
Chapter 9

Acoustic musical instruments

I
n previous chapters we have studied the nature of sound and how we hear it.

We now turn to the question of how musical sound is made, using the devices

we call musical instruments. We will examine the workings of a wide range

of musical instruments, including both traditional acoustic instruments, such as the

instruments of the orchestra, and electric and electronic instruments such as the

electric guitar and synthesizers. We begin with acoustic instruments.

9.1 Vibration and sound production

�e fundamental working principle of all acoustic musical instruments is the same:

some part of the instrument is made to vibrate in some way, which in turn makes the

air vibrate to produce sound. Drums are a good example. A drum consists of a drum

head—a �exible skin or membrane—stretched over a rigid frame. �e drum head is

made to vibrate by striking it, for instance with a drumstick, and the vibrating head

pushes on the adjacent air, producing pressure variations that we hear as sound, in a

manner somewhat similar to the operation of a loudspeaker with its vibrating cone

(see Section 7.5). �e frequency of vibration translates directly into the frequency of

the sound wave and hence to the pitch of the sound one hears.

�e vibrating element of an instrument varies from one instrument to another.

On a drum it is the drum head. On a string instrument it is the strings. On a wind

or brass instrument it is a vibrating column of air. However, the basic scienti�c

principles that govern the vibration are the same in all these cases. In order for a

mechanical system to vibrate it must have three crucial properties: an equilibrium,

a restoring force, and inertia. Let us take a look at how these properties conspire to

produce the e�ects we want.

For a moment let us forget about musical instruments and consider a very simple

example of vibration, a pendulum, consisting of a weight or bob a�ached to the end

of a rod which can pivot around its other end, as shown in the �gures on the right.
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9.1 | Vibration and sound production

A pendulum typically only vibrates slowly, perhaps once a second, which is below

the frequency of audible sound, so it is not a useful musical instrument, but it is a

good tool to help us understand the mechanics of vibration before we move onto the

more complicated mechanics of real instruments.

Force

Inertia

Force

Equilibrium position

If a pendulum is hanging straight down vertically, as in the top �gure on the right,

it will be motionless. As long as we don’t disturb it, it will not go anywhere on its

own. �is is the equilibrium we spoke of. Every vibrating system has an equilibrium

position where it will remain motionless unless disturbed.

Now suppose we pull the pendulum to one side, as in the second �gure. �e

action of gravity now pulls the bob back toward the equilibrium position as indicated

by the arrow. If we were holding the bob we would feel this pull as a weight against

our hand. �is is the restoring force. �e restoring force acts to pull us back toward

the equilibrium position. In the �gure the bob has been pulled to the le� and the

restoring force is to the right. If we were to pull the bob to the right then the force

would be to the le�.

If we now let go of the bob it will fall back toward the center and a�er a li�le while

it will have traveled back to the equilibrium position, as shown in the third �gure. At

this point one might imagine it would stop moving: as we have said the equilibrium

position is a stationary point where the bob will sit motionless inde�nitely. Now,

however, our third property of vibration comes into play: inertia. By the time the

bob has fallen back to the equilibrium position it is moving quite fast and moving

objects have inertia. Once you set them moving they go on moving, at least for a

while. �is inertia means that the bob does not stop when it reaches the equilibrium

position, but keeps on moving and swings over the other way, to the right as shown

in the bo�om �gure.

Now, however, the restoring force on the bob is acting in the opposite direction,

to the le�, which slows it down, turns it around, and pushes it back toward the

center again. And so the process repeats. �e bob swings one way, passes through

the equilibrium position, slows down, and swings the other way, over and over in the

repeated motion familiar to us from pendulum clocks and swing sets everywhere.

9.1.1 The mathematics of vibration

We have described the mechanics of vibration in qualitative terms. We can be more

precise about it by invoking Newton’s laws of motion, speci�cally the �rst and sec-

ond laws. In colloquial terms, Newton’s �rst law says that an object in motion will

continue moving unless something or someone acts to stop it. �is is inertia. One

might argue that objects do not continue in motion inde�nitely—in the end a rolling

ball stops moving. �is however is only because of friction with the ground. In other

words something is acting to stop the ball, as Newton says. In the absence of friction

an object really will continue moving forever. �ere are rocks in space (where there
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Chapter 9 | Acoustic musical instruments

is no friction) that have been moving for millions of years and will continue moving

for millions more.

