CHAPTER 2

PYTHON PROGRAMMING FOR PHYSICISTS

UR FIRST item of business is to learn how to write computer programs in
O the Python programming language.

Python is easy to learn, simple to use, and enormously powerful. It has
facilities and features for performing tasks of many kinds. You can do art or
engineering in Python, surf the web or calculate your taxes, write words or
write music, make a movie or make the next billion-dollar Internet start-up.
We will not attempt to learn about all of Python’s features, however, but restrict
ourselves to those that are most useful for doing physics calculations. We will
learn about the core structure of the language first, how to put together the
instructions that make up a program, but we will also learn about some of the
powerful features that can make the life of a computational physicist easier,
such as features for doing calculations with vectors and matrices, and features
for making graphs and computer graphics. Some other features of Python
that are more specialized, but still occasionally useful for physicists, will not
be covered here. Luckily there is excellent documentation available on-line,
so if there’s something you want to do and it’s not explained in this book,
I encourage you to see what you can find. A good place to start when looking
for information about Python is the official Python website at www. python. org.

2.1 GETTING STARTED

A Python program consists of a list of instructions, resembling a mixture of
English words and mathematics and collectively referred to as code. We'll see
exactly what form the instructions take in a moment, but first we need to know
how and where to enter them into the computer.

1Some of these also require that you have a good idea.

CHAPTER 2

10

PYTHON PROGRAMMING FOR PHYSICISTS

When you are programming in Python—developing a program, as the jar-
gon goes—you typically work in a development environment, which is a window
or windows on your computer screen that show the program you are working
on and allow you to enter or edit lines of code. There are several different
development environments available for use with Python, but the most com-
monly used is the one called IDLE.? If you have Python installed on your com-
puter then you probably have IDLE installed as well. (If not, it is available as a
free download from the web.?) How you start IDLE depends on what kind of
computer you have, but most commonly you click on an icon on the desktop
or under the start menu on a PC, or in the dock or the applications folder on
a Mac. If you wish, you can now start IDLE running on your computer and
follow along with the developments in this chapter step by step.

The first thing that happens when you start IDLE is that a window appears
on the computer screen. This is the Python shell window. It will have some text
in it, looking something like this:

Python 3.2 (default, Sep 29 2012)
Type "help" for more information.
>>>

This tells you what version of Python you are running (your version may be
different from the one above), along with some other information, followed by
the symbol “>>>”, which is a prompt: it tells you that the computer is ready
for you to type something in. When you see this prompt you can type any
command in the Python language at the keyboard and the computer will carry
out that command immediately. This can be a useful way to quickly try in-
dividual Python commands when you're not sure how something works, but
it’s not the main way that we will use Python commands. Normally, we want
to type in an entire Python program at once, consisting of many commands
one after another, then run the whole program together. To do this, go to the
top of the window, where you will see a set of menu headings. Click on the
“File” menu and select “New Window”. This will create a second window on

2IDLE stands for “Integrated Development Environment” (sort of). The name is also ajoke, the
Python language itself being named, allegedly, after the influential British comedy troupe Monty
Python, one of whose members was the comedian Eric Idle.

The standard versions of Python for PC and Mac computers come with IDLE. For Linux users,
IDLE does not usually come installed automatically, so you may have to install it yourself. The
most widely used brands of Linux, including Ubuntu and Fedora, have freely available versions
of IDLE that can be installed using their built-in software installer programs.

2.1

the screen, this one completely empty. This is an editor window. It behaves dif-
ferently from the Python shell window. You type a complete program into this
window, usually consisting of many lines. You can edit it, add things, delete
things, cut, paste, and so forth, in a manner similar to the way one works with
a word processor. The menus at the top of the window provide a range of
word-processor style features, such as cut and paste, and when you are fin-
ished writing your program you can save your work just as you would with
a word processor document. Then you can run your complete program, the
whole thing, by clicking on the “Run” menu at the top of the editor window
and selecting “Run Module” (or you can press the F5 function key, which is
quicker). This is the main way in which we will use Python and IDLE in this
book.

To get the hang of how it works, try the following quick exercise. Open
up an editor window if you didn’t already (by selecting “New Window” from
the “File” menu) and type the following (useless) two-line program into the
window, just as it appears here:

x=1
print (x)

(If it’s not obvious what this does, it will be soon.) Now save your program
by selecting “Save” from the “File” menu at the top of the editor window and
typing in a name.* The names of all Python programs must end with “.py”, so
a suitable name might be “example.py” or something like that. (If you do not
give your program a name ending in “.py” then the computer will not know
that it is a Python program and will not handle it properly when you try to
load it again—you will probably find that such a program will not even run at
all, so the “.py” is important.)

Once you have saved your program, run it by selecting “Run module” from
the “Run” menu. When you do this the program will start running, and any
output it produces—anything it says or does or prints out—will appear in the
Python shell window (the other window, the one that appeared first). In this

“Note that you can have several windows open at once, including the Python shell window
and one or more editor windows, and that each window has its own “File” menu with its own
“Save” item. When you click on one of these to save, IDLE saves the contents of the corresponding
window and that window only. Thus if you want to save a program you must be careful to use
the “File” menu for the window containing the program, rather than for any other window. If
you click on the menu for the shell window, for instance, IDLE will save the contents of the shell
window, not your program, which is probably not what you wanted.

GETTING STARTED

11

CHAPTER 2

12

PYTHON PROGRAMMING FOR PHYSICISTS

case you should see something like this in the Python shell window:

1
>>>

The only result of this small program is that the computer prints out the num-
ber “1” on the screen. (It's the value of the variable x in the program—see
Section 2.2.1 below.) The number is followed by a prompt “>>>" again, which
tells you that the computer is done running your program and is ready to do
something else.

This same procedure is the one you'll use for running all your programs
and you’ll get used to it soon. It’s a good idea to save your programs, as here,
when they’re finished and ready to run. If you forget to do it, IDLE will ask
you if you want to save before it runs your program.

IDLE is by no means the only development environment for Python. If you
are comfortable with computers and enjoy trying things out, there are a wide
range of others available on the Internet, mostly for free, with names like Py-
Dev, Eric, BlackAdder, Komodo, Wing, and more. Feel free to experiment and
see what works for you, or you can just stick with IDLE. IDLE can do every-
thing we’ll need for the material in this book. But nothing in the book will
depend on what development environment you use. As far as the program-
ming and the physics go, they are all equivalent.

2.2 BASIC PROGRAMMING

A program is a list of instructions, or statements, which under normal circum-
stances the computer carries out, or executes, in the order they appear in the
program. Individual statements do things like performing arithmetic, asking
for input from the user of the program, or printing out results. The following
sections introduce the various types of statements in the Python language one
by one.

2.2.1 VARIABLES AND ASSIGNMENTS

Quantities of interest in a program—which in physics usually means numbers,
or sets of numbers like vectors or matrices—are represented by variables, which
play roughly the same role as they do in ordinary algebra. Our first example
of a program statement in Python is this:

x =1

2.2 ’ BASIC PROGRAMMING

This is an assignment statement. It tells the computer that there is a variable
called x and we are assigning it the value 1. You can think of the variable as
a box that stores a value for you, so that you can come back and retrieve that
value at any later time, or change it to a different value. We will use variables
extensively in our computer programs to represent physical quantities like po-
sitions, velocities, forces, fields, voltages, probabilities, and wavefunctions.

In normal algebra variable names are usually just a single letter like x, but
in Python (and in most other programming languages) they don’t have to be—
they can be two, three, or more letters, or entire words if you want. Variable
names in Python can be as long as you like and can contain both letters and
numbers, as well as the underscore symbol “_", but they cannot start with a
number, or contain any other symbols, or spaces. Thus x and Physics_101
are fine names for variables, but 4Score&7Years is not (because it starts with
a number, and also because it contains a &). Upper- and lower-case letters are
distinct from one another, meaning that x and X are two different variables
which can have different values.®

Many of the programs you will write will contain large numbers of vari-
ables representing the values of different things and keeping them straight in
your head can be a challenge. It is a very good idea—one that is guaranteed
to save you time and effort in the long run—to give your variables meaningful
names that describe what they represent. If you have a variable that repre-
sents the energy of a system, for instance, you might call it energy. If you have
a variable that represents the velocity of an object you could call it velocity.
For more complex concepts, you can make use of the underscore symbol “_"
to create variable names with more than one word, like maximum_energy or
angular_velocity. Of course, there will be times when single-letter variable
names are appropriate. If you need variables to represent the x and y positions
of an object, for instance, then by all means call them x and y. And there’s no
reason why you can’t call your velocity variable simply v if that seems natural
to you. But whatever you do, choose names that help you remember what the
variables represent.

5 Also variables cannot have names that are “reserved words” in Python. Reserved words are
the words used to assemble programming statements and include “for”, “if”, and “while”. (We
will see the special uses of each of these words in Python programming later in the chapter.)

13

CHAPTER 2

14

PYTHON PROGRAMMING FOR PHYSICISTS

2.2.2 VARIABLE TYPES

Variables come in several types. Variables of different types store different
kinds of quantities. The main types we will use for our physics calculations
are the following:

* Integer: Integer variables can take integer values and integer values only,
such as 1, 0, or —286784. Both positive and negative values are allowed,
but not fractional values like 1.5.

* Float: A floating-point variable, or “float” for short, can take real, or
floating-point, values such as 3.14159, —6.63 x 1073, or 1.0. Notice that
a floating-point variable can take an integer value like 1.0 (which after all
is also a real number), by contrast with integer variables which cannot
take noninteger values.

¢ Complex: A complex variable can take a complex value, such as 1 +
2j or —3.5 — 0.4j. Notice that in Python the unit imaginary number is
called j, not i. (Despite this, we will use i in some of the mathematical
formulas we derive in this book, since it is the common notation among
physicists. Just remember that when you translate your formulas into
computer programs you must use j instead.)

You might be asking yourself what these different types mean. What does it
mean that a variable has a particular type? Why do we need different types?
Couldn't all values, including integers and real numbers, be represented with
complex variables, so that we only need one type of variable? In principle
they could, but there are great advantages to having the different types. For
instance, the values of the variables in a program are stored by the computer
in its memory, and it takes twice as much memory to store a complex number
as it does a float, because the computer has to store both the real and imagi-
nary parts. Even if the imaginary part is zero (so that the number is actually
real), the computer still takes up memory space storing that zero. This may
not seem like a big issue given the huge amounts of memory computers have
these days, but in many physics programs we need to store enormous num-
bers of variables—millions or billions of them—in which case memory space
can become a limiting factor in writing the program.

Moreover, calculations with complex numbers take longer to complete, be-
cause the computer has to calculate both the real and imaginary parts. Again,
even if the imaginary part is zero, the computer still has to do the calculation,
so it takes longer either way. Many of our physics programs will involve mil-
lions or billions of operations. Big physics calculations can take days or weeks

2.2 ’ BASIC PROGRAMMING

to run, so the speed of individual mathematical operations can have a big ef-
fect. Of course, if we need to work with complex numbers then we will have
to use complex variables, but if our numbers are real, then it is better to use a
floating-point variable.

Similar considerations apply to floating-point variables and integers. If the
numbers we are working with are genuinely noninteger real numbers, then we
should use floating-point variables to represent them. But if we know that the
numbers are integers then using integer variables is usually faster and takes
up less memory space.

Moreover, integer variables are in some cases actually more accurate than
floating-point variables. As we will see in Section 4.2, floating-point calcula-
tions on computers are not infinitely accurate. Just as on a hand-held calcula-
tor, computer calculations are only accurate to a certain number of significant
figures (typically about 16 on modern computers). That means that the value 1
assigned to a floating-point variable may actually be stored on the computer
as 0.9999999999999999. In many cases the difference will not matter much, but
what happens, for instance, if something special is supposed to take place in
your program if, and only if, the number is less than 1? In that case, the differ-
ence between 1 and 0.9999999999999999 could be crucially important. Numer-
ous bugs and problems in computer programs have arisen because of exactly
this kind of issue. Luckily there is a simple way to avoid it. If the quantity
you're dealing with is genuinely an integer, then you should store it in an in-
teger variable. That way you know that 1 means 1. Integer variables are not
accurate to just 16 significant figures: they are perfectly accurate. They repre-
sent the exact integer you assign to them, nothing more and nothing less. If
yousay “x = 1”7, then indeed x is equal to 1.

This is an important lesson, and one that is often missed when people first
start programming computers: if you have an integer quantity, use an integer
variable. In quantum mechanics most quantum numbers are integers. The
number of atoms in a gas is an integer. So is the number of planets in the
solar system or the number of stars in the galaxy. Coordinates on lattices in
solid-state physics are often integers. Dates are integers. The population of
the world is an integer. If you were representing any of these quantities in a
program it would in most cases be an excellent idea to use an integer variable.
More generally, whenever you create a variable to represent a quantity in one
of your programs, think about what type of value that quantity will take and
choose the type of your variable to match it.

And how do you tell the computer what type you want a variable to be?

15

CHAPTER 2

16

PYTHON PROGRAMMING FOR PHYSICISTS

The name of the variable is no help. A variable called x could be an integer or
it could be a complex variable.

The type of a variable is set by the value that we give it. Thus for in-
stance if we say “x = 1” then x will be an integer variable, because we have
given it an integer value. If we say “x = 1.5” on the other hand then it will
be a float. If we say “x = 1+2j” it will be complex.® Very large floating-
point or complex values can be specified using scientific notation, in the form
“x = 1.2e34” (which means 1.2 x 10%) or “x = 1e-12 + 2.3e45j” (which
means 1012 + 2.3 x 10%%).

The type of a variable can change as a Python program runs. For example,
suppose we have the following two lines one after the other in our program:

x =1
x =1.5

If we run this program then after the first line is executed by the computer x
will be an integer variable with value 1. But immediately after that the com-
puter will execute the second line and x will become a float with value 1.5. Its
type has changed from integer to float.”

However, although you can change the types of variables in this way, it
doesn’t mean you should. It is considered poor programming to use the same
variable as two different types in a single program, because it makes the pro-
gram significantly more difficult to follow and increases the chance that you
may make a mistake in your programming. If x is an integer in some parts of
the program and a float in others then it becomes difficult to remember which
it is and confusion can ensue. A good programmer, therefore, will use a given
variable to store only one type of quantity in a given program. If you need a
variable to store another type, use a different variable with a different name.

Thus, in a well written program, the type of a variable will be set the first
time it is given a value and will remain the same for the rest of the program.
This doesn’t quite tell us the whole story, however, because as we’ve said a

®Notice that when specifying complex values we say 1+2j, not 1+2%j. The latter means “one
plus two times the variable j”, not the complex number 1 + 2i.

7If you have previously programmed in one of the so-called static-typed languages, such as C,
C++, Fortran, or Java, then you’ll be used to creating variables with a declaration such as “int i”
which means “I'm going to be using an integer variable called i.” In such languages the types of
variables are fixed once they are declared and cannot change. There is no equivalent declaration
in Python. Variables in Python are created when you first use them, with types which are deduced
from the values they are given and which may change when they are given new values.

2.2 ’ BASIC PROGRAMMING

floating-point variable can also take an integer value. There will be times when
we wish to give a variable an integer value, like 1, but nonetheless have that
variable be a float. There’s no contradiction in this, but how do we tell the
computer that this is what we want? If we simply say “x = 1” then, as we
have seen, x will be an integer variable.

There are two simple ways to do what we want here. The first is to specify
a value that has an explicit decimal point in it, as in “x = 1.0”. The decimal
point is a signal to the computer that this is a floating-point value (even though,
mathematically speaking, 1 is of course an integer) and the computer knows
in this situation to make the variable x a float. Thus “x = 1.0” specifies a
floating-point variable called x with the value 1.

A slightly more complicated way to achieve the same thing is to write
“x = float(1)”, which tells the computer to take the value 1 and convert
it into a floating-point value before assigning it to the variable x. This also
achieves the goal of making x a float.

A similar issue can arise with complex variables. There will be times when
we want to create a variable of complex type, but we want to give it a purely
real value. If we just say “x = 1.5” then x will be a real, floating-point vari-
able, which is not what we want. So instead we say “x = 1.5 + 0j”, which
tells the computer that we intend x to be complex. Alternatively, we can write
“x = complex(1.5)”, which achieves the same thing.

