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Abstract

We introduce and examine a general framework for parametrically solving fixed
point problems through a family of problems that are “better behaved” than our origi-
nal problem. One class of examples parametrically combines a well-behaved map with
the fixed point map into a composite map. Special cases include (outside) averaging
the underlying map with a contractive map, or alternatively, with a nonexpansive map
whose fixed points include those of the original map, averaging with the identity map,
and inside averaging (i.e. averaging before applying the underlying map). We establish
conditions under which the trajectory of fixed points of the parametric map converge to
a fixed point of the original problem as the parameter approaches zero. To implement
this solution framework, we also consider an iterative scheme that approximates the
parametric fixed point trajectory. We establish a convergence result and characterize
the limit points of this approximation scheme.
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1 Introduction

Algorithms for solving problems in many applied settings establish a mapping T' whose
iterative application leads to a fixed point solution that solves the original problem. The
convergence of this iterative procedure to a fixed point solution often requires strong as-
sumptions on the algorithmic map 7T that restrict the algorithm’s domain of applicability.
For example, the classical function iteration zj,1 = T'(x) requires the map T to be con-
tractive. In many instances, various forms of averaging extend the range of applicability of
the algorithmic (fixed point) map 7.

In this paper, we introduce a general averaging framework for solving the finite dimen-
sional fixed point problem

Find z* € K satisfying z* = T'(x")
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defined over a given ground set KX C R" by a given map T : K — K. This problem
formulation is closely related to several problem classes in mathematical programming, such
as linear and nonlinear optimization, complementarity problems, and variational inequality
problems (see [12] for more details). For example, we obtain an equivalent fixed point
reformulation of variational inequality problems, that is,

Find z* € K: f(z*)(z —2*) >0, Vz €K,

through the map T' = Prg (I — pf) defined by the projection operator Prg onto the set K
and some positive constant p.

To solve the fixed point problem, we introduce a general averaging framework that
considers at each step a parameterization of the original fixed point problem. The averaging
framework thus creates a family of problems which are easier to solve than the original
problem. A special case of this framework is averaging the fixed point map 7" with maps
g that are “well-behaved” to counteract the “bad” properties of the map T'. In particular,
the framework includes as special cases averaging with the identity map, with nonexpansive
maps whose fixed points include those of the original problem, as well as with general
contractive maps.

The framework includes as special cases “outside averaging” Ag(z) 4+ (1 — A\)T'(x) with
an averaging parameter 0 < A < 1. Halpern [8] and Browder [3] introduced this type of
averaging and Bauschke [1] and Wittmann [15] studied it further in the special case when
g(z) = constant. Dunn [5] introduced the special case of g(z) = x, which Magnanti and
Perakis further studied for variational inequality problems (see [10] and [11]). The frame-
work also includes “inside averaging” T'(Ag(z) + (1 — \)z). It also permits averaging with
the identity map (line search procedures), or outside and inside averaging with contractive
maps as well as with the proximal point map. When applied to fixed point and variational
inequality problems, this framework produces certain known methods as well as several new
ones.

Our goals in this paper are to

(i) study averaging schemes based upon parameterizations of (that is, averaging) the
original fixed point map with “well-behaved” maps such as contractive maps, the
identity map or, more generally, nonexpansive maps whose fixed points include those
of the original problem,

(ii) develop a general averaging framework that unifies several averaging approaches,

(iii) solve a large class of fixed point problems by considering fixed point maps T satisfy-
ing properties weaker than contractiveness (including forms of nonexpansiveness that
permit fixed point problems with multiple solutions), and

(iv) create as a special case averaging schemes that are more efficient than the classical
function iteration even when the underlying map is contractive.
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1.1 Notation and preliminaries

Throughout this paper we will be working with a convex set K C R" and a map
T: K — K. We refer to the problem

Find z* € K satisfying 2% = T(z") (1)

as the fized point problem associated with the map T and the set K. We let FP(T'), which
we assume to be a nonempty set, denote the set of fized point solutions of problem (1). We
permit the ground set K to be unbounded and the fixed point problem to have multiple
solutions. That is, FP(T) can contain more than one point.