Newton’s second law tells us how the motion of an object will change if we do

take action. Speci�cally, if we apply a force � to an object, the second law says that

the object will accelerate in the direction of the force with an acceleration 0 given by

0 =

�

<
, (9.1)

where � is measured in newtons, < is the mass of the object in kilograms, and the

resulting acceleration is measured in meters per second per second. In the case of

our pendulum, for instance, the force � is provided by gravity acting on the bob and

< represents the mass of the bob. Commonly, Newton’s second law is wri�en in

slightly di�erent form as � =<0, but for our purposes here Eq. (9.1) is actually more

convenient.

We can use Newton’s laws to deduce some crucial properties of vibrating motion.

Take a look at the pictures of the pendulum on page 321 again and consider the

motion of the bob starting in its le�most position where, momentarily at least, it is

standing still, before accelerating back to the center. Let us suppose the amount of

time it takes to reach the center point is C and it has velocity E when it gets there. We

can calculate the average acceleration of the bob by dividing the change in velocity

(from zero to E) by the time C , giving

0 =

E

C
. (9.2)

�us, for instance, if the pendulum is initially stationary and ends up with velocity

E = 2m/s half a second later, the acceleration is 2/0.5 = 4 meters per second per

second, or 4m/s2.
Now suppose that we somehow contrive to make our pendulum swing twice as

fast. In other words we double the frequency of the vibration. We could do this for

instance by increasing the restoring force so that the bob is pushed faster toward the

center. Now the amount of time the bob takes to reach the center will be reduced

to 1
2C and its velocity at the center point will be twice as large at 2E , so its acceleration

is now

0 =

2E
1
2C

= 4
E

C
, (9.3)

which is four times what it was previously in Eq. (9.2).

In other words, if youmultiply the frequency of vibration by two youmultiply the

acceleration by four. Following the same argument one can easily show that in fact

if you multiply the frequency by any number the acceleration is multiplied by that

number squared. In mathematical terms acceleration is proportional to frequency

squared: 0 ∝ 5 2.
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9.1 | Vibration and sound production

Now we apply Newton’s second law 0 = �/< to write this as

�

<
∝ 5 2, (9.4)

or, taking the square root and rearranging,

5 ∝
√

�

<
. (9.5)

�is result says that the frequency of vibration is proportional to the square root of

the restoring force � divided by the amount of inertia as measured by the mass<.

�is fundamental rule, or some version of it, governs all vibrations.

Example 9.1: The freqency of a pendulum

For the pendulum the restoring force � is provided by gravity. If we wanted to increase the

restoring force on a pendulum, one way to do it would be to increase gravity, which we

could do by taking the pendulum to a di�erent planet with stronger gravity, or by �ying

it into space where gravity is weaker. �is would be a rather extravagant approach, but it

would work. For instance, if we took the pendulum high above the Earth to a place where

gravity was a quarter as strong, how would the frequency of the pendulum change, all

other things being equal?

Equation (9.5) tells us the answer: frequency is proportional to the square root of the

restoring force � , so the frequency would be a half of what it is on the surface of the planet,

since
√

1/4 = 1
2 .

A more practical way to change the restoring force would be to change the weight of

the bob of the pendulum. Doubling the weight, for instance, would double the restoring

force. How will this change the frequency of pendulum? �is is a more tricky question.

Doubling the weight of the bob does double the restoring force, but it also doubles the

mass<, so the value of �/< does not change at all—the increase just cancels out. Equa-

tion (9.5) then tells us that the frequency will not change when we change the weight of

the bob. �is can be a useful feature, making a pendulum a reliable timekeeper that has

historically been used in clocks as well as scienti�c instruments such as seismometers.

Advanced material

9.1.2 Simple harmonic motion

We have motivated our results so far by appealing to qual-

itative arguments, but we can make things more precise

with a li�le mathematics. Consider a vibrating system and

let G represent the displacement of the system from its

equilibrium position. For instance, G might be how far the

bob of a pendulum is displaced from the vertical rest posi-

tion. �e restoring force on the bob of a pendulum is zero

when the pendulum is at equilibrium but grows larger the

further we push it to one side or the other, meaning it in-

creases with G , and this is true of most vibrating systems.

Let us suppose the force � is simply proportional to G with
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some proportionality constant : , so that � = −:G . �e

minus sign indicates that the restoring force is always in

the opposite direction to the displacement—if we push a

pendulum to le� the restoring force is to the right and vice

versa.

At the same time we can write the acceleration of the

motion as the second derivative d2G/dC2, and hence we can
write Newton’s second law � =<0 as

−:G =<
d2G

dC2
, (9.6)

or equivalently

d2G

dC2
+ :

<
G = 0, (9.7)

where< is the mass of the vibrating system—the mass of

the bob in the case of the pendulum, for example.