There is one further type of variable, the string, which is often used in
Python programs but which comes up only rarely in physics programming,
which is why we have not mentioned it so far. A string variable stores text
in the form of strings of letters, punctuation, symbols, digits, and so forth. To
indicate a string value one uses quotation marks, like this:

x = "This is a string"

This statement would create a variable x of string type with the value “This is
a string”. Any character can appear in a string, including numerical digits.
Thus one is allowed to say, for example, x = "1.234", which creates a string
variable x with the value “1.234”. It’s crucial to understand that this is not the
same as a floating-point variable with the value 1.234. A floating-point variable
contains a number, the computer knows it’s a number, and, as we will shortly
see, one can do arithmetic with that number, or use it as the starting point
for some mathematical calculation. A string variable with the value “1.234”
does not represent a number. The value “1.234” is, as far as the computer is
concerned, just a string of symbols in a row. The symbols happen to be digits

17

CHAPTER 2

18

PYTHON PROGRAMMING FOR PHYSICISTS

(and a decimal point) in this case, but they could just as easily be letters or
spaces or punctuation. If you try to do arithmetic with a string variable, even
one that appears to contain a number, the computer will most likely either
complain or give you something entirely unexpected. We will not have much
need for string variables in this book and they will as a result appear only
rather rarely. One place they do appear, however, is in the following section
on output and input.

In all of the statements we have seen so far you are free to put spaces be-
tween parts of the statement. Thus “x=1" and “x = 1” do the exact same thing;
the spaces have no effect. They can, however, do much to improve the read-
ability of a program. When we start writing more complicated statements in
the following sections, we will find it very helpful to add some spaces here
and there. There are a few places where one cannot add extra spaces, the most
important being at the beginning of a line, before the start of the statement.
As we will see in Section 2.3.1, inserting extra spaces at the beginning of a line
does have an effect on the way the program works. Thus, unless you know
what you are doing, you should avoid putting spaces at the beginning of lines.

You can also include blank lines between statements in a program, at any
point and as many as you like. This can be useful for separating logically
distinct parts of a program from one another, again making the program easier
to understand. We will use this trick many times in the programs in this book
to improve their readability.

2.2.3 OUTPUT AND INPUT STATEMENTS

We have so far seen one example of a program statement, the assignment state-
ment, which takes the form “x = 1” or something similar. The next types of
statements we will examine are statements for output and input of data in
Python programs. We have already seen one example of the basic output state-
ment, or “print” statement. In Section 2.1 we gave this very short example
program:

x=1
print (x)

The first line of this program we understand: it creates an integer variable
called x and gives it the value 1. The second statement tells the computer to
“print” the value of x on the screen of the computer. Note that it is the value

784

of the variable x that is printed, not the letter “x”. The value of the variable in

2.2 ’ BASIC PROGRAMMING

this case is 1, so this short program will result in the computer printing a “1”
on the screen, as we saw on page 12.

The print statement always prints the current value of the variable at the
moment the statement is executed. Thus consider this program:

x =1
print (x)
x =2
print (x)

First the variable x is set to 1 and its value is printed out, resulting in a 1 on the
screen as before. Then the value of x is changed to 2 and the value is printed
again, which produces a 2 on the screen. Overall we get this:

1
2

Thus the two print statements, though they look identical, produce different
results in this case. Note also that each print statement starts its printing on a
new line. The print statement can be used to print out more than one thing on
a line. Consider this program:

x=1
y =2
print(x,y)

which produces this result:

12

Note that the two variables in the print statement are separated by a comma.
When their values are printed out, however, they are printed with a space
between them (not a comma).

We can also print out words, like this:

x =1
y=2

print ("The value of x is",x,"and the value of y is",y)

which produces this on the screen:

The value of x is 1 and the value of y is 2

19

CHAPTER 2

20

PYTHON PROGRAMMING FOR PHYSICISTS

Adding a few words to your program like this can make its output much eas-
ier to read and understand. You can also have print statements that print
out only words if you like, as in print ("The results are as follows") or
print ("End of program").

The print statement can also print out the values of floating-point and com-
plex variables. For instance, we can write

x =1.5
z = 2+3]j
print(x,z)

and we get

1.5 (2+33)

In general, a print statement can include any string of quantities separated by
commas, or text in quotation marks, and the computer will simply print out
the appropriate things in order, with spaces in between.® Occasionally you
may want to print things with something other than spaces in between, in
which case you can write something like the following:

print(x,z,sep="...")
which would print
1.5...(2+33)

The code sep=""..." tells the computer to use whatever appears between the
quotation marks as a separator between values—three dots in this case, but
you could use any letters, numbers, or symbols you like. You can also have no
separator between values at all by writing print (x,z,sep="") with nothing
between the quotation marks, which in the present case would give

1.5(2+33)

8The print statement is one of the things that differs between Python version 3 and earlier
versions. In earlier versions there were no parentheses around the items to be printed—you would
just write “print x”. If you are using an earlier version of Python with this book then you will
have to remember to omit the parentheses from your print statements. Alternatively, if you are
using version 2.6 or later (but not version 3) then you can make the print statement behave as
it does in version 3 by including the statement from __future__ import print_function at the
start of your program. (Note that there are two underscore symbols before the word “future” and
two after it.) See Appendix B for further discussion of the differences between Python versions.

2.2 ’ BASIC PROGRAMMING

Input statements are only a little more complicated. The basic form of an
input statement in Python is like this:

x = input("Enter the value of x: ")

When the computer executes this statement it does two things. First, the state-
ment acts something like a print statement and prints out the quantity, if any,
inside the parentheses.’ So in this case the computer would print the words
“Enter the value of x: ”. If there is nothing inside the parentheses, as in
“x = input()”, then the computer prints nothing, but the parentheses are still
required nonetheless.

Next the computer will stop and wait. It is waiting for the user to type a
value on the keyboard. It will wait patiently until the user types something
and then the value that the user types is assigned to the variable x. However,
there is a catch: the value entered is always interpreted as a string value, even
if you type in a number.!’ (We encountered strings previously in Section 2.2.2.)
Thus consider this simple two-line program:

x = input("Enter the value of x: ")
print ("The value of x is",x)

This does nothing more than collect a value from the user then print it out
again. If we run this program it might look something like the following:

Enter the value of x: 1.5
The value of x is 1.5

This looks reasonable. But we could also do the following;:

It doesn’t act exactly like a print statement however, since it can only print a single quantity,
such as a string of text in quotes (as here) or a variable, where the print statement can print many
quantities in a row.

©Input statements are another thing that changed between versions 2 and 3 of Python. In
version 2 and earlier the value generated by an input statement would have the same type as
whatever the user entered. If the user entered an integer, the input statement would give an
integer value. If the user entered a float it would give a float, and so forth. However, this was
considered confusing, because it meant that if you then assigned that value to a variable (as in the
program above) there would be no way to know in advance what the type of the variable would
be—the type would depend on what the user entered at the keyboard. So in version 3 of Python
the behavior was changed to its present form in which the input is always interpreted as a string.
If you are using a version of Python earlier than version 3 and you want to reproduce the behavior
of version 3 then you can write “x = raw_input ()”. The function raw_input in earlier versions is
the equivalent of input in version 3.

21

CHAPTER 2

22

PYTHON PROGRAMMING FOR PHYSICISTS

Enter the value of x: Hello
The value of x is Hello

As you can see “value” is interpreted rather loosely. As far as the computer
is concerned, anything you type in is a string, so it doesn’t care whether you
enter digits, letters, a complete word, or several words. Anything is fine.

For physics calculations, however, we usually want to enter numbers, and
have them interpreted correctly as numbers, not strings. Luckily it is straight-
forward to convert a string into a number. The following will do it:

temp = input("Enter the value of x: ")
x = float(temp)
print ("The value of x is",x)

This is slightly more complicated. It receives a string input from the user and
assigns it to the temporary variable temp, which will be a string-type vari-
able. Then the statement “x = float(temp)” converts the string value to a
floating-point value, which is then assigned to the variable x, and this is the
value that is printed out. One can also convert string input values into in-
tegers or complex numbers with statements of the form “x = int(temp)” or
“x = complex(temp)”.

In fact, one doesn’t have to use a temporary variable. The code above can
be expressed more succinctly like this:

x = float(input("Enter the value of x: "))
print ("The value of x is",x)

which takes the string value given by input, converts it to a float, and assigns
it directly to the variable x. We will use this trick many times in this book.

In order for this program to work, the value the user types must be one that
makes sense as a floating-point value, otherwise the computer will complain.
Thus, for instance, the following is fine:

Enter the value of x: 1.5
The value of x is 1.5

But if I enter the wrong thing, I get this:

Enter the value of x: Hello
ValueError: invalid literal for float(): Hello

2.2 ’ BASIC PROGRAMMING

This is our first example of an error message. The computer, in rather opaque
technical jargon, is complaining that we have given it an incorrect value.

It’s normal to make a few mistakes when writing or using computer pro-
grams, and you will soon become accustomed to the occasional error message
(if you are not already). Working out what these messages mean is one of the
tricks of the business—they are often not entirely transparent.

2.2.4 ARITHMETIC

So far our programs have done very little, certainly nothing that would be
much use for physics. But we can make them much more useful by adding
some arithmetic into the mix.

In most places where you can use a single variable in Python you can also
use a mathematical expression, like “x+y”. Thus you can write “print (x)” but
you can also write “print (x+y)” and the computer will calculate the sum of
x and y for you and print out the result. The basic mathematical operations—
addition, subtraction, etc.—are written as follows:

x+y addition
x-y subtraction
x*y multiplication
x/y division
x**y raising x to the power of y

an
*

Notice that we use the asterisk symbol for multiplication and the slash
symbol ”/” for division, because there is no x or <+ symbol on a standard
computer keyboard.

Two more obscure, but still useful operations, are integer division and the

modulo operation:

x//y the integer part of x divided by y, meaning x is divided by y and
the result is rounded down to the nearest integer. For instance,
14//3 gives 4 and -14//3 gives —5.

x%y modulo, which means the remainder after x is divided by y. For
instance, 1473 gives 2, because 14 divided by 3 gives 4-remainder-
2. This also works for nonintegers: 1.5%0.4 gives 0.3, because 1.5
is 3 x 0.4, remainder 0.3. (There is, however, no modulo operation
for complex numbers.) The modulo operation is particularly use-
ful for telling when one number is divisible by another—the value
of n¥m will be zero if n is divisible by m. Thus, for instance, n%2 is
zero if n is even (and one if n is odd).

23

CHAPTER 2

24

PYTHON PROGRAMMING FOR PHYSICISTS

There are a few other mathematical operations available in Python as well,
but they’re more obscure and rarely used.!!

An important rule about arithmetic in Python is that the type of result a
calculation gives depends on the types of the variables that go into it. Consider,
for example, this statement

Xx=a+b

If a and b are variables of the same type—integer, float, complex—then when
they are added together the result will also have the same type and this will
be the type of variable x. So if a is 1.5 and b is 2.4 the end result will be that
x is a floating-point variable with value 3.9. Note when adding floats like this
that even if the end result of the calculation is a whole number, the variable x
would still be floating point: if a is 1.5 and b is 2.5, then the result of adding
them together is 4, but x will still be a floating-point variable with value 4.0
because the variables a and b that went into it are floating point.

If a and b are of different types, then the end result has the more general
of the two types that went into it. This means that if you add a float and an
integer, for example, the end result will be a float. If you add a float and a
complex variable, the end result will be complex.

The same rules apply to subtraction, multiplication, integer division, and
the modulo operation: the end result is the same type as the starting values, or
the more general type if there are two different starting types. The division op-
eration, however—ordinary non-integer division denoted by ”/”—is slightly
different: it follows basically the same rules except that it never gives an inte-
ger result. Only floating-point or complex values result from division. This is
necessary because you can divide one integer by another and get a noninteger
result (like 3 + 2 = 1.5 for example), so it wouldn’t make sense to have inte-
ger starting values always give an integer final result.!? Thus if you divide any

Such as:

x|y Dbitwise (binary) OR of two integers

x&y bitwise (binary) AND of two integers

x"y Dbitwise (binary) XOR of two integers
x>>y shift the bits of integer x rightwards y places
x<<y shift the bits of integer x leftwards y places

12This is another respect in which version 3 of Python differs from earlier versions. In version 2
and earlier all operations gave results of the same type that went into them, including division.
This, however, caused a lot of confusion for exactly the reason given here: if you divided 3 by 2, for

2.2 ’ BASIC PROGRAMMING

combination of integers or floats by one another you will always get a floating-
point value. If you start with one or more complex numbers then you will get
a complex value at the end.

You can combine several mathematical operations together to make a more
complicated expression, like x+2*y-z/3. When you do this the operations obey
rules similar to those of normal algebra. Multiplications and divisions are per-
formed before additions and subtractions. If there are several multiplications
or divisions in a row they are carried out in order from left to right. Powers are
calculated before anything else. Thus

X+2%y is equivalent to x+2y
x-y/2 isequivalentto x— 1y
3xx**2 isequivalentto 3x2
x/2xy is equivalent to Txy

You can also use parentheses () in your algebraic expressions, just as you
would in normal algebra, to mark things that should be evaluated as a unit,
as in 2x(x+y). And you can add spaces between the parts of a mathematical
expression to make it easier to read; the spaces don’t affect the value of the ex-
pression. So “x=2*(a+b)” and “x = 2 * (a + b)” do the same thing. Thus
the following are allowed statements in Python

x =a + b/c
X (a + b)/c
a + 2xb - 0.5%(1.618**c + 2/7)

X

On the other hand, the following will not work:
2*%x =y

You might expect that this would result in the value of x being set to half
the value of y, but it’s not so. In fact, if you write this line in a program the
computer will simply stop when it gets to that line and print a typically cryp-
tic error message—"SyntaxError: can’t assign to operator”’—because it

instance, the result had to be an integer, so the computer rounded it down from 1.5 to 1. Because of
the difficulties this caused, the language was changed in version 3 to give the current more sensible
behavior. You can still get the old behavior of dividing then rounding down using the integer
divide operation //. Thus 3//2 gives 1 in all versions of Python. If you are using Python version 2
(technically, version 2.1 or later) and want the newer behavior of the divide operation, you can
achieve it by including the statement “from __future__ import division” at the start of your
program. The differences between Python versions are discussed in more detail in Appendix B.

25

CHAPTER 2

26

PYTHON PROGRAMMING FOR PHYSICISTS

doesn’t know what to do. The problem is that Python does not know how to
solve equations for you by rearranging them. It only knows about the simplest
forms of equations, such as “x = y/2”. If an equation needs to be rearranged
to give the value of x then you have to do the rearranging for yourself. Python
will do basic sums for you, but its knowledge of math is very limited.

To be more precise, statements like “x = a + b/c” in Python are not techni-
cally equations at all, in the mathematical sense. They are assignments. When
it sees a statement like this, what your computer actually does is very simple-
minded. It first examines the right-hand side of the equals sign and evaluates
whatever expression it finds there, using the current values of any variables
involved. When it is finished working out the value of the whole expression,
and only then, it takes that value and assigns it to the variable on the left of
the equals sign. In practice, this means that assignment statements in Python
sometimes behave like ordinary equations, but sometimes they don’t. A sim-
ple statement like “x = 1” does exactly what you would think, but what about
this statement:

x=x+1

This does not make sense, under any circumstances, as a mathematical equa-
tion. There is no way that x can ever be equal to x + 1—it would imply that
0 = 1. But this statement makes perfect sense in Python. Suppose the value of
x is currently 1. When the statement above is executed by the computer it first
evaluates the expression on the right-hand side, which is x + 1 and therefore
has the value 141 = 2. Then, when it has calculated this value it assigns it
to the variable on the left-hand side, which just happens in this case to be the
same variable x. So x now gets a new value 2. In fact, no matter what value
of x we start with, this statement will always end up giving x a new value that
is 1 greater. So this statement has the simple (but often very useful) effect of
increasing the value of x by one.
Thus consider the following lines:

x=0

print (x)

X = x*¥%2 - 2
print (x)

What will happen when the computer executes these lines? The first two are
straightforward enough: the variable x gets the value 0 and then the 0 gets
printed out. But then what? The third line says “x = x**2 - 2” which in nor-

2.2 ’ BASIC PROGRAMMING

mal mathematical notation would be x = x* — 2, which is a quadratic equation
with solutions x = 2 and x = —1. However, the computer will not set x equal
to either of these values. Instead it will evaluate the right-hand side of the
equals sign and get x> —2 = 0> — 2 = —2 and then set x to this new value.
Then the last line of the program will print out ”-2".

Thus the computer does not necessarily do what one might think it would,
based on one’s experience with normal mathematics. The computer will not
solve equations for x or any other variable. It won’t do your algebra for you—
it’s not that smart.

Another set of useful tricks are the Python modifiers, which allow you to
make changes to a variable as follows:

x +=1 add 1 to x (i.e., make x bigger by 1)
x -= 4 subtract 4 from x
X *= -2.6 multiply x by —2.6

x /= bxy divide x by 5 times y

x //= 3.4 divide x by 3.4 and round down to an integer

As we have seen, you can achieve the same result as these modifiers with
statements like “x = x + 1”,but the modifiers are more succinct. Some people
also prefer them precisely because “x = x + 1”looks like bad algebra and can
be confusing.

