
CHAPTER 5

INTEGRALS AND DERIVATIVES

IN THE preceding chapters we looked at the basics of computer program-

ming using Python and solved some simple physics problems using what

we learned. You will get plenty of further opportunities to polish your pro-

gramming skills, but our main task from here on is to learn about the ideas

and techniques of computational physics, the physical and mathematical in-

sights that allow us to perform accurate calculations of physical quantities on

the computer.

One of the most basic but also most important applications of computers

in physics is the evaluation of integrals and derivatives. Numerical evalua-

tion of integrals is a particularly crucial topic because integrals occur widely

in physics calculations and, while some integrals can be done analytically in

closed form, most cannot. They can, however, almost always be done on a

computer. In this chapter we examine a number of different techniques for

evaluating integrals and derivatives, as well as taking a brief look at the re-

lated operation of interpolation.

5.1 FUNDAMENTAL METHODS FOR EVALUATING INTEGRALS

Suppose we wish to evaluate the integral of a given function. Let us consider

initially the simplest case, the integral of a function of a single variable over

a finite range. We will study a range of techniques for the numerical evalua-

tion of such integrals, but we start with the most basic—and also most widely

used—the trapezoidal rule.1

1Also called the trapezium rule in British English.

140

5.1 | FUNDAMENTAL METHODS FOR EVALUATING INTEGRALS

a b
x

f(x)

(a)

a b
x

f(x)

(b)

a b
x

f(x)

(c)

Figure 5.1: Estimating the area under a curve. (a) A simple scheme for estimating the area under a curve by

dividing the area into rectangular slices. The gray shaded area approximates the area under the curve, though

not very well. (b) The trapezoidal rule approximates the area as a set of trapezoids, and is usually more accurate.

(c) With a larger number of slices, the shaded area is a more accurate approximation to the true area under the

curve.

5.1.1 THE TRAPEZOIDAL RULE

Suppose we have a function f (x) and we want to calculate its integral with

respect to x from x = a to x = b, which we denote I(a, b):

I(a, b) =
∫ b

a
f (x) dx. (5.1)

This is equivalent to calculating the area under the curve of f (x) from a to b.

There is no known way to calculate such an area exactly in all cases on a com-

puter, but we can do it approximately by the method shown in Fig. 5.1a: we

divide the area up into rectangular slices, calculate the area of each one, and

then add them up. This, however, is a pretty poor approximation. The area

under the rectangles is not very close to the area under the curve.

A better approach, which involves very little extra work, is that shown

in Fig. 5.1b, where the area is divided into trapezoids rather than rectangles.

The area under the trapezoids is a considerably better approximation to the

area under the curve, and this approach, though simple, often gives perfectly

adequate results.

141

CHAPTER 5 | INTEGRALS AND DERIVATIVES

Suppose we divide the interval from a to b into N slices or steps, so that

each slice has width h = (b − a)/N. Then the right-hand side of the kth slice

falls at a + kh, and the left-hand side falls at a + kh − h = a + (k − 1)h. Thus

the area of the trapezoid for this slice is

Ak =
1
2 h

[

f (a + (k − 1)h) + f (a + kh)
]

. (5.2)

This is the trapezoidal rule. It gives us a trapezoidal approximation to the area

under one slice of our function.

Now our approximation for the area under the whole curve is the sum of

the areas of the trapezoids for all N slices:

I(a, b) ≃
N

∑
k=1

Ak =
1
2 h

N

∑
k=1

[

f (a + (k − 1)h) + f (a + kh)
]

= h
[

1
2 f (a) + f (a + h) + f (a + 2h) + . . . + 1

2 f (b)
]

= h

[

1
2 f (a) + 1

2 f (b) +
N−1

∑
k=1

f (a + kh)

]

. (5.3)

This is the extended trapezoidal rule—it is the extension to many slices of the

basic trapezoidal rule of Eq. (5.2). Being slightly sloppy in our usage, however,

we will often refer to it simply as the trapezoidal rule. Note the structure of the

formula: the quantity inside the square brackets is a sum over values of f (x)

measured at equally spaced points in the integration domain, and we take a

half of the values at the start and end points but one times the value at all the

interior points.

EXAMPLE 5.1: INTEGRATING A FUNCTION

Let us use the trapezoidal rule to calculate the integral of x4 − 2x + 1 from

x = 0 to x = 2. This is actually an integral we can do by hand, which means

we don’t really need to do it using the computer in this case, but it’s a good

first example because we can check easily if our program is working and how

accurate an answer it gives.

Here is a program to do the integration using the trapezoidal rule with

N = 10 slices:

File:

trapezoidal.py

def f(x):

return x**4 - 2*x + 1

142

5.1 | FUNDAMENTAL METHODS FOR EVALUATING INTEGRALS

N = 10

a = 0.0

b = 2.0

h = (b-a)/N

s = 0.5*f(a) + 0.5*f(b)

for k in range(1,N):

s += f(a+k*h)

print(h*s)

This is a straightforward translation of the trapezoidal rule formula into com-

puter code: we create a function that calculates the integrand, set up all the

constants used, evaluate the sum for the integral I(a, b) term by term, and then

multiply it by h and print it out.

If we run the program it prints

4.50656

The correct answer is

∫ 2

0
(x4 − 2x + 1)dx =

[

1
5 x5 − x2 + x

]2

0
= 4.4. (5.4)

So our calculation is moderately but not exceptionally accurate—the answer is

off by about 2%.

We can make the calculation more accurate by increasing the number of

slices. As shown in Fig. 5.1c, we approximate the area under the curve better

when N is larger, though the program will also take longer to reach an answer

because there are more terms in the sum to evaluate. If we increase the number

of slices to N = 100 and run the program again we get 4.40107, which is now

accurate to 0.02%, which is pretty good. And if we use N = 1000 we get

4.40001, which is accurate to 0.0002%. In Section 5.2 we will study in more

detail the accuracy of the trapezoidal rule.

Exercise 5.1: In the on-line resources you will find a file called velocities.txt, which

contains two columns of numbers, the first representing time t in seconds and the sec-

ond the x-velocity in meters per second of a particle, measured once every second from

time t = 0 to t = 100. The first few lines look like this:

143

CHAPTER 5 | INTEGRALS AND DERIVATIVES

0 0

1 0.069478

2 0.137694

3 0.204332

4 0.269083

5 0.331656

Write a program to do the following:

a) Read in the data and, using the trapezoidal rule, calculate from them the approx-

imate distance traveled by the particle in the x direction as a function of time. See

Section 2.4.3 on page 57 if you want a reminder of how to read data from a file.

b) Extend your program to make a graph that shows, on the same plot, both the

original velocity curve and the distance traveled as a function of time.

5.1.2 SIMPSON’S RULE

The trapezoidal rule is the simplest of numerical integration methods, taking

only a few lines of code as we have seen, but it is often perfectly adequate

for calculations where no great accuracy is required. It happens frequently in

physics calculations that we don’t need an answer accurate to many significant

figures and in such cases the ease and simplicity of the trapezoidal rule can

make it the method of choice. One should not turn up one’s nose at simple

methods like this; they play an important role and are used widely. Moreover,

the trapezoidal rule is the basis for several other more sophisticated methods

of evaluating integrals, including the adaptive methods that we will study in

Section 5.3 and the Romberg integration method of Section 5.4.

However, there are also cases where greater accuracy is required. As we

have seen we can increase the accuracy of the trapezoidal rule by increasing

the number N of steps used in the calculation. But in some cases, particularly

for integrands that are rapidly varying, a very large number of steps may be

needed to achieve the desired accuracy, which means the calculation can be-

come slow. There are other, more advanced schemes for calculating integrals

that can achieve high accuracy while still arriving at an answer quickly. In this

section we study one such scheme, Simpson’s rule.

In effect, the trapezoidal rule estimates the area under a curve by approxi-

mating the curve with straight-line segments—see Fig. 5.1b. We can often get a

better result if we approximate the function instead with curves of some kind.

Simpson’s rule does exactly this, using quadratic curves, as shown in Fig. 5.2.

In order to specify a quadratic completely one needs three points, not just two

as with a straight line. So in this method we take a pair of adjacent slices and fit

144

5.1 | FUNDAMENTAL METHODS FOR EVALUATING INTEGRALS

a b
x

f(x)

Quadratic 1
Quadratic 2

Figure 5.2: Simpson’s rule. Simpson’s rule involves fitting quadratic curves to pairs of

slices and then calculating the area under the quadratics.

a quadratic through the three points that mark the boundaries of those slices.

In Fig. 5.2 there are two quadratics, fitted to four slices. Simpson’s rule involves

approximating the integrand with quadratics in this way, then calculating the

area under those quadratics, which gives an approximation to the area under

the true curve.

Suppose, as before, that our integrand is denoted f (x) and the spacing of

adjacent points is h. And suppose for the purposes of argument that we have

three points at x = −h, 0, and +h. If we fit a quadratic Ax2 + Bx + C through

these points, then by definition we will have:

f (−h) = Ah2 − Bh + C, f (0) = C, f (h) = Ah2 + Bh + C. (5.5)

Solving these equations simultaneously for A, B, and C gives

A =
1

h2

[

1
2 f (−h)− f (0)+ 1

2 f (h)
]

, B =
1

2h

[

f (h)− f (−h)
]

, C = f (0), (5.6)

and the area under the curve of f (x) from −h to +h is given approximately by

the area under the quadratic:

∫ h

−h
(Ax2 + Bx + C) dx = 2

3 Ah3 + 2Ch = 1
3 h

[

f (−h) + 4 f (0) + f (h)
]

. (5.7)

145

CHAPTER 5 | INTEGRALS AND DERIVATIVES

This is Simpson’s rule. It gives us an approximation to the area under two ad-

jacent slices of our function. Note that the final formula for the area involves

only h and the value of the function at evenly spaced points, just as with the

trapezoidal rule. So to use Simpson’s rule we don’t actually have to worry

about the details of fitting a quadratic—we just plug numbers into this for-

mula and it gives us an answer. This makes Simpson’s rule almost as simple

to use as the trapezoidal rule, and yet Simpson’s rule often gives much more

accurate results, as we will see.

To use Simpson’s rule to perform a general integral we note that Eq. (5.7)

does not depend on the fact that our three points lie at x = −h, 0, and +h. If

we were to slide the curve along the x-axis to either higher or lower values,

the area underneath it would not change. So we can use the same rule for any

three uniformly spaced points. Applying Simpson’s rule involves dividing

the domain of integration into many slices and using the rule to separately

estimate the area under successive pairs of slices, then adding the estimates

for all pairs to get the final answer. If, as before, we are integrating from x = a

to x = b in slices of width h then the three points bounding the first pair of

slices fall at x = a, a + h and a + 2h, those bounding the second pair at a + 2h,

a + 3h, a + 4h, and so forth. Then the approximate value of the entire integral

is given by

I(a, b) ≃ 1
3 h

[

f (a) + 4 f (a + h) + f (a + 2h)
]

+ 1
3 h

[

f (a + 2h) + 4 f (a + 3h) + f (a + 4h)
]

+ . . .

+ 1
3 h

[

f (a + (N − 2)h) + 4 f (a + (N − 1)h) + f (b)
]

. (5.8)

Note that the total number of slices must be even for this to work. Collecting

terms together, we now have

I(a, b) ≃ 1
3 h

[

f (a) + 4 f (a + h) + 2 f (a + 2h) + 4 f (a + 3h) + . . . + f (b)
]

= 1
3 h

[

f (a) + f (b) + 4 ∑
k odd

1...N−1

f (a + kh) + 2 ∑
k even

2...N−2

f (a + kh)

]

. (5.9)

This formula is sometimes called the extended Simpson’s rule, by analogy with

the extended trapezoidal rule of Section 5.1.1, although for the sake of brevity

we will just refer to it as Simpson’s rule.

The sums over odd and even values of k can be conveniently accomplished

in Python using a for loop of the form “for k in range(1,N,2)” for the odd

terms or “for k in range(2,N,2)” for the even terms. Alternatively, we can

146

5.1 | FUNDAMENTAL METHODS FOR EVALUATING INTEGRALS

rewrite Eq. (5.9) as

I(a, b) ≃ 1
3 h

[

f (a) + f (b) + 4
N/2

∑
k=1

f (a+ (2k − 1)h) + 2
N/2−1

∑
k=1

f (a+ 2kh)

]

, (5.10)

and just use an ordinary for loop (although this form is usually less conve-

nient).

Comparing these equations to Eq. (5.3) we see that Simpson’s rule is mod-

estly more complicated than the trapezoidal rule, but not enormously so. Pro-

grams using it are still straightforward to create.

As an example, suppose we apply Simpson’s rule with N = 10 slices to

the integral from Example 5.1,
∫ 2

0
(x4 − 2x + 1)dx, whose true value, as we

saw, is 4.4. As shown in Exercise 5.2, this gives an answer of 4.400427, which

is already accurate to better than 0.01%, orders of magnitude better than the

trapezoidal rule with N = 10. Results for N = 100 and N = 1000 are better

still—see the exercise.

If you need an accurate answer for an integral, Simpson’s rule is a good

choice in many cases, giving precise results with relatively little effort. Alter-

natively, if you need to evaluate an integral quickly—perhaps because you will

be evaluating many integrals as part of a larger calculation—then Simpson’s

rule may again be a good choice, since it can give moderately accurate answers

even with only a small number of steps.

Exercise 5.2:

a) Write a program to calculate an approximate value for the integral
∫ 2

0
(x4 − 2x +

1) dx from Example 5.1, but using Simpson’s rule with 10 slices instead of the

trapezoidal rule. You may wish to base your program on the trapezoidal rule

program on page 142.

b) Run the program and compare your result to the known correct value of 4.4.

What is the fractional error on your calculation?

c) Modify the program to use a hundred slices instead, then a thousand. Note the

improvement in the result. How do the results compare with those from Exam-

ple 5.1 for the trapezoidal rule with the same numbers of slices?

Exercise 5.3: Consider the integral

E(x) =
∫ x

0
e−t2

dt.

147

CHAPTER 5 | INTEGRALS AND DERIVATIVES

a) Write a program to calculate E(x) for values of x from 0 to 3 in steps of 0.1.

Choose for yourself what method you will use for performing the integral and a

suitable number of slices.

b) When you are convinced your program is working, extend it further to make a

graph of E(x) as a function of x. If you want to remind yourself of how to make

a graph, you should consult Section 3.1, starting on page 88.

Note that there is no known way to perform this particular integral analytically, so

numerical approaches are the only way forward.

Exercise 5.4: The diffraction limit of a telescope

Our ability to resolve detail in astronomical observations is limited by the diffraction of

light in our telescopes. Light from stars can be treated effectively as coming from a point

source at infinity. When such light, with wavelength λ, passes through the circular

aperture of a telescope (which we’ll assume to have unit radius) and is focused by the

telescope in the focal plane, it produces not a single dot, but a circular diffraction pattern

consisting of central spot surrounded by a series of concentric rings. The intensity of

the light in this diffraction pattern is given by

I(r) =

(

J1(kr)

kr

)2

,

where r is the distance in the focal plane from the center of the diffraction pattern,

k = 2π/λ, and J1(x) is a Bessel function. The Bessel functions Jm(x) are given by

Jm(x) =
1

π

∫ π

0
cos(mθ − x sin θ) dθ,

where m is a nonnegative integer and x ≥ 0.

The diffraction pattern
produced by a point
source of light when
viewed through a tele-
scope.

a) Write a Python function J(m,x) that calculates the value of Jm(x) using Simpson’s

rule with N = 1000 points. Use your function in a program to make a plot, on a

single graph, of the Bessel functions J0, J1, and J2 as a function of x from x = 0 to

x = 20.

b) Make a second program that makes a density plot of the intensity of the circular

diffraction pattern of a point light source with λ = 500 nm, in a square region of

the focal plane, using the formula given above. Your picture should cover values

of r from zero up to about 1 µm.

Hint 1: You may find it useful to know that limx→0 J1(x)/x = 1
2 . Hint 2: The central

spot in the diffraction pattern is so bright that it may be difficult to see the rings around

it on the computer screen. If you run into this problem a simple way to deal with it is to

use one of the other color schemes for density plots described in Section 3.3. The “hot”

scheme works well. For a more sophisticated solution to the problem, the imshow func-

tion has an additional argument vmax that allows you to set the value that corresponds

to the brightest point in the plot. For instance, if you say “imshow(x,vmax=0.1)”, then

148

5.2 | ERRORS ON INTEGRALS

elements in x with value 0.1, or any greater value, will produce the brightest (most pos-

itive) color on the screen. By lowering the vmax value, you can reduce the total range of

values between the minimum and maximum brightness, and hence increase the sensi-

tivity of the plot, making subtle details visible. (There is also a vmin argument that can

be used to set the value that corresponds to the dimmest (most negative) color.) For this

exercise a value of vmax=0.01 appears to work well.

5.2 ERRORS ON INTEGRALS

Our numerical integrals are only approximations. As with most numerical cal-

culations there is usually a rounding error when we calculate an integral, as

described in Section 4.2, but this is not the main source of error. The main

source of error is the so-called approximation error—the fact that our integration

rules themselves are only approximations to the true integral. Both the trape-

zoidal and Simpson rules calculate the area under an approximation (either

linear or quadratic) to the integrand, not the integrand itself. How big an error

does this approximation introduce?

Consider again an integral
∫ b

a
f (x)dx, and let us first look at the trapezoidal

rule of Eq. (5.3). To simplify our notation a little, let us define xk = a + kh as a

shorthand for the positions at which we evaluate the integrand f (x). We will

refer to these positions as sample points. Now consider one particular slice of

the integral, the one that falls between xk−1 and xk, and let us perform a Taylor

expansion of f (x) about xk−1 thus:

f (x) = f (xk−1) + (x − xk−1) f ′(xk−1) +
1
2 (x − xk−1)

2 f ′′(xk−1) + . . . (5.11)

where f ′ and f ′′ denote the first and second derivatives of f respectively. Inte-

grating this expression from xk−1 to xk gives
∫ xk

xk−1

f (x) dx = f (xk−1)
∫ xk

xk−1

dx + f ′(xk−1)
∫ xk

xk−1

(x − xk−1) dx

+ 1
2 f ′′(xk−1)

∫ xk

xk−1

(x − xk−1)
2 dx + . . . (5.12)

Now we make the substitution u = x − xk−1, which gives

∫ xk

xk−1

f (x) dx = f (xk−1)
∫ h

0
du + f ′(xk−1)

∫ h

0
u du + 1

2 f ′′(xk−1)
∫ h

0
u2 du + . . .

