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We present an exact calculation of the ac conductivity of a one-dimensional quasicrystal
at all frequencies of the driving electric field. Our model is one of electrons tightly bound
around identical atomic centers, with both the rates for hopping between adjacent sites and the
distances between the sites varying quasiperiodically. The equations governing this system are
the Miller-Abrahams equations, which we solve by a real-space renormalization-group method.
We present results for the particular case of the “Fibonacci-chain” quasicrystal. Despite the
strong similarity between the Miller-Abrahams equations and the equations previously used by
other workers to find the electron and phonon spectra of similar systems, our results show none
of the self-similar aspects displayed by those spectra. However, our results do corroborate earlier
analytical results for the low- and high-frequency forms of the conductivity.

I. INTRODUCTION

In recent years considerable effort has been expended
in the theoretical investigation of the properties of
quasiperiodic systems, particularly since the discovery of
real physical examples.! Much attention has been focused
on the electron and phonon spectra of these systems,
which display the self-similar form of a Cantor set.?3
More recently workers in the field have turned to the cal-
culation of directly measurable quantities, such as the
dynamic structure function? and the conductivity.> In
1988, Aldea and Dulea® showed that it is possible to de-
rive the low- and high-frequency forms of the conductiv-
ity of a one-dimensional quasiperiodic lattice with elec-
trons tightly bound around its atomic centers and gave
results for three well-known quasi-lattices. In this article
we give an exact solution of the equations governing this
same problem using a real-space renormalization-group
approach.

Though our method is, in theory, applicable to any
of the quasiperiodic geometries explored by Aldea and
Dulea, and indeed to any of the much larger class of ge-
ometries generated by discrete scaling or “inflation,” we
present the calculation only for the most famous example
of a one-dimensional quasicrystal—the Fibonacci chain.
This chain may be represented by the sequence of A’s and
B’s generated as the limit of the repeated application of
the (concurrent) “inflation rule,”

A— AB and B — A,

starting from a single letter A, where AB is the concate-
nation of A with B.

Our model is one in which atomic centers along a
straight line are joined by links of two types, correspond-
ing to the letters A and B in the Fibonacci chain. We
study the infinite chain consisting of the periodic rep-
etition of an arbitrarily high-order approximant to the
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Fibonacci chain. This approximant is formed by appli-
cation of the inflation rules a finite number of times m
to produce a chain of F,, links, where F,, is the mth
Fibonacci number (with convention F; = 2). The Fi-
bonacci chain itself is regarded as the limit of this chain
as m — oo. Electrons are tightly bound around the sites
in this lattice, and an electron may hop from one site to
either of those adjacent as a result of interactions with
a “bath” of lattice phonons in thermal equilibrium at a
temperature 7. Both the rates at which electrons hop
along links and the lengths of the links are allowed to
vary according to the pattern of A’s and B’s in the chain.
A spatially constant electric field E = Epe’“? is applied
along the line of the quasilattice, and the conductivity is
determined by taking the spatial average of the current
flowing between pairs of adjacent sites.

II. THE MILLER-ABRAHAMS EQUATIONS

The model we have described was studied by Miller
and Abrahams in the late 1950s.” They derived equa-
tions whose solutions give the current flowing between
any two sites in the lattice up to terms linear in the elec-
tric field. In the notation of the original article the equa-
tions linking the “voltage” variables V,, on the sites on a
one-dimensional lattice are

Vn-—l - Vn

wCn(Vp — Exy,) = +

Vn+1 - Vn
Zn—l,n ’

Zn,n+1

(1)
Here z,, is the position of the nth site in the lattice and
2
e
Cn = 27 (En)[1 = £(En)),

1

2
Znnt1 = ]:_Tf(En)[l - f(En+1)] U,,

where f(¢) is the Fermi function, E, is the energy of an
electron localized about the nth site in the absence of an
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electric field, and U, is the width for a single electron to
hop from the nth site to the (n + 1)th in the absence of
an electric field. If we can solve Eq. (1) for the voltage
variables V,, given the rates U,, then the conductivity of
the model is given by

o= 'EI-L' (ZTn41 — zn)

’

V

n+1

Ly B 2
Zn,n+1 ( )

where L is the length of the chain.