Definition 1 A map G : K — K is called contractive (or a contraction) with a contraction
constant a € [0,1) if for any z,y € K,

1G(z) — G|l < allz —yl.
A map G: K — K is called nonexpansive if for any z,y € K,

1G(z) = Gyl < llz —yll.
A map G: K — K is called firmly nonexpansive if for any z,y € K,

IG(2) = G| < (z —y)"(G(z) — G(y)).
Equivalently, G is firmly nonexpansive if for any z,y € K,

IG(z) = GWI? < llz = yl* —lI(z — y) — (G(z) = G-

We use the following result repeatedly in our analysis (see, for example, Dunn[5]):

Proposition 1 Suppose G : K — K is nonezpansive, with FP(G) # (), and the sequence
{z}2 o C K satisfies the condition limy_, |z, — G(z1)|| = 0. Then every limit point of
the sequence is a fized point of G.

We denote the identity map by I. Throughout our discussion, we use the following
well-known results concerning the relationship between a given map G : K — K and the
map (I —G): K — K:

Proposition 2 [{/ A map G is contractive with contraction constant a € [0, 1) if and only

)
L 2“ . Even more

iof the map I — G is a strongly monotone map with monotonicity constant
strongly, for any x and y,

2

A map G is nonexpansive if and only if the map I — G s a strongly-f-monotone map
with monotonicity constant % That s, for any x and y,

(z—Gx)—y+G)(z—y) >

a? 9 1 2
lz = ylI* + Sllz = Gz) =y + G)["

(¢~ G(x) —y+ G — 1) > gl — Gla) —y + G|

For any convex closed set S C R" and any point y € R"”, we denote the Euclidean
projection of y onto S by Prg(y).
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2 Averaging trajectories

2.1 Generalized Averaging Map

As a first step in our analysis, we approximate the original fixed point problem with a
parameterized family of fixed point problems

zy = Fi(z)) (2)

with parameterization parameter A € [0,1]. Our intent is to choose the family of functions
F\(z) : K — K to be a parameterization of the map T and be “better behaved” than the
map T'. In particular, we make the following assumptions on this family of functions:

A1 For all X € (0,1], the parameterized problem z) = F)(x)) has at least one solution.
A2 The function F)\(z) = F(\, z):[0,1] x K — K is a continuous function of (A, z).
A3 FP(T) D FP(Fy) # 0.

We refer to any map F)(-) satisfying conditions A1-A3 as a generalized averaging map for
T.

For parameterizations satisfying these three assumptions, the following result provides
a characterization of the limit points of the set {zx}e(o,1] induced by the parameterized
fixed point problems (2) as A — 0F.

Proposition 3 Suppose T : K — K is a map with FP(T) # 0. Suppose further that the
family of maps F\ : K — K satisfies conditions A1-A8. Then as X — 0%, every limit
point of the sequence (or trajectory) {xx}xc(o,1) 8 a fized point of T.

Proof: Condition A1 states that the iterates induced by (2) exist. Let Z € K be a limit
point of the sequence (or trajectory) {z)} as A — 07, i.e., for some sequence {\;} C (0,1]
with limg_,oo Ay, = 0, T = limy_,o ). Then as k — oo

zy, — Fo(za,) = P (22) — Fo(zn,) = F(Ap, 2x,) — F(0,23,) = 0

since A\, — 0, ), is a convergent subsequence, and, by assumption A2, the function F/(X, x)
is continuous. Consequently, the limit point Z is a fixed point of Fj, and therefore, from
condition A3, a fixed point of T'. Il

The previous analysis has characterized the limit points of the trajectory of solutions
of the parametric family of fixed point subproblems as solutions of the original problem.
To further understand the nature of the limit points, we need to impose some additional
conditions on the generalized averaging map F}.