= h f (xk−1) +
1
2 h2 f ′(xk−1) +

1
6 h3 f ′′(xk−1) + O(h4), (5.13)

where O(h4) denotes the rest of the terms in the series, those in h4 and higher,

which we are neglecting.

149

CHAPTER 5 | INTEGRALS AND DERIVATIVES

We can do a similar expansion around x = xk and again integrate from xk−1

to xk to get
∫ xk

xk−1

f (x) dx = h f (xk)− 1
2 h2 f ′(xk) +

1
6 h3 f ′′(xk)− O(h4). (5.14)

Then, taking the average of Eqs. (5.13) and (5.14), we get
∫ xk

xk−1

f (x) dx = 1
2 h[f (xk−1) + f (xk)] +

1
4 h2[f ′(xk−1)− f ′(xk)]

+ 1
12 h3[f ′′(xk−1) + f ′′(xk)] + O(h4). (5.15)

Finally, we sum this expression over all slices k to get the full integral that we

want:
∫ b

a
f (x) dx =

N

∑
k=1

∫ xk

xk−1

f (x) dx

= 1
2 h

N

∑
k=1

[f (xk−1) + f (xk)] +
1
4 h2[f ′(a)− f ′(b)]

+ 1
12 h3

N

∑
k=1

[f ′′(xk−1) + f ′′(xk)] + O(h4). (5.16)

Let’s take a close look at this expression to see what’s going on.

The first sum on the right-hand side of the equation is precisely equal to

the trapezoidal rule, Eq. (5.3). When we use the trapezoidal rule, we evaluate

only this sum and discard all the terms following. The size of the discarded

terms—the rest of the series—measures the amount we would have to add to

the trapezoidal rule value to get the true value of the integral. In other words

it is equal to the error we incur when we use the trapezoidal rule, the so-called

approximation error.

In the second term, the term in h2, notice that almost all of the terms have

canceled out of the sum, leaving only the first and last terms, the ones evalu-

ated at a and b. Although we haven’t shown it, a similar cancellation happens

for the terms in h4, h6, and all even powers of h.

Now take a look at the term in h3 and notice the following useful fact: the

sum in this term is itself, to within an overall constant, just the trapezoidal rule

approximation to the integral of f ′′(x) over the interval from a to b. Specifically,

if we take Eq. (5.16) and make the substitution f (x) → f ′′(x) on the left-hand

side, we get

∫ b

a
f ′′(x) dx = 1

2 h
N

∑
k=1

[f ′′(xk−1) + f ′′(xk)] + O(h2). (5.17)

150

5.2 | ERRORS ON INTEGRALS

Multiplying by 1
6 h2 and rearranging, we then get

1
12 h3

N

∑
k=1

[f ′′(xk−1) + f ′′(xk)] =
1
6 h2

∫ b

a
f ′′(x) dx + O(h4)

= 1
6 h2[f ′(b)− f ′(a)] + O(h4), (5.18)

since the integral of f ′′(x) is just f ′(x). Substituting this result into Eq. (5.16)

and canceling some terms, we find that

∫ b

a
f (x) dx = 1

2 h
N

∑
k=1

[f (xk−1) + f (xk)] +
1
12 h2[f ′(a)− f ′(b)] + O(h4). (5.19)

Thus, to leading order in h, the value of the terms dropped when we use the

trapezoidal rule, which equals the approximation error ǫ on the integral, is

ǫ = 1
12 h2

[

f ′(a)− f ′(b)
]

. (5.20)

This is the Euler–Maclaurin formula for the error on the trapezoidal rule. More

correctly it is the first term in the Euler–Maclaurin formula; the full formula

keeps the terms to all orders in h. We can see from Eq. (5.19) that the next term

in the series is of order h4. We might imagine it would be of order h3, but the h3

term cancels out, and in fact it’s fairly straightforward to show that only even

powers of h survive in the full formula at all orders, so the next term after h4

is h6, then h8, and so forth. So long as h is small, however, we can neglect the

h4 and higher terms—the leading term, Eq. (5.20), is usually enough.

Equation (5.19) tells us that the trapezoidal rule is a first-order integration

rule, meaning it is accurate up to and including terms proportional to h and

the leading-order approximation error is of order h2. That is, a first-order rule

is accurate to O(h) and has an error O(h2).

In addition to approximation error, there is also a rounding error on our

calculation. As discussed in Section 4.2, this rounding error will have approxi-

mate size C times the value of the integral, where C is the error constant, which

is about 10−16 in current versions of Python.2 Equation (5.20) tells us that the

2One might imagine that the rounding error would be larger than this because the trapezoidal
rule involves a sum of terms in Eq. (5.3) and each term will incur its own rounding error, the
individual errors accumulating over the course of the calculation. As shown in Section 4.2 and
Eq. (4.7), however, the size of such cumulative errors goes up only as

√
N, while the trapezoidal

rule equation (5.3) includes a factor of h, which falls off as 1/N. The net result is that the theoretical
cumulative error on the trapezoidal rule actually decreases as 1/

√
N, rather than increasing, so it

is safe to say that the final error is no greater than the error incurred by the final operation in the
calculation, which will have size C times the final value.

151

CHAPTER 5 | INTEGRALS AND DERIVATIVES

approximation error gets smaller as h gets smaller, so we can make our inte-

gral more accurate by using smaller h or, equivalently, a larger number N of

slices. However, there is little point in making h so small that the approxima-

tion error becomes much smaller than the rounding error. Further decreases

in h beyond this point will only make our program slower, by increasing the

number of terms in the sum for Eq. (5.3), without improving the accuracy of

our calculation significantly, since accuracy will be dominated by the rounding

error.

Thus decreases in h will only help us up to the point at which the approxi-

mation and rounding errors are roughly equal, which is the point where

1
12 h2

[

f ′(a)− f ′(b)
]

≃ C
∫ b

a
f (x) dx. (5.21)

Rearranging for h we get

h ≃

√

12
∫ b

a
f (x) dx

f ′(a)− f ′(b)
C1/2. (5.22)

Or we can set h = (b − a)/N to get

N ≃ (b − a)

√

f ′(a)− f ′(b)

12
∫ b

a
f (x) dx

C−1/2. (5.23)

Thus if, for example, all the factors except the last are of order unity, then

rounding error will become important when N ≃ 108. Looked at another way,

this is the point at which the accuracy of the trapezoidal rule reaches the “ma-

chine precision,” the maximum accuracy with which the computer can repre-

sent the result. There is no point increasing the number of integration slices

beyond this point; the calculation will not become any more accurate. How-

ever, N = 108 would be an unusually large number of slices for the trapezoidal

rule—it would be rare to use such a large number when equivalent accuracy

can be achieved using much smaller N with a more accurate rule such as Simp-

son’s rule. In most practical situations, therefore, we will be in the regime

where approximation error is the dominant source of inaccuracy and it is safe

to assume that rounding error can be ignored.

We can do an analogous error analysis for Simpson’s rule. The algebra is

similar but more tedious. Here we’ll just quote the results. For an integral over

the interval from a to b the approximation error is given to leading order by

ǫ = 1
180 h4

[

f ′′′(a)− f ′′′(b)
]

. (5.24)

152

5.2 | ERRORS ON INTEGRALS

Thus Simpson’s rule is a third-order integration rule—two orders better than

the trapezoidal rule—with a fourth-order approximation error. For small val-

ues of h this means that the error on Simpson’s rule will typically be much

smaller than the error on the trapezoidal rule and it explains why Simpson’s

rule gave such superior results in our example calculations (see Section 5.1.2).

The rounding error for Simpson’s rule is again of order C
∫ b

a
f (x) dx and

the equivalent of Eq. (5.23) is

N = (b − a) 4

√

f ′′′(a)− f ′′′(b)

180
∫ b

a
f (x) dx

C−1/4. (5.25)

If, again, the leading factors are roughly of order unity, this implies that round-

ing error will become important when N ≃ 10 000. Beyond this point Simp-

son’s rule is so accurate that its accuracy exceeds the machine precision of the

computer and there is no point using larger values of N. By contrast with the

case for the trapezoidal rule, N = 10 000 is not an unusually large number of

slices to use in a calculation. Calculations with ten thousand slices can be done

easily in a fraction of a second. Thus it is worth bearing this result in mind:

there is no point using more than a few thousand slices with Simpson’s rule

because the calculation will reach the limits of precision of the computer and

larger values of N will do no further good.

Finally in this section, let us note that while Simpson’s rule does in general

give superior accuracy, it is not always guaranteed to do better than the trape-

zoidal rule, since the errors on the trapezoidal and Simpson rules also depend

on derivatives of the integrand function via Eqs. (5.20) and (5.24). It would be

possible, for instance, for f ′′′(a) by bad luck to be large in some particular in-

stance, making the error in Eq. (5.24) similarly large, and possibly worse than

the error for the trapezoidal rule. It would be fair to say that Simpson’s rule

usually gives better results than the trapezoidal rule, but the prudent scientist

will bear in mind that it can do worse on occasion.

5.2.1 PRACTICAL ESTIMATION OF ERRORS

The Euler–Maclaurin formula of Eq. (5.20), or its equivalent for Simpson’s rule,

Eq. (5.24), allows us to calculate the error on our integrals provided we have a

known closed-form expression for the integrand f (x), so that we can calculate

the derivatives that appear in the formulas. Unfortunately, in many cases—

perhaps most—we have no such expression. For instance, the integrand may

not be a mathematical function at all but a set of measurements made in the

153

CHAPTER 5 | INTEGRALS AND DERIVATIVES

laboratory, or it might itself be the output of another computer program. In

such cases we cannot differentiate the function and Eq. (5.20) or (5.24) will not

work. There is, however, still a way to calculate the error.

Suppose, as before, that we are evaluating an integral over the interval from

x = a to x = b and let’s assume that we are using the trapezoidal rule, since it

makes the argument simpler, although the method described here extends to

Simpson’s rule too. Let us perform the integral with some number of steps N1,

so that the step size is h1 = (b − a)/N1, and let us denote by I1 the value of the

integral that we calculate.

Then here’s the trick: we now double the number of steps and perform

the integral again. That is we define a new number of steps N2 = 2N1 and a

new step size h2 = (b − a)/N2 = 1
2 h1 and we reevaluate the integral using the

trapezoidal rule, giving a new answer I2, which will normally be more accurate

than the previous one. As we have seen, the trapezoidal rule introduces an

error of order O(h2), which means when we half the value of h we quarter the

size of our error. Knowing this fact allows us to estimate how big the error is.

Suppose that the true value of our integral is I. The difference between the

true value and our first estimate I1 is equal by definition to the error on that

estimate, which as we have said is proportional to h2, so let us write it as ch2,

where c is a constant. Then I and I1 are related by I = I1 + ch2
1, neglecting

higher-order terms.

We can also write a similar formula for our second estimate I2 of the inte-

gral, with N2 steps: I = I2 + ch2
2. Equating the two expressions for I we then

get

I1 + ch2
1 = I2 + ch2

2, (5.26)

or

I2 − I1 = ch2
1 − ch2

2 = 3ch2
2, (5.27)

where we have made use of the fact that h1 = 2h2. Rearranging this expression

then gives the error ǫ2 on the second estimate of the integral to be

ǫ2 = ch2
2 =

1
3 (I2 − I1). (5.28)

As we have written it, this expression can be either positive or negative, de-

pending on which way the error happens to go. If we want only the absolute

size of the error then we can take the absolute value 1
3 |I2 − I1|, which in Python

would be done using the built-in function abs.

This method gives us a simple way to estimate the error on the trapezoidal

rule without using the Euler–Maclaurin formula. Indeed, even in cases where

154

5.3 | CHOOSING THE NUMBER OF STEPS

we could in principle use the Euler–Maclaurin formula because we know the

mathematical form of the integrand, it is often simpler in practice to use the

method of Eq. (5.28) instead—it is easy to program and gives reliable answers.

The same principle can be applied to integrals evaluated using Simpson’s

rule too. The equivalent of Eq. (5.28) in that case turns out to be

ǫ2 =
1

15 (I2 − I1). (5.29)

The derivation is left to the reader (see Exercise 5.5).

Exercise 5.5: Error on Simpson’s rule

Following the same line of argument that led to Eq. (5.28), show that the error on an

integral evaluated using Simpson’s rule is given, to leading order in h, by Eq. (5.29).

Exercise 5.6: Write a program, or modify an earlier one, to once more calculate the

value of the integral
∫ 2

0
(x4 − 2x + 1) dx from Example 5.1, using the trapezoidal rule

with 20 slices, but this time have the program also print an estimate of the error on the

result, calculated using the method of Eq. (5.28). To do this you will need to evaluate

the integral twice, once with N1 = 10 slices and then again with N2 = 20 slices. Then

Eq. (5.28) gives the error. How does the error calculated in this manner compare with

a direct computation of the error as the difference between your value for the integral

and the true value of 4.4? Why do the two not agree perfectly?

5.3 CHOOSING THE NUMBER OF STEPS

So far we have not specified how the number N of steps used in our integrals

is to be chosen. In our example calculations we just chose round numbers and

looked to see if the results seemed reasonable. This is fine for quick calcula-

tions, but for serious physics we want a more principled approach. In some

calculations we may know in advance how many steps we want to use. Some-

times we have a “budget,” a certain amount of computer time that we can

spend on a calculation and our goal is simply to make the most accurate cal-

culation we can in the given amount of time. If we know, for instance, that we

have time to do a thousand steps, then that’s what we do.

But a more common situation is that we want to calculate the value of an

integral to a given accuracy, such as four decimal places, and we would like to

know how many steps will be needed. So long as the desired accuracy does not

155

CHAPTER 5 | INTEGRALS AND DERIVATIVES

exceed the fundamental limit set by the machine precision of our computer—

the rounding error that limits all calculations—then it should always be pos-

sible to meet our goal by using a large enough number of steps. At the same

time, we want to avoid using more steps than are necessary, since more steps

take more time and our calculation will be slower. Ideally we would like an N

that gives us the accuracy we want and no more.

A simple way to achieve this is to start with a small value of N and re-

peatedly double it until we achieve the accuracy we want. As we saw in Sec-

tion 5.2.1, there is a simple formula, Eq. (5.28), for calculating the error on an

integral when we double the number of steps. By using this formula with re-

peated doublings we can evaluate an integral to exactly the accuracy we want.

1
2

1
2 111

1
2

1
2 111 1111

Figure 5.3: Doubling the number of

steps in the trapezoidal rule. Top:

We evaluate the integrand at evenly

spaced points as shown, with the

value at each point being multiplied

by the appropriate factor. Bottom:

when we double the number of steps,

we effectively add a new set of points,

half way between the previous points,

as indicated by the arrows.

The procedure is straightforward. We start off by evaluat-

ing the integral with some small number of steps N1. For in-

stance, we might choose N1 = 10. Then we double the number

to N2 = 2N1, evaluate the integral again, and apply Eq. (5.28) to

calculate the error. If the error is small enough to satisfy our ac-

curacy requirements, then we’re done—we have our answer. If

not, we double again to N3 = 2N2 and we keep on doubling until

we achieve the required accuracy. The error on the ith step of the

process is given by the obvious generalization of Eq. (5.28):

ǫi =
1
3 (Ii − Ii−1), (5.30)

where Ii is the ith estimate of the integral. This method is an

example of an adaptive integration method, one that varies its own

parameters to get a desired answer.

A particularly nice feature of this method is that when we

double the number of steps we don’t actually have to recalcu-

late the entire integral again. We can reuse our previous calcu-

lation rather than just throwing it away. To see this, take a look

at Fig. 5.3. The top part of the figure depicts the locations of the

sample points, the values of x at which the integrand is evaluated in the trape-

zoidal rule. The sample points are regularly spaced, and bear in mind that

the first and last points are treated differently from the others—the trapezoidal

rule formula, Eq. (5.3), specifies that the values of f (x) at these points are mul-

tiplied by a factor of 1
2 where the values at the interior points are multiplied

by 1.

The lower part of the figure shows what happens when we double the num-

ber of slices. This adds an additional set of sample points half way between

156

5.3 | CHOOSING THE NUMBER OF STEPS

the old ones, as indicated by the arrows. Note that the original points are

still included in the calculation and still carry the same multiplying factors as

before— 1
2 at the ends and 1 in the middle—while the new points are all mul-

tiplied by a simple factor of 1. Thus we have all of the same terms in our

trapezoidal rule sum that we had before, terms that we have already evalu-

ated, but we also have a set of new ones, which we have to add into the sum to

calculate its full value. In the jargon of computational physics we say that the

sample points for the first estimate of the integral are nested inside the points

for the second estimate.

To put this in mathematical terms, consider the trapezoidal rule at the ith

step of the calculation. Let the number of slices at this step be Ni and the width

of a slice be hi = (b − a)/Ni, and note that on the previous step there were half

as many slices of twice the width, so that Ni−1 =
1
2 Ni and hi−1 = 2hi. Then

Ii = hi

[

1
2 f (a) + 1

2 f (b) +
Ni−1

∑
k=1

f (a + khi)

]

= hi

[

1
2 f (a) + 1

2 f (b) + ∑
k even

2...Ni−2

f (a + khi) + ∑
k odd

1...Ni−1

f (a + khi)

]

. (5.31)

But

∑
k even

2...Ni−2

f (a + khi) =
Ni/2−1

∑
k=1

f (a + 2khi) =
Ni−1−1

∑
k=1

f (a + khi−1), (5.32)

and hence

Ii =
1
2 hi−1

[

1
2 f (a) + 1

2 f (b) +
Ni−1−1

∑
k=1

f (a + khi−1)

]

+ hi ∑
k odd

1...Ni−1

f (a + khi). (5.33)

But the term hi−1[. . .] in this equation is precisely the trapezoidal rule esti-

mate Ii−1 of the integral on the previous iteration of the process, so

Ii =
1
2 Ii−1 + hi ∑

k odd
1...Ni−1

f (a + khi). (5.34)

In effect, our old estimate gives us half of the terms in our trapezoidal rule sum

and we only have to calculate the other half. In this way we avoid ever recal-

culating any term that has already been calculated, meaning that each term in

our sums is calculated only once, regardless of how many levels of the calcu-

lation it’s used in. This means it takes only about as much work to calculate Ii

157

CHAPTER 5 | INTEGRALS AND DERIVATIVES

going through all the successive levels I1, I2, I3, . . . as it does to calculate Ii out-

right using the ordinary trapezoidal rule. Thus we pay very little extra price in

terms of the running time of our program to use this adaptive method and we

gain the significant advantage of a guarantee in the accuracy of the integral.