Finally in this section, a nice feature of Python, not available in most other
computer languages, is the ability to assign the values of two variables with a
single statement. For instance, we can write

x,y = 1,2.5
which is equivalent to the two statements

x =1
y = 2.5

One can assign three or more variables in the same way, listing them and their
assigned values with commas in between.
A more sophisticated example is

X,y = 2%z+1,(x+y)/3

An important point to appreciate is that, like all other assignment statements,
this one calculates the whole of the right-hand side of the equation before as-
signing values to the variables on the left. Thus in this example the computer

27

CHAPTER 2 |

File: dropped.py

28

PYTHON PROGRAMMING FOR PHYSICISTS

will calculate both of the values 2+z+1 and (x+y) /3 from the current x, y, and z,
before assigning those calculated values to x and y.

One purpose for which this type of multiple assignment is commonly used
is to interchange the values of two variables. If we want to swap the values of
x and y we can write:

X,y = ¥,X

and the two will be exchanged. (In most other computer languages such swaps
are more complicated, requiring the use of an additional temporary variable.)

EXAMPLE 2.1: A BALL DROPPED FROM A TOWER

Let us use what we have learned to solve a first physics problem. This is a
very simple problem, one we could easily do for ourselves on paper, but don’t
worry—we will move onto more complex problems shortly.

The problem is as follows. A ball is dropped from a tower of height /. It has
initial velocity zero and accelerates downwards under gravity. The challenge
is to write a program that asks the user to enter the height in meters of the
tower and a time interval ¢ in seconds, then prints on the screen the height of
the ball above the ground at time t after it is dropped, ignoring air resistance.

The steps involved are the following. First, we will use input statements
to get the values of 1 and f from the user. Second, we will calculate how far
the ball falls in the given time, using the standard kinematic formula s = }gt?,
where ¢ = 9.81ms 2 is the acceleration due to gravity. Third, we print the
height above the ground at time ¢, which is equal to the total height of the
tower minus this value, or 1 — s.

Here’s what the program looks like, all four lines of it:!3

h = float(input("Enter the height of the tower: "))
t = float(input("Enter the time interval: "))
S = 9.81kt*%x2/2

print("The height of the ball is",h-s,"meters")

¥Many of the example programs in this book are also available on-line for you to download
and run on your own computer if you wish. The programs, along with various other useful re-
sources, are packaged together in a single “zip” file (of size about nine megabytes) which can
be downloaded from http://www.umich.edu/ “mejn/cpresources.zip. Throughout the book, a
name printed in the margin next to a program, such as “dropped.py” above, indicates that the
complete program can be found, under that name, in this file. Any mention of programs or data
in the “on-line resources” also refers to the same file.

2.2 ’ BASIC PROGRAMMING

Let us use this program to calculate the height of a ball dropped from a 100m
high tower after 1 second and after 5 seconds. Running the program twice in
succession we find the following:

Enter the height of the tower: 100
Enter the time interval: 1
The height of the ball is 95.095 meters

Enter the height of the tower: 100
Enter the time interval: 5
The height of the ball is -22.625 meters

Notice that the result is negative in the second case, which means that the
ball would have fallen to below ground level if that were possible, though in
practice the ball would hit the ground first. Thus a negative value indicates
that the ball hits the ground before time ¢.

Before we leave this example, here’s a suggestion for a possible improve-
ment to the program above. At present we perform the calculation of the
distance traveled with the single line “s = 9.81*t**2/2”, which includes the
constant 9.81 representing the acceleration due to gravity. When we do physics
calculations on paper, however, we normally don’t write out the values of con-
stants in full like this. Normally we would write s = % gt2, with the under-
standing that g represents the acceleration. We do this primarily because it’s
easier to read and understand. A single symbol g is easier to read than a row of
digits, and moreover the use of the standard letter g reminds us that the quan-
tity we are talking about is the gravitational acceleration, rather than some
other constant that happens to have value 9.81. Especially in the case of con-
stants that have many digits, such as 7 = 3.14159265. .. ., the use of symbols
rather than digits in algebra makes life a lot easier.

The same is also true of computer programs. You can make your programs
substantially easier to read and understand by using symbols for constants in-
stead of writing the values out in full. This is easy to do—just create a variable
to represent the constant, like this:

g = 9.81
S = gxt**2/2

You only have to create the variable g once in your program (usually some-
where near the beginning) and then you can use it as many times as you like
thereafter. Doing this also has the advantage of decreasing the chances that

29

CHAPTER 2

30

PYTHON PROGRAMMING FOR PHYSICISTS

you’ll make a typographical error in the value of a constant. If you have to
type out many digits every time you need a particular constant, odds are you
are going to make a mistake at some point. If you have a variable representing
the constant then you know the value will be right every time you use it, just
so long as you typed it correctly when you first created the variable.!

Using variables to represent constants in this way is one example of a pro-
gramming trick that improves your programs even though it doesn’t change
the way they actually work. Instead it improves readability and reliability,
which can be almost as important as writing a correct program. We will see
other examples of such tricks later.

Exercise 2.1: Another ball dropped from a tower

A ball is again dropped from a tower of height /i with initial velocity zero. Write a
program that asks the user to enter the height in meters of the tower and then calculates
and prints the time the ball takes until it hits the ground, ignoring air resistance. Use
your program to calculate the time for a ball dropped from a 100 m high tower.

Exercise 2.2: Altitude of a satellite
A satellite is to be launched into a circular orbit around the Earth so that it orbits the
planet once every T seconds.

a) Show that the altitude & above the Earth’s surface that the satellite must have is

2N 1/3
b (CMTNVY
472

where G = 6.67 x 107" m° kgf1 572 is Newton’s gravitational constant, M =
5.97 x 10?* kg is the mass of the Earth, and R = 6371 km is its radius.

b) Write a program that asks the user to enter the desired value of T and then calcu-
lates and prints out the correct altitude in meters.

¢) Use your program to calculate the altitudes of satellites that orbit the Earth once
a day (so-called “geosynchronous” orbit), once every 90 minutes, and once every
45 minutes. What do you conclude from the last of these calculations?

d) Technically a geosynchronous satellite is one that orbits the Earth once per sidereal
day, which is 23.93 hours, not 24 hours. Why is this? And how much difference
will it make to the altitude of the satellite?

“In some computer languages, such as C, there are separate entities called “variables” and
“constants,” a constant being like a variable except that its value can be set only once in a program
and is fixed thereafter. There is no such thing in Python, however; there are only variables.

2.2 ’ BASIC PROGRAMMING

2.2.5 FUNCTIONS, PACKAGES, AND MODULES

There are many operations one might want to perform in a program that are
more complicated than simple arithmetic, such as multiplying matrices, calcu-
lating a logarithm, or making a graph. Python comes with facilities for doing
each of these and many other common tasks easily and quickly. These facil-
ities are divided into packages—collections of related useful things—and each
package has a name by which you can refer to it. For instance, all the standard
mathematical functions, such as logarithm and square root, are contained in a
package called math. Before you can use any of these functions you have to tell
the computer that you want to. For example, to tell the computer you want to
use the log function, you would add the following line to your program:

from math import log

This tells the computer to “import” the logarithm function from the math pack-
age, which means that it copies the code defining the function from where it is
stored (usually on the hard disk of your computer) into the computer’s mem-
ory, ready for use by your program. You need to import each function you use
only once per program: once the function has been imported it continues to be
available until the program ends. You must import the function before the first
time you use it in a calculation and it is good practice to put the “from” state-
ment at the very start of the program, which guarantees that it occurs before
the first use of the function and also makes it easy to find when you are work-
ing on your code. As we write more complicated programs, there will often
be situations where we need to import many different functions into a single
program with many different from statements, and keeping those statements
together in a tidy block at the start of the code will make things much easier.

Once you have imported the log function you can use it in a calculation like
this:

x = log(2.5)

which will calculate the (natural) logarithm of 2.5 and set the variable x equal
to the result. Note that the argument of the logarithm, the number 2.5 in this
case, goes in parentheses. If you miss out the parentheses the computer will
complain. (Also if you use the log function without first importing it from the
math package the computer will complain.)

The math package contains a good selection of the most commonly used
mathematical functions:

31

CHAPTER 2

32

PYTHON PROGRAMMING FOR PHYSICISTS

log natural logarithm

log10 log base 10

exp exponential

sin, cos, tan sine, cosine, tangent (argument in radians)
asin, acos, atan arcsine, arccosine, arctangent (in radians)
sinh, cosh, tanh hyperbolic sine, cosine, tangent

sqrt positive square root

Note that the trigonometric functions work with angles specified in radians,
not degrees. And the exponential and square root functions may seem re-
dundant, since one can calculate both exponentials and square roots by taking
powers. For instance, x**0.5 would give the square root of x. Because of the
way the computer calculates powers and roots, however, using the functions
above is usually quicker and more accurate.

The math package also contains a number of less common functions, such
as the Gaussian error function and the gamma function, as well as two objects
that are not functions at all but constants, namely e and 7r, which are denoted
e and pi. This program, for instance, calculates the value of %

from math import pi
print (pi**2)

which prints 9.86960440109 (which is roughly the right answer). Note that
there are no parentheses after the “pi” when we use it in the print statement,
because it is not a function. It’s just a variable called pi with value 3.14159. ..

The functions in the math package do not work with complex numbers and
the computer will give an error message if you try. But there is another pack-
age called cmath that contains versions of most of the same functions that do
work with complex numbers, plus a few additional functions that are specific
to complex arithmetic.

In some cases you may find you want to use more than one function from
the same package in a program. You can import two different functions—say
the log and exponential functions—with two from statements, like this:

from math import log
from math import exp

but a more succinct way to do it is to use a single line like this:

from math import log,exp

2.2 ’ BASIC PROGRAMMING

You can import a list as long as you like from a single package in this way:
from math import log,exp,sin,cos,sqrt,pi,e

You can also import all of the functions in a package with a statement of the
form

from math import x*

The * here means “everything”.!> In most cases, however, I advise against
using this import-everything form because it can give rise to some unexpected
behaviors (for instance, if, unbeknownst to you, a package contains a function
with the same name as one of your variables, causing a clash between the two).
It’s usually better to explicitly import only those functions you actually need
to use.'®

Finally, some large packages are for convenience split into smaller sub-
packages, called modules. A module within a larger package is referred to as
packagename.modulename. As we will see shortly, for example, there are a
large number of useful mathematical facilities available in the package called
numpy, including facilities for linear algebra and Fourier transforms, each in
their own module within the larger package. Thus the linear algebra module
is called numpy.1linalg and the Fourier transform module is called numpy.fft
(for “fast Fourier transform”). We can import a function from a module thus:

from numpy.linalg import inv

This would import the inv function, which calculates the inverse of a matrix.
Smaller packages, like the math package, have no submodules, in which
case one could, arguably, say that the entire package is also a module, and in

5There is also another way to import the entire contents of a package in Python, with a state-
ment of the form “import math”. If you use this form, however, then when you subsequently
use one of the imported functions you have to write, for example, x = math.log(2.5), instead of
justx = log(2.5). Since the former is more complicated and annoying, it gets used rather rarely.
Moreover the existence of the two types of import, and particularly their simultaneous use in the
same program, can be quite confusing, so we will use only the “from” form in this book.

16 A particular problem is when an imported package contains a function with the same name
as a previously existing function. In such a case the newly imported one will be selected in favor of
the previous one, which may not always be what you want. For instance, the packages math and
cmath contain many functions with the same names, such as sqrt. But the sqrt function in cmath
works with complex numbers and the one in math does not. If one did “from cmath import *”
followed by “from math import *”, one would end up with the version of sqrt that works only
with real numbers. And if one then attempted to calculate the square root of a complex number,
one would get an error message.

33

CHAPTER 2

File: polar.py

34

PYTHON PROGRAMMING FOR PHYSICISTS

such cases the words package and module are often used interchangeably.

EXAMPLE 2.2: CONVERTING POLAR COORDINATES

Suppose the position of a point in two-dimensional space is given to us in polar
coordinates 7,0 and we want to convert it to Cartesian coordinates x,y. How
would we write a program to do this? The appropriate steps are:

1. Get the user to enter the values of r and 6.

2. Convert those values to Cartesian coordinates using the standard formu-
las:
X =rcosé, y = rsinf. (2.1)

3. Print out the results.

Since the formulas (2.1) involve the mathematical functions sin and cos we are
going to have to import those functions from the math package at the start of
the program. Also, the sine and cosine functions in Python (and in most other
computer languages) take arguments in radians. If we want to be able to enter
the angle 6 in degrees then we are going to have to convert from degrees to
radians, which means multiplying by 7r and dividing by 180.

Thus our program might look something like this:

from math import sin,cos,pi

r = float(input("Enter r: "))
d = float(input("Enter theta in degrees: "))

theta = d¥pi/180
x = r*cos(theta)
y = r*sin(theta)

print("x =",x," y =",y)

Take a moment to read through this complete program and make sure you un-
derstand what each line is doing. If we run the program, it will do something
like the following:

Enter r: 2
Enter theta in degrees: 60
x=1.0 y = 1.73205080757

(Try it for yourself if you like.)

2.2 ’ BASIC PROGRAMMING

2.2.6 BUILT-IN FUNCTIONS

There are a small number of functions in Python, called built-in functions, which
don’t come from any package. These functions are always available to you in
every program; you do not have to import them. We have in fact seen several
examples of built-in functions already. For instance, we saw the float func-
tion, which takes a number and converts it to floating point (if it’s not floating
point already):

x = float(1)

There are similar functions int and complex that convert to integers and com-
plex numbers. Another example of a built-in function, one we haven’t seen
previously, is the abs function, which returns the absolute value of a number,
or the modulus in the case of a complex number. Thus, abs(-2) returns the
integer value 2 and abs (3+43j) returns the floating-point value 5.0.

Earlier we also used the built-in functions input and print, which are not
mathematical functions in the usual sense of taking a number as argument and
performing a calculation on it, but as far as the computer is concerned they are
still functions. Consider, for instance, the statement

x = input("Enter the value of x: ")

Here the input function takes as argument the string “Enter the value of
x: ”, prints it out, waits for the user to type something in response, then sets x
equal to that something.

The print function is slightly different. When we say

print (x)

print is a function, but it is not here generating a value the way the log or input
functions do. It does something with its argument x, namely printing it out
on the screen, but it does not generate a value. This differs from the functions
we are used to in mathematics, but it’s allowed in Python. Sometimes you just
want a function to do something but it doesn’t need to generate a value.

Exercise 2.3: Write a program to perform the inverse operation to that of Example 2.2.
That is, ask the user for the Cartesian coordinates x,y of a point in two-dimensional
space, and calculate and print the corresponding polar coordinates, with the angle 0
given in degrees.

35

CHAPTER 2

36

PYTHON PROGRAMMING FOR PHYSICISTS

Exercise 2.4: A spaceship travels from Earth in a straight line at relativistic speed v to
another planet x light years away. Write a program to ask the user for the value of x
and the speed v as a fraction of the speed of light ¢, then print out the time in years that
the spaceship takes to reach its destination (a) in the rest frame of an observer on Earth
and (b) as perceived by a passenger on board the ship. Use your program to calculate
the answers for a planet 10 light years away with v = 0.99c.

Exercise 2.5: Quantum potential step

A well-known quantum mechanics problem involves a particle of mass m that encoun-
ters a one-dimensional potential step, like this:

,, E
R T
- —_— v
incoming
—_—

0

The particle with initial kinetic energy E and wavevector k; = v/2mE/# enters from the
left and encounters a sudden jump in potential energy of height V' at position x = 0.
By solving the Schrodinger equation, one can show that when E > V the particle may
either (a) pass the step, in which case it has a lower kinetic energy of E — V on the other
side and a correspondingly smaller wavevector of k, = /2m(E — V) /h, or (b) it may
be reflected, keeping all of its kinetic energy and an unchanged wavevector but moving
in the opposite direction. The probabilities T and R for transmission and reflection are

given by
T — 4k1k2) R — (klkz)z.
(k1 +k2)? ki + ks
Suppose we have a particle with mass equal to the electron mass m = 9.11 x

1073 kg and energy 10eV encountering a potential step of height 9 eV. Write a Python
program to compute and print out the transmission and reflection probabilities using
the formulas above.