In our model, the E, are all the same, so that f(E,) is
a constant, independent of n, which simplifies the equa-
tions somewhat. Also, following Aldea and Dulea,® we
can subtract each equation from the one immediately fol-
lowing it on the lattice and change to new variables

Vn+1 — Vn

I, =
Zn,n+1

’ d, = Tn4l — Tn,

which gives

<2 + ‘l_W) ILn=1I,_1+ In+l +iwkEd,. (3)
Un
The new variables have simple physical interpretations:
I,, is the thermally averaged rate at which charge is trans-
ferred between the nth site and the (n + 1)th, and d,, is
the distance between nth site and the (n+1)th. In terms
of the new variables the conductivity becomes

a——ZdI (4)

III. RENORMALIZATION-GROUP METHOD

On the Fibonacci chain the Miller-Abrahams equations
take the form

(2+‘£) I, = n—1+In+1+iWEdA; (5)
Ua
on sites n followed by an A-type link, and
(2 + _) ILn=Ii1+ In+1 + i‘UEdB, (6)
Us

on sites n followed by a B-type one. These equations
can be solved by a decimation process that is the exact
reverse of the inflation process used to build up the chain.

The idea is that we divide our quasilattice into three
sublattices called L4, £3, and £, by labeling each site
a, B, or v, depending on what type of links it has to the
left and to the right of it, as shown in Fig. 1. Then we
treat the Miller-Abrahams equations as a special case of
the more general set of equations

€aln =valn-1+ Yalny1 + wFEhy, n€ Ly, (7)

CpI =valn1+ 7BIn+1 + inhﬁ, n e ,Cﬁ, (8)

exln=vln_1 +valny1 + iwFEhy, n € Ly, 9)

which develop under scaling. Clearly these are the same
as the Miller-Abrahams equations provided we put
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FIG. 1. [Illustration of the decimation procedure for a

chain of nine sites.

w
s €p=2+——

tw
€a =€y =2+ — i
B

Ua
Y4a=7B=1,
ho =hy=da, hg=

(10)

Reversing the inflation process (i.e.,
tice),

AB— A and A— B

deflating the lat-

is equivalent to removing all the 3-type sites from the
lattice (see Fig. 1), and eliminating from the equations
all the variables I, on those sites. When we do this
we also relabel all the sites that remain o', §’, or v/,
according to the types (A or B) of their neighboring links
in the renormalized lattice. These new site labels are not
necessarily the same as the old ones.

The elimination of this subset of the variables I,, leaves
us with a new set of equations linking the remaining vari-
ables that has exactly the same form as the old set, the
only difference being that the eight parameters are renor-
malized thus:

e =€ —————7‘?‘—*_7% e =c¢ -—ﬁ e =¢ —ﬁ
a Y fp ’ B Y Eg’ % a Ep’
YTAYB
Ya = , B =74,
€s
(11)

YA+ 7B
h;=h,+—“‘———hﬁ, Rl = h, + h,j,

h—h+ h,,

The quantity we are currently interested in is the con-
ductivity o. Using Egs. (11) and employing a few simple
facts about the arrangement of a-, 8-, and 4-type sites
on the lattice, we can show that o', the value of Eq. (4)
on the decimated lattice, is given by

Ng hj

o _0'——iw-————
L Cp

(12)
where Ny is the number of 3-type sites eliminated. Thus,
by iterating this equation we find that
1?2

(1) ’

m-—1

; h
o=0m4 X Z NP L (13)
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where h(ﬂm),e(ﬁm),Ném) denote the values of hg,e5,Ns after
m iterations of Egs. (11).

So in order to calculate the conductivity of the chain
for specific values of the quantities w, Us, Up, da, and
dp, all we have to do is iterate Eq. (11) starting from the
values (10) and accumulating the quantities Ngh3/eg. If
we start with a lattice with a repeat length of Fy, links,
then after decimating m times we are left with a simple
periodic lattice entirely composed of A-type links. o(™),
therefore, is the value of o for a chain entirely composed
of A-type links. For such a chain, every current I, is
related to its neighbors by Eq. (7), and, summing over
all n, we find that

2
o — i N (h§™)

where N is the total number of links in the chain. Com-
bining Egs. (13) and (14),

. 2 m— (42
RN ! h
o= o N/(fl)( ?1))
€a ' — 27, 1=0 €p

(15)

IV. RESULTS FOR THE CONDUCTIVITY

The first result to come out of Eq. (15) is that 0 = 0
when w = 0. This is easily seen when one observes that
all the quantities entering the bracket on the right-hand
side of Eq. (15) are finite, even in the limit w = 0. Hence,
in this limit, the factor of w outside the brackets ensures
that the conductivity will be zero. This is contrary to
the prediction by Aldea and Dulea® that the conductivity
would be finite as w — 0.

