

amples where we run into problems. Complex numbers are similar: both their

real and imaginary parts can go up to about ±10308 but not larger.1 Large num-

bers can be specified in scientific notation, using an “e” to denote the exponent.

For instance, 2e9 means 2× 109 and 1.602e-19 means 1.602× 10−19. Note that

numbers specified in scientific notation are always floats. Even if the number

is, mathematically speaking, an integer (like 2e9), the computer will still treat

it as a float.

If the value of a variable exceeds the largest floating-point number that can

be stored on the computer we say the variable has overflowed. For instance, if a

floating-point variable x holds a number close to the maximum allowed value

of 10308 and then we execute a statement like “y = 10*x” it is likely that the

result will be larger than the maximum and the variable y will overflow (but

not the variable x, whose value is unchanged).

If this happened in the course of a calculation you might imagine that the

program would stop, perhaps giving an error message, but in Python this is

not what happens. Instead the computer will set the variable to the special

value “inf,” which means infinity. If you print such a variable with a print

statement, the computer will actually print the word “inf” on the screen. In

effect, every number over 10308 is infinity as far as the computer is concerned.

Unfortunately, this is usually not what you want, and when it happens your

program will probably give incorrect answers, so you need to watch out for

this problem. It’s rare, but it’ll probably happen to you at some point.

There is also a smallest number (meaning smallest magnitude) that can

be represented by a floating-point variable. In Python this number is 10−308

roughly.2 If you go any smaller than this—if the calculation underflows—the

computer will just set the number to zero. Again, this usually messes things

up and gives wrong answers, so you need to be on the lookout.

What about integers? Here Python does something clever. There is no

largest integer value in Python: it can represent integers to arbitrary precision.

This means that no matter how many digits an integer has, Python stores all

of them—provided you have enough memory on your computer. Be aware,

however, that calculations with integers, even simple arithmetic operations,

take longer with more digits, and can take a very long time if there are very

1The actual largest number is 1.79769× 10308, which is the decimal representation of the binary
number 21024, the largest number that can be represented in the IEEE 754 double-precision floating-
point format used by the Python language.

2Actually 2.22507 × 10−308, which is 2−1022.

127

CHAPTER 4 | ACCURACY AND SPEED

many digits. Try, for example, doing print(2**1000000) in Python. The cal-

culation can be done—it yields a number with 301 030 digits—but it’s so slow

that you might as well forget about using your computer for anything else for

the next few minutes.3

Exercise 4.1: Write a program to calculate and print the factorial of a number entered by

the user. If you wish you can base your program on the user-defined function for facto-

rial given in Section 2.6, but write your program so that it calculates the factorial using

integer variables, not floating-point ones. Use your program to calculate the factorial

of 200.

Now modify your program to use floating-point variables instead and again calcu-

late the factorial of 200. What do you find? Explain.

4.2 NUMERICAL ERROR

Floating-point numbers (unlike integers) are represented on the computer to

only a certain precision. In Python, at least at the time of writing of this book,

the standard level of precision is 16 significant digits. This means that numbers

like π or
√

2, which have an infinite number of digits after the decimal point,

can only be represented approximately. Thus, for instance:

True value of π: 3.1415926535897932384626 . . .

Value in Python: 3.141592653589793

Difference: 0.0000000000000002384626 . . .

The difference between the true value of a number and its value on the com-

puter is called the rounding error on the number. It is the amount by which the

computer’s representation of the number is wrong.

A number does not have to be irrational like π to suffer from rounding

error—any number whose true value has more than 16 significant figures will

get rounded off. What’s more, when one performs arithmetic with floating-

point numbers, the answers are only guaranteed accurate to about 16 figures,

even if the numbers that went into the calculation were expressed exactly. If

3If you do actually try this, then you might want to know how to stop your program if you
get bored waiting for it to finish. The simplest thing to do is just to close the window where it’s
running.

128

4.2 | NUMERICAL ERROR

you add 1.1 and 2.2 in Python, then obviously the answer should be 3.3, but

the computer might give 3.299999999999999 instead.

Usually this is accurate enough, but there are times when it can cause prob-

lems. One important consequence of rounding error is that you should never

use an if statement to test the equality of two floats. For instance, you should never,

in any program, have a statement like

if x==3.3:

print(x)

because it may well not do what you want it to do. If the value of x is supposed

to be 3.3 but it’s actually 3.299999999999999, then as far as the computer is

concerned it’s not 3.3 and the if statement will fail. In fact, it rarely occurs in

physics calculations that you need to test the equality of floats, but if you do,

then you should do something like this instead:

epsilon = 1e-12

if abs(x-3.3)<epsilon:

print(x)

As we saw in Section 2.2.6, the built-in function abs calculates the absolute

value of its argument, so abs(x-3.3) is the absolute difference |x − 3.3|. The

code above tests whether this difference is less than the small number epsilon.