Equation (9.7) is the fundamental equation of simple

harmonic motion, the most straightforward type of vibra-

tion and the main one that applies to musical instruments.

�e equation has a solution of the form

G (C) = � sin(2c 5 C), (9.8)

where� is the width or amplitude of the motion and 5 is its

frequency. We can check that this is indeed a solution by

substituting it into Eq. (9.7) and performing the derivative,

which gives us

−(2c 5 )2� sin(2c 5 C) + :

<
� sin(2c 5 C) = 0. (9.9)

Cancelling some factors and rearranging, we �nd that the

equation is satis�ed provided (2c 5 )2 = :/< or

5 =

1

2c

√

:

<
. (9.10)

�is equation tells us the frequency of vibration in terms of

the quantities : and<. �is is a version of the result we de-

rived previously in Eq. (9.5), with the constant : measuring

the size of the restoring force. Note that the frequency does

not depend on the amplitude� of the vibration. One might

expect that larger amplitude vibrations would be slower

because there is more distance to cover, but larger ampli-

tude alsomeans larger restoring force (since restoring force

is proportional to displacement), which in turn makes the

motion faster. �e faster motion exactly compensates for

the greater distance traveled so that the frequency stays

the same. �is turns out to be crucial for musical pur-

poses, since it means that the frequencies of the notes pro-

duced by a musical instrument that employs simple har-

monic motion do not depend on whether the instrument is

played loudly or so�ly.

9.2 Vibrating strings

�e strings of a string instrument are an archetypal example of the phenomena we

have been talking about, a simple mechanical system providing a steady vibration

that forms the basis for producing musical notes. String instruments di�er in the

details of their form and construction but there are basic principles that are common

to all of them. One or more strings are a�ached at both ends to a rigid frame that

pulls them taught, allowing them to vibrate when plucked, struck, or bowed. Other

parts of the instrument, such as neck and soundboard, can also play important roles,

but let us ignore these for the moment and concentrate our a�ention on the string

itself, as depicted in Fig. 9.1.

Figure 9.1a shows a string in its equilibrium position, straight and at rest. If le�

undisturbed the string will remain in this position inde�nitely. In order to vibrate theBe careful not to con-
fuse the tension with the
period of a sound wave,
which is also represented
by the le�er ) .

string must be under tension, stretched between the two end supports. �e tension)

is de�ned to be the force, measured in newtons, with which these end supports are

pulling on the string. Imagine holding it taught with your hands: the tension is the

force you would pull with, which is necessarily the same at both ends.
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T T(a)

T T(b)

(c)

Figure 9.1: Vibration of a stretched string. A string is stretched between two �xed sup-

ports. (a) �e equilibrium position of the string occurs when the string lies in a straight line

between the supports. �e tension) is the force exerted by the supports on the string to keep

it stretched. �is force is necessarily the same at both ends. (b) If the string is pulled upward

in the middle, the tension force now acts at an angle, outward but also partly downward. It

is this downward component of the tension that pulls the string back toward the equilibrium

position and provides the restoring force. (c) If we let go of the string, the combination of

restoring force and inertia makes it vibrate.

�e tension provides the restoring force needed to make the string vibrate. If

you grab the string in the middle and pull it upward as shown in Fig. 9.1b, it will

resist you and pull back. �e reason is that by pulling the string up in this way, you

change the direction of the tension force as shown in the �gure. Now the tension is

acting not just sideways but also partly downward. It is this downward component

of the tension that pulls the string back towards being straight. �e restoring force

is not equal to the tension, but it is caused by the tension and proportional to it:

if you double the tension then you double the restoring force. �e string also has

mass—it weighs something, which gives is inertia—so it has all the features necessary

for vibration: equilibrium, restoring force, and inertia. When we let it go, it will

vibrate as shown in Fig. 9.1c. Making use of our earlier result that the frequency 5

of vibration is proportional to
√

�/< where< is the mass, we have in this case

5 ∝
√

)

<
. (9.11)

Example 9.2: A vibrating string

How will the frequency of vibration of a string change if we multiply either the tension or

the mass by four?
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Since 5 is proportional to
√
) , multiplying the tension by four will double the fre-

quency, because
√
4 = 2. On the other hand, 5 is inversely proportional

√
<, so multiplying

the mass by four will half the frequency—heavier strings have lower frequency. Both of

these adjustments are useful in musical situations. Variations in tension are used to tune

musical instruments, the tension being adjusted by turning a tuning peg or machine head.