The entire process is as follows:

1. Choose an initial number of steps N1 and decide on the target accuracy

for the value of the integral. Calculate the first approximation I1 to the

integral using the chosen value of N1 with the standard trapezoidal rule

formula, Eq. (5.3).

2. Double the number of steps and use Eq. (5.34) to calculate an improved

estimate of the integral. Also calculate the error on that estimate from

Eq. (5.30).

3. If the absolute magnitude of the error is less than the target accuracy for

the integral, stop. Otherwise repeat from step 2.

The sum over odd values of k in Eq. (5.34) can be conveniently performed in

Python with a for loop of the form “for k in range(1,N,2)”.

We can also derive a similar method for integrals evaluated using Simp-

son’s rule. Again we double the number of steps on each iteration of the pro-

cess and the equivalent of Eq. (5.30) is

ǫi =
1
15 (Ii − Ii−1). (5.35)

The equivalent of Eq. (5.34) is a little more complicated. We define

Si =
1
3

[

f (a) + f (b) + 2 ∑
k even

2...Ni−2

f (a + khi)

]

, (5.36)

and

Ti =
2
3 ∑

k odd
1...Ni−1

f (a + khi). (5.37)

Then we can show that

Si = Si−1 + Ti−1 , (5.38)

and

Ii = hi(Si + 2Ti). (5.39)

Thus for Simpson’s rule the complete process is:

1. Choose an initial number of steps and a target accuracy, and calculate the

sums S1 and T1 from Eqs. (5.36) and (5.37) and the initial value I1 of the

integral from Eq. (5.39).

158

5.4 | ROMBERG INTEGRATION

2. Double the number of steps then use Eqs. (5.37), (5.38), and (5.39) to cal-

culate the new values of Si and Ti and the new estimate of the integral.

Also calculate the error on that estimate from Eq. (5.35).

3. If the absolute magnitude of the error is less than the target accuracy for

the integral, stop. Otherwise repeat from step 2.

Again notice that on each iteration of the process you only have to calculate

one sum, Eq. (5.37), which includes only those terms in the Simpson’s rule

formula that have not previously been calculated. As a result, the complete

calculation of Ii takes very little more computer time than the basic Simpson

rule.

5.4 ROMBERG INTEGRATION

We can do even better than the adaptive method of the last section with only

a little more effort. Let us go back to the trapezoidal rule again. We have

seen that the leading-order error on the trapezoidal rule, at the ith step of the

adaptive method, can be written as ch2
i for some constant c and is given by

Eq. (5.30) to be

ch2
i =

1
3 (Ii − Ii−1). (5.40)

But by definition the true value of the integral is I = Ii + ch2
i + O(h4

i), where

we are including the O(h4
i) term to remind us of the next term in the series—

see Eq. (5.19). (Remember that there are only even-order terms in this series.)

So in other words

I = Ii +
1
3 (Ii − Ii−1) + O(h4

i). (5.41)

But this expression is now accurate to third order, and has only a fourth order

error, which is as accurate as Simpson’s rule, and yet we calculated it using

only our results from the trapezoidal rule, with hardly any extra work; we are

just reusing numbers we already calculated while carrying out the repeated

doubling procedure of Section 5.3.

We can take this process further. Let us refine our notation a little and

define

Ri,1 = Ii , Ri,2 = Ii +
1
3 (Ii − Ii−1) = Ri,1 +

1
3 (Ri,1 − Ri−1,1). (5.42)

Then, from Eq. (5.41),

I = Ri,2 + c2h4
i + O(h6

i), (5.43)

159

CHAPTER 5 | INTEGRALS AND DERIVATIVES

where c2 is another constant and we have made use of the fact that the series

for I contains only even powers of hi. Analogously,

I = Ri−1,2 + c2h4
i−1 + O(h6

i−1) = Ri−1,2 + 16c2h4
i + O(h6

i). (5.44)

Since these last two equations both give expressions for I we can equate them

and rearrange to get

c2h4
i =

1
15 (Ri,2 − Ri−1,2) + O(h6

i). (5.45)

Substituting this expression back into (5.43) gives

I = Ri,2 +
1

15 (Ri,2 − Ri−1,2) + O(h6
i). (5.46)

Now we have eliminated the h4
i term and generated an estimate accurate to

fifth order, with a sixth-order error!

We can continue this process, canceling out higher and higher order error

terms and getting more and more accurate results. In general, if Ri,m is an

estimate calculated at the ith round of the doubling procedure and accurate to

order h2m−1, with an error of order h2m, then

I = Ri,m + cmh2m
i + O

(

h2m+2
i

)

, (5.47)

I = Ri−1,m + cmh2m
i−1 + O

(

h2m+2
i−1

)

= Ri−1,m + 4mcmh2m
i + O

(

h2m+2
i

)

. (5.48)

Equating the two and rearranging we have

cmh2m
i =

1

4m − 1
(Ri,m − Ri−1,m) + O

(

h2m+2
i

)

, (5.49)

and substituting this into Eq. (5.47) gives

I = Ri,m+1 + O
(

h2m+2
i

)

, (5.50)

where

Ri,m+1 = Ri,m +
1

4m − 1
(Ri,m − Ri−1,m), (5.51)

which is accurate to order h2m+1 with an error of order h2m+2. The calculation

also gives us an estimate of the error—Eq. (5.49) is precisely the error on Ri,m

(see Eq. (5.47))—and hence we can say how accurate our results are.

To make use of these results in practice we do the following:

1. We calculate our first two estimates of the integral using the regular

trapezoidal rule: I1 ≡ R1,1 and I2 ≡ R2,1.

160

5.4 | ROMBERG INTEGRATION

2. From these we calculate the more accurate estimate R2,2 using Eq. (5.51).

This is as much as we can do with only the two starting estimates.

3. Now we calculate the next trapezoidal rule estimate I3 ≡ R3,1 and from

this, with Eq. (5.51), we calculate R3,2, and then R3,3.

4. At each successive stage we compute one more trapezoidal rule esti-

mate Ii ≡ Ri,1, and from it, with very little extra effort, we can calculate

Ri,2 . . . Ri,i.

5. For each estimate we can also calculate the error, Eq. (5.49), which allows

us to halt the calculation when the error on our estimate of the integral

meets some desired target.

Perhaps a picture will help make the process clearer. This diagram shows

which values Ri,m are needed to calculate further Rs:

I1 ≡ R1,1

ց
I2 ≡ R2,1 → R2,2

ց ց
I3 ≡ R3,1 → R3,2 → R3,3

ց ց ց
I4 ≡ R4,1 → R4,2 → R4,3 → R4,4

ց ց ց ց

Each row here lists one trapezoidal rule estimate Ii followed by the other

higher-order estimates it allows us to make. The arrows show which previous

estimates go into the calculation of each new one via Eq. (5.51).

Note how each fundamental trapezoidal rule estimate Ii allows us to go

one step further with calculating the Ri,m. The most accurate estimate we get

from the whole process is the very last one: if we do n levels of the process,

then the last estimate is Rn,n and is accurate to order h2n
n .

Errors on our estimates are given by Eq. (5.49). If we’re being picky, how-

ever, we should point out that the equation gives us the error on every esti-

mate except the last one in each row (which is the one we really care about).

The equation says that the error on Rn,n would be (Rn,n − Rn−1,n)/(4n − 1) but

there is no Rn−1,n so we cannot use the formula in this case. In practice this

means we have to content ourselves with the error estimate for the penulti-

mate entry in each row, which is normally bigger than the error on the final

entry. The best we can say is that the final entry in the row is our most accurate

estimate of the integral and that its error is at least as good as the error for the

161

CHAPTER 5 | INTEGRALS AND DERIVATIVES

entry that precedes it, which is given by Eq. (5.49). This is not ideal, but in

practice it’s usually good enough.

This whole procedure is called Romberg integration. It’s essentially an “add-

on” to our earlier trapezoidal rule scheme: all the tough work is done in the

trapezoidal rule calculations and the Romberg integration takes almost no ex-

tra computer time (although it does involve extra programming). The payoff

is a value for the integral that is accurate to much higher order in h than the

simple trapezoidal rule value (or even than Simpson’s rule). And when used

in an adaptive scheme that halts the calculation once the required accuracy is

reached, it can significantly reduce the time needed to evaluate integrals be-

cause it reduces the number of trapezoidal rule steps we have to do.

The method does have its limitations. We are in essence calculating the

value of our integral by making a series expansion in powers of the step size h.

This means that the method works best in cases where such power series con-

verge rapidly. If one needs hundreds of terms in the series to get good conver-

gence then the method is not going to give us any advantage over the simple

trapezoidal rule. This can happen if the integrand f (x) is poorly behaved, con-

taining wild fluctuations, for instance, or singularities, or if it is noisy. If your

integrand displays these types of pathologies then Romberg integration is not

a good choice. The simpler adaptive trapezoidal method of Section 5.3 will

give better results. In cases where the integrand is smooth and well-behaved,

however, Romberg integration can give significantly more accurate results sig-

nificantly faster than either the trapezoidal or Simpson rules.

Romberg integration is an example of the more general technique of Richard-

son extrapolation, in which high-order estimates of quantities are calculated it-

eratively from lower-order ones. We will see another example of Richardson

extrapolation in Section 8.5.5, when we apply it to the solution of differential

equations.

Exercise 5.7: Consider the integral

I =
∫ 1

0
sin2

√
100x dx.

a) Write a program that uses the adaptive trapezoidal rule method of Section 5.3

and Eq. (5.34) to calculate the value of this integral to an approximate accuracy

of ǫ = 10−6 (i.e., correct to six digits after the decimal point). Start with one single

integration slice and work up from there to two, four, eight, and so forth. Have

162

5.5 | HIGHER-ORDER INTEGRATION METHODS

your program print out the number of slices, its estimate of the integral, and its

estimate of the error on the integral, for each value of the number of slices N,

until the target accuracy is reached. (Hint: You should find the result is around

I = 0.45.)

b) Now modify your program to evaluate the same integral using the Romberg in-

tegration technique described in this section. Have your program print out a

triangular table of values, as on page 161, of all the Romberg estimates of the in-

tegral. Calculate the error on your estimates using Eq. (5.49) and again continue

the calculation until you reach an accuracy of ǫ = 10−6. You should find that

the Romberg method reaches the required accuracy considerably faster than the

trapezoidal rule alone.

Exercise 5.8: Write a program that uses the adaptive Simpson’s rule method of Sec-

tion 5.3 and Eqs. (5.35) to (5.39) to calculate the same integral as in Exercise 5.7, again

to an approximate accuracy of ǫ = 10−6. Starting this time with two integration slices,

work up from there to four, eight, and so forth, printing out the results at each step until

the required accuracy is reached. You should find you reach that accuracy for a signif-

icantly smaller number of slices than with the trapezoidal rule calculation in part (a)

of Exercise 5.7, but a somewhat larger number than with the Romberg integration of

part (b).

5.5 HIGHER-ORDER INTEGRATION METHODS

As we have seen, the trapezoidal rule is based on approximating an inte-

grand f (x) with straight-line segments, while Simpson’s rule uses quadratics.

We can create higher-order (and hence potentially more accurate) rules by us-

ing higher-order polynomials, fitting f (x) with cubics, quartics, and so forth.

The general form of the trapezoidal and Simpson rules is

∫ b

a
f (x) dx ≃

N

∑
k=1

wk f (xk), (5.52)

where the xk are the positions of the sample points at which we calculate the

integrand and the wk are some set of weights. In the trapezoidal rule, Eq. (5.3),

the first and last weights are 1
2 and the others are all 1, while in Simpson’s rule

the weights are 1
3 for the first and last slices and alternate between 4

3 and 2
3 for

the other slices—see Eq. (5.9).

For higher-order rules the basic form is the same: after fitting to the appro-

priate polynomial and integrating we end up with a set of weights that multi-

ply the values f (xk) of the integrand at evenly spaced sample points. Here are

the weights up to quartic order:

163

CHAPTER 5 | INTEGRALS AND DERIVATIVES

Degree Polynomial Coefficients

1 (trapezoidal rule) Straight line 1
2 , 1, 1, . . . , 1, 1

2

2 (Simpson’s rule) Quadratic 1
3 , 4

3 , 2
3 , 4

3 , . . . , 4
3 , 1

3

3 Cubic 3
8 , 9

8 , 9
8 , 3

4 , 9
8 , 9

8 , 3
4 , . . . , 9

8 , 3
8

4 Quartic 14
45 , 64

45 , 8
15 , 64

45 , 28
45 , 64

45 , 8
15 , 64

45 , . . . , 64
45 , 14

45

Higher-order integration rules of this kind are called Newton–Cotes formulas

and in principle they can be extended to any order we like.

However, we can do better still. The point to notice is that the trapezoidal

rule is exact if the function being integrated is actually a straight line, because

then the straight-line approximation isn’t an approximation at all. Similarly,

Simpson’s rule is exact if the function being integrated is a quadratic, and the

kth Newton–Cotes rule is exact if the function being integrated is a degree-k

polynomial.

But if we have N sample points, then presumably that means we could just

fit one (N − 1)th-degree polynomial to the whole integration interval, and get

an integration method that is exact for (N − 1)th-degree polynomials—and for

any lower-degree polynomials as well. (Note that it’s N − 1 because you need

three points to fit a quadratic, four for a cubic, and so forth.)

But we can do even better than this. We have been assuming here that the

sample points are evenly spaced. Methods with evenly spaced points are rel-

atively simple to program, and it’s easy to increase the number of points by

adding new points half way between the old ones, as we saw in Section 5.3.

However, it is also possible to derive integration methods that use unevenly

spaced points and, while they lack some of the advantages above, they have

others of their own. In particular, they can give very accurate answers with

only small numbers of points, making them particularly suitable for cases

where we need to do integrals very fast, or where evaluation of the integrand

itself takes a long time.

Suppose then that we broaden our outlook to include rules of the form of

Eq. (5.52), but where we are allowed to vary not only the weights wk but also

the positions xk of the sample points. Any choice of positions is allowed, and

particularly ones that are not equally spaced. As we have said, it is possible to

create an integration method that is exact for polynomials up to degree N − 1

with N equally spaced points. Varying the positions of the points gives us

N extra degrees of freedom, which suggests that it then might be possible to

create an integration rule that is exact for polynomials up to degree 2N − 1 if

all of those degrees of freedom are chosen correctly. For large values of N this

164

5.6 | GAUSSIAN QUADRATURE

could give us the power to fit functions very accurately indeed, and hence to

do very accurate integrals. It turns out indeed that it is possible to do this and

the developments lead to the superbly accurate integration method known as

Gaussian quadrature, which we describe in the next section.

5.6 GAUSSIAN QUADRATURE

The derivation of the Gaussian quadrature method has two parts. First, we will

see how to derive integration rules with nonuniform sample points xk. Then

we will choose the particular set of nonuniform points that give the optimal

integration rule.

5.6.1 NONUNIFORM SAMPLE POINTS

Suppose we are given a nonuniform set of N points xk and we wish to create an

integration rule of the form (5.52) that calculates integrals over a given interval

from a to b, based only on the values f (xk) of the integrand at those points. In

other words, we want to choose weights wk so that Eq. (5.52) works for gen-

eral f (x). To do this, we will fit a single polynomial through the values f (xk)

and then integrate that polynomial from a to b to calculate an approximation to

the true integral. To fit N points we need to use a polynomial of degree N − 1.

The fitting can be done using the method of interpolating polynomials.

Consider the following quantity:

φk(x) = ∏
m=1...N

m 6=k

(x − xm)

(xk − xm)

=
(x − x1)

(xk − x1)
× . . . × (x − xk−1)

(xk − xk−1)
× (x − xk+1)

(xk − xk+1)
× . . . × (x − xN)

(xk − xN)
,

(5.53)

which is called an interpolating polynomial. Note that the numerator contains

one factor for each sample point except the point xk. Thus φk(x) is a polynomial

in x of degree N − 1. For values of k from 1 to N, Eq. (5.53) defines N different

such polynomials.

You can confirm for yourself that if we evaluate φk(x) at one of the sample

points x = xm we get

φk(xm) =

{

1 if m = k,

0 if m 6= k,
(5.54)

165

CHAPTER 5 | INTEGRALS AND DERIVATIVES

or, to be more concise,

φk(xm) = δkm , (5.55)

where δkm is the Kronecker delta—the quantity that is 1 when k = m and zero

otherwise.

So now consider the following expression:

Φ(x) =
N

∑
k=1

f (xk) φk(x). (5.56)

Since it is a linear combination of polynomials of degree N − 1, this entire

quantity is also a polynomial of degree N − 1. And if we evaluate it at any one

of the sample points x = xm we get

Φ(xm) =
N

∑
k=1

f (xk) φk(xm) =
N

∑
k=1

f (xk) δkm = f (xm), (5.57)

where we have used Eq. (5.55).

In other words Φ(x) is a polynomial of degree N − 1 that fits the integrand

f (x) at all of the sample points. This is exactly the quantity we were looking

for to create our integration rule. Moreover, the polynomial of degree N − 1

that fits a given N points is unique: it has N free coefficients and our points

give us N constraints, so the coefficients are completely determined. Hence

Φ(x) is not merely a polynomial that fits our points, it is the polynomial. There

are no others.