In other words, the if statement will succeed whenever x is very close to 3.3,

but the two don’t have to be exactly equal. If x is 3.299999999999999 things will

still work as expected. The value of epsilon has to be chosen appropriately

for the situation—there’s nothing special or universal about the value of 10−12

used above and a different value may be appropriate in another calculation.

The rounding error on a number, which we will denote ǫ, is defined to be

the amount you would have to add to the value calculated by the computer to

get the true value. For instance, if we do the following:

from math import sqrt

x = sqrt(2)

then we will end up not with x =
√

2, but rather with x + ǫ =
√

2, where ǫ is

the rounding error, or equivalently x =
√

2 − ǫ. This is the same definition of

error that one uses when discussing measurement error in experiments. When

we say, for instance, that the age of the universe is 13.80 ± 0.04 billion years,

we mean that the measured value is 13.80 billion years, but the true value is

possibly greater or less than this by an amount of order 0.04 billion years.

129

CHAPTER 4 | ACCURACY AND SPEED

The error ǫ in the example above could be either positive or negative, de-

pending on how the variable x gets rounded off. If we are lucky ǫ could be

small, but we cannot count on it. In general if x is accurate to a certain number

of significant digits, say 16, then the rounding error will have a typical size

of x/1016. It’s usually a good assumption to consider the error to be a (uni-

formly distributed) random number with standard deviation σ = Cx, where

C ≃ 10−16 in this case. We will refer to the constant C as the error constant.

When quoting the error on a calculation we typically give the value of the

standard deviation σ. (We can’t give the value of the error ǫ itself, since we

don’t know it—if we did, then we could calculate x + ǫ and recover the exact

value for the quantity of interest, so there would in effect be no error in the

calculation at all.)

Rounding error is important, as described above, if we are testing the equal-

ity of two floating-point numbers, but in other respects it may appear to be

only a minor annoyance. An error of one part in 1016 does not seem very bad.

But what happens if we now add, subtract, or otherwise combine several dif-

ferent numbers, each with its own error? In many ways the rounding error on

a number behaves similarly to measurement error in a laboratory experiment,

and the rules for combining errors are the same. For instance, if we add or sub-

tract two numbers x1 and x2, with standard deviations σ1 and σ2, then standard

results about combinations of random variables tell us that the variance σ2 of

the sum or difference is equal to the sum of the individual variances:

σ2 = σ2
1 + σ2

2 . (4.1)

Hence the standard deviation of the sum or difference is

σ =
√

σ2
1 + σ2

2 . (4.2)

Similarly if we multiply or divide two numbers then the variance of the result x

obeys
σ2

x2
=

σ2
1

x2
1

+
σ2

2

x2
2

. (4.3)

But, as discussed above, the standard deviations on x1 and x2 are given

by σ1 = Cx1 and σ2 = Cx2, so that if, for example, we are adding or subtracting

our two numbers, meaning Eq. (4.2) applies, then

σ =
√

C2x2
1 + C2x2

2 = C
√

x2
1 + x2

2. (4.4)

130

4.2 | NUMERICAL ERROR

I leave it as an exercise to show that the corresponding result for the error on

the product of two numbers x = x1x2 or their ratio x = x1/x2 is

σ =
√

2 Cx. (4.5)

We can extend these results to combinations of more than two numbers.

If, for instance, we are calculating the sum of N numbers x1 . . . xN with errors

having standard deviation σi = Cxi, then the variance on the final result is the

sum of the variances on the individual numbers:

σ2 =
N

∑
i=1

σ2
i =

N

∑
i=1

C2x2
i = C2Nx2, (4.6)

where x2 is the mean-square value of x. Thus the standard deviation on the

final result is

σ = C
√

N
√

x2. (4.7)

As we can see, this quantity increases in size as N increases—the more num-

bers we combine, the larger the error on the result—although the increase is a

relatively slow one, proportional to the square root of N.

We can also ask about the fractional error on ∑i xi, i.e., the total error divided

by the value of the sum. The size of the fractional error is given by

σ

∑i xi
=

C
√

N x2

N x
=

C√
N

√

x2

x
, (4.8)

where x = N−1 ∑i xi is the mean value of x. In other words the fractional error

in the sum actually goes down as we add more numbers.