Variations in mass are useful on instruments that have more than one string, tuned to dif-

ferent notes: strings intended for lower notes are commonly made heavier than those for

higher notes, allowing the instrument to play a wide range of di�erent pitches, potentially

spanning many octaves.

9.2.1 Mersenne’s law

Equation (9.11) tells us how the frequency of vibration of a string depends on tension

and mass, but it does not tell the complete story because there is another important

variable we have yet to discuss: the length of the string, which we will denote by !.

In the 17th century, French scientist and philosopher Marin Mersenne performed

a series of experiments and determined that the frequency of vibration of a string in

hertz is given in terms of its tension, mass, and length by the formula

5 =

1

2

√

)

!<
. (9.12)

Note that this is not now a “proportional to” type of equation, but a full equality.

Given the tension, mass, and length, you can use this formula to calculate the actual

frequency of a string.

Equation 9.12 is commonly referred to as Mersenne’s law or Mersenne’s formula,Sometimes you may
see references to
“Mersenne’s laws” (plu-
ral) because the e�ects
of length, tension, and
mass are considered by
some to be three sepa-
rate laws, even though
they are all captured by
a single equation.

although others before Mersenne, including Galileo, had worked out at least parts

of it. Mersenne arrived at the formula by performing experiments, but it can also be

derived theoretically from Newton’s laws of motion. �e derivation, which involves

some calculus, is given in Sections 9.2.3 and 9.2.4.

For musical purposes, Eq. (9.12) is not in the most useful form of Mersenne’s

law because measuring the mass < of a string can be quite di�cult. We can make

the equation more useful by the following trick. In almost all cases, the strings of a

string instrument take the form of cylinders, circular in cross-section. �e mass of

such a string is by de�nition equal to the density of the material it is made of (the

weight in kilograms per cubic meter) times the volume of material (the number of

cubic meters). Suppose our string has length ! as before and radius A , as sketched

in Fig. 9.2. �e formula for the volume + of a cylinder says that + = cA 2! and,

multiplying by the density d , we �nd the mass to be

< = cA 2!d. (9.13)

In fact it is usually more convenient to talk about the diameter 3 of a string than its
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L

r

Figure 9.2: Volume of a string. A string in the form of a cylinder of length ! and radius A

has volume + = cA2!. For clarity the width of the cylinder is exaggerated in this picture.

A real-life instrument string would be much narrower compared to its length.

radius. �e radius is half the diameter A = 1
23 , so

< = c
(
1
23
)2
!d =

1
4c3

2!d. (9.14)

Substituting this form into Eq. (9.12) we get

5 =

1

2

√

4)

c32!2d
(9.15)

which simpli�es to

5 =

1

!3

√

)

cd
. (9.16)

�is is the form of Mersenne’s law we will use in this book. Given a string’s tension,

length, and diameter (which can be easily measured), and the density of the material

from which it is made, this equation allows us to calculate the frequency at which it

will vibrate.

Example 9.3: An acoustic guitar string

�e vibrating part of a string on a standard acoustic guitar is 25 12 inches long, which is

0.648 meters. �e second string (the one that plays the second-highest note) normally has

a diameter of 16 thousandths of an inch or 0.406mm. Suppose it is made of solid steel,

which has a density of 7900 kg/m3, and its tension is 10.7 kg. What musical note does it

play?

To answer this question we must �rst convert the tension into newtons, which we do

by multiplying by 9.81:

) = 9.81 × 10.7 = 105 newtons. (9.17)

Feeding this �gure into Mersenne’s law, Eq. (9.16), along with the given numbers for the

length, diameter, and density, we �nd that

5 =

1

0.648 × 0.406 × 10−3

√

105

c × 7900
= 247Hz. (9.18)

Consulting Fig. 2.11 on page 34, we see that this frequency is very close to that of the

note B3, which is indeed the note played by the second string of a guitar.
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Example 9.4: An electric guitar string

An electric guitar has strings the same length as those of an acoustic guitar and they play

the same notes, but they are thinner. �e second string, for instance, still plays the note

B3, but typically has a diameter of only 13 thousandths of an inch, or 0.330mm. What will

be the tension of such a string if it is again made of steel?