To calculate an approximation to our integral, all we have to do now is

integrate Φ(x) from a to b thus:

∫ b

a
f (x) dx ≃

∫ b

a
Φ(x) dx =

∫ b

a

N

∑
k=1

f (xk)φk(x) dx

=
N

∑
k=1

f (xk)
∫ b

a
φk(x) dx, (5.58)

where we have interchanged the order of the sum and integral in the second

line. Comparing this expression with Eq. (5.52) we now see that the weights

we need for our integration rule are given by

wk =
∫ b

a
φk(x) dx. (5.59)

In other words we have found a general method for creating an integration rule

of the form (5.52) for any set of sample points xk: we simply set the weights wk

166

5.6 | GAUSSIAN QUADRATURE

equal to the integrals of the interpolating polynomials, Eq. (5.53), over the do-

main of integration.

There is no general closed-form formula for the integrals of the interpolat-

ing polynomials.3 In some special cases it is possible to perform the integrals

exactly, but often it is not, in which case we may have to perform them on the

computer, using one of our other integration methods, such as Simpson’s rule

or Romberg integration. This may seem to defeat the point of our calculation,

which was to find an integration method that didn’t rely on uniformly spaced

sample points, and here we are using Simpson’s rule, which has uniformly

spaced points! But in fact the exercise is not as self-defeating as it may appear.

The important point to notice is that we only have to calculate the weights wk

once, and then we can use them in Eq. (5.52) to integrate as many different

functions over the given integration domain as we like. So we may have to put

some effort into the calculation of the weights, using, say, Simpson’s rule with

very many slices to get as accurate an answer as possible. But we only have

to do it once, and thereafter other integrals can be done rapidly and accurately

using Eq. (5.52).

In fact, it’s better than this. Once one has calculated the weights for a par-

ticular set of sample points and domain of integration, it’s possible to map

those weights and points onto any other domain and get an integration rule

of the form (5.52) without having to recalculate the weights. Typically one

gives sample points and weights arranged in a standard interval, which for

historical reasons is usually taken to be the interval from x = −1 to x = +1.

Thus to specify an integration rule one gives a set of sample points in the range

−1 ≤ xk ≤ 1 and a set of weights

wk =
∫ 1

−1
φk(x) dx. (5.60)

If we want to use any integration domain other than the one from −1 to +1, we

map these values to that other domain. Since the area under a curve doesn’t

depend on where that curve is along the x line, the sample points can be slid up

and down the x line en masse and the integration rule will still work fine. If the

desired domain is wider or narrower than the interval from −1 to +1 then we

also need to spread the points out or squeeze them together. The correct rule

3One can in principle expand Eq. (5.53) and then integrate the resulting expression term by
term, since powers of x can be integrated in closed form. However, the result would be a sum
of 2N−1 different terms, which would be intractable even for the fastest computers, for relatively
modest values of N.

167

CHAPTER 5 | INTEGRALS AND DERIVATIVES

for mapping the points to a general domain that runs from x = a to x = b is:

x′
k =

1
2 (b − a)xk +

1
2 (b + a). (5.61)

Similarly the weights do not change if we are simply sliding the sample points

up or down the x line, but if the width of the integration domain changes then

the value of the integral will increase or decrease by a corresponding factor,

and hence the weights have to be rescaled thus:

w′
k =

1
2 (b − a)wk. (5.62)

Once we have calculated the rescaled positions and weights then the integral

itself is given by
∫ b

a
f (x) dx ≃

n

∑
k=1

w′
k f (x′

k). (5.63)

5.6.2 SAMPLE POINTS FOR GAUSSIAN QUADRATURE

The developments of the previous section solve half our problem. Given the

positions of the sample points xk they tell us how to choose the weights wk, but

we still need to choose the sample points. As we argued in Section 5.5, in the

best case it should be possible to choose our N points so that our integration

rule is exact for all polynomial integrands up to and including polynomials of

degree 2N − 1. The proof that this is indeed possible, and the accompanying

derivation of the positions, is not difficult, but it is quite long and it’s not really

important for our purposes. If you want to see it, it’s given in Appendix C on

page 514. Here we’ll just look at the results, which definitely are important

and useful.

The bottom line is this: to get an integration rule accurate up to the highest

possible degree of 2N − 1, the sample points xk should be chosen to coincide

with the zeros of the Nth Legendre polynomial PN(x), rescaled if necessary to

the window of integration using Eq. (5.61), and the corresponding weights wk

are

wk =

[

2

(1 − x2)

(

dPN

dx

)−2
]

x=xk

, (5.64)

also rescaled if necessary, using Eq. (5.62).

This method is called Gaussian quadrature4 and although it might sound

rather formidable from the description above, in practice it’s beautifully sim-

ple: given the values xk and wk for your chosen N, all you have to do is rescale

4It’s called “Gaussian” because it was pioneered by the legendary mathematician Carl

168

5.6 | GAUSSIAN QUADRATURE

-1 -0.5 0 0.5 1

Position x

0.1

0.2

0.3

W
ei

g
h

t
 w

(a)

-1 -0.5 0 0.5 1

Position x

0

0.01

0.02

0.03

W
ei

g
h

t
 w

(b)

Figure 5.4: Sample points and weights for Gaussian quadrature. The positions and heights of the bars represent

the sample points and their associated weights for Gaussian quadrature with (a) N = 10 and (b) N = 100.

them if necessary using Eqs. (5.61) and (5.62) and then perform the sum in

Eq. (5.63).

The only catch is finding the values in the first place. In principle the results

quoted above tell us everything we need to know but in practice the zeros of

the Legendre polynomials are not trivial to compute. Tables containing values

of xk and wk up to about N = 20 can be found in books or on-line,5 or they can

be calculated for any N using a suitable computer program. Python functions

to perform the calculation are given in Appendix E and also in the on-line

resources in the file gaussxw.py—Example 5.2 below shows how to use them.

Figure 5.4 shows what the sample points and weights look like for the cases

N = 10 and N = 100. Note how the points get closer together at the edges

while at the same time the weights get smaller.

Friedrich Gauss. “Quadrature” is an old (19th century) name for numerical integration—Gauss’s
work predates the invention of computers, to a time when people did numerical integrals by hand,
meaning they were very concerned about getting the best answers when N is small. When you’re
doing calculations by hand, Simpson’s rule with N = 1000 is not an option.

5See for example Abramowitz, M. and Stegun, I. A., eds., Handbook of Mathematical Functions,
Dover Publishing, New York (1974).

169

CHAPTER 5 | INTEGRALS AND DERIVATIVES

EXAMPLE 5.2: GAUSSIAN INTEGRAL OF A SIMPLE FUNCTION

Consider again the integral we did in Example 5.1,
∫ 2

0
(x4 − 2x + 1) dx, whose

true value, as we saw, is 4.4. Here’s a program to evaluate the same integral

using Gaussian quadrature. Just to emphasize the impressive power of the

method, we will perform the calculation with only N = 3 sample points:

File: gaussint.py from gaussxw import gaussxw

def f(x):

return x**4 - 2*x + 1

N = 3

a = 0.0

b = 2.0

Calculate the sample points and weights, then map them

to the required integration domain

x,w = gaussxw(N)

xp = 0.5*(b-a)*x + 0.5*(b+a)

wp = 0.5*(b-a)*w

Perform the integration

s = 0.0

for k in range(N):

s += wp[k]*f(xp[k])

print(s)

For this program to work you must have a copy of the file gaussxw.py in the

same folder as the program itself.

Note how the function gaussxw(N) returns two variables, not just one. We

discussed functions of this type in Section 2.6 but this is the first time we’ve

seen one in use. In this case the variables are arrays, x and w, containing the

sample points and weights for Gaussian quadrature on N points over the stan-

dard interval from −1 to +1. Notice also how we mapped the points and the

weights from the standard interval to our desired integration domain: we have

used Python’s ability to perform calculations with entire arrays to achieve the

mapping in just two lines.

There is also an alternative function gaussxwab(N,a,b) that calculates the

positions and weights and then does the mapping for you. To use this function,

we would say “from gaussxw import gaussxwab”, then

170

5.6 | GAUSSIAN QUADRATURE

x,w = gaussxwab(N,a,b)

s = 0.0

for k in range(N):

s += w[k]*f(x[k])

It’s worth noting that the calculation of the sample points and weights takes

quite a lot of work—the functions above may take a second or so to complete

the calculation. That’s fine if you call them only once in your program, but

you should avoid calling them many times or you may find your program

runs slowly. Thus, for instance, if you need to do many integrals over different

domains of integration, you should call the function gaussxw once to calculate

the sample points over the standard interval from −1 to +1 and then map the

points yourself to the other integration domains you need. Calling gaussxwab

separately for each different integration domain would be slow and waste-

ful, since it would needlessly recalculate the zeros of the Legendre polynomial

each time.

Our Gaussian quadrature program is quite simple—only a little more com-

plicated than the program for the trapezoidal rule in Example 5.1. Yet when

we run it, it prints the following:

4.4

The program has calculated the answer exactly, with just three sample points!

This is not a mistake, or luck, or a coincidence. It’s exactly what we expect.

Gaussian integration on N points gives exact answers for the integrals of poly-

nomial functions up to and including polynomials of degree 2N − 1, which

means degree five when N = 3. The function x4 − 2x + 1 that we are inte-

grating here is a degree-four polynomial, so we expect the method to return

the exact answer of 4.4, and indeed it does. Nonetheless, the performance of

the program does seem almost magical in this case: the program has evalu-

ated the integrand at just three points and from those three values alone it is,

amazingly, able to deduce the integral of the entire function exactly.

This is the strength of Gaussian quadrature: it can give remarkably accurate

answers, even with small numbers of sample points. This makes it especially

useful in situations where you cannot afford to use large numbers of points, ei-

ther because you need to be able to calculate an answer very quickly or because

evaluating your integrand takes a long time even for just a few points.

The method does have its disadvantages. In particular, because the sample

points are not uniformly distributed it takes more work if we want to employ

171

CHAPTER 5 | INTEGRALS AND DERIVATIVES

the trick of repeatedly doubling N, as we did in Section 5.3, to successively

improve the accuracy of the integral—if we change the value of N then all

the sample points and weights have to be recalculated, and the entire sum

over points, Eq. (5.52), has to be redone. We cannot reuse the calculations

for old sample points as we did with the trapezoidal rule; in the language of

computational physics we would say that the sample points are not nested.6

Exercise 5.9: Heat capacity of a solid

Debye’s theory of solids gives the heat capacity of a solid at temperature T to be

CV = 9VρkB

(

T

θD

)3 ∫ θD /T

0

x4ex

(ex − 1)2
dx,

where V is the volume of the solid, ρ is the number density of atoms, kB is Boltzmann’s

constant, and θD is the so-called Debye temperature, a property of solids that depends on

their density and speed of sound.

a) Write a Python function cv(T) that calculates CV for a given value of the tem-

perature, for a sample consisting of 1000 cubic centimeters of solid aluminum,

which has a number density of ρ = 6.022 × 1028 m−3 and a Debye temperature

of θD = 428 K. Use Gaussian quadrature to evaluate the integral, with N = 50

sample points.

b) Use your function to make a graph of the heat capacity as a function of tempera-

ture from T = 5 K to T = 500 K.

6There are other methods, such as Gauss–Kronrod quadrature and Clenshaw–Curtis quadrature,
which have nonuniformly distributed sample points and still permit nesting, although these meth-
ods have their own disadvantages. Gauss–Kronrod quadrature permits only one step of nesting:
it provides two sets of integration points, one nested inside the other, but no way to generate sub-
sequent points nested inside those. Two sets of points are enough to make error estimates, via
a formula analogous to Eq. (5.28), but one cannot keep on doubling the number of points to re-
duce the error below a given target, as with the adaptive method of Section 5.3. Clenshaw–Curtis
quadrature does permit nesting over an arbitrary number of steps, but is not based on an integra-
tion rule of the simple form (5.52). Instead the method uses a more complicated formula whose
evaluation involves, among other steps, performing a Fourier transform, which is more computa-
tionally demanding, and hence slower, than the simple sum used in Gaussian quadrature. In ad-
dition, neither Gauss–Kronrod quadrature nor Clenshaw–Curtis quadrature achieves the level of
accuracy provided by Gaussian quadrature, although both are highly accurate and probably good
enough for most purposes. Gauss–Kronrod quadrature in particular is widely used in mathemati-
cal software to compute definite integrals, because of its ability to provide both good accuracy and
error estimates. Gauss–Kronrod quadrature is discussed further in Appendix C.

172

5.6 | GAUSSIAN QUADRATURE

Exercise 5.10: Period of an anharmonic oscillator

The simple harmonic oscillator crops up in many places. Its behavior can be studied

readily using analytic methods and it has the important property that its period of os-

cillation is a constant, independent of its amplitude, making it useful, for instance, for

keeping time in watches and clocks.

Frequently in physics, however, we also come across anharmonic oscillators, whose

period varies with amplitude and whose behavior cannot usually be calculated analyt-

ically. A general classical oscillator can be thought of as a particle in a concave potential

well. When disturbed, the particle will rock back and forth in the well:

xV()

x

The harmonic oscillator corresponds to a quadratic potential V(x) ∝ x2. Any other form

gives an anharmonic oscillator. (Thus there are many different kinds of anharmonic

oscillator, depending on the exact form of the potential.)

One way to calculate the motion of an oscillator is to write down the equation for

the conservation of energy in the system. If the particle has mass m and position x, then

the total energy is equal to the sum of the kinetic and potential energies thus:

E = 1
2 m

(

dx

dt

)2

+ V(x).

Since the energy must be constant over time, this equation is effectively a (nonlinear)

differential equation linking x and t.

Let us assume that the potential V(x) is symmetric about x = 0 and let us set our

anharmonic oscillator going with amplitude a. That is, at t = 0 we release it from rest at

position x = a and it swings back towards the origin. Then at t = 0 we have dx/dt = 0

and the equation above reads E = V(a), which gives us the total energy of the particle

in terms of the amplitude.

a) When the particle reaches the origin for the first time, it has gone through one

quarter of a period of the oscillator. By rearranging the equation above for dx/dt

and then integrating with respect to t from 0 to 1
4 T, show that the period T is

given by

T =
√

8m
∫ a

0

dx
√

V(a)− V(x)
.

173

CHAPTER 5 | INTEGRALS AND DERIVATIVES

b) Suppose the potential is V(x) = x4 and the mass of the particle is m = 1. Write a

Python function that calculates the period of the oscillator for given amplitude a

using Gaussian quadrature with N = 20 points, then use your function to make

a graph of the period for amplitudes ranging from a = 0 to a = 2.

c) You should find that the oscillator gets faster as the amplitude increases, even

though the particle has further to travel for larger amplitude. And you should

find that the period diverges as the amplitude goes to zero. How do you explain

these results?

Exercise 5.11: Suppose a plane wave of wavelength λ, such as light or a sound wave, is

blocked by an object with a straight edge, represented by the solid line at the bottom of

this figure:

z

x

The wave will be diffracted at the edge and the resulting intensity at the position (x, z)

marked by the dot is given by near-field diffraction theory to be

I =
I0

8

(

[

2C(u) + 1
]2
+

[

2S(u) + 1
]2
)

,

where I0 is the intensity of the wave before diffraction and

u = x

√

2

λz
, C(u) =

∫ u

0
cos 1

2 πt2 dt, S(u) =
∫ u

0
sin 1

2 πt2 dt.

Write a program to calculate I/I0 and make a plot of it as a function of x in the range

−5 m to 5 m for the case of a sound wave with wavelength λ = 1 m, measured z = 3 m

past the straight edge. Calculate the integrals using Gaussian quadrature with N = 50

points. You should find significant variation in the intensity of the diffracted sound—

enough that you could easily hear the effect if sound were diffracted, say, at the edge of

a tall building.

174

5.6 | GAUSSIAN QUADRATURE

5.6.3 ERRORS ON GAUSSIAN QUADRATURE

In our study of the trapezoidal rule we derived an expression, the Euler–

Maclaurin formula of Eq. (5.20), for the approximation error on the value of

an integral. There exists a corresponding expression for Gaussian quadrature

but it is, unfortunately, ungainly and not easy to use in practice. What it does

tell us, however, is that Gaussian quadrature is impressively accurate. Roughly

speaking, the approximation error—the difference between the value of an in-

tegral calculated using Gaussian quadrature and the true value of the same

integral, neglecting rounding error—improves by a factor of c/N2 when we

increase the number of samples by just one, where c is a constant whose value

depends on the detailed shape of the integrand and the size of the domain of

integration. Thus, for instance, if we go from N = 10 to N = 11 our estimate

of the integral will improve by a factor of order a hundred. This means that we

converge extremely quickly on the true value of the integral, and in practice it

is rarely necessary to use more than a few tens of points, or at most perhaps a

hundred, to get an estimate of an integral accurate to the limits of precision of

the computer.

There are some caveats. An important one is that the function being in-

tegrated must be reasonably smooth. When one is calculating an integral us-

ing a relatively small number of sample points, the points will inevitably be

far apart, which leaves room for the function to vary significantly between

them. Since Gaussian quadrature looks only at the values of the function at

the sample points and nowhere else, substantial variation between points is

not taken into account in calculating the value of the integral. If, on the other

hand, the function is relatively smooth, then the samples we take will give a

good approximation of the function’s behavior and Gaussian quadrature will

work well. Thus for rapidly varying functions one needs to use enough sam-

ple points to capture the variation, and in such cases larger values of N may

be warranted.

Another issue is that there is no direct equivalent of Eq. (5.28) for estimat-

ing the error in practice. As we have said, however, the error improves by a

factor of c/N2 when the number of samples is increased by one, which is typi-

cally a substantial improvement if N is reasonably large. And if we double the

value of N then we compound many such improvements, giving an overall

reduction in the error by a factor of something like N−2N , which is typically a

huge improvement.