A4 F) = F(G)), for maps F : K — K and G, : K — K satisfying the conditions

e F' is nonexpansive and FP(T) C FP(F),
e G is nonexpansive and FP(T') C FP(G)y),
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Gy (zx)—z5])?
IGA( ,\)\) by
A5 For all A € [0,1], all z € K and all z* € FP(T),

Ga(z)H(z — 2*) < AG1(2)!(x — %) + (1 — M) Go(z)!(z — 2*).

A6a Gi(r) is a nonexpansive map.
A6b Gi(x) is a contractive map with contraction constant a € [0,1).

Note that condition A4 implies that FP(T) C FP(F,) since if 2* € FP(T) then
Fo(z*) = F(Go(z*)) = F(z*) = z* from the set inclusions in condition A4. Taken to-
gether, conditions A3 and A4, imply that FP(T) = FP(F(Gy)).

It might initially appear unclear how to choose the maps F' and G satisfying conditions
A3 and A4 without finding the fixed points of T' beforehand. Examples in Section 2.2
show that we need not already know the fixed points of T', for example, by letting F' =T
and Gog = I, or FF =1 and Gy = T. In both cases, these maps trivially satisfy the set
containment conditions imposed by assumptions A3 and A4.

By imposing these additional assumptions, we can further characterize the limit points
of the trajectory induced by the parametric fixed point problem (1).

Theorem 1
I) Suppose the generalized averaging map F satisfies conditions A1-A6a. Then as X — 0T,
every limit point T of the sequence {x\} is a fized point of T and satisfies the condition

& = Prpp(7)G1(Z).

II) Suppose, alternatively, the generalized averaging map F satisfies conditions A 1-A6b.
Then as X — 0T, the sequence {x\} has at most one limit point z* which is the unique fized
point of T' defined as

z* = PrFP(T)Gl(x*)‘

Proof: Suppose assumptions A1-A5 and either A6a or A6b (which implies A6a)
are valid for the family F). Let # € FP(T') be an arbitrary fixed point of T'.
Condition A4 implies that © € FP(F') and F' is nonexpansive. Proposition 2 shows that

0 < ((Galzr) — F(Ga(zn))) — (z — F(2)))Y(Ga(zy) — )

= (Ga(zr) — 22)'(Ga(z)) — 2) = |Ga(zr) — mal]” + (Galzr) — ) (2a —z)  (3)

= [|[Ga(zx) = 2All* = (2x — Go(xn))!(zr — &) + (Ga(zr) — Go(@2))" (2 — 2).
Condition A5 implies that for all A € [0, 1],

Ga(za)!(zr — ) < AG1(z)) (wr — @) + (1 — N)Go(z) ! (zx — ),



Finding fixed points by averaging, September 25, 2001 6

or, upon rearranging terms,
(Gazr) — Go(zx) (mx — ) < A(Gil(zn) — Gol(za)) (25 — ).
Substituting this inequality into (3), we conclude that for all A € [0, 1],
0 < [[Ga(zr) — @l = (2x — Go(2a)) (2x — 2) + A(G1(22) — Go(ea)) (2x — )

= [Gaza) = &all” = (1 = X)(2x = Go(za)) (2x — ) + M(Gi(zr) —22)' (22 — @).
Since z € FP(T') C FP(Gy) and G is a nonexpansive map (from condition A4),

(x‘)\ - Gg(w)\))t(:m — x) Z 0.
Therefore, for all A € (0, 1],

|Ga(zx) — za)?
A

> (zx — Gi(zp)) (zr — 2).

Condition A4 implies that limsup,_,o+(zx — G1(z2))!(zx — ) < 0. Therefore as A — 07,
any limit point Z (which, if it exists, is also a fixed point solution of the map T' as we have
shown in Theorem 3) satisfies the condition

(Z — G1(2))'(Z — ) <0 Vx € FP(T). (4)

Condition (4) can alternatively be interpreted as & = Prpp(7)G1(Z), thus establishing the
first claim of the theorem.