To answer this question, we rearrangeMersenne’s law, Eq. (9.16), to give us the tension

thus:

) = cd (5 !3)2 . (9.19)

�e density, frequency, and length are as before; only the diameter has changed, giving us

a tension of

) = c × 7900 × (247 × 0.648 × 0.330 × 10−3)2 = 69.2 newtons. (9.20)

If we like we can convert this into kilograms by dividing by 9.81, which gives a tension

of 7.1 kg, signi�cantly less than then 10.7 kg of the acoustic guitar. In practice, this means

that the strings of the electric guitar feel less rigid to the player and are easier to move and

pluck. �is di�erence plays an important role in the contrasting styles of play for acoustic

and electric guitars. In particular, the ability to “bend” the strings of an electric guitar,

which causes their pitch to go slightly sharp, is a central technique in rock guitar styles,

and is much easier to do when the strings have lower tension (see Section 10.3.3).

In passing, we note that 7 to 10 kg of tension in a guitar string is a signi�cant amount.

�e tip of the reinforc-
ing truss rod can be seen
inside the soundhole of
this acoustic guitar.

Most guitars have six strings and, assuming the tension is similar on all the strings (which

it is), the total tension force from all six is in the range of 40 to 60 kg—roughly the weight

of a adult human being. All of this force has to be borne by the neck of the guitar without

warping or breaking. To help with this a guitar normally has a steel reinforcing bar called

a truss rod embedded inside the neck.

9.2.2 Turning vibration into sound

�e strings of a string instrument do not on their own produce much sound. �ey

do push on the air around them and cause it to vibrate, but only to a small extent.

�ink of the sound made by a stretched rubber band or a plucked archery bow: you

can hear a note, but it is not loud enough to be a practical musical instrument.

�e problem is two-fold. First, a typical string is rather thin, so it doesn’t move

very much air. It can produce quite a large sound pressure ? at the string surface

where it compresses the air, and hence a large sound intensity ?2/d2 (see Eq. (3.7)

on page 57). But intensity is sound energy per square meter and the surface of the

string does not cover very many square meters. Hence the total sound energy pro-

duced is small. We encountered a similar issue when we considered the operation

of loudspeakers in Section 7.5. �ere we saw that the sound power produced by a

speaker is proportional to the area of the speaker cone, so smaller speakers produce

less sound—see Eq. (7.81) on page 260. �e same is true of the vibrating string and

its small surface area means that it will never produce much sound.
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Figure 9.3: Sound pressure produced by a moving string. �is computer calculation

shows the sound pressure produced by a string as it vibrates and pushes on the air around it.

�e string, seen in cross-section, is represented by the circle. �e air is compressed in front of

the string, creating a region of high pressure (light shading), but it is also rare�ed behind the

string, creating a region of low pressure (dark). �e two partly cancel, so the net amount of

sound produced by the string is relatively small.

But this is not the only problem. Take a look at Fig. 9.3, which shows a visualiza-

tion of the sound pressure created by a vibrating string. As the string moves through

the air it does indeed compress the air in front of it and raise the pressure, but at

the same time it also leaves a rare�ed region of low pressure behind it, and the two

partially cancel out, so that the net change in air pressure is smaller than we might

expect. In the language of acoustics, we say that the string is a “dipole radiator” of

sound, meaning a combination of high and low sound pressure at the same time.

To turn vibration into sound, therefore, a string instrument makes use of a sound-

board, a thin board, typically made of wood. In the most common arrangement, the

strings run over a short bar, called a bridge, which rests on the soundboard. When

the string vibrates the vibration is transmi�ed through the bridge to the soundboard,

causing it to vibrate too. On an acoustic guitar, for instance, the whole of the front

of the guitar body acts as the soundboard—see Fig. 9.4. On a grand piano, the sound-

board is a wooden board several feet long mounted on the bo�om of the instrument.

You can see it if you look underneath the piano.

Because it is much larger than the size of the string, the soundboard makes a

larger sound than the string does. We discussed sound production from a soundboard
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Bridge

Strings

Frets

Fingerboard Tuning heads

Nut

Soundboard

Figure 9.4: An acoustic guitar. �e vibrating parts of the strings on an acoustic guitar run

from the bridge to the nut at the end of the neck. �e vibration is transmi�ed through the

bridge to the front of the guitar body, which acts as the soundboard.

previously in Section 1.3, and the mechanics is also similar to sound production by a

loudspeaker cone, as discussed in Section 7.5. A soundboard does still su�er from the

dipole radiator problem described above: every time it compresses the air in front of

it, it also creates a region of lower pressure behind. �is issue is minimized in an in-

strument like a guitar, however, because the back of the soundboard is mostly hidden

inside the body of the instrument where the sound cannot escape. (We discussed a

similar strategy for loudspeakers in Section 7.5.5, in which the sound from the back

of a speaker cone is minimized by enclosing the speaker in a sealed cabinet.)