At first glance this appears to be pretty good. So what’s the problem? Ac-

tually, there are a couple of them. One is when the sizes of the numbers you

are adding vary widely. If some are much smaller than others then the smaller

ones may get lost. But the most severe problems arise when you are not adding

but subtracting numbers. Suppose, for instance, that we have the following

two numbers:

x = 1000000000000000

y = 1000000000000001.2345678901234

and we want to calculate the difference y − x. Unfortunately, the computer

only represents these two numbers to 16 significant figures, which means that

131

CHAPTER 4 | ACCURACY AND SPEED

as far as the computer is concerned:

x = 100000000000000

y = 100000000000001.2

The first number is represented exactly in this case, but the second has been

truncated. Now when we take the difference we get y − x = 1.2, when the true

result would be 1.2345678901234. In other words, instead of 16-figure accuracy,

we now only have two figures and the fractional error is several percent of the

true value. This is much worse than before.

To put this in more general terms, if the difference between two numbers is

very small, comparable with the error on the numbers, i.e., with the accuracy

of the computer, then the fractional error can become large and you may have

a problem.

EXAMPLE 4.1: THE DIFFERENCE OF TWO NUMBERS

To see an example of this in practice, consider the two numbers

x = 1, y = 1 + 10−14
√

2. (4.9)

Trivially we see that

1014(y − x) =
√

2. (4.10)

Let us perform the same calculation in Python and see what we get. Here is

the program:

from math import sqrt

x = 1.0

y = 1.0 + (1e-14)*sqrt(2)

print((1e14)*(y-x))

print(sqrt(2))

The penultimate line calculates the value in Eq. (4.10) while the last line prints

out the true value of
√

2 (at least to the accuracy of the computer). Here’s what

we get when we run the program:

1.42108547152

1.41421356237

As we can see, the calculation is accurate to only the first decimal place—after

that the rest is garbage.

132

4.2 | NUMERICAL ERROR

This issue, of large errors in calculations that involve the subtraction of

numbers that are nearly equal, arises with some frequency in physics calcu-

lations. We will see various examples throughout the book. It is perhaps the

most common cause of significant numerical error in computations and you

need to be aware of it at all times when writing programs.

Exercise 4.2: Quadratic equations

Consider a quadratic equation ax2 + bx + c = 0 that has real solutions.

a) Write a program that takes as input the three numbers, a, b, and c, and prints out

the two solutions using the standard formula

x =
−b ±

√
b2 − 4ac

2a
.

Use your program to compute the solutions of 0.001x2 + 1000x + 0.001 = 0.

b) There is another way to write the solutions to a quadratic equation. Multiplying

top and bottom of the solution above by −b ∓
√

b2 − 4ac, show that the solutions

can also be written as

x =
2c

−b ∓
√

b2 − 4ac
.

Add further lines to your program to print these values in addition to the earlier

ones and again use the program to solve 0.001x2 + 1000x + 0.001 = 0. What do

you see? How do you explain it?

c) Using what you have learned, write a new program that calculates both roots of

a quadratic equation accurately in all cases.

This is a good example of how computers don’t always work the way you expect them

to. If you simply apply the standard formula for the quadratic equation, the computer

will sometimes get the wrong answer. In practice the method you have worked out here

is the correct way to solve a quadratic equation on a computer, even though it’s more

complicated than the standard formula. If you were writing a program that involved

solving many quadratic equations this method might be a good candidate for a user-

defined function: you could put the details of the solution method inside a function to

save yourself the trouble of going through it step by step every time you have a new

equation to solve.

Exercise 4.3: Calculating derivatives

Suppose we have a function f (x) and we want to calculate its derivative at a point x.

We can do that with pencil and paper if we know the mathematical form of the function,

or we can do it on the computer by making use of the definition of the derivative:

d f

dx
= lim

δ→0

f (x + δ)− f (x)

δ
.

133

CHAPTER 4 | ACCURACY AND SPEED

On the computer we can’t actually take the limit as δ goes to zero, but we can get a

reasonable approximation just by making δ small.

a) Write a program that defines a function f(x) returning the value x(x − 1), then

calculates the derivative of the function at the point x = 1 using the formula

above with δ = 10−2. Calculate the true value of the same derivative analyti-

cally and compare with the answer your program gives. The two will not agree

perfectly. Why not?

b) Repeat the calculation for δ = 10−4, 10−6, 10−8, 10−10, 10−12, and 10−14. You

should see that the accuracy of the calculation initially gets better as δ gets smaller,

but then gets worse again. Why is this?