To establish the second claim of the theorem, suppose assumption A6b is valid. Since
the set FP(T') is nonempty, the map Prgp(7)G1 : FP(T) — FP(T) is well-defined. Under
assumption A6b, this map is a contraction, and therefore has a unique fixed point x* €
FP(T). Therefore, Z = z*, i.e., as A — 07, the sequence {z)} has at most one limit point
x*, establishing the second part of the theorem.

Note that if the generalized averaging map F) satisfies conditions A1-A6a or A1-A6b,
and the induced trajectory {z} is bounded, then the trajectory possesses limit points as
A — 0, each of them a fixed point of 7. Moreover, when G; is a contractive mapping (i.e.,
condition A6b applies), the entire trajectory will converge.

Example: To illustrate the limiting conditions, consider the fixed point problem with
K = %2 and the map T(z1,72) = (2 — x1,22). The set of fixed point solutions is FP(T) =
{(1,z2) : 22 € R}.

The classical function iteration cycles by reflecting about the line of fixed points F P(T').
To remedy this cycling behavior we consider special cases of the parameterization scheme
(1). The first parameterization considers the map

Fl(z) = )\g + (1= NT(2).

In this case, Fi(z) = F}(Gi(z)) with F* = I and G} = 3I + (1 — \)T. This aver-
aging map satisfies conditions A1-A6b and the point * = (1,0) satisfies the condition

(=)
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1
z* = Prpp(1)G1(z*). The map Fy creates the averaging trajectory ¢} = AR +(1-NT(2}).

Algebraic manipulations yield the explicit expression for m%\ to be J:i = (%, 0), converg-

ing to 2* as A — 0.

As another example, let FZ(z) = T(AZ + (1 — A\)z) = T((1 — 1\)z). In this case,
F3(z) = F?(G3(x)) with F> = T and G} = (1 — 1\)I. Again, the point z* = (1,0) is
the unique point satisfying the condition z* = Per(T)G’%(m*). This map produces the
trajectory @3 = T((1 — 1A)23) that can be expressed explicitly as 23 = (;25,0). This
trajectory also converges to z* as A — 0. Figure 1 illustrates the averaging trajectories for
this example.

FP(g) Classical iterates

/ /!
O—4+—0O
0 \/ O‘_b_O
AN

-1 FP(T )

A

i

Figure 1 : Averaging Trajectories

Observe that these averaging schemes satisfy conditions A1-A6b. Moreover, although the
trajectories {z}} and {#%} are quite different, they both approach the same limit point. As
Theorem 1 illustrates, this result is not a coincidence, since the point z* = Prpp(7)G1(z*)
is the same in both cases.

As yet another example, suppose F' = I and

Gy =X x+(1-N(I +c(I—T)) (), with ¢ > 0.
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This averaging map satisfies conditions A1-A6a, and therefore, the first (weaker) part of
Theorem 1 applies!.

In the next section we show that these types of averaging trajectories are special cases
of the averaging framework we have considered in this section.

2.2 Examples of generalized averaging maps

We next introduce several examples of generalized averaging maps F)(-) and show that
they are special cases of the averaging framework we have introduced (i.e., satisfy conditions
A1l - A6). We assume in these examples that the ground set K is a closed convex set, the
map T : K — K is nonexpansive, and the map g : K — K is either (i) contractive, or (ii)
nonexpansive with fixed points containing those of the original problem (e.g., g = I'). The
special cases to follow typically use various forms of inside and outside averaging.

The fact that the fixed point map T is nonexpansive allows us to apply the proximal

point map Jo(;_r) 2 (I +¢(I —T))7! for some constant ¢ > 0 to the map (I — T') in some
of these examples?. For a discussion of the proximal point map and its relationship to fixed
point problems, see Eckstein and Bertsekas [6] and Rockafellar [14].