�e basic principles described here are common to all string instruments, but

there is a great deal of cra� that goes into the design and manufacture of individual

instruments. In Chapter 10 we will look in detail at the workings of a range of string

instruments, including the guitar and other plucked instruments, bowed orchestral

strings, and the piano.

Advanced material

9.2.3 Eqation of motion for a stretched

string

MarinMersenne derived his law for the frequency of vibra-

tion of a string experimentally, by careful measurement of

the behavior of real strings. It can, however, also be de-

rived from �rst principles using a knowledge of mechanics

and Newton’s second law of motion.

Consider a stretched string �xed at both ends and un-

der tension ) . Figure 9.5 shows a portion of such a string,

in the process of vibrating. Let us measure position along

the string by G , which for a string of length ! will run
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dx

Fx = −T

Fy

x x + dx

Figure 9.5: Forces acting on a segment of a string. �e curve in this diagram represents a

portion of a vibrating string. Because the string is curved the tension forces acting on the two

ends of a small segment of width dG are at slightly di�erent angles.

from G = 0 to G = !, and consider a short segment of the

string of length dG , between positions G and G +dG , as indi-
cated by the dashed lines in the �gure. We will denote the

vertical position of the string at point G , measured from

the equilibrium position, by ~ (G). Note that as the vibra-
tion pushes the string up and down it causes it to curve as

shown, which means the slope m~/mG of the string at the

two ends of our segment is not exactly the same.

�e tension force acts along the line of the string and

has a horizontal component �G that is, to a good approx-

imation, just equal to ) , the resting tension on the string.

At the le�-hand side of our segment it is �G = −) since it

acts to the le�, and at the right-hand side it is +) . �e hor-

izontal component does increase a li�le when the string

vibrates up and down because the string gets stretched

slightly, which increases the tension, but this e�ect is small

and we will ignore it.1 �e ratio of the vertical and hori-

zontal components of the force, �G and �~ , is equal to the

slope of the string, and hence the vertical force at the le�-

hand end of our segment is

�~ = �G

( m~

mG

)

G
= −)

( m~

mG

)

G
, (9.21)

where the subscript G indicates that we are calculating the

slope at position G . Similarly at the right-hand end the ver-

tical force is

�~ = )
( m~

mG

)

G+dG
, (9.22)

and the total vertical force on the segment is the sum of

Eqs. (9.21) and (9.22):

)
( m~

mG

)

G+dG
−)

( m~

mG

)

G
= )

m2~

mG2
dG . (9.23)

Nowwe apply Newton’s second law. Let the total mass

of the string, from one end to the other, be<, so that the

mass per unit length is </! and the mass of our small

segment is (</!) dG . Applying Newton’s law in the form

� = <0 in the vertical direction, with this mass and the

force from Eq. (9.23), we have

)
m2~

mG2
dG =

<

!
dG

m2~

mC2
, (9.24)

where m2~/mC2 is the vertical acceleration. Cancelling a fac-
tor of dG and rearranging, we then �nd that

m2~

mG2
−
( <

!)

) m2~

mC2
= 0. (9.25)

�is is the equation of motion for a vibrating string. Gener-

ically it is a form of the thewave equation. We encountered

the same equation, in a slightly di�erent form, in Eq. (1.15)

on page 12, as the equation that governs the motion of

sound through air.

9.2.4 Solution of the eqation

�ere is more than one solution to Eq. (9.25), but the pri-

mary one for our purposes is:

~ (G, C) = � sin
cG

!
sin(2c 5 C), (9.26)

1�e small increase in the tension can have a musical e�ect: it makes the note go slightly sharp when

the displacement of the string from side to side is large, for instance when a guitar string is plucked par-

ticularly vigorously. �is slight change in pitch causes a twanging sound that is a characteristic element

of some musical styles. See Section 10.3.3 for more details.
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which is a vibration with frequency 5 . Note that this ex-

pression has ~ = 0 when G = 0 or G = !, i.e., at the ends of

the string, as must be the case since the string is �xed and

motionless at these two points.

To verify that (9.26) is a solution, we can substitute it

into Eq. (9.25) and perform the derivatives, which gives

−�
(c

!