We will look at numerical derivatives in more detail in Section 5.10, where we will

study techniques for dealing with these issues and maximizing the accuracy of our

calculations.

4.3 PROGRAM SPEED

As we have seen, computers are not infinitely accurate. And neither are they

infinitely fast. Yes, they work at amazing speeds, but many physics calcula-

tions require the computer to perform millions of individual computations to

get a desired overall result and collectively those computations can take a sig-

nificant amount of time. Some of the example calculations described in Chap-

ter 1 took months to complete, even though they were run on some of the most

powerful computers in the world.

One thing we need to get a feel for is how fast computers really are. As a

general guide, performing a million mathematical operations is no big prob-

lem for a computer—it usually takes less than a second. Adding a million

numbers together, for instance, or finding a million square roots, can be done

in very little time. Performing a billion operations, on the other hand, could

take minutes or hours, though it’s still possible provided you are patient. Per-

forming a trillion operations, however, will basically take forever. So a fair rule

of thumb is that the calculations we can perform on a computer are ones that

can be done with about a billion operations or less.

This is only a rough guide. Not all operations are equal and it makes a

difference whether we are talking about additions or multiplications of single

numbers (which are easy and quick) versus, say, calculating Bessel functions

or multiplying matrices (which are not). Moreover, the billion-operation rule

will change over time because computers get faster. However, computers have

been getting faster a lot less quickly in the last few years—progress has slowed.

So we’re probably stuck with a billion operations for a while.

134

4.3 | PROGRAM SPEED

EXAMPLE 4.2: QUANTUM HARMONIC OSCILLATOR AT FINITE TEMPERATURE

The quantum simple harmonic oscillator has energy levels En = h̄ω(n + 1
2),

where n = 0, 1, 2, . . . , ∞. As shown by Boltzmann and Gibbs, the average en-

ergy of a simple harmonic oscillator at temperature T is

〈E〉 = 1

Z

∞

∑
n=0

Ene−βEn , (4.11)

where β = 1/(kBT) with kB being the Boltzmann constant, and Z = ∑
∞
n=0 e−βEn .

Suppose we want to calculate, approximately, the value of 〈E〉 when kBT =

100. Since the terms in the sums for 〈E〉 and Z dwindle in size quite quickly as

n becomes large, we can get a reasonable approximation by taking just the first

1000 terms in each sum. Working in units where h̄ = ω = 1, here’s a program

to do the calculation:

File: qsho.pyfrom math import exp

terms = 1000

beta = 1/100

S = 0.0

Z = 0.0

for n in range(terms):

E = n + 0.5

weight = exp(-beta*E)

S += weight*E

Z += weight

print(S/Z)

Note a few features of this program:

1. Constants like the number of terms and the value of β are assigned to

variables at the beginning of the program. As discussed in Section 2.7,

this is good programming style because it makes them easy to find and

modify and makes the rest of the program more readable.

2. We used just one for loop to calculate both sums. This saves time, making

the program run faster.

3. Although the exponential e−βEn occurs separately in both sums, we calcu-

late it only once each time around the loop and save its value in the vari-

able weight. This also saves time: exponentials take significantly longer

to calculate than, for example, additions or multiplications. (Of course

135

CHAPTER 4 | ACCURACY AND SPEED

“longer” is relative—the times involved are probably still less than a mi-

crosecond. But if one has to go many times around the loop even those

short times can add up.)

If we run the program we get this result:

99.9554313409

The calculation (on my desktop computer) takes 0.01 seconds. Now let us try

increasing the number of terms in the sums (which just means increasing the

value of the variable terms at the top of the program). This will make our

approximation more accurate and give us a better estimate of our answer, at

the expense of taking more time to complete the calculation. If we increase the

number of terms to a million then it does change our answer somewhat:

100.000833332

The calculation now takes 1.4 seconds, which is significantly longer, but still a

short time in absolute terms.

Now let’s increase the number of terms to a billion. When we do this the

calculation takes 22 minutes to finish, but the result does not change at all:

100.000833332

There are three morals to this story. First, a billion operations is indeed doable—

if a calculation is important to us we can probably wait twenty minutes for an

answer. But it’s approaching the limit of what is reasonable. If we increased

the number of terms in our sum by another factor of ten the calculation would

take 220 minutes, or nearly four hours. A factor of ten beyond that and we’d

be waiting a couple of days for an answer.