1. Outside averaging Let
Fy(z) = F{" () = Mg(w) + (1 — \)T(x).

We refer to this map as “outside averaging” since the values it generates are convex
combinations of the values of the original map T and values of the map g. The prior
literature has examined special cases of outside averaging. Halpern [8] and Browder [3]
introduced, and Bauschke [1] and Wittmann [15] further studied, a special case of
this map with the constant map g(z) = z¢ for some constant 9 € K. Dunn [5]
and Magnanti and Perakis [10, 11] study this type of averaging for the choice of map
g(z) = z. The developments in this paper allow us to extend the results to a richer
class of maps g(z).

Observe that F\ = F(Gy) with F = I and G\ = Ag + (1 — A\)T. As demonstrated
next, this parametric scheme satisfies conditions A1 — A6.

A1 When g is contractive, F)\(z) is also contractive for all A € (0,1] and, therefore,
has a fixed point. When g is nonexpansive with nonempty set of fixed points
containing those of T', F)\(x) is also nonexpansive with fixed points containing
those of T

A2 F(\ z) = Fy(z) is continuous in (A, z) since T'(xz) and g(x) are nonexpansive,
and hence continuous.

A3 Fy =T, therefore, condition holds trivially.
A4 Holds trivially

'In fact, it is not hard to see that FP(Fy) = FP(T) for any A € [0, 1].
’For example, whenever Image(2] — T') = R", the map J,(;_r) is defined over the entire space R".
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A5 Holds trivially, since
G)\ = )\Gl + (1 - )\)Gg

A6 Condition A6a holds whenever g(x) is nonexpansive; condition A6b holds when-
ever g(x) is a contraction.

It is not hard to see that when g is a contraction, the fixed point x is unique for each
A > 0, and the trajectory {z,} is bounded for A € (0,1]. Indeed, let z* € FP(T) be
an arbitrary fixed point, and suppose the contraction constant of g is @ € [0,1). Then

lex = 2*| < Allg(ea) = 2*[| + (1 = M[[T(2x) = T(z")]|

< Mlg(a)=g(@)[+Allg(2™) =2 [+ (A=A [ex =27 < (eA+1=A)[[ex—a"[[+Allg(«™) -2,

or, after rearranging terms and cancelling A > 0,

lg(z*) — =]

*
— <
Hx)\ L H = 1

We conclude that the trajectory {x)} is bounded and, therefore, converges to the
unique limit point x* as described in Theorem 1.

2. Inside averaging:
in A
Fy(z) = FY'(z) = T(Ag(z) + (1 = A)z).

We refer to this map as “inside averaging” since it generates values by applying the
map T to the convex combination of the identity map and map g(z), which are,
therefore, averaged “inside,” or within the argument, of T'.

Observe that F)\ = F(G)) for F = T and G) = Ag + (1 — A\)I. As demonstrated
next, with one provision, this parametric scheme satisfies conditions A1 — A6. The
provision is that when g(z) is nonexpansive, we need to select the sequence {z)} from
a bounded set. In Section 3, we discuss a procedure that permits us to eliminate the
boundedness condition.

A1 When g is contractive, F)\(z) is also contractive for all A € (0,1] and, therefore,
has a fixed point. When g is nonexpansive with a nonempty set of fixed points
containing those of T', F)\(x) is also nonexpansive with fixed points containing
those of T

A2 F(\ z) = Fy(x) is continuous in (A, z) since T'(x) and g(z) are nonexpansive,
and hence continuous.

A3 Fy =T, therefore, the condition holds trivially.

A4 The first two statements hold trivially. The last statement of condition A4 is
equivalent to

lim X[|g(x) — x> = 0. (5)
A—=0
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When g(z) is a contraction, the fixed point z) is unique for each A > 0, and
the trajectory {z)} is bounded for A € (0,1], which implies (5). When g(z) is
nonexpansive with FP(T') C FP(g), each map F)(x) might have more than one
fixed point (e.g., any point * € FP(T') is a fixed point of F)). However, as long
as we select the sequence {z,} from a bounded set, it would satisfy condition
(5).
A5 Holds trivially, since
G)\ = )\Gl + (1 - )\)Gg

A6 Condition A6a holds whenever g(x) is nonexpansive; condition A6b holds when-
ever g(x) is a contraction.