Exercise 2.6: Planetary orbits

The orbit in space of one body around another, such as a planet around the Sun, need
not be circular. In general it takes the form of an ellipse, with the body sometimes closer
in and sometimes further out. If you are given the distance ¢; of closest approach that a
planet makes to the Sun, also called its perihelion, and its linear velocity v; at perihelion,
then any other property of the orbit can be calculated from these two as follows.

a) Kepler’s second law tells us that the distance ¢, and velocity v, of the planet at
its most distant point, or aphelion, satisfy {,v, = {1v;. At the same time the total

2.2 ’ BASIC PROGRAMMING

energy, kinetic plus gravitational, of a planet with velocity v and distance r from

the Sun is given by
mM

E=lm?—c",
"
where m is the planet’s mass, M = 1.9891 x 10%0 kg is the mass of the Sun, and
G = 6.6738 x 107" m®kg~!s72 is Newton’s gravitational constant. Given that
energy must be conserved, show that v; is the smaller root of the quadratic equa-
tion

7 81

Once we have v, we can calculate ¢, using the relation ¢/, = {101/ v,.

o 26M { > 2GM} o
0141

b) Given the values of vy, £1, and {5, other parameters of the orbit are given by
simple formulas that can be derived from Kepler’s laws and the fact that the
orbit is an ellipse:

Semi-major axis: a= %(61 + 0a),
Semi-minor axis: b=+/l14,,
Orbital period: T = 2mab ,
él U1
Orbital eccentricity: e= L-6
y: - by + 41

Write a program that asks the user to enter the distance to the Sun and velocity
at perihelion, then calculates and prints the quantities ¢», v, T, and e.

¢) Test your program by having it calculate the properties of the orbits of the Earth
(for which ¢; = 1.4710 x 10" m and v; = 3.0287 x 10* ms~!) and Halley’s comet
(61 = 8.7830 x 101m and v; = 54529 x 10*ms~!). Among other things, you
should find that the orbital period of the Earth is one year and that of Halley’s
comet is about 76 years.

2.2.7 COMMENT STATEMENTS

This is a good time to mention another important feature of Python (and every
other computer language), namely comments. In Python any program line that
starts with a hash mark “#” is ignored completely by the computer. You can
type anything you like on the line following a hash mark and it will have no
effect:

Hello! Hi there! This line does nothing at all.

Such lines are called comments. Comments make no difference whatsoever
to the way a program runs, but they can be very useful nonetheless. You can

37

CHAPTER 2

File: polar.py

38

PYTHON PROGRAMMING FOR PHYSICISTS

use comment lines to leave reminders for yourself in your programs, saying
what particular parts of the program do, what quantities are represented by
which variables, changes that you mean to make later to the program, things
you're not sure about, and so forth. Here, for instance, is a version of the
polar coordinates program from Example 2.2, with comments added to explain
what’s happening;:

from math import sin,cos,pi

Ask the user for the values of the radius and angle
r = float(input("Enter r: "))
d = float(input("Enter theta in degrees: "))

Convert the angle to radians
theta = d*pi/180

Calculate the equivalent Cartesian coordinates
x = rxcos(theta)
y = rxsin(theta)

Print out the results
print("x =|I’X,II y. =|I,y)

This version of the program will perform identically to the original version on
page 34, but it is easier to understand how it works.

Comments may seem unnecessary for short programs like this one, but
when you get on to creating larger programs that perform complex physics cal-
culations you will find them very useful for reminding yourself of how things
work. When you're writing a program you may think you remember how ev-
erything works and there is no need to add comments, but when you return to
the same program again a week later after spending the intervening time on
something else you'll find it’s a different story—you can’t remember how any-
thing works or why you did things this way or that, and you will be very glad
if you scattered a few helpful pointers in comment lines around the program.

Comments become even more important if someone else other than you
needs to understand a program you have written, for instance if you're work-
ing as part of a team that is developing a large program together. Understand-
ing how other people’s programs work can be tough at the best of times, and
you will make your collaborators’ lives a lot easier if you include some ex-
planatory comments as you go along.

Comments don’t have to start at the beginning of a line. Python ignores

2.3 | CONTROLLING PROGRAMS WITH “IF” AND “WHILE”

any portion of a line that follows a hash mark, whether the hash mark is at the
beginning or not. Thus you can write things like this:

theta = d*pi/180 # Convert the angle to radians

and the computer will perform the calculation 6 = d7r/180 at the beginning of
the line but completely ignore the hash mark and the text at the end. This is a
useful trick when you intend that a comment should refer to a specific single
line of code only.

2.3 CONTROLLING PROGRAMS WITH “IE” AND “WHILE”

The programs we have seen so far are all very linear. They march from one
statement to the next, from beginning to end of the program, then they stop.
An important feature of computers is their ability to break this linear flow, to
jump around the program, execute some lines but not others, or make deci-
sions about what to do next based on given criteria. In this section we will see
how this is done in the Python language.

2.3.1 THE IF STATEMENT

It will happen often in our computer programs that we want to do something
only if a certain condition is met: only if n = 0 perhaps, or x > 3. We can do
this using an if statement. Consider the following example:

x = int(input ("Enter a whole number no greater than ten: "))
if x>10:
print("You entered a number greater than ten.")
print("Let me fix that for you.")
x =10
print ("Your number is",x)

If I run this program and type in “5”, I get:

Enter a whole number no greater than ten: 5
Your number is 5

But if I break the rules and enter 11, I get:

39

CHAPTER 2

40

PYTHON PROGRAMMING FOR PHYSICISTS

Enter a whole number no greater than ten: 11
You entered a number greater than ten.

Let me fix that for you.

Your number is 10

This behavior is achieved using an if statement—the second line in the pro-
gram above—which tests the value of the variable x to see if it is greater than
ten. Note the structure of the if statement: there is the “if” part itself, which
consists of the word “if” followed by the condition you are applying. In this
case the condition is that x > 10. The condition is followed by a colon, and
following that are one or more lines that tell the computer what to do if the
condition is satisfied. In our program there are three of these lines, the first
two printing out a message and the third fixing the value of x. Note that these
three lines are indented—they start with a few spaces so that the text is shifted
over a bit from the left-hand edge. This is how we tell the program which
instructions are “part of the if.” The indented instructions will be executed
only if the condition in the if statement is met, i.e., only if x > 10 in this case.
Whether or not the condition is met, the computer then moves on to the next
line of the program, which prints the value of x.

(In Section 1 we saw that you are free to add spaces between the parts of
a Python statement to make it more readable, as in “x = 1”7, and that such
spaces will have no effect on the operation of the program. Here we see an
exception to that rule: spaces at the beginning of lines do have an effect with
an if statement. For this reason one should be careful about putting spaces at
the beginning of lines—they should be added only when they are needed, as
here, and not otherwise.)

A question that people sometimes ask is, “How many spaces should I put at
the start of a line when I am indenting it?” The answer is that you can use any
number you like. Python considers any number of spaces, from one upward,
to constitute an indentation. However, it has over the years become standard
practice among Python programmers to use four spaces for an indentation,
and this is the number used in all the programs in this book. In fact, most
Python development environments, including IDLE, automatically insert the
spaces for you when they see an if statement, and they typically insert four.

There are various different types of conditions one can use in an if state-
ment. Here are some examples:

2.3 | CONTROLLING PROGRAMS WITH “IF” AND “WHILE”

if x==1: Check if x = 1. Note the double equals sign.
if x>1: Checkif x > 1
if x>=1: Checkif x > 1
if x<1: Check if x < 1
if x<=1: Checkifx <1
if x!=1: Checkifx # 1

Note particularly the double equals sign in the first example. It is one of the
most common programming errors that people make in Python to use a single
equals sign in an if statement instead of a double one. If you do this, you'll get
an error message when you try to run your program.

You can also combine two conditions in a single if statement, like this:

if x>10 or x<1:
print("Your number is either too big or too small.")

You can use “and” in a similar way:

if x<=10 and x>=1:
print ("Your number is just right.")

You can combine more than two criteria on a line as well—as many as you like.
Two useful further elaborations of the if statement are else and elif:

if x>10:
print ("Your number is greater than ten.")
else:
print("Your number is fine. Nothing to see here.")

This prints different messages depending on whether x is greater than 10 or
not. Note that the else line, like the original if, is not indented and has a
colon at the end. It is followed by one or more indented lines, the indentation
indicating that the lines are “inside” the else clause.

An even more elaborate example is the following:

if x>10:

print("Your number is greater than ten.")
elif x>9:

print ("Your number is 0K, but you’re cutting it close.")
else:

print ("Your number is fine. Move along.")

41

CHAPTER 2

42

PYTHON PROGRAMMING FOR PHYSICISTS

The statement elif means “else if”—if the first criterion is not met it tells the
computer to try a different one. Notice that we can use both elif and else,
as here—if neither of the conditions specified in the if and elif clauses is
satisfied then the computer moves on to the else clause. You can also have
more than one elif, indeed you can have as many as you like, each one testing
a different condition if the previous one was not satisfied.

2.3.2 THE WHILE STATEMENT

A useful variation on the if statement is the while statement. It looks and be-
haves similarly to the if statement:

x = int(input("Enter a whole number no greater than ten: "))
while x>10:

print("This is greater than ten. Please try again.")

x = int(input("Enter a whole number no greater than ten: "))
print("Your number is",x)

As with the if statement, the while statement checks if the condition given is
met (in this case if x > 10). If it is, it executes the indented block of code
immediately following; if not, it skips the block. However (and this is the
important difference), if the condition is met and the block is executed, the
program then loops back from the end of the block to the beginning and checks
the condition again. If the condition is still true, then the indented lines will be
executed again. And it will go on looping around like this, repeatedly checking
the condition and executing the indented code, until the condition is finally
false. (And if it is never false, then the loop goes on forever.'”) Thus, if [were
to run the snippet of code above, I would get something like this:

Enter a whole number no greater than ten: 11
This is greater than ten. Please try again.
Enter a whole number no greater than ten: 57
This is greater than ten. Please try again.
Enter a whole number no greater than ten: 100
This is greater than ten. Please try again.
Enter a whole number no greater than ten: 5
Your number is 5

17If you accidentally create a program with a loop that goes on for ever then you'll need to
know how to stop the program: just closing the window where the program is running does the
trick.

2.3 | CONTROLLING PROGRAMS WITH “IF” AND “WHILE”

The computer keeps on going around the loop, asking for a number until it
gets what it wants. This construct—sometimes also called a while loop—is com-
monly used in this way to ensure that some condition is met in a program or to
keep on performing an operation until a certain point or situation is reached.

As with the if statement, we can specify two or more criteria in a single
while statement using “and” or “or”. The while statement can also be followed
by an else statement, which is executed once (and once only) if and when the
condition in the while statement fails. (This type of else statement is primarily
used in combination with the break statement described in the next section.)
There is no equivalent of elif for a while loop, but there are two other useful
statements that modify its behavior, break and continue.

2.3.3 BREAK AND CONTINUE

Two useful refinements of the while statement are the break and continue state-
ments. The break statement allows us to break out of a loop even if the condi-
tion in the while statement is not met. For instance,

while x>10:
print("This is greater than ten. Please try again.")
x = int(input("Enter a whole number no greater than ten: "))
if x==111:
break

This loop will continue looping until you enter a number not greater than 10,
except if you enter the number 111, in which case it will give up and proceed
with the rest of the program.

If the while loop is followed by an else statement, the else statement is not
executed after a break. This allows you to create a program that does different
things if the while loop finishes normally (and executes the else statement) or
via a break (in which case the else statement is skipped).

This example also illustrates another new concept: it contains an if state-
ment inside a while loop. This is allowed in Python and used often. In the
programming jargon we say the if statement is nested inside the while loop.
While loops nested inside if statements are also allowed, or ifs within ifs, or
whiles within whiles. And it doesn’t have to stop at just two levels. Any num-
ber of statements within statements within statements is allowed. When we
get onto some of the more complicated calculations in this book we will see
examples nested four or five levels deep. In the example above, note how the
break statement is doubly indented from the left margin—it is indented by an

43

CHAPTER 2 |

File: evenodd.py

44

PYTHON PROGRAMMING FOR PHYSICISTS

extra four spaces, for a total of eight, to indicate that it is part of a statement-
within-a-statement.'

A variant on the idea of the break statement is the continue statement. Say-
ing continue anywhere in a loop will make the program skip the rest of the
indented code in the while loop, but instead of getting on with the rest of the
program, it then goes back to the beginning of the loop, checks the condition
in the while statement again, and goes around the loop again if the condition
is met. (The continue statement turns out to be used rather rarely in practice.
The break statement, on the other hand, gets used often and is definitely worth

knowing about.)

EXAMPLE 2.3: EVEN AND ODD NUMBERS

Suppose we want to write a program that takes as input a single integer and
prints out the word “even” if the number is even, and “odd” if the number is
odd. We can do this by making use of the fact that n modulo 2 is zero if (and
only if) n is even. Recalling that # modulo 2 is written as n%2 in Python, here’s
how the program would go:

n = int(input("Enter an integer: "))
if n)%2==0:

print("even")
else:

print("odd")

Now suppose we want a program that asks for two integers, one even and
one odd—in either order—and keeps on asking until it gets what it wants. We
could do this by checking all of the various combinations of even and odd, but
a simpler approach is to notice that if we have one even and one odd number
then their sum is odd; otherwise it’s even. Thus our program might look like
this:

print ("Enter two integers, one even, one odd.")
m = int(input("Enter the first integer: "))

n = int(input("Enter the second integer: "))
while (m+n)%2==0:

18We will come across some examples in this book where we have a loop nested inside another
loop and then a break statement inside the inner loop. In that case the break statement breaks out
of the inner loop only, and not the outer one. (If this doesn’t make sense to you, don’t worry—it
will become clear later when we look at examples with more than one loop.)

2.3 | CONTROLLING PROGRAMS WITH “IF” AND “WHILE”

print("One must be even and the other odd.")

m = int(input("Enter the first integer: "))

n = int(input("Enter the second integer: "))
print ("The numbers you chose are",m,"and",n)

Note how the while loop checks to see if m + n is even. If it is, then the numbers
you entered must be wrong—either both are even or both are odd—so the
program asks for another pair, and it will keep on doing this until it gets what
it wants.

As before, take a moment to look over this program and make sure you
understand what each line does and how the program works.

EXAMPLE 2.4: THE FIBONACCI NUMBERS

The Fibonacci numbers are the sequence of integers in which each is the sum
of the previous two, with the first two numbers being 1, 1. Thus the first few
members of the sequenceare 1, 1, 2, 3, 5, 8, 13, 21. Suppose we want to calculate
the Fibonacci numbers up to 1000. This would be quite a laborious task for a
human, but it is straightforward for a computer program. All the program
needs to do is keep a record of the most recent two numbers in the sequence,
add them together to calculate the next number, then keep on repeating for as
long as the numbers are less than 1000. Here’s a program to do it:

fl1 =1

f2 =1

while £1<=1000:
print(£f1)
fnext = f1 + £2
f1 = £2
f2 = fnext

Observe how the program works. At all times the variables £1 and £2 store
the two most recent elements of the sequence. If £1 is less than 1000, we print
it out, then calculate the next element of the sequence by summing f1 and £2
and store the result in the variable fnext. Then we update the values of f1
and £2 and go around the loop again. The process continues until the value of
£1 exceeds 1000, then stops.

This program works fine, but here’s a neater way to solve the same problem
using the “multiple assignment” feature of Python discussed in Section 2.2.4:

45

CHAPTER 2 | PYTHON PROGRAMMING FOR PHYSICISTS

File: fibonacci.py

46

£1,£2 = 1,1
while £1<=1000:
print(£f1)
£f1,f2 = £2,f1+£f2

If we run this program, we get the following:

89

144
233
377
610
987

Indeed, the computer will happily print out the Fibonacci numbers up to a
billion or more in just a second or two. Try it if you like.

Exercise 2.7: Catalan numbers

The Catalan numbers C, are a sequence of integers 1, 1, 2, 5, 14, 42, 132...that play
an important role in quantum mechanics and the theory of disordered systems. (They
were central to Eugene Wigner’s proof of the so-called semicircle law.) They are given by
dn +2

n+2 "

Write a program that prints in increasing order all Catalan numbers less than or equal

CO = 1/ n+l =

to one billion.

2.4 LISTS AND ARRAYS

We have seen how to work with integer, real, and complex quantities in Python
and how to use variables to store those quantities. All the variables we have

2.4

seen so far, however, represent only a single value, a single integer, real, or
complex number. But in physics it is common for a variable to represent sev-
eral numbers at once. We might use a vector r, for instance, to represent the
position of a point in three-dimensional space, meaning that the single sym-
bol r actually corresponds to three real numbers (x,y,z). Similarly, a matrix,
again usually denoted by just a single symbol, can represent an entire grid of
numbers, m x n of them, where m and n could be as large as we like. There
are also many cases where we have a set of numbers that we would like to
treat as a single entity even if they do not form a vector or matrix. We might,
for instance, do an experiment in the lab and make a hundred measurements
of some quantity. Rather than give a different name to each one—a, b, ¢, and
so forth—it makes sense to denote them as say a1, a2, a3, and then to consider
them collectively as a set A = {a;}, a single entity made up of a hundred num-
bers.