Second, there is a balance to be struck between time spent and accuracy. In

this case it was probably worthwhile to calculate a million terms of the sum—

it didn’t take long and the result was noticeably, though not wildly, different

from the result for a thousand terms. But the change to a billion terms was

clearly not worth the effort—the calculation took much longer to complete but

the answer was exactly the same as before. We will see plenty of further exam-

ples in this book of calculations where we need to find an appropriate balance

between speed and accuracy.

Third, it’s pretty easy to write a program that will take forever to finish.

If we set the program above to calculate a trillion terms, it would take weeks

to run. So it’s worth taking a moment, before you spend a whole lot of time

136

4.3 | PROGRAM SPEED

writing and running a program, to do a quick estimate of how long you expect

your calculation to take. If it’s going to take a year then it’s not worth it: you

need to find a faster way to do the calculation, or settle for a quicker but less

accurate answer. The simplest way to estimate running time is to make a rough

count of the number of mathematical operations the calculation will involve;

if the number is significantly greater than a billion, you have a problem.

EXAMPLE 4.3: MATRIX MULTIPLICATION

Suppose we have two N × N matrices represented as arrays A and B on the

computer and we want to multiply them together to calculate their matrix

product. Here is a fragment of code to do the multiplication and place the

result in a new array called C:

from numpy import zeros

N = 1000

C = zeros([N,N],float)

for i in range(N):

for j in range(N):

for k in range(N):

C[i,j] += A[i,k]*B[k,j]

We could use this code, for example, as the basis for a user-defined function to

multiply arrays together. (As we saw in Section 2.4.4, Python already provides

the function “dot” for calculating matrix products, but it’s a useful exercise

to write our own code for the calculation. Among other things, it helps us

understand how many operations are involved in calculating such a product.)

How large a pair of matrices could we multiply together in this way if the

calculation is to take a reasonable amount of time? The program has three

nested for loops in it. The innermost loop, which runs through values of the

variable k, goes around N times doing one multiplication operation each time

and one addition, for a total of 2N operations. That whole loop is itself exe-

cuted N times, once for each value of j in the middle loop, giving 2N2 opera-

tions. And those 2N2 operations are themselves performed N times as we go

through the values of i in the outermost loop. The end result is that the ma-

trix multiplication takes 2N3 operations overall. Thus if N = 1000, as above,

the whole calculation would involve two billion operations, which is feasible

in a few minutes of running time. Larger values of N, however, will rapidly

become intractable. For N = 2000, for instance, we would have 16 billion op-

137

CHAPTER 4 | ACCURACY AND SPEED

erations, which could take hours to complete. Thus the largest matrices we can

multiply are about 1000 × 1000 in size.4

Exercise 4.4: Calculating integrals

Suppose we want to calculate the value of the integral

I =
∫ 1

−1

√
1 − x2 dx.

The integrand looks like a semicircle of radius 1:

-1 0 1

and hence the value of the integral—the area under the curve—must be equal to 1
2 π =

1.57079632679 . . .

Alternatively, we can evaluate the integral on the computer by dividing the domain

of integration into a large number N of slices of width h = 2/N each and then using

the Riemann definition of the integral:

I = lim
N→∞

N

∑
k=1

hyk ,

4Interestingly, the direct matrix multiplication represented by the code given here is not the
fastest way to multiply two matrices on a computer. Strassen’s algorithm is an iterative method for
multiplying matrices that uses some clever shortcuts to reduce the number of operations needed so
that the total number is proportional to about N2.8 rather than N3. For very large matrices this can
result in significantly faster computations. Unfortunately, Strassen’s algorithm suffers from large
numerical errors because of problems with subtraction of nearly equal numbers (see Section 4.2)
and for this reason it is rarely used. On paper, an even faster method for matrix multiplication is
the Coppersmith–Winograd algorithm, which requires a number of operations proportional to only
about N2.4, but in practice this method is so complex to program as to be essentially worthless—the
extra complexity means that in real applications the method is always slower than direct multipli-
cation.

138

4.3 | PROGRAM SPEED

where

yk =
√

1 − x2
k and xk = −1 + hk.

We cannot in practice take the limit N → ∞, but we can make a reasonable approxima-

tion by just making N large.

a) Write a program to evaluate the integral above with N = 100 and compare the

result with the exact value. The two will not agree very well, because N = 100 is

not a sufficiently large number of slices.

b) Increase the value of N to get a more accurate value for the integral. If we require

that the program runs in about one second or less, how accurate a value can you

get?

Evaluating integrals is a common task in computational physics calculations. We will

study techniques for doing integrals in detail in the next chapter. As we will see, there

are substantially quicker and more accurate methods than the simple one we have used

here.

139