If we make a Gaussian estimate IN of the true value I of an integral using

175

CHAPTER 5 | INTEGRALS AND DERIVATIVES

N sample points, then I = IN + ǫN , where ǫN is the approximation error. And

if we double the number of samples to 2N we have, I = I2N + ǫ2N . Equating

the two expressions for I and rearranging, we have

ǫN − ǫ2N = I2N − IN . (5.65)

But, as we have argued, the error is expected to improve by a large factor when

we double the number of sample points, meaning that ǫ2N ≪ ǫN . So, to a good

approximation,

ǫN ≃ I2N − IN . (5.66)

Another way of saying this is that I2N is so much better an estimate of the true

value of the integral than IN that for the purposes of estimating the error we

can treat it as if it were the true value, so that I2N − IN is a good estimate of the

error.

We can use Eq. (5.66) in an adaptive integration method where we double

the number of sample points at each step, calculating the error and repeating

until the desired target accuracy is reached. Such a method is not entirely

satisfactory, for a couple of reasons. First, when we double the number of

sample points from N to 2N, Eq. (5.66) gives us only the error on the previous

estimate of the integral IN , not on the new estimate I2N . This means that we

always end up doubling N one more time than is strictly necessary to achieve

the desired accuracy, and that the final value for the integral will probably be

significantly more accurate than we really need it to be, which means we have

wasted time on unnecessary calculations. Second, we have to perform the

entire calculation of the integral anew for each new value of N. As mentioned

earlier, and unlike the adaptive trapezoidal method of Section 5.3, we cannot

reuse the results of earlier calculations to speed up the computation. So an

adaptive calculation of this type would be slower than just a single instance of

Gaussian quadrature. On the other hand, it’s straightforward to show that the

total number of terms in all the sums we perform, over all steps of the process,

is never greater than twice the final value of N used, which means that the

adaptive procedure costs us no more than about twice the effort required for

the simple Gaussian quadrature. Moreover, as we have said, we rarely need

to go beyond N = 100 to get a highly accurate answer, so the number of times

we double N is typically rather small. If we start with, say, N = 10, we will

probably only have to double three or four times. The net result is that, despite

the extra work, Gaussian quadrature is often more efficient than methods like

the trapezoidal rule or Simpson’s rule in terms of overall time needed to get an

answer to a desired degree of accuracy.

176

5.7 | CHOOSING AN INTEGRATION METHOD

An alternative, though more complex, solution to the problem of estimating

the error in Gaussian quadrature is to use Gauss–Kronrod quadrature, a variant

of Gaussian quadrature based on the properties of Stieltjes polynomials, which

provides not only an accurate estimate of our integral (though not quite as

accurate as ordinary Gaussian quadrature) but also an estimate of the error.

We will not use Gauss–Kronrod quadrature in this book, but the interested

reader can find a short discussion, with some derivations, in Appendix C.

5.7 CHOOSING AN INTEGRATION METHOD

We have studied a number of different integration methods in this chapter:

the trapezoidal rule and Simpson’s rule as well as adaptive versions of both,

Romberg integration, and Gaussian integration. You might well ask at this

point which of all these methods is the best? Which one should I use, in prac-

tice, if I need to evaluate an integral?

There is no one answer to this question. Which method you should use

depends on the particular problem confronting you. A good general princi-

ple, however, is that higher-order methods such as Romberg and Gaussian

integration—methods that allow you to make accurate estimates of integrals

using relatively few sample points—work best when applied to smooth, well-

behaved functions. If your function is not smooth or is poorly behaved in some

way, then simpler methods, and particularly the trapezoidal rule, are the way

to go. The reason is that any integration method knows about the value of

the integrand only at its sample points. If the integrand varies significantly

in between the sample points, then that variation will not be reflected in the

computed value of the integral, which can lead to inaccurate results. If you’re

evaluating an integral using only ten or twenty sample points, it’s crucial that

those points give a good picture of the integrand—if you join up the dots the

result should capture most of the shape of the function. If it does not then

high-order methods using few sample points will not do a good job.

Bearing this principle in mind, here is a guide to the kinds of problems each

of our integration methods is good for.

The trapezoidal rule: The trapezoidal rule of Section 5.1.1 is trivial to pro-

gram and hence is a good choice when you need a quick answer for an in-

tegral. It’s not very accurate, but sometimes you don’t need great accuracy.

It uses equally spaced sample points, which is appropriate for problems such

as integrating data from laboratory experiments that are sampled at uniform

time intervals. The trapezoidal rule is also a good choice for poorly behaved

177

CHAPTER 5 | INTEGRALS AND DERIVATIVES

functions—those that vary widely, contain singularities, or are noisy. It is usu-

ally a better choice for such functions than the other methods we have con-

sidered. In its adaptive form (Section 5.3) it can also give us a guaranteed

accuracy for an integral, although it may take more computer time to achieve

that accuracy than other methods.

Simpson’s rule: Simpson’s rule (Section 5.1.2) has many of the benefits of

the trapezoidal rule, such as simplicity of programming and equally spaced

sample points. It gives greater accuracy than the trapezoidal rule with the

same number of sample points, or the same accuracy with fewer points, but

relies on higher-order approximation of the integrand, which can lead to prob-

lems if the integrand is noisy or otherwise not smooth—use it with caution if

you are unsure of the nature of your integrand. Its adaptive form (Section 5.3)

provides a result of guaranteed accuracy, and does so faster than the equivalent

trapezoidal rule calculation, but again may be less suitable for poorly behaved

integrands.

Romberg integration: When using equally spaced sample points, Romberg

integration (Section 5.4) is the quintessential higher-order integration method.

It gives exceptionally accurate estimates of integrals with a minimum number

of sample points, plus error estimates that allow you to halt the calculation

once you have achieved a desired accuracy. Since it relies on extrapolating

answers from measurements of the integrand at only a few points, however,

Romberg integration will not work well for wildly varying integrands, noisy

integrands, or integrands with mathematically pathological behaviors like sin-

gularities. It is best applied to smooth functions whose form can be determined

accurately from only a small number of sample points.

Gaussian quadrature: Gaussian quadrature (Section 5.6) has many of the

same advantages as Romberg integration (potentially highly accurate estimates

from small numbers of sample points) as well as the same disadvantages (poor

performance for badly behaved integrands). It is also simple to program, as

simple as any of the other methods we have considered. The hard work of the

method lies in the calculation of the integration points and weights, which is

normally done for you by standard software, and the Gaussian integral itself

requires only the evaluation of a single sum in the form of Eq. (5.52). It has the

additional advantage over Romberg integration of still higher-order accuracy

and indeed, in a certain formal sense, it is the highest-order, and hence poten-

tially most accurate, integration rule available. The price you pay for this is

that the integration points are unequally spaced. If you need equally spaced

points, then Gaussian quadrature is not the method for you.

178

5.8 | INTEGRALS OVER INFINITE RANGES

Armed with these guidelines, you should be able to choose a suitable inte-

gration method for most problems you come up against.

5.8 INTEGRALS OVER INFINITE RANGES

Often in physics we encounter integrals over infinite ranges, like
∫ ∞

0
f (x) dx.

The techniques we have seen so far don’t work for these integrals because

we’d need an infinite number of sample points to span an infinite range. The

solution to this problem is to change variables. For an integral over the range

from 0 to ∞ the standard change of variables is

z =
x

1 + x
or equivalently x =

z

1 − z
. (5.67)

Then dx = dz/(1 − z)2 and

∫ ∞

0
f (x) dx =

∫ 1

0

1

(1 − z)2
f

(

z

1 − z

)

dz, (5.68)

which can be done using any of the techniques earlier in the chapter, including

the trapezoidal and Simpson rules, or Gaussian quadrature.

This is not the only change of variables that we can use, however. In fact, a

change of the form

z =
x

c + x
(5.69)

would work for any value of c, or z = xγ/(1 + xγ) for any γ, or any of a

range of other possibilities. Some choices typically work better than others

for particular integrals and sometimes you have to play around with things a

little to find what works for a given problem, but Eq. (5.67) is often a good first

guess. (See Exercise 5.17 for a counterexample.)

To do an integral over a range from some nonzero value a to ∞ we can

use a similar approach, but make two changes of variables, first to y = x − a,

which shifts the start of the integration range to 0, and then z = y/(1 + y) as

in Eq. (5.67). Or we can combine both changes into a single one:

z =
x − a

1 + x − a
or x =

z

1 − z
+ a, (5.70)

and again dx = dz/(1 − z)2, so that

∫ ∞

a
f (x) dx =

∫ 1

0

1

(1 − z)2
f

(

z

1 − z
+ a

)

dz. (5.71)

179

CHAPTER 5 | INTEGRALS AND DERIVATIVES

Integrals from −∞ to a can be done the same way—just substitute z → −z.

For integrals that run from −∞ to ∞ we can split the integral into two parts,

one from −∞ to 0 and one from 0 to ∞, and then use the tricks above for the

two integrals separately. Or we can put the split at some other point a and

perform separate integrals from −∞ to a and from a to ∞. Alternatively, one

could use a single change of variables, such as

x =
z

1 − z2
, dx =

1 + z2

(1 − z2)2
dz, (5.72)

which would give

∫ ∞

−∞
f (x) dx =

∫ 1

−1

1 + z2

(1 − z2)2
f

(

z

1 − z2

)

dz. (5.73)

Another possibility, perhaps simpler, is

x = tan z, dx =
dz

cos2 z
, (5.74)

which gives
∫ ∞

−∞
f (x) dx =

∫ π/2

−π/2

f (tan z)

cos2 z
dz. (5.75)

EXAMPLE 5.3: INTEGRATING OVER AN INFINITE RANGE

Let us calculate the value of the following integral using Gaussian quadrature:

I =
∫ ∞

0
e−t2

dt. (5.76)

We make the change of variables given in Eq. (5.67) and the integral becomes

I =
∫ 1

0

e−z2/(1−z)2

(1 − z)2
dz. (5.77)

We can modify our program from Example 5.2 to perform this integral using

Gaussian quadrature with N = 50 sample points:

File: intinf.py from gaussxw import gaussxwab

from math import exp

def f(z):

return exp(-z**2/(1-z)**2)/(1-z)**2

180

5.8 | INTEGRALS OVER INFINITE RANGES

N = 50

a = 0.0

b = 1.0

x,w = gaussxwab(N,a,b)

s = 0.0

for k in range(N):

s += w[k]*f(x[k])

print(s)

If we run this program it prints

0.886226925453

In fact, the value of this particular integral is known exactly to be 1
2

√
π =

0.886226925453. . . Again we see the impressive accuracy of the Gaussian quad-

rature method: with just 50 sample points, we have calculated an estimate of

the integral that is correct to the limits of precision of the computer.

Exercise 5.12: The Stefan–Boltzmann constant

The Planck theory of thermal radiation tells us that in the (angular) frequency interval ω

to ω + dω, a black body of unit area radiates electromagnetically an amount of thermal

energy per second equal to I(ω) dω, where

I(ω) =
h̄

4π2c2

ω3

(eh̄ω/kB T − 1)
.

Here h̄ is Planck’s constant over 2π, c is the speed of light, and kB is Boltzmann’s con-

stant.

a) Show that the total rate at which energy is radiated by a black body per unit area,

over all frequencies, is

W =
k4

BT4

4π2c2h̄3

∫ ∞

0

x3

ex − 1
dx.

b) Write a program to evaluate the integral in this expression. Explain what method

you used, and how accurate you think your answer is.

c) Even before Planck gave his theory of thermal radiation around the turn of the

20th century, it was known that the total energy W given off by a black body per

unit area per second followed Stefan’s law: W = σT4, where σ is the Stefan–

Boltzmann constant. Use your value for the integral above to compute a value

for the Stefan–Boltzmann constant (in SI units) to three significant figures. Check

your result against the known value, which you can find in books or on-line. You

should get good agreement.

181

CHAPTER 5 | INTEGRALS AND DERIVATIVES

Exercise 5.13: Quantum uncertainty in the harmonic oscillator

In units where all the constants are 1, the wavefunction of the nth energy level of

the one-dimensional quantum harmonic oscillator—i.e., a spinless point particle in a

quadratic potential well—is given by

ψn(x) =
1

√

2nn!
√

π
e−x2/2 Hn(x),

for n = 0 . . . ∞, where Hn(x) is the nth Hermite polynomial. Hermite polynomials

satisfy a relation somewhat similar to that for the Fibonacci numbers, although more

complex:

Hn+1(x) = 2xHn(x)− 2nHn−1(x).

The first two Hermite polynomials are H0(x) = 1 and H1(x) = 2x.

a) Write a user-defined function H(n,x) that calculates Hn(x) for given x and any

integer n ≥ 0. Use your function to make a plot that shows the harmonic oscil-

lator wavefunctions for n = 0, 1, 2, and 3, all on the same graph, in the range

x = −4 to x = 4. Hint: There is a function factorial in the math package that

calculates the factorial of an integer.

b) Make a separate plot of the wavefunction for n = 30 from x = −10 to x = 10.

Hint: If your program takes too long to run in this case, then you’re doing the

calculation wrong—the program should take only a second or so to run.

c) The quantum uncertainty in the position of a particle in the nth level of a har-

monic oscillator can be quantified by its root-mean-square position
√

〈x2〉, where

〈x2〉 =
∫ ∞

−∞
x2|ψn(x)|2 dx.

Write a program that evaluates this integral using Gaussian quadrature on 100

points, then calculates the uncertainty (i.e., the root-mean-square position of the

particle) for a given value of n. Use your program to calculate the uncertainty for

n = 5. You should get an answer in the vicinity of
√

〈x2〉 = 2.3.

5.9 MULTIPLE INTEGRALS

Integrals over more than one variable are common in physics problems and

can be tackled using generalizations of the methods we have already seen.

Consider for instance the integral

I =
∫ 1

0

∫ 1

0
f (x, y) dx dy. (5.78)

We can rewrite this by defining a function F(y) thus

F(y) =
∫ 1

0
f (x, y) dx. (5.79)

182

5.9 | MULTIPLE INTEGRALS

x

y

Figure 5.5: Sample points for Gaussian quadrature in two dimensions. If one applies

Eq. (5.82) to integrate the function f (x, y) in two dimensions, using Gaussian quadra-

ture with N = 10 points along each axis, the resulting set of sample points in the two-

dimensional space looks like this.

Then

I =
∫ 1

0
F(y) dy. (5.80)

Thus one way to do the multiple integral numerically is first to evaluate F(y)

for a suitable set of y values, which means performing the integral in Eq. (5.79),

then using those values of F(y) to do the integral in Eq. (5.80). For instance, if

we do the integrals by Gaussian quadrature with the same number N of points

for both x and y integrals, we have

F(y) ≃
N

∑
i=1

wi f (xi, y) and I ≃
N

∑
j=1

wjF(yj). (5.81)

An alternative way to look at the calculation is to substitute the first sum into

the second to get the Gauss–Legendre product formula:

I ≃
N

∑
i=1

N

∑
j=1

wiwj f (xi, yj). (5.82)

This expression has a form similar to the standard integration formula for sin-

gle integrals, Eq. (5.52), with a sum over values of the function f (x, y) at a set of

183

CHAPTER 5 | INTEGRALS AND DERIVATIVES

x

y

Figure 5.6: 128-point Sobol sequence. The Sobol sequence is one example of a low-

discrepancy point set that gives good results for integrals in high dimensions. This

figure shows a Sobol sequence of 128 points in two dimensions.

sample points, multiplied by appropriate weights. Equation (5.82) represents a

kind of two-dimensional Gaussian quadrature, with weights wiwj distributed

over a two-dimensional grid of points as shown in Fig. 5.5.

Once you look at it this way, however, you realize that in principle there’s

no reason why the sample points have to be on a grid. They could be any-

where—we can use any set of 2D locations and suitable weights that give a

good estimate of the integral. Just as Gaussian quadrature gives the best choice

of points for an integral in one dimension, so we can ask what the best choice

is for two dimensions, or for higher dimensions like three or four. It turns

out, however, that the answer to this question is not known in general. There

are some results for special cases, but no general answer. Various point sets

have been proposed for use with 2D integrals that appear to give reasonable

results, but there is no claim that they are the best possible choices. Typically

they are selected because they have some other desirable properties, such as

nesting, and not because they give the most accurate answer. One common

choice of point set is the Sobol sequence, shown for N = 128 points in Fig. 5.6.

Sobol sequences and similar sets of points are known as low-discrepancy point

sets or sometimes quasi-random point sets (although the latter name is a poor

184

5.9 | MULTIPLE INTEGRALS

x

y

Figure 5.7: Integration over a non-rectangular domain. When the limits of multiple

integrals depend on one another they can produce arbitrarily shaped domains of in-

tegration. This figure shows the triangular domain that results from the integral in

Eq. (5.83). The gray region is the domain of integration. Note how the points become

squashed together towards the bottom of the plot.

one because there’s nothing random about them). Another common way to

choose the sample points is to choose them completely randomly, which leads

to the method known as Monte Carlo integration. Choosing points at random

may seem like an odd idea, but as we will see it can be a useful approach for

certain types of integrals, particularly integrals over very many variables. We

will look at Monte Carlo integration in Section 10.2, after we study random

number generators.

In the integral of Eq. (5.78) the limits of both integrals were constant, which

made the domain of integration rectangular in xy space. It’s not uncommon,

however, for the limits of one integral to depend on the other, as here:

I =
∫ 1

0
dy

∫ y

0
dx f (x, y). (5.83)

We can use the same approach as before to evaluate this integral. We define

F(y) =
∫ y

0
f (x, y) dx, (5.84)

185

CHAPTER 5 | INTEGRALS AND DERIVATIVES

Figure 5.8: A complicated integration domain. Integration domains can be arbitrarily

complicated in their shapes. They can even contain holes, or take on complex topologies

in higher dimensions such as tori or knotted topologies.

so that

I =
∫ 1

0
F(y) dy, (5.85)

and then do both integrals with any method we choose, such as Gaussian

quadrature. The result, again, is a two-dimensional integration rule, but now

with the sample points arranged in a triangular space as shown in Fig. 5.7.

This method will work, and will probably give reasonable answers, but it’s

not ideal. In particular note how the sample points are crammed together in

the lower left corner of the integration domain but much farther apart at the

top. This means, all other things being equal, that we’ll have lower accuracy

for the part of the integral at the top. It would be better if the accuracy were

roughly uniform.