Situations like these are so common that Python provides standard fea-
tures, called containers, for storing collections of numbers. There are several
kinds of containers. In this section we look at two of them, lists and arrays."

2.4.1 LisTS

The most basic type of container in Python is the list. A list, as the name sug-
gests, is a list of quantities, one after another. In all the examples in this book
the quantities will be numbers of some kind—integers, floats, and so forth—
although any type of quantity that Python knows about is allowed in a list,
such as strings for example.?’

The quantities in a list, which are called its elements, do not have to be all
of the same type. You can have an integer, followed by a float, followed by a
complex number if you want. In most of the cases we’ll deal with, however, the
elements will be all of the same type—all integers, say, or all floats—because
this is what physics calculations usually demand. Thus, for instance, in the
example described above where we make a hundred measurements of a given
quantity in the lab and we want to represent them on the computer, we could
use a list one hundred elements long, and all the elements would presumably

YThere are several others as well, the main ones being tuples, dicts, and sets. These, however,
find only occasional use in physics calculations, and we will not use them in this book.

2If you have programmed in another computer language, then you may be familiar with “ar-
rays,” which are similar to lists but not exactly the same. Python has both lists and arrays and both
have their uses in physics calculations. We study arrays in Section 2.4.2.

LISTS AND ARRAYS

47

CHAPTER 2

48

PYTHON PROGRAMMING FOR PHYSICISTS

be of the same type (probably floats) because they all represent measurements
of the same thing.

A list in Python is written like this: [3, 0, 0, -7, 24]. The elements
of this particular list are all integers. Note that the elements are separated by
commas and the whole list is surrounded by square brackets. Another example
of a list might be [1, 2.5, 3+4.6j]. This example has three elements of
different types, one integer, one real, and one complex.

A variable can be set equal to a list:

r=1[1,1,2, 3,5, 8, 13, 21 1]

Previously in this chapter all variables have represented just single numbers,
but here we see that a variable can also represent a list of numbers. You can
print a list variable, just as you can any other variable, and the computer will
print out the entire list. If we run this program:

r=1[1,1,2,3,5,8, 13, 21]
print(r)

we get this:
(1, 1, 2, 3, 5, 8, 13, 21]

The quantities that make up the elements of a list can be specified using other
variables, like this:

x =1.0
y=1.5
z = -2.2
r=10[x,y, z]

This will create a three-element list with the value [1.0, 1.5, -2.2 1. Itis
important to bear in mind, in this case, what happens when Python encoun-
ters an assignment statement like “r = [x, y, z]1”. Remember that in such
situations Python first evaluates the expression on the right-hand side, which
gives [1.0, 1.5, -2.2] in this case, then assigns that value to the variable
on the left. Thus the end result is that r is equal to [1.0, 1.5, -2.2 1. It
is a common error to think of r as being equal to [x, y, z] so that if, say,
the value of x is changed later in the program the value of r will change as
well. But this is incorrect. The value of r will getsetto [1.0, 1.5, -2.2]
and will not change later if x is changed. If you want to change the value of

2.4

r you have to explicitly assign a new value to it, with another statement like
“r=1[x%,y, z1"

The elements of lists can also be calculated from entire mathematical ex-
pressions, like this:

r = [2%x, x+y, z/sqrt(x*x*2+y**2)]

The computer will evaluate all the expressions on the right-hand side then
create a list from the values it calculated.

Once we have created a list we probably want to do some calculations with
the elements it contains. The individual elements in a list r are denoted r [0],
r[1], r[2], and so forth. That is they are numbered in order, from beginning to
end of the list, the numbers go in square brackets after the variable name, and
crucially the numbers start from zero, not one. This may seem a little odd—it’s
not the way we usually do things in physics or in everyday life—and it takes a
little getting used to. However, it turns out, as we'll see, to be more convenient
in a lot of situations than starting from one.

The individual elements, such as r [0], behave like single variables and you
can use them in the same way you would use a single variable. Thus, here is
a short program that calculates and prints out the length of a vector in three
dimensions:

from math import sqrt

r=10[1.0, 1.5, -2.2 1]

length = sqrt(r[0]**2 + r[1]**2 + r[2]*x2)
print (length)

The first line imports the square root function from the math package, which
we need for the calculation. The second line creates the vector, in the form of
a three-element list. The third line is the one that does the actual calculation.
It takes each of the three elements of the vector, which are denoted r[0], r[1],
and r[2], squares them, and adds them together. Then it takes the square root
of the result, which by Pythagoras’ theorem gives us the length of the vector.
The final line prints out the length. If we run this program it prints

2.84429253067

which is the correct answer (to twelve significant figures).
We can change the values of individual elements of a list at any time, like
this:

LISTS AND ARRAYS

49

CHAPTER 2

50

PYTHON PROGRAMMING FOR PHYSICISTS

r=1[1.0, 1.5, -2.2 1]
r[1] = 3.5
print(r)

The first line will create a list with three elements. The second then changes
the value of element 1, which is the middle of the three elements, since they
are numbered starting from zero. So if we run the program it prints out this:

[1.0, 3.5, -2.2]

A powerful and useful feature of Python is its ability to perform operations
on entire lists at once. For instance, it commonly happens that we want to
know the sum of the values in a list. Python contains a built-in function called
sum that can calculate such sums in a single line, thus:

r=1[1.0, 1.5, -2.2 1]
total = sum(r)
print(total)

The first line here creates a three-element list and the second calculates the sum
of its elements. The final line prints out the result, and if we run the program
we get this:

0.3

Some other useful built-in functions are max and min, which give the largest
and smallest values in a list respectively, and 1len, which calculates the number
of elements in a list. Applied to the list r above, for instance, max(r) would
give 1.5 and min(r) would give —2.2, while len(r) would give 3. Thus, for
example, one can calculate the mean of the values in a list like this:

r=1[1.0, 1.5, -2.2]
mean = sum(r)/len(r)
print (mean)

The second line here sums the elements in the list and then divides by the
number of elements to give the mean value. In this case, the calculation would
give a mean of 0.1.

A special, and especially useful, function for lists is the function map, which
is a kind of meta-function—it allows you apply ordinary functions, like log
or sqrt, to all the elements of a list at once. Thus map(log,r) takes the natu-
ral logarithm of each element of a list r in turn. More precisely, map creates a

2.4 ‘ LISTS AND ARRAYS

specialized object in the computer memory, called an iterator, that contains the
logs, one after another in order. Normally we will want to convert this itera-
tor into a new list, which we can do with the built-in function 1ist.?! Thus,
consider this snippet of code:

from math import log
r=1[1.0, 1.5, 2.2]
logr = list(map(log,r))
print (logr)

This will create a list logr containing the logs of the three numbers 1, 1.5, and
2.2, and print it out thus:

[0.0, 0.4054651081, 0.7884573603]

Another feature of lists in Python, one that we will use often, is the ability
to add elements to an already existing list. Suppose we have a list called r and
we want to add a new element to the end of the list with value, say, 6.1. We
can do this with the statement

r.append(6.1)

This slightly odd-looking statement is a little different in form from the ones
we’ve seen previously.?? It consists of the name of our list, which is r, followed
by a dot (i.e., a period), then “append (6.1)”. Its effect is to add a new element
to the end of the list and set that element equal to the value given, which is 6.1
in this case. The value can also be specified using a variable or a mathematical
expression, thus:

2The difference between an iterator and a list is that the values in an iterator are not stored
in the computer’s memory the way the values in a list are. Instead, the computer calculates them
on the fly when they are needed, which saves memory. Thus, in this case, the computer only
calculates the logs of the elements of r when you convert the iterator to a list. In versions of
Python prior to version 3, the map function produced a list, not an iterator, so if you are using an
earlier version of the language you do not need to convert to a list using the 1ist function. You
canjustsay “logr = map(log,r)”. For further discussion of this point, and of iterators in general,
see Appendix B.

22This is an example of Python’s object-oriented programming features. The function append
is technically a “method” that belongs to the list “object” r. The function doesn’t exist as an entity
in its own right, only as a subpart of the list object. We will not dig into Python’s object-oriented
features in this book, since they are of relatively little use for the type of physics programming we
will be doing. For software developers engaged in large-scale commercial or group programming
projects, however, they can be invaluable.

51

CHAPTER 2 | PYTHON PROGRAMMING FOR PHYSICISTS

r=1[1.0, 1.5, -2.2 1]
x =0.8

r.append (2*x+1)
print(r)

If we run this program we get
[1.0, 1.5, -2.2, 2.6]

Note how the computer has calculated the value of 2*x+1 to be 2.6, then added
that value to the end of the list.

A particularly useful trick that we will employ frequently in this book is
the following. We create an empty list, a list with no elements in it at all, then
add elements to it one by one as we learn of or calculate their values. A list
created in this way can grow as large as we like (within limitations set by the
amount of memory the computer has to store the list).

To create an empty list we say

r =[]

This creates a list called r with no elements. Even though it has no elements
in it, the list still exists. It’s like an empty set in mathematics—it exists as an
object, but it doesn’t contain anything (yet). Now we can add elements thus:

r.append(1.0)
r.append(1.5)
r.append(-2.2)
print(r)

which produces
[1.0, 1.5, -2.2]

We will, for instance, use this technique to make graphs in Section 3.1. Note
that you must create the empty list first before adding elements. You cannot
add elements to a list until it has been created—the computer will give an error
message if you try.

We can also remove a value from the end of a list by saying r.pop ():

r=1[1.0, 1.5, -2.2, 2.6]

r.pop()
print(r)

52

2.4

which gives
[1.0, 1.5, -2.2]

And we can remove a value from anywhere in a list by saying r.pop (n), where
n is the number of the element you want to remove.”> Bear in mind that the
elements are numbered from zero, so if you want to remove the first item from
a list you would say r.pop (0).

2.4.2 ARRAYS

As we have seen, a list in Python is an ordered set of values, such as a set of
integers or a set of floats. There is another object in Python that is somewhat
similar, an array. An array is also an ordered set of values, but there are some
important differences between lists and arrays:

1. The number of elements in an array is fixed. You cannot add elements to
an array once it is created, or remove them.

2. The elements of an array must all be of the same type, such as all floats or
all integers. You cannot mix elements of different types in the same array
and you cannot change the type of the elements once an array is created.

Lists, as we have seen, have neither of these restrictions and, on the face of
it, these seem like significant drawbacks of the array. Why would we ever
use an array if lists are more flexible? The answer is that arrays have several
significant advantages over lists as well:

3. Arrays can be two-dimensional, like matrices in algebra. That is, rather
than just a one-dimensional row of elements, we can have a grid of them.
Indeed, arrays can in principle have any number of dimensions, includ-
ing three or more, although we won’t use dimensions above two in this
book. Lists, by contrast, are always just one-dimensional.

4. Arrays behave roughly like vectors or matrices: you can do arithmetic
with them, such as adding them together, and you will get the result you
expect. This is not true with lists. If you try to do arithmetic with a list

BHowever, removing an element from the middle (or the beginning) of a list is a slow operation
because the computer then has to move all the elements above that down one place to fill the gap.
For a long list this can take a long time and slow down your program, so you should avoid doing it
if possible. (On the other hand, if it doesn’t matter to you what order the elements of a list appear
in, then you can effectively remove any element rapidly by first setting it equal to the last element
in the list, then removing the last element.)

LISTS AND ARRAYS

53

CHAPTER 2

54

PYTHON PROGRAMMING FOR PHYSICISTS

you will either get an error message, or you will not get the result you
expect.

5. Arrays work faster than lists. Especially if you have a very large array
with many elements then calculations may be significantly faster using
an array.

In physics it often happens that we are working with a fixed number of ele-
ments all of the same type, as when we are working with matrices or vectors,
for instance. In that case, arrays are clearly the tool of choice: the fact that we
cannot add or remove elements is immaterial if we never need to do such a
thing, and the superior speed of arrays and their flexibility in other respects
can make a significant difference to our programs. We will use arrays exten-
sively in this book—far more than we will use lists.

Before you use an array you need to create it, meaning you need to tell the
computer how many elements it will have and of what type. Python provides
functions that allow you do this in several different ways. These functions are
all found in the package numpy.?*

In the simplest case, we can create a one-dimensional array with n ele-
ments, all of which are initially equal to zero, using the function zeros from
the numpy package. The function takes two arguments. The first is the number
of elements the array is to have and the second is the type of the elements,
such as int, float, or complex. For instance, to create a new array with four
floating-point elements we would do the following:

from numpy import zeros
a = zeros(4,float)
print(a)

In this example the new array is denoted a. When we run the program the
array is printed out as follows:

[0. 0. 0. 0.]

Note that arrays are printed out slightly differently from lists—there are no
commas between the elements, only spaces.

We could similarly create an array of ten integers with the statement “a =
zeros(10,int)” or an array of a hundred complex numbers with the state-
ment “a = zeros (100, complex)”. The size of the arrays you can create is lim-

2The word numpy is short for “numerical Python.”

2.4 |

ited only by the computer memory available to hold them. Modern computers
can hold arrays with hundreds of millions or even billions of elements.

To create a two-dimensional floating-point array with m rows and n col-
umns, you say “zeros([m,n],float)”, so

a = zeros([3,4],float)

print(a)

produces
[[o. 0. 0. 0.]
[0o. 0. 0. 0.]
[o. 0. 0. 0.1]

Note that the first argument of zeros in this case is itself a list (that’s why it
is enclosed in brackets [...1), whose elements give the size of the array along
each dimension. We could create a three-dimensional array by giving a three-
element list (and so on for higher dimensions).

There is also a similar function in numpy called ones that creates an array
with all elements equal to one. The form of the function is exactly the same as
for the function zeros. Only the values in the array are different.

On the other hand, if we are going to change the values in an array im-
mediately after we create it, then it doesn’t make sense to have the computer
set all of them to zero (or one)—setting them to zero takes some time, time
that is wasted if you don’t need the zeros. In that case you can use a different
function, empty, again from the package numpy, to create an empty array:

from numpy import empty
a = empty(4,float)

This creates an array of four “empty” floating-point elements. In practice the
elements aren’t actually empty. Instead they contain whatever numbers hap-
pened to be littered around the computer’s memory at the time the array is
created. The computer just leaves those values as they are and doesn’t waste
any time changing them. You can also create empty integer or complex arrays
by saying int or complex instead of float.

A different way to create an array is to take a list and convert it into an
array, which you can do with the function array from the package numpy. For
instance we can say:

(1.0, 1.5, -2.2]
array(r,float)

r

a

LISTS AND ARRAYS

55

CHAPTER 2

56

PYTHON PROGRAMMING FOR PHYSICISTS

which will create an array of three floating-point elements, with values 1.0, 1.5,
and —2.2. If the elements of the list (or some of them) are not already floats,
they will be converted to floats. You can also create integer or complex arrays
in the same fashion, and the list elements will be converted to the appropriate
type if necessary.2>2

The two lines above can conveniently be combined into one, like this:

a = array([1.0,1.5,-2.2] ,float)

This is a quick and neat way to create a new array with predetermined values
in its elements. We will use this trick frequently.

We can also create two-dimensional arrays with specified initial values. To
do this we again use the array function, but now the argument we give it must
be a list of lists, which gives the elements of the array row by row. For example,
we can write

a = array([[1,2,3],[4,5,6]],int)
print(a)

This creates a two-dimensional array of integers and prints it out:

L 3]
]

[1 2
[4 5 6]]

The list of lists must have the same number of elements for each row of the
array (three in this case) or the computer will complain.

We can refer to individual elements of an array in a manner similar to the
way we refer to the elements of a list. For a one-dimensional array a we write
a[0],al1], and so forth. Note, as with lists, that the numbering of the elements
starts at zero, not one. We can also set individual elements equal to new values
thus:

BTwo caveats apply here. (1) If you create an integer array from a list that has any floating-
point elements, the fractional part, if any (i.e., the part after the decimal point), of the floating-point
elements will be thrown away. (2) If you try to create a floating-point or integer array from a list
containing complex values you will get an error message. This is not allowed.

26Though it’s not something we will often need to do, you can also convert an array into a list
using the built-in function 1ist, thus:

r = list(a)

Note that you do not specify a type for the list, because lists don’t have types. The types of the
elements in the list will just be the same as the types of the elements in the array.

2.4

al2] = 4

Note, however, that, since the elements of an array are of a particular type
(which cannot be changed after the array is created), any value you specify
will be converted to that type. If you give an integer value for a floating-point
array element, it will be converted to floating-point. If you give a floating-
point value for an integer array, the fractional part of the value will be deleted.
(And if you try to assign a complex value to an integer or floating-point array
you will get an error message—this is not allowed.)