When g is a contractive map, then an argument similar to the one used in our dis-
cussion of outside averaging, shows that the trajectory {x)} is bounded for A € (0, 1]
and, therefore, converges to the unique fixed point z* described in Theorem 1.

3. Outside averaging with the proximal point map: Whenever 0 € K and the
proximal point map Jo;_7)(x) = (I+¢(I—T)) *(z) is defined on K, we can consider
the map

Fy(z) = (1 = A eromy(z) = (1 = NI + ¢(I = T)) 7 (2).

In this case, FF = I and Gy = A(1 — A\)Jy;_r), and we can establish the validity
of conditions A1 —A6b as in our discussion in Example 1, since the map J.;_r) is
nonexpansive with fixed points coinciding with those of T. Moreover, we can replace
the constant map g(z) = 0 by an arbitrary map g : K — K satisfying the properties

as discussed in Example 1.

4. Inside averaging with the proximal point map: Again, assuming 0 € K and
the proximal point map J.(;_7)(«) is well defined on K, we consider the map

Fx(2) = Jo-my (L = N)e) = (I +e(I = T)7H (L = Na).

In this case, F' = J.;_7) and G\ = (1 — M) L.

Remarks:

1. Note that Examples 3 and 4 are analogous to outside and inside averaging of
the map J.; 1) with g = 0. Furthermore, as in Examples 1 and 2, we can apply
averaging for a more general contractive map g (or nonexpansive map g whose fixed
points contain those of T'), or a family of maps g) as in Example 6 to follow.

2. It is interesting to compare the trajectories generated by the averaging schemes
of Example 1 (with g(z) = 0) and Example 4. Let us denote the points on these
trajectories by xi and xi, respectively. We compare these trajectories by noting that

(1—=Na§ = (I +c(I =T))(z3) = (c+ Dzt — eT(«3).

Therefore, 2§ = Ci)\T(mi), implying that

.’L‘A)l\ = .’Elk .
c+A
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Notice that in this case the trajectory of the fixed points generated by inside averaging
with the proximal point mapping (that is, the trajectory {z3}) is the same as the
trajectory of the fixed points generated by outside averaging (that is, the sequence
{z1}). Observe that whenever ¢ > 1, the trajectory {z}} converges faster than the
trajectory {z}}.

5. Convex combinations of any F) maps that satisfy the conditions Al-A6a
or A1-A6b

6. Averaging with a family of maps ¢): In Examples 1-5, we can replace the map
g with a family of maps gy : K — K if for some constants « € [0,1) and v > 0:

lgx(z) — x|l < allz —yl| Vo,y € K, VA €[0,1]

and
lgae(z) — grz(@)]| <AIA" = N, Vo € K, VA", A% € [0,1].

The resulting family F) satisfies conditions A1-A3, and therefore Proposition 3 applies.
The resulting parametric scheme might violate condition A5 and, therefore, Theorem 1
might not be directly applicable to the limit points of the trajectory of fixed points induced
by this family. However, it is not hard to show that, as A approaches 0, this trajectory
approaches the trajectory of fixed points induced by (inside or outside) averaging with the
map go, and consequently converges to #* = Prgp(r)(go(z*)). This extension allows us to
incorporate inexact computations on the early stages of the averaging (i.e., for larger values
of ), as long as the magnitude of errors decreases as A approaches 0.

3 Approximate averaging trajectories — a first approach

The averaging framework described in the previous section provides an intuitive way of
approximating fixed point solutions of a map T with the trajectory of fixed points solu-
tions induced from a class of parameterized subproblems. Following this trajectory exactly
and computing the fixed points of the parameterized subproblems typically will be very
expensive computationally. As an extreme example, note that the trivial averaging scheme
F\ = T satisfies conditions A1-A6. Therefore, we would like to solve the original fixed
point problem by choosing the parametric families F more judiciously, i.e., by imposing
stronger assumptions. These stronger assumptions will also allow us to compute points that
lie close to the trajectory of fixed points for the parameterized subproblems, rather than
solving the subproblems exactly, while still guaranteeing convergence to the desired fixed
points of T'.