Next, using Eq. (15) we have calculated the conductiv-
ity of chains formed by the infinite repetition of Fibonacci
approximants up to about 100 000 links long for a variety
of initial values of the variables. All the graphs we get are
qualitatively the same, with two “resonances” —peaks in
the imaginary part of o—one in the region of w = Uy
and one at lower frequency. We find that the form of the
curve has very little dependence on the period of repe-
tition of the lattice. In Fig. 2 we display the hopping
conductivity for a chain with a repeat length of 121 393
(: F24) links and

Ua=1, Up=001, dy=1, dpg=1.

The frequency w is measured in units of Uyu.

At very low frequencies Reoc ~ w? and Imo ~ w. At
very high frequencies Reo is constant and Imo ~ w™!.
These results agree in form with the high- and low-
frequency expansions performed by Aldea and Dulea,®
except, again, we find that o — 0, rather than to a finite
limit, as w — 0.

It may at first appear odd that our results for the hop-
ping conductivity of this system should yield an appar-
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FIG. 2. Real (solid line) and imaginary (dashed line) parts

of o(w) for a chain with a repeat length of 121393 links. The
sites are equally spaced and the hopping rates are Uy = 1
and Up = 0.01. The frequency is in units of Ua4.

ently smooth curve for o against w; the Miller-Abrahams
equations on the Fibonacci chain bear a striking simi-
larity to the equations used by earlier workers?:3 to find
the electron and phonon spectra of other models based
upon the same chain, and yet those spectra display a
complex, self-similar structure of which we see no sign in
our results. The explanation lies in the appearance of the
imaginary quantity éw in the coefficients €., €g, €. The
corresponding quantity in the electron-phonon problem
is real—it is the energy E of an electron, or the frequency
squared w? of a phonon.

If we rearrange the Miller-Abrahams equations thus,

tw .

U_n n=In_1— 2L, + Iy + iwEd,,
it becomes apparent that except for the inhomogeneous
term on the right-hand side the equations are nothing
more than a finite difference version of the diffusion equa-
tion, with the diffusion coefficient varying along the lat-
tice. In the phonon problem on the other hand, we have
w? instead of iw on the left, so we get a wave equation.
In order that there should be a finite current flowing
throughout our infinite sample, we require of our solu-
tions for the I, that they neither decay nor grow ex-
ponentially along the lattice, which (still ignoring the
inhomogeneous term) constricts them to being spatially
constant. In the analogous phonon problem, however,
the wave equation form allows the solutions to have spa-
tially varying phase while still remaining finite, and it is
solutions of this type that give rise to the complex spec-
tra.

In reality, of course, the inhomogeneous term is
present, and this does introduce some more interesting
behavior in the conductivity. (After all, o is not totally
featureless.) But the crucial point is that oscillatory so-
lutions for the I,, are not allowed, and these are the very
solutions that produce the remarkable spectra seen in the
earlier work.
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There is another type of interesting behavior that we
would expect to see in the conductivity, in its varia-
tion with the length of the sample for which it is cal-
culated. The Landauer formula results of Sokoloff> and
of Kohmoto and Sutherland® indicate that the conduc-
tivity should show oscillatory behavior with the length
of the chain. It is one of the problems with the present
model that we do not see this behavior. Of course, we
do not expect to find it if we insist on making our cal-
culations for an infinite lattice and performing a spatial
average over the currents flowing in the lattice to get at
the conductivity. However, it is a simple modification of
our calculation to get the conductivity of a finite section
of the chain by solving a finite set of Miller-Abrahams
equations with the condition that the current flowing in
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one end of the chain should be the same as that flowing
out the other end (equivalent to applying periodic bound-
ary conditions to the infinite chain). However, since we
believe interesting variations in the phases of the I, as
we move along the chain to be prohibited by the diffusion
equation form, it is not surprising to find that the results
so obtained for the conductivity are very similar to those
for the infinite chain, and that no interesting variation
with the length of the sample is revealed. This is a gen-
uine shortfall of the model, and indicates the need for a
more sophisticated calculation of the conductivity. Such
a calculation would probably make use of either the Lan-
dauer formula,® %3 or the full current-current correlation
function, of which, as far as we are aware, no calculations
have yet been made.
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