For two-dimensional arrays we use two indices, separated by commas, to
denote the individual elements, as in a[2,4], with counting again starting at
zero, for both indices. Thus, for example

from numpy import zeros
a = zeros([2,2],int)
al0,1] =1

al1,0] = -1

print(a)

would produce the output

([0 1]
-1 o0]]

(You should check this example and make sure you understand why it does
what it does.)

Note that when Python prints a two-dimensional array it observes the con-
vention of standard matrix arithmetic that the first index of a two-dimensional
array denotes the row of the array element and the second denotes the column.

2.4.3 READING AN ARRAY FROM A FILE

Another, somewhat different, way to create an array is to read a set of values
from a computer file, which we can do with the function loadtxt from the
package numpy. Suppose we have a text file that contains the following string
of numbers, on consecutive lines:

1.0
1.5
-2.2
2.6

LISTS AND ARRAYS

57

CHAPTER 2

58

PYTHON PROGRAMMING FOR PHYSICISTS

and suppose that this file is called values.txt on the computer. Then we can
do the following:

from numpy import loadtxt
a = loadtxt("values.txt",float)
print(a)

When we run this program, we get the following printed on the screen:

[1.0 1.5 -2.2 2.6]

As you can see, the computer has read the numbers in the file and put them
in a float-point array of the appropriate length. (For this to work the file
values.txt has to be in the same folder or directory on the computer as your
Python program is saved in.%)

We can use the same trick to read a two-dimensional grid of values and put
them in a two-dimensional array. If the file values.txt contained the follow-

ing:
1234
3456
56738

then the exact same program above would create a two-dimensional 3 x 4 ar-
ray of floats with the appropriate values in it.

The loadtxt function is a very useful one for physics calculations. It hap-
pens often that we have a file or files containing numbers we need for a cal-
culation. They might be data from an experiment, for example, or numbers
calculated by another computer program. We can use the loadtxt function to
transfer those numbers into an array so that we can perform further calcula-
tions on them.

2.4.4 ARITHMETIC WITH ARRAYS

As with lists, the individual elements of an array behave like ordinary vari-
ables, and we can do arithmetic with them in the usual way. We can write
things like

al0] = af1] + 1

¥You can also give a full path name for the file, specifying explicitly the folder as well as the
file name, in which case the file can be in any folder.

2.4

or
x = al[2]**2 - 2*xa[3]/y

But we can also do arithmetic with entire arrays at once, a powerful feature
that can be enormously useful in physics calculations. In general, when doing
arithmetic with entire arrays, the rule is that whatever arithmetic operation
you specify is done independently to each element of the array or arrays in-
volved. Consider this short program:

from numpy import array

a = array([1,2,3,4],int)
b = 2%a
print(b)

When we run this program it prints

[2 4 6 8]

As you can see, when we multiply the array a by 2 the computer simply mul-
tiplies each individual element by 2. A similar thing happens if you divide.
Notice that when we run this program, the computer creates a new array b
holding the results of our multiplication. This is another way to create arrays,
different from the methods we mentioned before. We do not have to create the
array b explicitly, using for instance the empty function. When we perform a
calculation with arrays, Python will automatically create a new array for us to
hold the results.

If you add or subtract two arrays, the computer will add or subtract each
element separately, so that

a = array([1,2,3,4],int)
b = array([2,4,6,8],int)
print (a+b)

results in

[3 69 12]

(For this to work, the arrays must have the same size. If they do not, the com-
puter will complain.)

All of these operations give the same result as the equivalent mathematical
operations on vectors in normal algebra, which makes arrays well suited to

LISTS AND ARRAYS

59

CHAPTER 2

60

PYTHON PROGRAMMING FOR PHYSICISTS

representing vectors in physics calculations.?® If we represent a vector using
an array then arithmetic operations such as multiplying or dividing by a scalar
quantity or adding or subtracting vectors can be written just as they would in
normal mathematics. You can also add a scalar quantity to an array (or subtract
one), which the computer interprets to mean it should add that quantity to
every element. So

a = array([1,2,3,4],int)
print(a+1)

results in

[2 3 4 5]

However, if we multiply two arrays together the outcome is perhaps not
exactly what you would expect—you do not get the vector (dot) product of the
two. If we do this:

a array([1,2,3,4],int)
b = array([2,4,6,8],int)
print (a*b)

we get
[2 8 18 32]

What has the computer done here? It has multiplied the two arrays together
element by corresponding element. The first elements of the two arrays are
multiplied together, then the second elements, and so on. This is logical in a
sense—it is the exact equivalent of what happens when you add. Each ele-
ment of the first array is multiplied by the corresponding element of the sec-
ond. (Division works similarly.) Occasionally this may be what you want the
computer to do, but more often in physics calculations we want the true vector
dot product of our arrays. This can be calculated using the function dot from
the package numpy:

from numpy import array,dot
a = array([1,2,3,4],int)

b = array([2,4,6,8],int)
print(dot(a,b))

2The same operations, by contrast, do not work with lists, so lists are less good for storing
vector values.

2.4

The function dot takes two arrays as arguments and calculates their dot prod-
uct, which would be 60 in this case.

All of the operations above also work with two-dimensional arrays, which
makes such arrays convenient for storing matrices. Multiplying and dividing
by scalars as well as addition and subtraction of two-dimensional arrays all
work as in standard matrix algebra. Multiplication will multiply element by
element, which is usually not what you want, but the dot function calculates
the standard matrix product. Consider, for example, this matrix calculation:

13 4 -2 12 -35
+2 =
E3 (57263 -(33)
In Python we would do this as follows:

a = array([[1,3],[2,4]],int)

b = array([[4,-2],[-3,1]1],int)
c = array([[1,2],[2,1]1],int)
print (dot(a,b)+2%c)

You can also multiply matrices and vectors together. If v is a one-dimensional
array then dot(a,v) treats it as a column vector and multiplies it on the left
by the matrix a, while dot (v,a) treats it as a row vector and multiplies on the
right by a. Python is intelligent enough to know the difference between row
and column vectors, and between left- and right-multiplication.

Functions can be applied to arrays in much the same way as to lists. The
built-in functions sum, min, max, and len described in Section 2.4.1 can be ap-
plied to one-dimensional arrays to calculate sums of elements, minimum and
maximum values, and the number of elements. The map function also works,
applying any ordinary function to all elements of a one-dimensional array and
producing an iterator (see Section 2.4.1), which can then be converted into a
list with the 1ist function, or into an array using the list function then the
array function:

b = array(list(map(sqrt,a)),float)

This will create an iterator whose elements are the square roots of the elements
of a, then convert the iterator into an array b containing those values.
Applying functions to arrays with two or more dimensions produces more
erratic results. For instance, the len function applied to a two-dimensional
array returns the number of rows in the array and the functions max and min
produce only error messages. However, the numpy package contains functions

LISTS AND ARRAYS

61

CHAPTER 2

62

PYTHON PROGRAMMING FOR PHYSICISTS

that perform similar duties and work more predictably with two-dimensional
arrays, such as functions min and max that find minimum and maximum val-
ues. In place of the len function, there are two different features, called size
and shape. Consider this example:

a = array([[1,2,3],[4,5,6]],int)
print(a.size)
print (a.shape)

which produces

6
(2, 3)

That is, a. size tells you the total number of elements in all rows and columns
of the array a (which is roughly the equivalent of the 1en function for lists and
one-dimensional arrays), and a.shape returns a list giving the dimensions of
the array along each axis. (Technically it is a “tuple” not a list, but for our
purposes it is roughly the same thing. You can say n = a.shape, and then
n[0] is the number of rows of a and n[1] is the number of columns.) For one-
dimensional arrays there is not really any difference between size and shape.
They both give the total number of elements.

There are a number of other functions in the numpy package that are useful
for performing calculations with arrays. The full list can be found in the on-line
documentation at www.scipy.org.

EXAMPLE 2.5: AVERAGE OF A SET OF VALUES IN A FILE

Suppose we have a set of numbers stored in a file values. txt and we want to
calculate their mean. Even if we don’t know how many numbers there are we
can do the calculation quite easily:

from numpy import loadtxt

values = loadtxt("values.txt",float)
mean = sum(values)/len(values)
print (mean)

The first line imports the loadtxt function and the second uses it to read the
values in the file and put them in an array called values. The third line calcu-
lates the mean as the sum of the values divided by the number of values and
the fourth prints out the result.

2.4

Now suppose we want to calculate the mean-square value. To do this, we
first need to calculate the squares of the individual values, which we can do by
multiplying the array values by itself. Recall, that the product of two arrays
in Python is calculated by multiplying together each pair of corresponding
elements, so values*values is an array with elements equal to the squares of
the original values. (We could also write values#**2, which would produce the
same result.) Then we can use the function sum again to add up the squares.
Thus our program might look like this:

from numpy import loadtxt

values = loadtxt("values.txt",float)
mean = sum(values*values)/len(values)
print (mean)

On the other hand, suppose we want to calculate the geometric mean of our
set of numbers. (We'll assume our numbers are all positive, since one cannot
take the geometric mean of negative numbers.) The geometric mean of a set
of n values x; is defined to be the nth root of their product, thus:

n 1/n
= [I1x] - 22)

i=1
Taking natural logs of both sides we get

n

1/n
_ 1¢
Inx =1n [H xl} = ,‘:211n X; (2.3)

i=1

or ;
X = exp (111 Zln xi>. (2.4)
i=1

In other words, the geometric mean is the exponential of the arithmetic mean
of the logarithms. We can modify our previous program for the arithmetic
mean to calculate the geometric mean thus:

from numpy import loadtxt

from math import log,exp

values = loadtxt("values.txt",float)

logs = array(list(map(log,values)),float)
geometric = exp(sum(logs)/len(logs))
print (geometric)

Note how we combined the map function and the log function to calculate the
logarithms and then calculated the arithmetic mean of the resulting values.

LISTS AND ARRAYS

63

CHAPTER 2

64

PYTHON PROGRAMMING FOR PHYSICISTS

If we want to be clever, we can streamline this program by noting that the
numpy package contains its own log function that will calculate the logs of all
the elements of an array. Thus we can rewrite our program as

from numpy import loadtxt,log

from math import exp

values = loadtxt("values.txt",float)
geometric = exp(sum(log(values))/len(values))
print(geometric)

As well as being more elegant, this version of the program will probably also
run a little faster, since the log function in numpy is designed specifically to
work efficiently with arrays.

Finally in this section, here is a word of warning. Consider the following
program:

from numpy import array
a = array([1,1],int)
b=a

alo] =2

print(a)

print(b)

Take a look at this program and work out for yourself what you think it will
print. If we actually run it (and you can try this for yourself) it prints the
following:

(2 1]
(2 1]

This is probably not what you were expecting. Reading the program, it looks
like array a should be equal to [2,1] and b should be equal to [1,1] when the
program ends, but the output of the program appears to indicate that both are
equal to [2,1]. What has gone wrong?

The answer lies in the line “b = a” in the program. In Python direct assign-
ment of arrays in this way, setting the value of one array equal to another, does
not work as you might expect it to. You might imagine that “b = a” would
cause Python to create a new array b holding a copy of the numbers in the ar-
ray a, but this is not what happens. In fact, all that “b = a” does is it declares
“b” to be a new name for the array previously called “a”. That is, “a” and “b”
now both refer to the same array of numbers, stored somewhere in the mem-

2.4

ory of the computer. If we change the value of an element in array a, as we
do in the program above, then we also change the same element of array b,
because a and b are really just the same array.?

This is a tricky point, one that can catch you out if you are not aware of it.
You can do all sorts of arithmetic operations with arrays and they will work
just fine, but this one operation, setting an array equal to another array, does
not work the way you expect it to.

Why does Python work like this? At first sight it seems peculiar, annoying
even, but there is a good reason for it. Arrays can be very large, with millions or
even billions of elements. So if a statement like “b = a” caused the computer
to create a new array b that was a complete copy of the array a, it might have
to copy very many numbers in the process, potentially using a lot of time and
memory space. But in many cases it’s not actually necessary to make a copy
of the array. Particularly if you are interested only in reading the numbers in
an array, not in changing them, then it does not matter whether a and b are
separate arrays that happen to contain the same values or are actually just two
names for the same array—everything will work the same either way. Creating
a new name for an old array is normally far faster than making a copy of the
entire contents, so, in the interests of efficiency, this is what Python does.

Of course there are times when you really do want to make a new copy of
an array, so Python also provides a way of doing this. To make a copy of an
array a we can use the function copy from the numpy package thus:

from numpy import copy
b = copy(a)

This will create a separate new array b whose elements are an exact copy of
those of array a. If we were to use this line, instead of the line “b = a”, in the
program above, then run the program, it would print this:

[2 1]
[1 1]

which is now the “correct” answer.

2If you have worked with the programming languages C or C++ you may find this behavior
familiar, since those languages treat arrays the same way. In C, the statement “b = a”, where a
and b are arrays, also merely creates a new name for the array a, not a new array.

LISTS AND ARRAYS

65

CHAPTER 2

66

PYTHON PROGRAMMING FOR PHYSICISTS

Exercise 2.8: Suppose arrays a and b are defined as follows:

from numpy import array
a = array([1,2,3,4],int)
b = array([2,4,6,8],int)

What will the computer print upon executing the following lines? (Try to work out the
answer before trying it on the computer.)

a) print(b/a+1)

b) print(b/(a+1))

¢) print(1/a)

2.4.5 SLICING

Here’s another useful trick, called slicing, which works with both arrays and
lists. Suppose we have a list r. Then r[m:n] is another list composed of a
subset of the elements of r, starting with element m and going up to but not
including element 1. Here’s an example:

r=1[1,3,5,7,9, 11, 13, 15]
s = r[2:5]
print(s)

which produces
5, 7, 9l

Observe what happens here. The variable s is a new list, which is a sublist of r
consisting of elements 2, 3, and 4 of r, but not element 5. Since the numbering
of elements starts at zero, not one, element 2 is actually the third element of
the list, which is the 5, and elements 3 and 4 are the 7 and 9. So s has three
elements equal to 5,7, and 9.

Slicing can be useful in many physics calculations, particularly, as we'll see,
in matrix calculations, calculations on lattices, and in the solution of differen-
tial equations. There are a number of variants on the basic slicing formula
above. You can write r[2:], which means all elements of the list from ele-
ment 2 up to the end of the list, or r[:5], which means all elements from the
start of the list up to, but not including, element 5. And r[:] with no numbers
at all means all elements from the beginning to the end of the list, i.e., the entire
list. This last is not very useful—if we want to refer to the whole list we can

2.5 | “FOR” LOOPS

just say r. We get the same thing, for example, whether we write print (r[:1)
or print (r). However, we will see a use for this form in a moment.

Slicing also works with arrays: you can specify a subpart of an array and
you get another array, of the same type as the first, as in this example:

from numpy import array

a = array([2,4,6,8,10,12,14,16],int)
b = a[3:6]

print(b)

which prints
[8 10 12]

You can also write a[3:], or a[:6], or a[:], as with lists.

Slicing works with two-dimensional arrays as well. For instance a[2,3:6]
gives you a one-dimensional array with three elements equal toa[2,3],a[2,4],
and a[2,5]. And a[2:4,3:6] gives you a two-dimensional array of size 2 x 3
with values drawn from the appropriate subblock of a, starting at a[2,3].

Finally, a[2, :1 gives you the whole of row 2 of array a, which means the
third row since the numbering starts at zero. And al[:,3] gives you the whole
of column 3, which is the fourth column. These forms will be particularly
useful to us for doing vector and matrix arithmetic.

2.5 "“FOR” LOOPS

In Section 2.3.2 we saw a way to make a program loop repeatedly around a
given section of code using a while statement. It turns out, however, that while
statements are used only rather rarely. There is another, much more commonly
used loop construction in the Python language, the for loop. A for loop is a loop
that runs through the elements of a list or array in turn. Consider this short
example:

r=10[1, 3, 5]

for n in r:
print(n)
print (2*n)

print ("Finished")

If we run this program it prints out the following:

67

CHAPTER 2

68

PYTHON PROGRAMMING FOR PHYSICISTS

O WN -

10
Finished

What's happening here is as follows. The program first creates a list called r,
then the for statement sets n equal to each value in the list in turn. For each
value the computer carries out the steps in the following two lines, printing
out n and 2n, then loops back around to the for statement again and sets n to
the next value in the list. Note that the two print statements are indented, in
a manner similar to the if and while statements we saw earlier. This is how
we tell the program which instructions are “in the loop.” Only the indented
instructions will be executed each time round the loop. When the loop has
worked its way through all the values in the list, it stops looping and moves
on to the next line of the program, which in this case is a third print statement
which prints the word “Finished.” Thus in this example the computer will go
around the loop three times, since there are three elements in the list r.