To motivate the general approach in this section, consider the iterative scheme that
approximates the trajectory of fixed points induced by outside averaging of Example 1:

xo € K, Thi1 = )\k+1g($k) + (1 — )\k+1)T(£L‘k), k> 0.

Halpern [8] first considered this iterative scheme and Wittmann [15] and Bauschke [?]
further analyzed it, all for the case of constant map g. Averaging with the identity map



Finding fixed points by averaging, September 25, 2001 12

(see [5], [10], [11]) is another special case of this scheme. The framework we introduce in
this paper, however, extends well beyond these very special cases and includes as special
cases, among many others, inside and outside averaging with contractive maps g. As a first
approach, in this section we consider the following solution scheme that approximates the
trajectory of fixed points for the parameterized subproblems:

To € K7 Tp+1 = F)\k+1(xk)7 k> 07 (6)

with the sequence of parameter values Ay € (0,1] and the family of functions F) : K — K
satisfying the following conditions:

B1 FP(T) D FP(F,) # 0

B2 For some constant a € (0, 1],
[1Fx(z) — Fa()ll < (1 —ad)|lz -y,
for any A € [0,1] and any z,y € K.
B3 For some constant L > 0,
[Ex(z) = Fu(@)|| < LIA = pl - [l
for any A,y € [0,1] and any z € K.
B4 )‘k — 0+, 2130:1 )‘k = 400, 22021 |)‘k — )‘k+1| < +o0.

Observe that conditions B1-B3 imply conditions A1-A3.

Before analyzing the behavior of the general averaging map F)(x), we examine several
special cases. In particular, we show that several iterative schemes which are the algorithmic
extensions of the examples of the previous section satisfy properties B1-B4.

In the following examples, we assume that the map 7" : K — K is nonexpansive with
FP(T) # 0 and the “step sizes” {\j} satisfy condition B4.

Examples of the iterative scheme:

1. Outside averaging:

Th1 = Mer19(zr) + (1 = Mpy1) T (1),

for a contractive map ¢ : K — K with bounded norm and a contraction constant
a € [0,1). In this case,
Fy(z) = Ag(x) + (1 = \)T(z),

and

B1 Fy(z) = T(x), therefore, FP(T) = FP(Fp).



Finding fixed points by averaging, September 25, 2001 13

B2 For any A, z, vy,
[Ex(z) = Fa(yll < Aallz —yll + (1 = Nl[z —yll = (1 — )|z -yl
with a = (1 —a) € (0, 1].
B3 For any A\, u, z,
[1Ex(z) = Fu(@)|| < A = plllg@)]| + A = plIT(@)]| = A = pl(lgl)| + [T()]),
which implies the condition

2. Inside averaging:
Th41 = T(Akg1g(zr) + (1 = A1) z),

for a contractive map ¢ : K — K with bounded norm and a contraction constant
a € [0,1). In this case,
Fy(xz) = T(Ag(2) + (1 = Nz),

and
B1 Fy(z) = T(x), therefore, FP(T) = FP(Fp).
B2 Since T is nonexpansive, for any A, z, ¥,
[Fx(z) — Fx(@)ll < [Ag(x) + (1= Az — Ag(y) — (1 = Ayl
<Aaflz =yl + (1 = A)llz -yl = (1 - ad)llz -yl
witha=1—-a € (0,1].
B3 For any A, u, z,
[1Fx(z) — Fu(@)] < [|Ag(@) + (1 = Az — pg(z) — (1 — p)z||
< A= plllg@)l + A = plllell = [A = ulClg(@)] + l[=[]),
which implies the condition.