And things can get worse still. Suppose the domain of integration takes

some more complicated shape like Fig. 5.8. We will not come across any exam-

ples this complicated in this book, but if we did there would be various tech-

niques we could use. One is the Monte Carlo integration method mentioned

above, which we study in detail in Section 10.2. Another is to set the integrand

to zero everywhere outside the domain of integration and then integrate it us-

ing a standard method over some larger, regularly shaped domain, such as a

186

5.9 | MULTIPLE INTEGRALS

rectangle, that completely encloses the irregular one. There are many more

sophisticated techniques as well, but we will not need them for the moment.

Exercise 5.14: Gravitational pull of a uniform sheet

A uniform square sheet of metal is floating motionless in space:

z

y

x

1kg point mass

10m

The sheet is 10 m on a side and of negligible thickness, and it has a mass of 10 metric

tonnes.

a) Consider the gravitational force due to the plate felt by a point mass of 1 kg a

distance z from the center of the square, in the direction perpendicular to the

sheet, as shown above. Show that the component of the force along the z-axis is

Fz = Gσz
∫∫ L/2

−L/2

dx dy

(x2 + y2 + z2)3/2
,

where G = 6.674 × 10−11 m3 kg−1 s−2 is Newton’s gravitational constant and σ is

the mass per unit area of the sheet.

b) Write a program to calculate and plot the force as a function of z from z = 0

to z = 10 m. For the double integral use (double) Gaussian quadrature, as in

Eq. (5.82), with 100 sample points along each axis.

c) You should see a smooth curve, except at very small values of z, where the force

should drop off suddenly to zero. This drop is not a real effect, but an artifact of

the way we have done the calculation. Explain briefly where this artifact comes

from and suggest a strategy to remove it, or at least to decrease its size.

This calculation can thought of as a model for the gravitational pull of a galaxy. Most

of the mass in a spiral galaxy (such as our own Milky Way) lies in a thin plane or disk

passing through the galactic center, and the gravitational pull exerted by that plane on

bodies outside the galaxy can be calculated by just the methods we have employed

here.

187

CHAPTER 5 | INTEGRALS AND DERIVATIVES

5.10 DERIVATIVES

The opposite of a numerical integral is a numerical derivative. You hear a

lot less about numerical derivatives than integrals, however, for a number of

reasons:

1. The basic techniques for numerical derivatives are quite simple, so they

don’t take long to explain.

2. Derivatives of known functions can always be calculated analytically, so

there’s less need to calculate them numerically.

3. There are some significant practical problems with numerical deriva-

tives, which means they are used less often than numerical integrals.

(There are, however, some situations in which they are important, par-

ticularly in the solution of partial differential equations, which we will

look at in Chapter 9.)

For all of these reasons this is a short section—you need to know about numer-

ical derivatives, but we won’t spend too much time on them.

5.10.1 FORWARD AND BACKWARD DIFFERENCES

The standard definition of a derivative, the one you see in the calculus books,

is
d f

dx
= lim

h→0

f (x + h)− f (x)

h
. (5.86)

The basic method for calculating numerical derivatives is precisely an imple-

mentation of this formula. We can’t take the limit h → 0 in practice, but we

can make h very small and then calculate

d f

dx
≃ f (x + h)− f (x)

h
. (5.87)

This approximation to the derivative is called the forward difference, because

it’s measured in the forward (i.e., positive) direction from the point of inter-

est x. You can think of it in geometric terms as shown in Fig. 5.9—it’s simply

the slope of the curve f (x) measured over a small interval of width h in the

forward direction from x.

There is also the backward difference, which has the mirror image definition

d f

dx
≃ f (x)− f (x − h)

h
. (5.88)

The forward and backward differences typically give about the same answer

and in many cases you can use either. Most often one uses the forward dif-

ference. There are a few special cases where one is preferred over the other,

188

5.10 | DERIVATIVES

Figure 5.9: Forward and backward differences. The forward and backward differ-

ences provide two different approximations to the derivative of a function f (x) at the

point x in terms of the slopes of small segments measured in the forward (i.e., positive)

direction from x and the backward (negative) direction, respectively.

particularly when there is a discontinuity in the derivative of the function at

the point x or when the domain of the function is bounded and you want the

value of the derivative on the boundary, in which case only one or other of the

two difference formulas will work. The rest of the time, however, there is little

to choose between them.

Before using either the forward or backward difference we must choose a

value for h. To work out what the best value is we need to look at the errors

and inaccuracies involved in calculating numerical derivatives.

5.10.2 ERRORS

Calculations of derivatives using forward and backward differences are not

perfectly accurate. There are two sources of error. The first is rounding error of

the type discussed in Section 4.2. The second is the approximation error that

arises because we cannot take the limit h → 0, so our differences are not really

true derivatives. By contrast with numerical integrals, where, as we have seen,

rounding error is usually negligible, it turns out that both sources of error are

important when we calculate a derivative.

To understand why this is let us focus on the forward difference and con-

sider the Taylor expansion of f (x) about x:

f (x + h) = f (x) + h f ′(x) + 1
2 h2 f ′′(x) + . . . (5.89)

189

CHAPTER 5 | INTEGRALS AND DERIVATIVES

where f ′ and f ′′ denote the first and second derivatives of f . Rearranging this

expression, we get

f ′(x) =
f (x + h)− f (x)

h
− 1

2 h f ′′(x) + . . . (5.90)

When we calculate the forward difference we calculate only the first part on

the right-hand side, and neglect the term in f ′′(x) and all higher terms. The

size of these neglected terms measures the approximation error on the forward

difference. Thus, to leading order in h, the absolute magnitude of the approxi-

mation error is 1
2 h | f ′′(x)|, which is linear in h so that, as we would expect, we

should get more accurate answers if we use smaller values of h.

But now here is the problem: as we saw in Section 4.2, subtracting numbers

from one another on a computer can give rise to big rounding errors (in frac-

tional terms) if the numbers are close to one another. And that’s exactly what

happens here—the numbers f (x + h) and f (x) that we are subtracting will be

very close to one another if we make h small. Thus if we make h too small,

we will get a large rounding error in our result. This puts us in a difficult

situation: we want to make h small to make the forward difference approxi-

mation as accurate as possible, but if we make it too small we will get a large

rounding error. To get the best possible answer, we are going to have to find a

compromise.

In Section 4.2 we saw that the computer can typically calculate a number

such as f (x) to an accuracy of C f (x), where the value of the error constant C

can vary but is typically about C = 10−16 in Python. Since f (x + h) is normally

close in value to f (x), the accuracy of our value for f (x + h) will also be about

the same, and the absolute magnitude of the total rounding error on f (x +

h) − f (x) will, in the worst case, be about 2C | f (x)|—it might be better than

this if the two errors go in opposite directions and happen to cancel out, but

we cannot assume that this will be the case. Then the worst-case rounding

error on the complete forward difference, Eq. (5.87), will be 2C| f (x)|/h.

Meanwhile, the approximation error is, as we have said, about 1
2 h | f ′′(x)|

from Eq. (5.90), which means that the total error ǫ on our derivative, in the

worst case, is

ǫ =
2C | f (x)|

h
+ 1

2 h
∣

∣ f ′′(x)
∣

∣. (5.91)

We want to find the value of h that minimizes this error, so we differentiate

with respect to h and set the result equal to zero, which gives

−2C | f (x)|
h2

+ 1
2

∣

∣ f ′′(x)
∣

∣ = 0, (5.92)

190

5.10 | DERIVATIVES

or equivalently

h =

√

4C

∣

∣

∣

∣

f (x)

f ′′(x)

∣

∣

∣

∣

. (5.93)

Substituting this value back into Eq. (5.91) we find that the error on our deriva-

tive is

ǫ = h | f ′′(x)| =
√

4C
∣

∣ f (x) f ′′(x)
∣

∣. (5.94)

Thus, for instance, if f (x) and f ′′(x) are of order 1, we should choose h to be

roughly of order
√

C, which will be typically about 10−8, and the final error on

our result will also be about
√

C or 10−8. A similar analysis can be applied to

the backward difference, and gives the same end result.

In other words, we can get about half of the usual numerical precision on

our derivatives but not better. If the precision is, as here, about 16 digits, then

we can get 8 digits of precision on our derivatives. This is substantially poorer

than most of the calculations we have seen so far in this book, and could be a

significant source of error for calculations that require high accuracy.

5.10.3 CENTRAL DIFFERENCES

We have seen that forward and backward differences are not very accurate.

What can we do to improve the situation? A simple improvement is to use the

central difference:
d f

dx
≃ f (x + h/2)− f (x − h/2)

h
. (5.95)

The central difference is similar to the forward and backward differences, ap-

proximating the derivative using the difference between two values of f (x) at

points a distance h apart. What’s changed is that the two points are now placed

symmetrically around x, one at a distance 1
2 h in the forward (i.e., positive) di-

rection and the other at a distance 1
2 h in the backward (negative) direction.

To calculate the approximation error on the central difference we write two

Taylor expansions:

f (x + h/2) = f (x) + 1
2 h f ′(x) + 1

8 h2 f ′′(x) + 1
48 h3 f ′′′(x) + . . . (5.96)

f (x − h/2) = f (x)− 1
2 h f ′(x) + 1

8 h2 f ′′(x)− 1
48 h3 f ′′′(x) + . . . (5.97)

Subtracting the second expression from the first and rearranging for f ′(x), we

get

f ′(x) =
f (x + h/2)− f (x − h/2)

h
− 1

24 h2 f ′′′(x) + . . . (5.98)

191

CHAPTER 5 | INTEGRALS AND DERIVATIVES

To leading order the magnitude of the error is now 1
24 h2 | f ′′′(x)|, which is one

order in h higher than before. There is also, as before, a rounding error; its size

is unchanged from our previous calculation, having magnitude 2C | f (x)|/h,

so the magnitude of the total error on our estimate of the derivative is

ǫ =
2C | f (x)|

h
+

1

24
h2

∣

∣ f ′′′(x)
∣

∣. (5.99)

Differentiating to find the minimum and rearranging, we find that the optimal

value of h is

h =

(

24C

∣

∣

∣

∣

f (x)

f ′′′(x)

∣

∣

∣

∣

)1/3

, (5.100)

and substituting this back into Eq. (5.99) we find the optimal error itself to be

ǫ = 1
8 h2

∣

∣ f ′′′(x)
∣

∣ =
(

9
8 C2[f (x)]2

∣

∣ f ′′′(x)
∣

∣

)1/3
. (5.101)

Thus, for instance, if f (x) and f ′′′(x) are of order 1, the ideal value of h is going

to be around h ≃ C1/3, which is typically about 10−5 but the error itself will be

around C2/3, or about 10−10.

Thus the central difference is indeed more accurate than the forward and

backward differences, by a factor of 100 or so in this case, though we get this

accuracy by using a larger value of h. This may seem slightly surprising, but it

is the correct result.

EXAMPLE 5.4: DERIVATIVE OF A SAMPLED FUNCTION

As an example application of the central difference, suppose we are given the

values of a function f (x) measured at regularly spaced sample points a dis-

tance h apart—see Fig. 5.10. One often gets such samples from data collected

in the laboratory, for example. Now suppose we want to calculate the deriva-

tive of f at one of these points (case (a) in the figure). We could use a forward

or backward difference based on the sample at x and one of the adjacent ones,

or we could use a central difference. However, if we use a central difference,

which is based on points equally spaced on either side of x, then we must use

the points at x + h and x − h. We cannot, as in Eq. (5.95), use points at x + h/2

and x − h/2 because there are no such points—we only have the samples we

are given. The formula for the central difference in this case will thus be

d f

dx
≃ f (x + h)− f (x − h)

2h
. (5.102)

192

5.10 | DERIVATIVES

f (x)

x

(a)

(b)

Figure 5.10: Derivative of a sampled function. (a) If we only know the function at a

set of sample points spaced a distance h apart then we must chose between calculating

the forward or backward difference between adjacent samples, or the central difference

between samples 2h apart. We cannot calculate a central difference using the standard

formula, Eq. (5.95), because we do not know the value of the function at x ± 1
2 h. (b) We

can, however, calculate the value of the derivative at a point half way between two

samples (dotted line) using the standard formula.

This means that the interval between the points we use is 2h for the central

difference, but only h for the forward and backward differences. So which will

give a better answer? The central difference because it’s a better approximation

or the forward difference because of its smaller interval?

From Eq. (5.94) we see the error on the forward difference is h | f ′′(x)| and

from Eq. (5.101) the error on the central difference—with h replaced by 2h—

is h2 | f ′′′(x)|. Which is smaller depends on the value of h. For the central

difference to give the more accurate answer, we require h2 | f ′′′(x)| < h | f ′′(x)|
or

h <

∣

∣

∣

∣

f ′′(x)

f ′′′(x)

∣

∣

∣

∣

. (5.103)

If h is larger than this then the forward difference is actually the better approx-

imation in this case.

But now suppose that instead of calculating the value of the derivative at

one of the sample points itself, we want to calculate it at a point x that lies half

way between two of the samples—case (b) in Fig. 5.10. Viewed from that point

we do have samples at x + h/2 and x − h/2, so now we can use the original

form of the central difference, Eq. (5.95), with an interval only h wide, as with

the forward difference. This calculation will give a more accurate answer, but

only at the expense of calculating the result at a point in between the samples.

193

CHAPTER 5 | INTEGRALS AND DERIVATIVES

Exercise 5.15: Create a user-defined function f(x) that returns the value 1 + 1
2 tanh 2x,

then use a central difference to calculate the derivative of the function in the range

−2 ≤ x ≤ 2. Calculate an analytic formula for the derivative and make a graph with

your numerical result and the analytic answer on the same plot. It may help to plot the

exact answer as lines and the numerical one as dots. (Hint: In Python the tanh function

is found in the math package, and it’s called simply tanh.)

Exercise 5.16: Even when we can find the value of f (x) for any value of x the forward

difference can still be more accurate than the central difference for sufficiently large h.

For what values of h will the approximation error on the forward difference of Eq. (5.87)

be smaller than on the central difference of Eq. (5.95)?

5.10.4 HIGHER-ORDER APPROXIMATIONS FOR DERIVATIVES

One way to think about the numerical derivatives of the previous sections is

that we are fitting a straight line through two points, such as the points f (x)

and f (x + h), and then asking about the slope of that line at the point x. The

trapezoidal rule of Section 5.1.1 does a similar thing for integrals, approximat-

ing a curve by a straight line between sample points and estimating the area

under the curve using that line. We saw that we can make a higher-order—and

usually better—approximation to an integral by fitting a quadratic or higher-

order polynomial instead of a straight line, and this led to the Simpson and

Newton–Cotes rules for integrals. We can take a similar approach with deriva-

tives by fitting a polynomial to a set of sample points and then calculating the

derivative of the polynomial at x.

Consider, for example, fitting a quadratic curve y = ax2 + bx + c to the

function f (x). We require three sample points to make the fit and, as with the

central difference of Section 5.10.3, the best results are obtained by placing the

points symmetrically about the point of interest x. Suppose, for example, that

we are interested in the derivative at x = 0, so we place our three points at −h,

0, and +h, for some h that we choose. Requiring that our quadratic is equal to

f (x) at these three points gives us three equations thus:

ah2 − bh + c = f (−h), c = f (0), ah2 + bh + c = f (h), (5.104)

In principle, we can now solve these equations for the three parameters a, b,

and c. (This is the same calculation that we did in Section 5.1.2 for Simpson’s

rule.) However, in this case, we don’t need the whole solution, because we

194

5.10 | DERIVATIVES

don’t need all of the parameters. Given the quadratic fit y = ax2 + bx + c, the

derivative of the curve at the point x = 0 is

dy

dx
=

[

2ax + b
]

x=0
= b. (5.105)

So we need only the one parameter b, which we can get from Eq. (5.104) by

subtracting the first equation from the third to give 2bh = f (h)− f (−h) and

rearranging. Thus our approximation for the derivative at x = 0 is

d f

dx
≃ f (h)− f (−h)

2h
. (5.106)

We have done this calculation for the derivative at x = 0, but the same result

applies at any other point—we can slide the whole function up or down the

x-axis, to put any point x at the origin and then calculate the derivative from

the formula above. Or, equivalently, we can just write

d f

dx
≃ f (x + h)− f (x − h)

2h
(5.107)

for general x.

This is the correct result for the quadratic approximation, but it’s a dis-

appointing result, since Eq. (5.107) is nothing other than the central difference

approximation for sample points 2h apart, which we already saw in Eq. (5.102).

In other words, the higher-order approximation has not helped us in this case.

However, going to still higher orders does help. If we use a cubic or quar-

tic approximation, we do get improved estimates of the derivative. At higher

orders there is a distinction between the odd- and even-order approximations.

For the odd-order ones the sample points fall at “half-way” points, as with

the central difference of Eq. (5.95). For instance, to get the four sample points

required for a cubic approximation, symmetrically distributed about zero, we

would choose them to fall at x = − 3
2 h, − 1

2 h, 1
2 h, and 3

2 h. For even-order ap-

proximations, on the other hand, the samples fall at “integer” points; the five

points for the quartic approximation, for instance, fall at −2h, −h, 0, h, and 2h.

The methodology for deriving the higher-order approximations follows the

same pattern as for the quadratic case: we write down the required value of the

polynomial at each of the sample points, which gives us a set of simultaneous

equations in the polynomial coefficients. As before, we actually need only

one of those coefficients, the coefficient of the linear term in the polynomial.