)2
sin

cG

!
sin(2c 5 C)

+�
<

!)
(2c 5 )2 sin cG

!
sin(2c 5 C) = 0. (9.27)

Cancelling several factors and rearranging, we �nd that we

do indeed have a solution provided that

5 =

1

2

√

)

!<
. (9.28)

Comparing with Eq. (9.12), we see that this is precisely

Mersenne’s law. In other words, a string �xed at both ends

will vibrate at a frequency given by Mersenne’s law. As we

will see later, there are other solutions to Eq. (9.25) too, but

all of them have higher frequencies of vibration and hence

correspond to overtones of the sound. Equation (9.28) gives

the fundamental frequency of the string.

A solution of the form (9.26) is a standing wave: it is

an oscillatory wave-shaped motion, but it is not a traveling

wave like a soundwavemoving through air. It remains sta-

tionary, con�ned to the length of the string, with its peaks

and valleys always in the same place.

Equation (9.26) also tells us that the waveform of the

vibration is a sine wave and it tells us that the spatial shape

of the vibrating string is also a sine wave. �ese obser-

vations will become important later when we look at the

timbre of the notes produced by string instruments.

9.3 Other sources of vibration

Vibrating strings are not the only means by which musical instruments generate

vibration. Instruments come in an enormous range of types and styles that generate

vibration using many di�erent kinds of vibrating elements.

Membranes and skins: Drums use �exible vibrating membranes—drum heads—

to produce sound. A nice feature of a drum head is that it acts as its own soundboard.

A drum head is large enough to produce a signi�cant amount of sound on its own

by pushing directly against the air next to it. On the other hand, the vibrations of

drum heads are more complicated than those of strings, and in particular they do

not normally have simple periodic vibrations, and hence they do not produce a clear

musical note. �is makes drums useful primarily as rhythmic instruments and not

as melodic ones. We discuss the working of drums in Section 13.6.

Rigid metal sheets: Instruments like cymbals and gongs make use of vibrating

sheets of metal to produce sound. �ese are similar in some respects to drum heads,

but they have an intrinsic rigidity of their own and hence do not need to be stretched

across a frame as a drum head is. Like a drum head they act as their own soundboard,

having an area large enough to make a signi�cant amount of sound without further

help. Bells are related to cymbals, consisting again of a vibrating sheet, but one that

has now been formed into a cup-like shape, o�en with a hammer or clapper inside

to produce sound. We discuss bells and cymbals in Sections 13.4 and 13.7.

Bars of wood or metal: Solid bars of wood or metal can produce a sound when

struck, and this principle is used in instruments like the xylophone and glockenspiel,
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which employ free-standing bars, typically resting on a frame or support of some

kind, and in handheld percussion instruments like woodblocks and claves. Chimes,

such as triangle and wind chimes, use free-hanging solid metal cylinders rather than

bars, but are otherwise similar in their mechanics, while orchestral chimes (also

called tubular bells) use hollow cylinders. A slightly di�erent approach employs

a bar or cylinder fastened at one end and free to vibrate at the other, as found for

instance in the tuning fork, the kalimba or mbira, and the Rhodes piano. We discuss

vibrating bars and cylinders in Sections 13.1, 13.3, and 14.5.2.

Air columns: A�er string instruments, themost common class of pitched (melodic)

instruments are the wind and brass instruments. �ese are somewhat di�erent from

the others we have mentioned in that they produce their sound not through the vi-

bration of a solid object, but through the vibration of a column of air. �e interesting

physics of this approach we discuss in detail in Chapter 11. Like drums and cym-

bals, wind instruments have no need of a soundboard, though for a di�erent reason:

since wind instruments work by making air vibrate, they directly produce sound

themselves, without the need for any mechanism to turn vibration into sound.

Having seen the basic principles of musical instruments, we now turn to an ex-

amination of the speci�c workings of some of the most common and popular instru-

ments, starting in the next chapter with the string instruments.

Chapter summary:

• Acoustic musical instruments—those that work without the bene�t of electri-

cal ampli�cation—are all based on the same fundamental principle. Some part

of the instrument is made to vibrate, and that vibration is translated into vi-

bration of the air and hence sound. Examples including the vibrating strings

of a string instrument and the vibrating drum head on a drum.

• In order for something to vibrate it must have three properties: an equilib-

rium position, a restoring force, and inertia. A simple example is the pen-

dulum, although a pendulum is not usually useful as a musical instrument.

A more complicated but also more useful example is a vibrating string. �e

frequency of vibration 5 of a vibrating object obeys

5 ∝
√

�

<
,

where � measures the size of the restoring force and< measures the inertia in

terms of the mass or density of the vibrating object.
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• As an example, the frequency of vibration of a string is given in terms of its

length !, diameter 3 , tension ) , and density d byMersenne’s law:

5 =

1

!3

√

)

cd
.