The same construction works with arrays as well—you can use a for loop
to go through the elements of a (one-dimensional) array in turn. Also the state-
ments break and continue (see Section 2.3.3) can be used with for loops the
same way they’re used with while loops: break ends the loop and moves to
the next statement after the loop; continue abandons the current iteration of
the loop and moves on to the next iteration.

The most common use of the for loop is simply to run through a given piece
of code a specified number of times, such as ten, say, or a million. To achieve
this, Python provides a special built-in function called range, which creates a
list of a given length, usually for use with a for loop. For example range (5)
givesalist [0, 1, 2, 3, 4]—thatis, a list of consecutive integers, starting
at zero and going up to, but not including, 5. Note that this means the list
contains exactly five elements but does not include the number 5 itself.

(Technically, range produces an iterator, not a list. Iterators were discussed
previously in Section 2.4.1. If you actually want to produce a list using range
then you would write something of the form “1ist (range (5))”, which creates
an iterator and then converts it to a list. In practice, however, we do this very
rarely, and never in this book—the main use of the range function is in for
loops and you are allowed to use an iterator directly in a for loop without

converting it into a list first.??)
Thus

r = range(5)
for n in r:
print("Hello again")

produces the following output

Hello again
Hello again
Hello again
Hello again
Hello again

The for loop gives n each of the values in r in turn, of which there are five, and
for each of them it prints out the words Hello again. So the end result is that
the computer prints out the same message five times. In this case we are not
actually interested in the values r contains, only the fact that there are five of
them—they merely provide a convenient tool that allows us to run around the
same piece of code a given number of times.

A more interesting use of the range function is the following:

r = range(5)
for n in r:
print (n**2)

Now we are making use of the actual values r contains, printing out the square
of each one in turn:

O P = O

16

In both these examples we used a variable r to store the results of the range
function, but it’s not necessary to do this. Often one takes a shortcut and just

n versions of Python prior to version 3, the range function actually did produce a list, not
an iterator. If you wanted to produce an iterator you used the separate function xrange, which no
longer exists in version 3. Both list and iterator give essentially the same results, however, so the
for loops in this book will work without modification with either version of Python. For further
discussion of this point, and of iterators in general, see Appendix B.

2.5

“FOR” LOOPS

69

CHAPTER 2

70

PYTHON PROGRAMMING FOR PHYSICISTS

writes something like

for n in range(5):
print (n**2)

which achieves the same result with less fuss. This is probably the most com-
mon form of the for loop and we will see many loops of this form throughout
this book.

There are a number of useful variants of the range function, as follows:

range (5) gives [0, 1, 2, 3, 41
range(2,8) gives [2, 3, 4, 5, 6, 7]
range(2,20,3) gives [2, 5, 8, 11, 14, 17]
range (20,2,-3) gives [20, 17, 14, 11, 8, 5]

When there are two arguments to the function it generates integer values that
run from the first up to, but not including, the second. When there are three
arguments, the values run from the first up to but not including second, in steps
of the third. Thus in the third example above the values increase in steps of 3.
In the fourth example, which has a negative argument, the values decrease in
steps of 3. Note that in each case the values returned by the function do not
include the value at the end of the given range—the first value in the range is
always included; the last never is.

Thus, for example, we can print out the first ten powers of two with the
following lines:

for n in range(1,11):
print (2%*n)

Notice how the upper limit of the range must be given as 11. This program
will print out the powers 2, 4, 8, 16, and so forth up to 1024. It stops at 210,
not 21, because range always excludes the last value.

A further point to notice about the range function is that all its arguments
must be integers. The function doesn’t work if you give it noninteger argu-
ments, such as floats, and you will get an error message if you try. It is particu-
larly important to remember this when the arguments are calculated from the
values of other variables. This short program, for example, will not work:

p = 10

q=2

for n in range(p/q):
print(n)

You might imagine these lines would print out the integers from zero to four,
but if you try them you will just get an error message because, as discussed in
Section 2.2.4, the division operation always returns a floating-point quantity,
even if the result of the division is, mathematically speaking, an integer. Thus
the quantity “p/q” in the program above is a floating-point quantity equal to
5.0 and is not allowed as an argument of the range function. We can fix this
problem by using an integer division instead:

for n in range(p//q):
print(n)

This will now work as expected. (See Section 2.2.4, page 23 for a discussion of
integer division.)

Another useful function is the function arange from the numpy package,
which is similar to range but generates arrays, rather than lists or iterators®!
and, more importantly, works with floating-point arguments as well as inte-
ger ones. For example arange(1,8,2) gives a one-dimensional array of inte-
gers [1,3,5,7] as we would expect, but arange(1.0,8.0,2.0) gives an array
of floating-point values [1.0,3.0,5.0,7.0] and arange(2.0,2.8,0.2) gives
[2.0,2.2,2.4,2.6]. As with range, arange can be used with one, two, or
three arguments, and does the equivalent thing to range in each case.

Another similar function is the function linspace, also from the numpy
package, which generates an array with a given number of floating-point val-
ues between given limits. For instance, linspace(2.0,2.8,5) divides the in-
terval from 2.0 to 2.8 into 5 values, creating an array with floating-point ele-
ments [2.0,2.2,2.4,2.6,2.8]. Similarly, 1inspace(2.0,2.8,3) would cre-
ate an array with elements [2.0,2.4,2.8]. Note that, unlike both range and
arange, linspace includes the last point in the range. Also note that although
linspace can take either integer or floating-point arguments, it always gener-
ates floating-point values, even when the arguments are integers.

31The function arange generates an actual array, calculating all the values and storing them
in the computer’s memory. This can cause problems if you generate a very large array because
the computer can run out of memory, crashing your program, an issue that does not arise with
the iterators generated by the range function. For instance, arange (10000000000) will produce
an error message on most computers, while the equivalent expression with range will not. See
Appendix B for more discussion of this point.

2.5

“FOR” LOOPS

71

CHAPTER 2 | PYTHON PROGRAMMING FOR PHYSICISTS

EXAMPLE 2.6: PERFORMING A SUM

It happens often in physics calculations that we need to evaluate a sum. If we
have the values of the terms in the sum stored in a list or array then we can
calculate the sum using the built-in function sum described in Section 2.4.1. In
more complicated situations, however, it is often more convenient to use a for
loop to calculate a sum. Suppose, for instance, we want to know the value of

the sum s = Y}, (1/k). The standard way to program this is as follows:

1. First create a variable to hold the value of the sum, and initially set it
equal to zero. As above we’ll call the variable s, and we want it to be a
floating-point variable, so we’d do “s = 0.0”.

2. Now use a for loop to take the variable k through all values from 1 to 100.
For each value, calculate 1/k and add it to the variable s.

3. When the for loop ends the variable s will contain the value of the com-
plete sum.

Thus our program looks like this:

s = 0.0

for k in range(1,101):
s += 1/k

print(s)

Note how we use range (1,101) so that the values of k start at 1 and end at 100.
We also used the “+=" modifier, which adds to a variable as described in Sec-
tion 2.2.4. If we run this program it prints the value of the sum thus:

5.1873775176

As another example, suppose we have a set of real values stored in a com-
puter file called values.txt and we want to compute and print the sum of
their squares. We could achieve this as follows:

from numpy import loadtxt
values = loadtxt("values.txt",float)
s = 0.0
for x in values:
s += x*x*2
print(s)

Here we have used the function loadtxt from Section 2.4.3 to read the values
in the file and put them in an array called values. Note also how this example

72

does not use the range function, but simply goes through the list of values
directly.

For loops and the sum function give us two different ways to compute sums
of quantities. It is not uncommon for there to be more than one way to achieve
a given goal in a computer program, and in particular it’s often the case that
one can use either a for loop or a function or similar array operation to perform
the same calculation. In general for loops are more flexible, but direct array
operations are often faster and can save significant amounts of time if you are
dealing with large arrays. Thus both approaches have their advantages. Part
of the art of good computer programming is learning which approach is best
in which situation.

EXAMPLE 2.7: EMISSION LINES OF HYDROGEN

Let us revisit an example we saw in Chapter 1. On page 6 we gave a pro-
gram for calculating the wavelengths of emission lines in the spectrum of the
hydrogen atom, based on the Rydberg formula

;—R(Wiz_;) 2.5)

Our program looked like this:

R = 1.097e-2
for m in [1,2,3]:
print("Series for m =",m)

for k in [1,2,3,4,5]:
n=m++Xk
invlambda = R*(1/m**2-1/n**2)
print(" ",1/invlambda,"nm"

We can now understand exactly how this program works. It uses two nested
for loops—a loop within another loop—with the code inside the inner loop
doubly indented. We discussed nesting previously in Section 2.3.3. The first
for loop takes the integer variable m through the values 1, 2, 3. And for each
value of m the second, inner loop takes k though the values 1, 2, 3, 4, 5, adds
those values to m to calculate n and then applies the Rydberg formula. The end
result will be that the program prints out a wavelength for each combination
of values of m and n, which is what we want.

In fact, knowing what we now know, we can write a simpler version of this
program, by making use of the range function, thus:

2.5

“FOR” LOOPS

73

CHAPTER 2 |

File: rydberg.py

74

PYTHON PROGRAMMING FOR PHYSICISTS

R = 1.097e-2
for m in range(1,4):
print("Series for m =",m)
for n in range(m+1,m+6):
invlambda = R*(1/m**2-1/n**2)
print(" ",1/invlambda,"nm")

Note how we were able to eliminate the variable k in this version by specifying
a range for n that depends directly on the value of m.

Exercise 2.9: The Madelung constant

In condensed matter physics the Madelung constant gives the total electric potential
felt by an atom in a solid. It depends on the charges on the other atoms nearby and
their locations. Consider for instance solid sodium chloride—table salt. The sodium
chloride crystal has atoms arranged on a cubic lattice, but with alternating sodium and
chlorine atoms, the sodium ones having a single positive charge +e and the chlorine
ones a single negative charge —e, where e is the charge on the electron. If we label each
position on the lattice by three integer coordinates (i, j, k), then the sodium atoms fall
at positions where i + j 4 k is even, and the chlorine atoms at positions where i + j + k
is odd.

Consider a sodium atom at the origin, i = j = k = 0, and let us calculate the
Madelung constant. If the spacing of atoms on the lattice is g, then the distance from
the origin to the atom at position (i, j, k) is

V02 + (jo)2 + (ka2 = a2+ 2 + k2,

and the potential at the origin created by such an atom is

e
dregar\/iE + 2+ K2
with €g being the permittivity of the vacuum and the sign of the expression depending
on whether i + j 4 k is even or odd. The total potential felt by the sodium atom is then

the sum of this quantity over all other atoms. Let us assume a cubic box around the
sodium at the origin, with L atoms in all directions. Then

V(i jk) ==+

e

L
Vtotal - Z V(l/]/k) = 47_(€0a

i,jk=—L
not i=j=k=0

where M is the Madelung constant, at least approximately—technically the Madelung
constant is the value of M when L — oo, but one can get a good approximation just by
using a large value of L.

2.6 ’ USER-DEFINED FUNCTIONS

Write a program to calculate and print the Madelung constant for sodium chloride.
Use as large a value of L as you can, while still having your program run in reasonable
time—say in a minute or less.

Exercise 2.10: The semi-empirical mass formula
In nuclear physics, the semi-empirical mass formula is a formula for calculating the
approximate nuclear binding energy B of an atomic nucleus with atomic number Z
and mass number A:
Z? (A—2Z)* as
as — a4 ’
Al/3 A Al/2

B = lllA — 112A2/3 —

where, in units of millions of electron volts, the constants are a; = 15.8, a, = 18.3,
a3 = 0.714, a4 = 23.2, and

0 if A is odd,
as =< 12.0 if A and Z are both even,
—12.0 if Aiseven and Z is odd.

a) Write a program that takes as its input the values of A and Z, and prints out
the binding energy for the corresponding atom. Use your program to find the
binding energy of an atom with A = 58 and Z = 28. (Hint: The correct answer is
around 500 MeV.)

b) Modify your program to print out not the total binding energy B, but the binding
energy per nucleon, which is B/ A.

¢) Now modify your program so that it takes as input just a single value of the
atomic number Z and then goes through all values of A from A = Zto A = 3Z,
to find the one that has the largest binding energy per nucleon. This is the most
stable nucleus with the given atomic number. Have your program print out the
value of A for this most stable nucleus and the value of the binding energy per
nucleon.

d) Modify your program again so that, instead of taking Z as input, it runs through
all values of Z from 1 to 100 and prints out the most stable value of A for each
one. At what value of Z does the maximum binding energy per nucleon occur?
(The true answer, in real life, is Z = 28, which is nickel.)

2.6 USER-DEFINED FUNCTIONS

We saw in Section 2.2.5 how to use functions, such as log or sqrt, to do math-
ematics in our programs, and Python comes with a broad array of functions
for performing all kinds of calculations. There are many situations in compu-
tational physics, however, where we need a specialized function to perform a

75

CHAPTER 2

76

PYTHON PROGRAMMING FOR PHYSICISTS

particular calculation and Python allows you to define your own functions in
such cases.

Suppose, for example, we are performing a calculation that requires us to
calculate the factorials of integers. Recall that the factorial of # is defined as the
product of all integers from 1 to n:

n
nt =]k (2.6)
k=1
We can calculate this in Python with a loop like this:
f=1.0
for k in range(1l,n+1):
f ox=k

When the loop finishes, the variable £ will be equal to the factorial we want.

If our calculation requires us to calculate factorials many times in various
different parts of the program we could write out a loop, as above, each time,
but this could get tedious quickly and would increase the chances that we
would make an error. A more convenient approach is to define our own func-
tion to calculate the factorial, which we do like this:

def factorial(n):
£f=1.0
for k in range(1,n+1):
f x=k
return f

Note how the lines of code that define the function are indented, in a manner
similar to the if statements and for loops of previous sections. The indentation
tells Python where the function ends.

Now, anywhere later in the program we can simply say something like

a = factorial(10)
or

b

factorial (r+2%*s)

and the program will calculate the factorial of the appropriate number. In effect
what happens when we write “a = factorial(10)”—when the function is
called—is that the program jumps to the definition of the function (the part
starting with def above), sets n = 10, and then runs through the instructions

2.6 ’ USER-DEFINED FUNCTIONS

in the function. When it gets to the final line “return f” it jumps back to
where it came from and the value of the factorial function is set equal to
whatever quantity appeared after the word return—which is the final value
of the variable £ in this case. The net effect is that we calculate the factorial of
10 and set the variable a equal to the result.

An important point to note is that any variables created inside the defini-
tion of a function exist only inside that function. Such variables are called local
variables. For instance the variables £ and k in the factorial function above are
local variables. This means we can use them only when we are inside the func-
tion and they disappear when we leave. Thus, for example, you could print the
value of the variable k just fine if you put the print statement inside the func-
tion, but if you were to try to print the variable anywhere outside the function
then you would get an error message telling you that no such variable exists.>?
Note, however, that the reverse is not true—you can use a variable inside a
function that is defined outside it.

User-defined functions allow us to encapsulate complex calculations inside
a single function definition and can make programs much easier to write and
to read. We will see many uses for them in this book.

User-defined functions can have more than one argument. Suppose, for
example, we have a point specified in cylindrical coordinates 7,6,z, and we
want to know the distance d between the point and the origin. The simplest
way to do the calculation is to convert » and 0 to Cartesian coordinates first,
then apply Pythagoras’ Theorem to calculate d:

X =rcosb, y =rsind, d= \/m (2.7)

If we find ourselves having to do such a conversion many times within a pro-
gram we might want to define a function to do it. Here’s a suitable function in
Python:

def distance(r,theta,z):
x = rxcos(theta)

y = rxsin(theta)
d = sqrt (x**2+y**2+z**2)
return d

32To make things more complicated, you can separately define a variable called k outside the
function and then you are allowed to print that (or do any other operation with it), but in that case
it is a different variable—now you have two variables called k that have separate values and which
value you get depends on whether you are inside the function or not.

77

CHAPTER 2

78

PYTHON PROGRAMMING FOR PHYSICISTS

(This assumes that we have already imported the functions sin, cos, and sqrt
from the math package.)

Note how the function takes three different arguments now. When we call
the function we must now supply it with three different arguments and they
must come in the same order—r, 6, z—that they come in in the definition of
the function. Thus if we say

D = distance(2.0,0.1,-1.5)

the program will calculate the distance forr = 2,0 = 0.1, and z = —1.5.