Solving for this coefficient gives us our expression for the derivative. At each

order the expression is a linear combination of the samples, divided by h. We

195

CHAPTER 5 | INTEGRALS AND DERIVATIVES

Degree f (− 5
2 h) f (−2h) f (− 3

2 h) f (−h) f (− 1
2 h) f (0) f (1

2 h) f (h) f (3
2 h) f (2h) f (5

2 h) Error

1 −1 1 O(h2)
2 − 1

2
1
2 O(h2)

3 1
24 − 27

24
27
24 − 1

24 O(h4)
4 1

12 − 2
3

2
3 − 1

12 O(h4)
5 − 3

640
25
384 − 75

64
75
64 − 25

384
3

640 O(h6)

Table 5.1: Coefficients for numerical derivatives. The coefficients for central approximations to the first derivative

of f (x) at x = 0. To derive the full expression for an approximation, multiply the samples listed in the top row

of the table by the coefficients in one of the other rows, then divide by h. For instance, the cubic approximation

would be [1
24 f (− 3

2 h) − 27
24 f (− 1

2 h) + 27
24 f (1

2 h) − 1
24 f (3

2 h)]/h. For derivatives at points other than x = 0 the same

coefficients apply—one just uses the appropriate sample points around the value x of interest. The final column of

the table gives the order of the approximation error on the derivative.

will not go through the derivations in detail, but Table 5.1 gives the coefficients

of the combinations for the first five approximations.

Each of the approximations given in the table is exact, apart from rounding

error, if the function being differentiated is actually a polynomial of the appro-

priate (or lower) degree, so that the polynomial fit is a perfect one. Most of

the time, however, this will not be the case and there will be an approxima-

tion error involved in calculating the derivative. One can calculate this error

to leading order for each of the approximations by a method analogous to our

calculations for the forward, backward, and central differences: we perform

Taylor expansions about x = 0 to derive expressions for f (x) at each of the

sample points, then plug these expressions into the formula for the derivative.

The order in h of the resulting error is listed in the final column of Table 5.1. As

before, this approximation error must be balanced against the rounding error

and a suitable value of h chosen to minimize the overall error in the derivative.

An interesting point to notice about Table 5.1 is that the coefficient for f (0)

in all the approximations is zero. The value of the function exactly at the point

of interest never plays a role in the evaluation of the derivative. Another (not

unrelated) point is that the order in h of the error given in the final column does

not go up uniformly with the degree of the polynomial—it is the same for the

even-degree polynomials as for the next-lower odd-degree ones. We saw a

special case of this result for the quadratic: the quadratic fit just gives us an or-

dinary central difference and therefore necessarily has an error O(h2), the same

as the central difference derived from the linear fit. In general, the odd-degree

approximations give us slightly more accurate results than the even-degree

ones—the error is of the same order in h but the constant of proportionality

196

5.10 | DERIVATIVES

is smaller. On the other hand, the odd-degree approximations require sam-

ples at the half-way points, as we have noted, which can be inconvenient. As

discussed in Example 5.4, we sometimes have samples at only the “integer”

points, in which case we must use the even-degree approximations.

We will not be using quadratic or higher-order derivative approximations

in the remainder of this book—the forward, backward, and central differences

will be all we need. But it is worth knowing about them nonetheless; such

things come in handy every once in a while.

5.10.5 SECOND DERIVATIVES

We can also derive numerical approximations for the second derivative of a

function f (x). The second derivative is, by definition, the derivative of the

first derivative, so we can calculate it by applying our first-derivative formulas

twice. For example, starting with the central difference formula, Eq. (5.95), we

can write expressions for the first derivative at x + h/2 and x − h/2 thus:

f ′(x + h/2) ≃ f (x + h)− f (x)

h
, f ′(x − h/2) ≃ f (x)− f (x − h)

h
. (5.108)

Then we apply the central difference again to get an expression for the second

derivative:

f ′′(x) ≃ f ′(x + h/2)− f ′(x − h/2)

h

=
[f (x + h)− f (x)]/h − [f (x)− f (x − h)]/h

h

=
f (x + h)− 2 f (x) + f (x − h)

h2
. (5.109)

This is the simplest approximation for the second derivative. We will use it ex-

tensively in Chapter 9 for solving second-order differential equations. Higher-

order approximations exist too, but we will not use them in this book.

We can also calculate the error on Eq. (5.109). We perform two Taylor ex-

pansions of f (x) thus:

f (x + h) = f (x) + h f ′(x) + 1
2 h2 f ′′(x) + 1

6 h3 f ′′′(x) + 1
24 f ′′′′(x) + . . . (5.110)

f (x − h) = f (x)− h f ′(x) + 1
2 h2 f ′′(x)− 1

6 h3 f ′′′(x) + 1
24 f ′′′′(x)− . . . (5.111)

Adding them together and rearranging, we find that

f ′′(x) =
f (x + h)− 2 f (x) + f (x − h)

h2
− 1

12 h2 f ′′′′(x) + . . . (5.112)

197

CHAPTER 5 | INTEGRALS AND DERIVATIVES

The first term on the right is our formula for the second derivative, Eq. (5.109),

and the remainder of the terms measure the error. Thus, to leading order,

the absolute error inherent in our approximation to the second derivative is
1

12 h2 | f ′′′′(x)|. As before, we also need to take rounding error into account,

which contributes an error of roughly C | f (x)| on each value of f (x) so that, in

the worst case, the total rounding error in the numerator of (5.109) is 4C | f (x)|
and the rounding error on the whole expression is 4C | f (x)|/h2. Then the com-

plete error on the derivative is

ǫ =
4C | f (x)|

h2
+ 1

12 h2
∣

∣ f ′′′′(x)
∣

∣. (5.113)

Differentiating with respect to h and setting the result to zero then gives an

optimum value of h of

h =

(

48C

∣

∣

∣

∣

f (x)

f ′′′′(x)

∣

∣

∣

∣

)1/4

. (5.114)

Substituting this expression back into Eq. (5.113) gives the size of the optimal

error to be

ǫ = 1
6 h2

∣

∣ f ′′′′(x)
∣

∣ =
(

4
3 C

∣

∣ f (x) f ′′′′(x)
∣

∣

)1/2
. (5.115)

So if, for instance, f (x) and f ′′′′(x) are of order 1, the error will be roughly

of order
√

C, which is typically about 10−8. This is about the same accuracy

as we found for the forward and backward difference approximations to the

first derivative in Section 5.10.2. Thus our expression for the second derivative

is not very accurate—about as good as, but not better than, the forward dif-

ference. As mentioned above, there are higher-order approximations for the

second derivative that can give more accurate answers. But for our purposes

Eq. (5.109) will be good enough.

5.10.6 PARTIAL DERIVATIVES

We will come across a number of situations where we need to calculate par-

tial derivatives—derivatives of a function of several variables with respect to

only one of those variables. The calculation of such partial derivatives is a

simple generalization of the calculation of ordinary derivatives. If you have a

function f (x, y) of two variables, for instance, then the central difference ap-

proximations to derivatives with respect to x and y are

∂ f

∂x
=

f (x + h/2, y)− f (x − h/2, y)

h
, (5.116)

∂ f

∂y
=

f (x, y + h/2)− f (x, y − h/2)

h
. (5.117)

198

5.10 | DERIVATIVES

By analogy with our approach for the second derivative in Section 5.10.5 we

can also calculate second derivatives with respect to either variable, or a mixed

second derivative with respect to both, which is given by

∂2 f

∂x∂y
=

f (x + h/2, y + h/2)− f (x − h/2, y + h/2)− f (x + h/2, y − h/2) + f (x − h/2, y − h/2)

h2
.

(5.118)

We leave the derivation to the avid reader.

5.10.7 DERIVATIVES OF NOISY DATA

Suppose we have some measurements of a quantity that, when plotted on a

graph, look like Fig. 5.11a. Perhaps they come from an experiment in the lab,

for instance. The overall shape of the curve is clear from the figure, but there

is some noise in the data, so the curve is not completely smooth.

Now suppose we want to calculate the first derivative of this curve. So we

write a program to calculate, say, the forward difference at each point and plot

the values we get. The result is shown in Fig. 5.11b. As you can see, taking the

derivative has made our noise problem much worse. Now it’s almost impos-

sible to see the shape of the curve. This is a common problem with numerical

derivatives—if there’s any noise in the curve you’re differentiating, then it can

be greatly exaggerated by taking the derivative, perhaps to the point where the

results are useless.

The reason for the problem is easy to see if you zoom in on a small portion

of the original data, as shown in Fig. 5.12. In this figure the solid line represents

the actual data, and the dotted line is a sketch of what the underlying curve,

without the noise, probably looks like. (We don’t usually know the underlying

curve, so this is just a guess.) When viewed close-up like this, we can see that,

because of the noise, the slope of the noisy line is very steep in some places,

and completely different from the slope of the underlying curve. Although the

noisy curve follows the underlying one reasonably closely, its derivative does

not. So now, when we calculate the derivative, we generate spurious large

values where there should be none.

Unfortunately, this kind of issue is common with physics data, and this

is one of the reasons why numerical derivatives are used less than numerical

integrals. There are, however, some things we can do to mitigate the problem,

although they all also decrease the accuracy of our results:

1. The simplest thing we can do is increase the value of h. We can treat

199

CHAPTER 5 | INTEGRALS AND DERIVATIVES

0 200 400 600 800 1000

-1

0

1

(a)

0 200 400 600 800 1000

-0.2

-0.1

0

0.1

0.2

(b)

Figure 5.11: Derivative of noisy data. (a) An example of a noisy data set. The data

plotted in this graph have a clear underlying form, but contain some random noise

or experimental error as well. (b) The derivative of the same data calculated using a

forward difference. The action of taking the derivative amplifies the noise and makes

the underlying form of the result difficult to discern.

200

5.10 | DERIVATIVES

0 10 20 30 40 50
-0.2

-0.1

0

0.1

0.2

0.3

Figure 5.12: An expanded view of the noisy data. The jagged line in this plot is an

enlargement of the first portion of the data from Fig. 5.11a, while the dotted line is a

guess about the form of the underlying curve, without the noise.

the noise in the same way that we treat rounding error and calculate an

optimum value for h that balances the error from the noise against the

error in our approximation of the derivative. The end result is a formula

similar to Eq. (5.93) for the forward difference or Eq. (5.100) for the central

difference, but with the error constant C replaced by the fractional error

introduced into the data by the noise (which is the inverse of the so-called

signal-to-noise ratio).

2. Another approach is to fit a curve to a portion of the data near the point

where we want the derivative, then differentiate the curve. For instance,

we might fit a quadratic or a cubic, then differentiate that. We do not,

however, fit a quadratic to just three sample points or a cubic to just four,

as we did in Section 5.10.4. Instead we do a least-squares fit to find the

curve that best approximates a larger number of points, even though it

will not typically pass exactly through all those points. In effect, we are

trying to find an approximation to the underlying smooth curve depicted

in Fig. 5.12. The derivative of this curve then gives an estimate of the true

derivative of the data without noise.

3. A third approach is to smooth the data in some other fashion before dif-

ferentiating, which can be done, for instance, using Fourier transforms,

which we will study in Chapter 7. (See Exercise 7.4 for an example

201

CHAPTER 5 | INTEGRALS AND DERIVATIVES

0 200 400 600 800 1000

-1

-0.5

0

0.5

1

Figure 5.13: Smoothed data and an improved estimate of the derivative. The gray

curve in this plot is a version of the data from Fig. 5.11a that has been smoothed to

remove noise using a Fourier transform method. The black curve shows the numerical

derivative of the smoothed function, which is a significant improvement over Fig. 5.11b.

of Fourier smoothing.) Figure 5.13 shows a version of the data from

Fig. 5.11 that has been smoothed in this way, and the corresponding

derivative, which is much cleaner now.

5.11 INTERPOLATION

We will tackle one more topic briefly in this chapter, the topic of interpolation,

which is not directly related to integrals and derivatives, but uses similar math-

ematical methods, making this a good moment to look into it.

Suppose you are given the value of a function f (x) at just two points x =

a, b and you want to know the value of the function at another point x in be-

tween. What do you do? There are a number of possibilities, of which the

simplest is linear interpolation, which is illustrated in Fig. 5.14. We assume our

function follows a straight line from f (a) to f (b), which in most cases is an

approximation—likely the function follows a curve between the two points, as

sketched in the figure. But if we make this assumption then we can calculate

f (x) with some elementary geometry.

The slope of the straight-line approximation is

m =
f (b)− f (a)

b − a
, (5.119)

202

5.11 | INTERPOLATION

Figure 5.14: Linear interpolation. The value of f (x) in between the two known points

at x = a and x = b is estimated by assuming a straight line from f (a) to f (b).

and the distance marked y on the figure is given in terms of this slope by y =

m(x − a). The distance marked z is equal to f (a), so

f (x) ≃ y + z =
f (b)− f (a)

b − a
(x − a) + f (a)

=
(b − x) f (a) + (x − a) f (b)

b − a
. (5.120)

This is the fundamental formula of linear interpolation. In fact, this same for-

mula can also be used to extrapolate the function to points outside the interval

from a to b, although one should not extrapolate too far. The further you go,

the less likely it is that the extrapolation will be accurate.

How accurate is the linear interpolation formula? The calculation of the

error is similar to that for derivatives, making use of two Taylor expansions:

f (a) = f (x) + (a − x) f ′(x) + 1
2 (a − x)2 f ′′(x) + . . . (5.121)

f (b) = f (x) + (b − x) f ′(x) + 1
2 (b − x)2 f ′′(x) + . . . (5.122)

Substituting these into Eq. (5.120), the terms in f ′(x) cancel and, after rearrang-

ing a little, we find that

f (x) =
(b − x) f (a) + (x − a) f (b)

b − a
+ (a − x)(b − x) f ′′(x) + . . . (5.123)

The first term on the right-hand side is our linear interpolation formula; the

remainder of the terms are the error. Note that the leading-order error term

203

CHAPTER 5 | INTEGRALS AND DERIVATIVES

vanishes as x tends to either a or b, so that either b − x or a − x becomes small.

And assuming f ′′(x) varies slowly, the error will be largest in the middle of

the interval. If we denote the width of the interval by b − a = h, then when

we are in the middle we have x − a = b − x = 1
2 h and the magnitude of the

leading-order error is 1
4 h2 | f ′′(x)|. Thus, like the central difference formula for

a first derivative, the worst-case error on a linear interpolation is O(h2), and

we can make the interpolation more accurate by making h smaller.

By contrast with the case of derivatives, however, we do not need to be

particularly careful about rounding error when using linear interpolation. The

interpolation formula, Eq. (5.120), involves the sum of values of f (x) at two

closely spaced points, not the difference, so we don’t normally run into the

accuracy problems that plague calculations (like calculations of derivatives)

that are based on subtractions.

Can we do better than linear interpolation? Not if we know the value of the

function f (x) at only two points—there is no better approximation in that case.

If we know the function at more than two points there are several ways to im-

prove on linear interpolation. The most obvious is to interpolate using higher-

order polynomials. If we have three points, for instance, we can fit a quadratic

through them, which will usually give a better match to the underlying curve.

Fitting quadratics or higher polynomials leads to a set of higher-order methods

known as Lagrange interpolation methods.

When the number of points becomes large, however, this approach breaks

down. If we have a large number N of points then you might think the best

thing to do would be to fit an (N − 1)th order polynomial through them, but it

turns out this doesn’t work because very high order polynomials tend to have a

lot of wiggles in them and can deviate from the fitted points badly in the inter-

vals between points. It’s better in this case to fit many lower-order polynomials

such as quadratics or cubics to smaller sets of adjacent points. Unfortunately,

the naive implementation of such a scheme gives rather uneven interpolations

because the slope of the interpolation changes at the join-points between poly-

nomials. A more satisfactory approach is to fit polynomials to the measured

points and the derivatives at their ends, so that one gets a function that goes

through the points and has a smooth slope everywhere. Such interpolations

are called splines. The most widely used type are cubic splines. We won’t go

into these methods further, however. For our purposes, linear interpolation

will be good enough.

204

EXERCISES

FURTHER EXERCISES

5.17 The gamma function: A commonly occurring function in physics calculations is

the gamma function Γ(a), which is defined by the integral

Γ(a) =
∫ ∞

0
xa−1e−x dx.

There is no closed-form expression for the gamma function, but one can calculate its

value for given a by performing the integral above numerically. You have to be careful

how you do it, however, if you wish to get an accurate answer.

a) Write a program to make a graph of the value of the integrand xa−1e−x as a func-

tion of x from x = 0 to x = 5, with three separate curves for a = 2, 3, and 4,

all on the same axes. You should find that the integrand starts at zero, rises to a

maximum, and then decays again for each curve.

b) Show analytically that the maximum falls at x = a − 1.

c) Most of the area under the integrand falls near the maximum, so to get an accurate

value of the gamma function we need to do a good job of this part of the integral.

We can change the integral from 0 to ∞ to one over a finite range from 0 to 1 using

the change of variables in Eq. (5.67), but this tends to squash the peak towards the

edge of the [0, 1] range and does a poor job of evaluating the integral accurately.

We can do a better job by making a different change of variables that puts the

peak in the middle of the integration range, around 1
2 . We will use the change of

variables given in Eq. (5.69), which we repeat here for convenience:

z =
x

c + x
.

For what value of x does this change of variables give z = 1
2 ? Hence what is the

appropriate choice of the parameter c that puts the peak of the integrand for the

gamma function at z = 1
2 ?

d) Before we can calculate the gamma function, there is another detail we need to

attend to. The integrand xa−1e−x can be difficult to evaluate because the fac-

tor xa−1 can become very large and the factor e−x very small, causing numerical

overflow or underflow, or both, for some values of x. Write xa−1 = e(a−1) ln x to

derive an alternative expression for the integrand that does not suffer from these

problems (or at least not so much). Explain why your new expression is better

than the old one.

e) Now, using the change of variables above and the value of c you have chosen,

write a user-defined function gamma(a) to calculate the gamma function for arbi-

trary argument a. Use whatever integration method you feel is appropriate. Test

your function by using it to calculate and print the value of Γ(3
2), which is known

to be equal to 1
2

√
π ≃ 0.886.

f) For integer values of a it can be shown that Γ(a) is equal to the factorial of a −
1. Use your Python function to calculate Γ(3), Γ(6), and Γ(10). You should get

answers closely equal to 2! = 2, 5! = 120, and 9! = 362 880.

205

CHAPTER 5 | INTEGRALS AND DERIVATIVES

5.18 Rearranging Eq. (5.19) into a slightly more conventional form, we have:

∫ b

a
f (x) dx = h

[

1
2 f (a) + 1

2 f (b) +
N−1

∑
k=1

f (a + kh)

]

+ 1
12 h2

[

f ′(a)− f ′(b)
]

+ O(h4).