�e frequency of vibration of the string translates directly into the frequency of

the sound produced by a string instrument, and hence we can use this formula

to calculate what musical note such an instrument will produce.

• �e motion of a string alone is not enough to produce a signi�cant sound.

�e string is too small to move much air. To get around this issue, string in-

struments have a soundboard, a thin board, usually made of wood, that is

a�ached to or in contact with the strings in some way, so that the vibration of

the strings is transferred to the soundboard. It is the vibration of the sound-

board that actually produces most of the musical sound.

• Other instruments produce vibration in a variety of ways. Percussion instru-

ments use vibratingmembranes (drums), metal sheets (cymbals and bells), and

wooden or metal bars (xylophone and glockenspiel). Typically these instru-

ments do not require a soundboard. �e vibrating elements produce enough

sound on their own.

• Wind and brass instruments take a di�erent approach, with the vibrating

element being a column of air. �e vibration of the air itself constitutes sound,

so wind instruments also do not need a soundboard—they generate sound di-

rectly.

Exercises

9.1 A pendulum oscillates back and forth once per second. If you took the same pendulum

to a planet where the gravity was twice as strong as Earth’s how fast would it then oscillate?

9.2 �e vibrating part of a guitar string is 64.8 cm long and the string is made of solid steel

with density 7900 kg/m3 and diameter 0.33mm. If its tension is 123 newtons what note does

the string play?

9.3 �e highest string on a violin is tuned to the note E5 and the vibrating part of the string

is 32.5 cm long. �e string is made of solid steel with a density of 7900 kg/m3 and diameter

0.25mm. What tension does it have?

9.4 A piano string that plays the note C4 is 65 cm long, 1mm in diameter, and made of steel

with density 7900 kg/m3.
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a) What is the tension on the string?

b) A piano has about 230 strings in total. If they all have about the same tension, what is

the total tension force on the piano frame from all of the strings together?

9.5 Suppose that instead of being circular a steel instrument string is made square in cross-

section, withwidth3 along each side of the square. Whatwould be the equivalent ofMersenne’s

law, Eq. (9.16), for the frequency of vibration of such a string?

9.6 �e guzheng is a traditional Chinese string instrument with plucked steel strings about

0.5mm in diameter, strung over a wooden frame. �ere is no �ngerboard—each string plays

its own note, as on a harp.

a) Given that the density of steel is 7900 kg/m3, what is the tension of a 60 cm long

guzheng string that plays the note C4?

b) �e guzheng plays a pentatonic scale and has a range spanning about four octaves.

About how many strings does it have?

c) Hence what is the total tension on the frame of a guzheng?

9.7 A piano string is made of solid steel with density 7900 kg/m3, and has length 50 cm and

diameter 1mm.

a) What is its mass< in grams?

b) �e string plays the note C5. Howmany times is it vibrating back and forth per second?

c) Suppose it moves back and forth by 2mm. What is the total distance it moves per

second? �is is its average velocity E .

d) Kinetic energy is equal to 1
2<E2. About how much energy does the string have in

joules?

e) Suppose the note lasts 10 seconds before it dies away. Approximately what is the rate

at which the string loses energy, in joules per second?

9.8 Suppose a guitar plays the note C3.

a) What is the frequency of vibration of the string?

b) If the soundboard moves back and forth by 0.001mm as it vibrates, what is the total

distance it travels per second? �is is its average velocity D.

c) Using Eq. (1.2) on page 5 estimate the sound pressure produced right next to the sound-

board.

9.9 As we will see in later chapters of this book, there are equivalents of Mersenne’s law,

Eq. (9.16), for vibrating objects other than strings.

a) For a thin circular membrane like a drum head the equivalent equation is

5 =

0.7655

!

√

)

ℎd
,

where ! is the diameter of the drum, ℎ is the thickness of the membrane, d is its density,

and ) is the tension. If we double the diameter of the drum head, without changing

anything else, how will the musical pitch of the note change? How about if we double

the thickness?
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b) For a solid bar like the bar of a xylophone, with length ! and thickness ℎ, the fre-

quency is

5 =

3
√
3cℎ

16!2

√

�

d
,

where d is again the density and � is a quantity called the Young’s modulus, which

measures the hardness of the material. If we double the length of such a bar, how will

the musical pitch of the note change? How about if we double the thickness?
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