The values used as arguments for a function can be any type of quantity
Python knows about, including integers and real and complex numbers, but
also including, for instance, lists and arrays. This allows us, for example, to
create functions that perform operations on vectors or matrices stored in ar-
rays. We will see examples of such functions when we look at linear algebra
methods in Chapter 6.

The value returned by a function can also be of any type, including integer,
real, complex, or a list or array. Using lists or arrays allows us to return more
than one value if want to, or to return a vector or matrix. For instance, we
might write a function to convert from polar coordinates to Cartesian coordi-
nates like this:

def cartesian(r,theta):
x = r*cos(theta)
y = rxsin(theta)
position = [x,y]
return position

This function takes a pair of values r, 8 and returns a two-element list contain-
ing the corresponding values of x and y. In fact, we could combine the two
final lines here into one and say simply

return [x,y]
Or we could return x and y in the form of a two-element array by saying
return array([x,y],float)

An alternative way to return multiple values from a function is to use the
“multiple assignment” feature of Python, which we examined in Section 2.2.4.
We saw there that one can write statements of the form “x,y = a,b” which

2.6 ’ USER-DEFINED FUNCTIONS

will simultaneously set x = a and y = b. The equivalent maneuver with a
user-defined function is to write

def f(z):
Some calculations here...
return a,b

which will make the function return the values of a and b both. To call such a
function we write something like

x,y = £(1)

and the two returned values would get assigned to the variables x and y. One
can also specify three or more returned values in this fashion, and the individ-
ual values themselves can again be lists, arrays, or other objects, in addition to
single numbers, which allows functions to return very complex sets of values
when necessary.

User-defined functions can also return no value at all—it is permitted for
functions to end without a return statement. The body of the function is marked
by indenting the lines of code and the function ends when the indentation
does, whether or not there is a return statement. If the function ends without
a return statement then the program will jump back to wherever it came from,
to the statement where it was called, without giving a value. Why would you
want to do this? In fact there are many cases where this is a useful thing to do.
For example, suppose you have a program that uses three-element arrays to
hold vectors and you find that you frequently want to print out the values of
those vectors. You could write something like

print("(",r[0],r[1],r[2],"")

every time you want to print a vector, but this is difficult to read and prone to
typing errors. A better way to do it would be to define a function that prints a
vector, like this:

def print_vector(r):
print("(",r[0],r[1],xr[2],")")

Then when you want to print a vector you simply say “print_vector(r)”
and the computer handles the rest. Note how, when calling a function that
returns no value you simply give the name of the function. One just says
“print_vector(r)”, and not “x = print_vector(r)” or something like that.

79

CHAPTER 2

80

PYTHON PROGRAMMING FOR PHYSICISTS

This is different from the functions we are used to in mathematics, which al-
ways return a value. Perhaps a better name for functions like this would be
“user-defined statements” or something similar, but by convention they are
still called “functions” in Python.®

The definition of a user-defined function—the code starting with def—can
occur anywhere in a program, except that it must occur before the first time
you use the function. It is good programming style to put all your function
definitions (you will often have more than one) at or near the beginning of
your programs. This guarantees that they come before their first use, and also
makes them easier to find if you want to look them up or change them later.
Once defined, your functions can be used in the same way as any other Python
functions. You can use them in mathematical expressions. You can use them in
print statements. You can even use them inside the definitions of other func-
tions. You can also apply a user-defined function to all the elements of a list or
array with the map function. For instance, to multiply every element of a list
by 2 and subtract 1, we could do the following:

def f(x):
return 2*x-1

newlist = list(map(f,oldlist))

This applies the function f to every element in turn of the list oldlist and
makes a list of the results called newlist.

One more trick is worth mentioning, though it is more advanced and you
should feel free to skip it if you're not interested. The functions you define
do not have to be saved in the same file on your computer as your main pro-
gram. You could, for example, place a function definition for a function called
myfunction in a separate file called mydefinitions.py. You can put the defi-
nitions for many different functions in the same file if you want. Then, when
you want to use a function in a program, you say

from mydefinitions import myfunction

This tells Python to look in the file mydefinitions.py to find the definition
of myfunction and magically that function will now become available in your
program. This is a very convenient feature if you write a function that you

%3We have already seen one other example of a function with no return value, the standard
print function itself.

2.6 ’ USER-DEFINED FUNCTIONS

want to use in many different programs: you need write it only once and store
it in a file; then you can import it into as many other programs as you like.

As you will no doubt have realized by now, this is what is happening when
we say things like “from math import sqrt” ina program. Someone wrote a
function called sqrt that calculates square roots and placed it in a file so that
you can import it whenever you need it. The math package in Python is noth-
ing other than a large collection of function definitions for useful mathematical
functions, gathered together in one file.>*

EXAMPLE 2.8: PRIME FACTORS AND PRIME NUMBERS

Suppose we have an integer n and we want to know its prime factors. The
prime factors can be calculated relatively easily by dividing repeatedly by all
integers from 2 up to n and checking to see if the remainder is zero. Recall that
the remainder after division can be calculated in Python using the modulo
operation ”%”. Here is a function that takes the number n as argument and
returns a list of its prime factors:

def factors(n):
factorlist = []

k=2
while k<=n:
while n¥%k==0:
factorlist.append (k)
n//=k
k += 1

return factorlist

This is a slightly tricky piece of code—make sure you understand how it does
the calculation. Note how we have used the integer division operation “//”
to perform the divisions, which ensures that the result returned is another in-
teger. (Remember that the ordinary division operation “/” always produces
a float.) Note also how we change the value of the variable n (which is the
argument of the function) inside the function. This is allowed: the argument
variable behaves like any other variable and can be modified, although, like
all variables inside functions, it is a local variable—it exists only inside the

In fact the functions in the math package aren’t written in Python—they're written in the C
programming language, and one has to do some additional trickery to make these C functions
work in Python, but the same basic principle still applies.

81

CHAPTER 2

82

PYTHON PROGRAMMING FOR PHYSICISTS

function and gets erased when the function ends.

Now if we say “print (factors(17556))”, the computer prints out the
list of factors “[2, 2, 3, 7, 11, 19]”. On the other hand, if we specify a
prime number in the argument, such as “print (factors(23))”, we get back
“[23]”—the only prime factor of a prime number is itself. We can use this
fact to make a program that prints out the prime numbers up to any limit we
choose by checking to see if they have only a single prime factor:

for n in range(2,10000):
if len(factors(n))==1:
print(n)

Run this program, and in a matter of seconds we have a list of the primes up to
10000. (This is, however, not a very efficient way of calculating the primes—
see Exercise 2.12 for a faster way of doing it.)

Exercise 2.11: Binomial coefficients

The binomial coefficient (}) is an integer equal to

~kl(n—k)! 1x2x...xk

(n)_ n! onx(mn—-1)x(n—-2)x...x(n—k+1)
k

whenk > 1, or (;) = 1 whenk = 0.

a) Using this form for the binomial coefficient, write a Python user-defined function
binomial(n,k) that calculates the binomial coefficient for given n and k. Make
sure your function returns the answer in the form of an integer (not a float) and
gives the correct value of 1 for the case where k = 0.

b) Using your function write a program to print out the first 20 lines of “Pascal’s
triangle.” The nth line of Pascal’s triangle contains # 4 1 numbers, which are the

coefficients ({), (}), and so on up to (;). Thus the first few lines are

11
121
1331
14641

¢) The probability that an unbiased coin, tossed # times, will come up heads k times
is (})/2". Write a program to calculate (a) the total probability that a coin tossed
100 times comes up heads exactly 60 times, and (b) the probability that it comes
up heads 60 or more times.

2.6 ’ USER-DEFINED FUNCTIONS

Exercise 2.12: Prime numbers

The program in Example 2.8 is not a very efficient way of calculating prime numbers: it
checks each number to see if it is divisible by any number less than it. We can develop a
much faster program for prime numbers by making use of the following observations:

a) A number 1 is prime if it has no prime factors less than n. Hence we only need
to check if it is divisible by other primes.

b) If a number n is non-prime, having a factor r, then n = rs, where s is also a factor.
If r > /nthenn = rs > \/ns, which implies that s < y/n. In other words, any
non-prime must have factors, and hence also prime factors, less than or equal
to /n. Thus to determine if a number is prime we only have to check its prime
factors up to and including /n—if there are none then the number is prime.

¢) If we find even a single prime factor less than 1/ then we know that the number
is non-prime, and hence there is no need to check any further—we can abandon
this number and move on to something else.

Write a Python program that finds all the primes up to ten thousand. Create a list to
store the primes, which starts out with just the one prime number 2 in it. Then for each
number 7 from 3 to 10000 check whether the number is divisible by any of the primes
in the list up to and including /7. As soon as you find a single prime factor you can
stop checking the rest of them—you know 7 is not a prime. If you find no prime factors
/1 or less then n is prime and you should add it to the list. You can print out the list
all in one go at the end of the program, or you can print out the individual numbers as
you find them.

Exercise 2.13: Recursion

A useful feature of user-defined functions is recursion, the ability of a function to call
itself. For example, consider the following definition of the factorial n! of a positive

L1 ifn=1,
T lnx(n—1)! ifn>1.

integer n:

This constitutes a complete definition of the factorial which allows us to calculate the
value of n! for any positive integer. We can employ this definition directly to create a
Python function for factorials, like this:

def factorial(n):
if n==1:
return 1
else:
return n*factorial(n-1)

Note how, if 7 is not equal to 1, the function calls itself to calculate the factorial of n — 1.
This is recursion. If we now say “print (factorial(5))” the computer will correctly
print the answer 120.

83

CHAPTER 2

84

PYTHON PROGRAMMING FOR PHYSICISTS

a) We encountered the Catalan numbers C,, previously in Exercise 2.7 on page 46.
With just a little rearrangement, the definition given there can be rewritten in the
form

1 ifn=0,
Co=9q 4an-2
n+1
Write a Python function, using recursion, that calculates C,,. Use your function
to calculate and print Cygo.

Cn1 ifn > 0.

b) Euclid showed that the greatest common divisor g(m, 1) of two nonnegative in-
tegers m and n satisfies

m ifn =0,
g(n,mmod n) ifn > 0.

sm,m) = {

Write a Python function g(m,n) that employs recursion to calculate the greatest
common divisor of m and n using this formula. Use your function to calculate
and print the greatest common divisor of 108 and 192.

Comparing the calculation of the Catalan numbers in part (a) above with that of Exer-
cise 2.7, we see that it’s possible to do the calculation two ways, either directly or using
recursion. In most cases, if a quantity can be calculated without recursion, then it will
be faster to do so, and we normally recommend taking this route if possible. There
are some calculations, however, that are essentially impossible (or at least much more
difficult) without recursion. We will see some examples later in this book.

2.7 GOOD PROGRAMMING STYLE

When writing a program to solve a physics problem there are, usually, many
ways to do it, many programs that will give you the solution you are looking
for. For instance, you can use different names for your variables, use either
lists or arrays for storing sets of numbers, break up the code by using user-
defined functions to do some operations, and so forth. Although all of these
approaches may ultimately give the same answer, not all of them are equally
satisfactory. There are well written programs and poorly written ones. A well
written program will, as far as possible, have a simple structure, be easy to
read and understand, and, ideally, run fast. A poorly written one may be con-
voluted or unnecessarily long, difficult to follow, or may run slowly. Making
programs easy to read is a particularly important—and often overlooked—
goal. An easy-to-read program makes it easier to find problems, easier to mod-
ify the code, and easier for other people to understand how things work.

2.7 ‘ GOOD PROGRAMMING STYLE

Good programming is, to some extent, a matter of experience, and you will

quickly get the hang of it as you start to write programs. But here are a few

general rules of thumb that may help.

1.

Include comments in your programs. Leave comments in the code to
remind yourself what particular variables mean, what calculations are
being performed in different sections of the code, what arguments func-
tions require, and so forth. It's amazing how you can come back to a
program you wrote only a week ago and not remember how it works.
You will thank yourself later if you include comments. And comments
are even more important if you are writing programs that other people
will have to read and understand. It’s frustrating to be the person who
has to fix or modify someone else’s code if they neglected to include any
comments to explain how it works.

. Use meaningful variable names. Give your variables names that help

you remember what they represent. The names don’t have to be long. In
fact, very long names are usually harder to read. But choose your names
sensibly. Use E for energy and t for time. Use full words where appro-
priate or even pairs of words to spell out what a variable represents, like
mass or angular_momentum. If you are writing a program to calculate the
value of a mathematical formula, give your variables the same names as
in the formula. If variables are called x and f in the formula, call them x
and beta in the program.

. Use the right types of variables. Use integer variables to represent quan-

tities that actually are integers, like vector indices or quantum numbers.
Use floats and complex variables for quantities that really are real or com-
plex numbers.

. Import functions first. If you are importing functions from packages, put

your import statements at the start of your program. This makes them
easy to find if you need to check them or add to them, and it ensures that
you import functions before the first time they are used.

. Give your constants names. If there are constants in your program, such

as the number of atoms N in a gas or the mass m of a particle, create
similarly named variables at the beginning of your program to repre-
sent these quantities, then use those variables wherever those quantities
appear in your program. This makes formulas easier to read and under-
stand and it allows you to later change the value of a constant by chang-
ing only a single line at the beginning of the program, even if the constant

85

CHAPTER 2

86

PYTHON PROGRAMMING FOR PHYSICISTS

appears many times throughout your calculations. Thus, for example,
you might have a line “A = 58” that sets the atomic mass of an atom for
a calculation at the beginning of the program, then you would use A ev-
erywhere else in the program that you need to refer to the atomic mass.
If you later want to perform the same calculation for atomic mass 59,
you need only change the single line at the beginning to “A = 59”. Most
physics programs have a section near the beginning (usually right after
the import statements) that defines all the constants and parameters of
the program, making them easy to find when you need to change their
values.

. Employ user-defined functions, where appropriate. Use user-defined

functions to represent repeated operations, especially complicated op-
erations. Functions can greatly increase the legibility of your program.
Avoid overusing them, however: simple operations, ones that can be
represented by just a line or two of code, are often better left in the main
body of the program, because it allows you to follow the flow of the cal-
culation when reading through your program without having to jump to
a function and back. Normally you should put your function definitions
at the start of your program (probably after imports and constant defi-
nitions). This ensures that each definition appears before the first use of
the function it defines and that the definitions can be easily found and
modified when necessary.

. Print out partial results and updates throughout your program. Large

computational physics calculations can take a long time—minutes, hours,
or even days. You will find it helpful to include print statements in your
program that print updates about where the program has got to or partial
results from the calculations, so you know how the program is progress-
ing. It’s difficult to tell whether a calculation is working correctly if the
computer simply sits silently, saying nothing, for hours on end. Thus, for
example, if there is a for loop in your program that repeats many times,
it is useful to include code like this at the beginning of the loop:

for n in range(1000000) :
if n%1000==0:
print("Step",n)

These lines will cause the program to print out what step it has reached
every time n is exactly divisible by 1000, i.e., every thousandth step. So it
will print:

2.7 ‘ GOOD PROGRAMMING STYLE

Step 0

Step 1000
Step 2000
Step 3000

and so forth as it goes along.

8. Lay out your programs clearly. You can add spaces or blank lines in
most places within a Python program without changing the operation of
the program and doing so can improve readability. Make use of blank
lines to split code into logical blocks. Make use of spaces to divide up
complicated algebraic expressions or particularly long program lines.

You can also split long program lines into more than one line if nec-
essary. If you place a backslash symbol “\"” at the end of a line it tells
the computer that the following line is a continuation of the current one,
rather than a new line in its own right. Thus, for instance you can write:

energy = mass*(vx**2 + vy*x2)/2 + mass*gky \
+ moment_of_inertiaxomega**2/2

and the computer will interpret this as a single formula. If a program
line is very long indeed you can spread it over three or more lines on the

screen with backslashes at the end of each one, except the last.?®

9. Don’t make your programs unnecessarily complicated. A short simple
program is enormously preferable to a long involved one. If the job can
be done in ten or twenty lines, then it’s probably worth doing it that
way—the code will be easier to understand, for you or anyone else, and
if there are mistakes in the program it will be easier to work out where
they lie.

Good programming, like good science, is a matter of creativity as well as tech-
nical skill. As you gain more experience with programming you will no doubt
develop your own programming style and learn to write code in a way that
makes sense to you and others, creating programs that achieve their scientific
goals quickly and elegantly.

35Under certain circumstances, you do not need to use a backslash. If a line does not make
sense on its own but it does make sense when the following line is interpreted as a continuation,
then Python will automatically assume the continuation even if there is no backslash character.
This, however, is a complicated rule to remember, and there are no adverse consequences to using
a backslash when it’s not strictly needed, so in most cases it is simpler just to use the backslash
and not worry about the rules.

87