This result gives a value for the integral on the left which has an error of order h4—a

factor of h2 better than the error on the trapezoidal rule and as good as Simpson’s rule.

We can use this formula as a new rule for evaluating integrals, distinct from any of the

others we have seen in this chapter. We might call it the “Euler–Maclaurin rule.”

a) Write a program to calculate the value of the integral
∫ 2

0
(x4 − 2x + 1)dx using this

formula. (This is the same integral that we studied in Example 5.1, whose true

value is 4.4.) The order-h term in the formula is just the ordinary trapezoidal rule;

the h2 term involves the derivatives f ′(a) and f ′(b), which you should evaluate

using central differences, centered on a and b respectively. Note that the size of

the interval you use for calculating the central differences does not have to equal

the value of h used in the trapezoidal rule part of the calculation. An interval of

about 10−5 gives good values for the central differences.

Use your program to evaluate the integral with N = 10 slices and compare the

accuracy of the result with that obtained from the trapezoidal rule alone with the

same number of slices.

b) Good though it is, this integration method is not much used in practice. Suggest

a reason why not.

5.19 Diffraction gratings: Light with wavelength λ is incident on a diffraction grating

of total width w, gets diffracted, is focused with a lens of focal length f , and falls on a

screen:

x

In
ci

d
en

t
li

g
h
t

Grating

Screen

f

Lens

Theory tells us that the intensity of the diffraction pattern on the screen, a distance x

from the central axis of the system, is given by

I(x) =

∣

∣

∣

∣

∫ w/2

−w/2

√

q(u) ei2πxu/λ f du

∣

∣

∣

∣

2

,

206

EXERCISES

where q(u) is the intensity transmission function of the diffraction grating at a dis-

tance u from the central axis, i.e., the fraction of the incident light that the grating lets

through.

a) Consider a grating with transmission function q(u) = sin2 αu. What is the sepa-

ration of the “slits” in this grating, expressed in terms of α?

b) Write a Python function q(u) that returns the transmission function q(u) = sin2 αu

as above at position u for a grating whose slits have separation 20 µm.

c) Use your function in a program to calculate and graph the intensity of the diffrac-

tion pattern produced by such a grating having ten slits in total, if the incident

light has wavelength λ = 500 nm. Assume the lens has a focal length of 1 meter

and the screen is 10 cm wide. You can use whatever method you think appropriate

for doing the integral. Once you’ve made your choice you’ll also need to decide

the number of sample points you’ll use. What criteria play into this decision?

Notice that the integrand in the equation for I(x) is complex, so you will have

to use complex variables in your program. As mentioned in Section 2.2.5, there is

a version of the math package for use with complex variables called cmath. In par-

ticular you may find the exp function from cmath useful because it can calculate

the exponentials of complex arguments.

d) Create a visualization of how the diffraction pattern would look on the screen

using a density plot (see Section 3.3). Your plot should look something like this:

e) Modify your program further to make pictures of the diffraction patterns pro-

duced by gratings with the following profiles:

i) A transmission profile that obeys q(u) = sin2 αu sin2 βu, with α as before and

the same total grating width w, and β = 1
2 α.

ii) Two “square” slits, meaning slits with 100% transmission through the slit

and 0% transmission everywhere else. Calculate the diffraction pattern for

non-identical slits, one 10 µm wide and the other 20 µm wide, with a 60 µm

gap between the two.

5.20 A more advanced adaptive method for the trapezoidal rule: In Section 5.3 we

studied an adaptive version of the trapezoidal rule in which the number of steps is

increased—and the width h of the slices correspondingly decreased—until the calcula-

tion gives a value for the integral accurate to some desired level. Although this method

varies h, it still calculates the integral at any individual stage of the process using slices

of equal width throughout the domain of integration. In this exercise we look at a more

sophisticated form of the trapezoidal rule that uses different step sizes in different parts

of the domain, which can be useful particularly for poorly behaved functions that vary

rapidly in certain regions but not others. Remarkably, this method is not much more

207

CHAPTER 5 | INTEGRALS AND DERIVATIVES

complicated to program than the ones we’ve already seen, if one knows the right tricks.

Here’s how the method works.

Suppose we wish to evaluate the integral I =
∫ b

a
f (x) dx and we want an error of

no more than ǫ on our answer. To put that another way, if we divide up the integral

into slices of width h then we require an accuracy per slice of

h
ǫ

b − a
= hδ,

where δ = ǫ/(b − a) is the target accuracy per unit interval.

We start by evaluating the integral using the trapezoidal rule with just a single slice

of width h1 = b − a. Let us call the estimate of the integral from this calculation I1.

Usually I1 will not be very accurate, but that doesn’t matter. Next we make a second

estimate I2 of the integral, again using the trapezoidal rule but now with two slices of

width h2 = 1
2 h1 each. Equation (5.28) tells us that the error on this second estimate

is 1
3 (I2 − I1) to leading order. If the absolute value of this error is smaller than the

required accuracy ǫ then our calculation is complete and we need go no further. I2 is a

good enough estimate of the integral.

Most likely, however, this will not be the case; the accuracy will not be good enough.

If so, then we divide the integration interval into two equal parts of size 1
2 (b − a) each,

and we repeat the process above in each part separately, calculating estimates I1 and I2

using one and two slices respectively, estimating the error, and checking to see if it is

less than the required accuracy, which is now 1
2 (b − a)δ = 1

2 ǫ.

We keep on repeating this process, dividing each slice in half and in half again, as

many times as necessary to achieve the desired accuracy in every slice. Different slices

may be divided different numbers of times, and hence we may end up with different

sized slices in different parts of the integration domain. The method automatically uses

whatever size and number of slices is appropriate in each region.

a) Write a program using this method to calculate the integral

I =
∫ 10

0

sin2 x

x2
dx,

to an accuracy of ǫ = 10−4. Start by writing a function to calculate the integrand

f (x) = (sin2 x)/x2. Note that the limiting value of the integrand at x = 0 is 1.

You’ll probably have to include this point as a special case in your function using

an if statement.

The best way to perform the integration itself is to make use of the technique

of recursion, the ability of a Python function to call itself. (If you’re not familiar

with recursion, you may like to look at Exercise 2.13 on page 83 before doing this

exercise.) Write a function step(x1,x2,f1,f2) that takes as arguments the begin-

ning and end points x1, x2 of a slice and the values f (x1), f (x2) of the integrand at

those two points, and returns the value of the integral from x1 to x2. This function

should evaluate the two estimates I1 and I2 of the integral from x1 to x2, calcu-

lated with one and two slices respectively, and the error 1
3 (I2 − I1). If this error

208

EXERCISES

meets the target value, which is (x2 − x1)δ, then the calculation is complete and

the function simply returns the value I2. If the error fails to meet the target, then

the function calls itself, twice, to evaluate the integral separately on the first and

second halves of the interval and returns the sum of the two results. (And then

those functions can call themselves, and so forth, subdividing the integral as many

times as necessary to reach the required accuracy.)

Hint: As icing on the cake, when the error target is met and the function re-

turns a value for the integral in the current slice, it can, in fact, return a slightly

better value than the estimate I2. Since you will already have calculated the value

of the integrand f (x) at x1, x2, and the midpoint xm = 1
2 (x1 + x2) in order to eval-

uate I2, you can use those results to compute the improved Simpson’s rule esti-

mate, Eq. (5.7), for this slice. You just return the value 1
6 h[f (x1) + 4 f (xm) + f (x2)]

instead of the trapezoidal rule estimate 1
4 h[f (x1) + 2 f (xm) + f (x2)] (where h =

x2 − x1). This involves very little extra work, but gives a value that is more accu-

rate by two orders in h. (Technically, this is an example of the method of “local

extrapolation,” although it’s perhaps not obvious what we’re extrapolating in this

case. We’ll discuss local extrapolation again when we study adaptive methods for

the solution of differential equations in Section 8.4.)

b) Why does the function step(x1,x2,f1,f2) take not only the positions x1 and x2

as arguments, but also the values f (x1) and f (x2)? Since we know the func-

tion f (x), we could just calculate these values from x1 and x2. Nonetheless, it is a

smart move to include the values of f (x1) and f (x2) as arguments to the function.

Why?

c) Modify your program to make a plot of the integrand with dots added showing

where the ends of each integration slice lie. You should see larger slices in portions

of the integrand that follow reasonably straight lines (because the trapezoidal rule

gives an accurate value for straight-line integrands) and smaller slices in portions

with more curvature.

5.21 Electric field of a charge distribution: Suppose we have a distribution of charges

and we want to calculate the resulting electric field. One way to do this is to first calcu-

late the electric potential φ and then take its gradient. For a point charge q at the origin,

the electric potential at a distance r from the origin is φ = q/4πǫ0r and the electric field

is E = −∇φ.

a) You have two charges, of ±1 C, 10 cm apart. Calculate the resulting electric po-

tential on a 1 m × 1 m square plane surrounding the charges and passing through

them. Calculate the potential at 1 cm spaced points in a grid and make a visual-

ization on the screen of the potential using a density plot.

b) Now calculate the partial derivatives of the potential with respect to x and y and

hence find the electric field in the xy plane. Make a visualization of the field also.

This is a little trickier than visualizing the potential, because the electric field has

both magnitude and direction. One way to do it might be to make two density

plots, one for the magnitude, and one for the direction, the latter using the “hsv”

209

CHAPTER 5 | INTEGRALS AND DERIVATIVES

color scheme in pylab, which is a rainbow scheme that passes through all the

colors but starts and ends with the same shade of red, which makes it suitable

for representing things like directions or angles that go around the full circle and

end up where they started. A more sophisticated visualization might use the

arrow object from the visual package, drawing a grid of arrows with direction

and length chosen to represent the field.

c) Now suppose you have a continuous distribution of charge over an L × L square.

The charge density in Cm−2 is

σ(x, y) = q0 sin
2πx

L
sin

2πy

L
.

Calculate and visualize the resulting electric field at 1 cm-spaced points in 1 square

meter of the xy plane for the case where L = 10 cm, the charge distribution is cen-

tered in the middle of the visualized area, and q0 = 100 Cm−2. You will have

to perform a double integral over x and y, then differentiate the potential with

respect to position to get the electric field. Choose whatever integration method

seems appropriate for the integrals.

5.22 Differentiating by integrating: If you are familiar with the calculus of complex

variables, you may find the following technique useful and interesting.

Suppose we have a function f (z) whose value we know not only on the real line

but also for complex values of its argument. Then we can calculate derivatives of that

function at any point z0 by performing a contour integral, using the Cauchy derivative

formula:
(

dmf

dzm

)

z=z0

=
m!

2πi

∮

f (z)

(z − z0)m+1
dz,

where the integral is performed counterclockwise around any contour in the complex

plane that surrounds the point z0 but contains no poles in f (z). Since numerical in-

tegration is significantly easier and more accurate than numerical differentiation, this

formula provides us with a method for calculating derivatives—and especially multiple

derivatives—accurately by turning them into integrals.

Suppose, for example, that we want to calculate derivatives of f (z) at z = 0. Let

us apply the Cauchy formula above using the trapezoidal rule to calculate the integral

along a circular contour centered on the origin with radius 1. The trapezoidal rule will

be slightly different from the version we are used to because the value of the interval h

is now a complex number, and moreover is not constant from one slice of the integral

to the next—it stays constant in modulus, but its argument changes from one slice to

another.

We will divide our contour integral into N slices with sample points zk distributed

uniformly around the circular contour at the positions zk = ei2πk/N for k = 0 . . . N. Then

the distance between consecutive sample points is

hk = zk+1 − zk = ei2π(k+1)/N − ei2πk/N ,

210

EXERCISES

and, introducing the shorthand g(z) = f (z)/zm+1 for the integrand, the trapezoidal

rule approximation to the integral is

∮

g(z) dz ≃
N−1

∑
k=0

1
2

[

g(zk+1) + g(zk)
][

ei2π(k+1)/N − ei2πk/N
]

= 1
2

[N−1

∑
k=0

g(zk+1) ei2π(k+1)/N −
N−1

∑
k=0

g(zk) ei2πk/N

−
N−1

∑
k=0

g(zk+1) ei2πk/N +
N−1

∑
k=0

g(zk) ei2π(k+1)/N

]

.

Noting that zN = z0, the first two sums inside the brackets cancel each other in their

entirety, and the remaining two sums are equal except for trivial phase factors, so the

entire expression simplifies to

∮

g(z) dz ≃ 1
2

[

ei2π/N − e−i2π/N
]

N−1

∑
k=0

g(zk) ei2πk/N

≃ 2πi

N

N−1

∑
k=0

f (zk) e−i2πkm/N ,

where we have used the definition of g(z) again. Combining this result with the Cauchy

formula, we then have

(

dmf

dzm

)

z=0

≃ m!

N

N−1

∑
k=0

f (zk) e−i2πkm/N .

Write a program to calculate the first twenty derivatives of f (z) = e2z at z = 0 using

this formula with N = 10000. You will need to use the version of the exp function

from the cmath package, which can handle complex arguments. You may also find

the function factorial from the math package useful; it calculates factorials of integer

arguments.

The correct value for the mth derivative in this case is easily shown to be 2m, so

it should be straightforward to tell if your program is working—the results should be

powers of two, 2, 4, 8, 16, 32, etc. You should find that it is possible to get reason-

ably accurate results for all twenty derivatives rapidly using this technique. If you use

standard difference formulas for the derivatives, on the other hand, you will find that

you can calculate only the first three or four derivatives accurately before the numerical

errors become so large that the results are useless. In this case, therefore, the Cauchy

formula gives the better results.

The sum ∑k f (zk) ei2πkm/N that appears in the formula above is known as the discrete

Fourier transform of the complex samples f (zk). There exists an elegant technique for

evaluating the Fourier transform for many values of m simultaneously, known as the

fast Fourier transform, which could be useful in cases where the direct evaluation of the

formula is slow. We will study the fast Fourier transform in detail in Chapter 7.

211

CHAPTER 5 | INTEGRALS AND DERIVATIVES

5.23 Image processing and the STM: When light strikes a surface, the amount falling

per unit area depends not only on the intensity of the light, but also on the angle of

incidence. If the direction the light is coming from makes an angle θ to the normal, then

the light only “sees” cos θ of area per unit of actual area on the surface:

θ What the light sees

surface

light

So the intensity of illumination is a cos θ, if a is the raw intensity of the light. This simple

physical law is a central element of 3D computer graphics. It allows us to calculate how

light falls on three-dimensional objects and hence how they will look when illuminated

from various angles.

Suppose, for instance, that we are looking down on the Earth from above and we

see mountains. We know the height of the mountains w(x, y) as a function of position in

the plane, so the equation for the Earth’s surface is simply z = w(x, y), or equivalently

z − w(x, y) = 0, and the normal vector v to the surface is given by the gradient of

z − w(x, y) thus:

v = ∇[z − w(x, y)] =







∂/∂x

∂/∂y

∂/∂z






[z − w(x, y)] =







−∂w/∂x

−∂w/∂y

1






.

Now suppose we have incident light represented by a vector a that points toward the

source of the light and has magnitude equal to the intensity. The dot product of the

vectors a and v is

a · v = |a| |v| cos θ,

where θ is the angle between the vectors. Employing the cosine rule discussed above,

the intensity of illumination of the surface of the mountains is then

I = |a| cos θ =
a · v

|v| =
−ax(∂w/∂x)− ay(∂w/∂y) + az
√

(∂w/∂x)2 + (∂w/∂y)2 + 1
.

Let’s take the simple case where the light is shining horizontally with unit intensity,

and the direction it’s coming from makes an angle φ to the east-west axis, so that a =

(cos φ, sin φ, 0). Then our intensity of illumination simplifies to

I = − cos φ (∂w/∂x) + sin φ (∂w/∂y)
√

(∂w/∂x)2 + (∂w/∂y)2 + 1
.

If we can calculate the derivatives of the height w(x, y) and we know φ we can calculate

the intensity at any point.

212

EXERCISES

a) In the on-line resources you’ll find a file called altitude.txt, which contains the

altitude w(x, y) in meters above sea level (or depth below sea level) of the surface

of the Earth, measured on a grid of points (x, y). Write a program that reads this

file and stores the data in an array. Then calculate the derivatives ∂w/∂x and

∂w/∂y at each grid point. Explain what method you used to calculate them and

why. (Hint: You’ll probably have to use more than one method to get every grid

point, because awkward things happen at the edges of the grid.) To calculate the

derivatives you’ll need to know the value of h, the distance in meters between

grid points, which is about 30 000 m in this case.7

b) Now, using your values for the derivatives, calculate the intensity for each grid

point, with φ = 45◦, and make a density plot of the resulting values in which the

brightness of each dot depends on the corresponding intensity value. If you get

it working right, the plot should look like a relief map of the world—you should

be able to see the continents and mountain ranges in 3D. (Common problems

include a map that is upside-down or sideways, or a relief map that is “inside-

out,” meaning the high regions look low and vice versa. Work with the details of

your program until you get a map that looks right to you.)

Hint: Note that the value of the intensity I from the formula above can be either

positive or negative—it ranges from +1 to −1. What does a negative intensity

mean? It means that the area in question is in shadow—it lies on the wrong side

of the mountain to receive any light at all. You could represent this by coloring

those areas of the map completely black, although in practice you will get a nicer-

looking image (if arguably less true-to-life) by simply using a continuous range of

grays from +1 to −1.

c) There is another file in the on-line resources called stm.txt, which contains a grid

of values from scanning tunneling microscope measurements of the (111) surface

of silicon. A scanning tunneling microscope (STM) is a device that measures the

shape of surfaces at the atomic level by tracking a sharp tip over the surface and

measuring quantum tunneling current as a function of position. The end result is

a grid of values that represent the height of the surface as a function of position

and the data in the file stm.txt contain just such a grid of values. Modify the

program you just wrote to visualize the STM data and hence create a 3D picture

of what the silicon surface looks like. The value of h for the derivatives in this case

is around h = 2.5 (in arbitrary units).

7It’s actually not precisely constant because we are representing the spherical Earth on a flat
map, but h = 30 000 m will give reasonable results.

213