3. Outside averaging with the proximal point mapping: Assume 0 € K and the
map Jo;_r) is defined on K. Then we can define

w1 = (L= Mey) Jer—1) (21) = (1= M) (I + (I = T)) H(ap)-

In this case,
Fx(z) = (1 = N)Jeq-1)(2),

and

B1 Fy(z) = (I +¢(I —T)) (z), therefore, FP(Fy) = FP(T).
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B2 Since J(;_7) is a nonexpansive map, for any A, z, y,

[1Ex(z) = Fa()ll < (1 = Az —yl],

satisfying the condition with a = 1.

B3 For any A\, u, z,

B2 (z) = Fy(2)l| = |(1= ) Jer—7) () = (L= p) Je(r—1) (@) || = [A=pu| - [| T =) (@) ],
which implies the condition.

4. Inside averaging with the proximal point mapping: Again, assume that 0 € K
and J,;_7) is well-defined on K. Let

2h1 = (L + oL = )7 ((1 = Mega)a).

In this case,
Fi(z) = Jer—m)((1 = N)z),
and
Bl Fy(z) = (I +¢(I —T))"(z) and, therefore, FP(Fy) = FP(T).

B2 Since J(;_1) is a nonexpansive map, for any A, z, y,
[Fx(z) = Ex(@)Il < (L= A)[lz —yll,
satisfying the condition with a = 1.
B3 Since J,(;_1) is nonexpansive, for any A, p, @,
[1Ex(x) = Fu(@)l| < [A = pl- ||,
which implies the condition.
5. Convex combinations: Similar to the previous cases.

The following results (Theorems 2 and 3) extend to the general iterative scheme (6) the
results of Wittmann [15] and Bauschke [1], which, essentially, concerned the case of outside
averaging with a constant map. Some of the proof techniques used in establishing these
theorems are similar to those used by Bauschke.

Theorem 2 Suppose T : K — K is a nonezpansive map with FP(T) # (. Suppose further
that the sequence {\x} and the family of functions F satisfy conditions B1 — BJ. Then
every limit point of the sequence {xy} induced by the averaging scheme (6) is a fixed point
of the map T.
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Proof: We begin by showing that the sequence {zy} induced by the averaging scheme (6)
is bounded. Let z* be an arbitrary point in FP(T'). Define

*|| L
D = max oo - ), LI,
o

with the constants L > 0 and « € (0, 1] specified as in conditions B2 and B3. We will
show by induction that ||z — z*|| < D for any k£ > 0. This inequality is valid by definition
for £k = 0. Suppose the inequality is valid for some k& > 0. Then

||$k+1 - 1:*” = ||F)\k+1 (‘T:k) - FO(‘T:*)H < ||F)\k+1 (xk) - F)\k+1 (x*)H + ||F)\k+1 (1"*) - FO(x*)H

< (L= adprn)lloe = 2*)| + Apsr Lz
S (]. - O!Ak+1)D + aD)\k+1 = D,

establishing the desired relationship.
Since the sequence {z} is bounded, for some constant C' > 0, L||zg|| < C and ||z —
zp41]] < C for all k > 0. Then for any k > 0,

|Zkt1 — @kl = | Fayy (2k) — P (zr-1) |

SNy (k) = Py (@n- )| + 1Py (1) — B, (zr-1) ]
< (= aXgp)ller — we—1ll + [ Ak — Akl - Lllwg—|
< (1= adpr)llzk — zr1ll + [ Ao — Ax|C.

Applying this relationship inductively, and using the fact that 1 — a\; < 1 for all k, shows
that forallk > m >0

k k
lewss = 2kll < lem — emotll [[( = 0Xisn) +C 3 Aisr — Al

Thus,

o0 o0
Jim [l — 2| < C H (1= aXit1) +C Y (A1 — Ail- (7)

i=m

The assumptions limy .o Ay, = 0 and > 22, A\x = +oo from B4 imply that [][3°, (1 —
aXiy1) = 0, (see, for example, Proposition 2.1 of [1]). Therefore, limp, oo [[re,,(1 —
aXiy1) = 0. Additionally, from assumption B4, limm, o0 Y io,, [Ai+1 — Ai| = 0. Letting
m — oo in (7), we obtain limg_, ||zx+1 — zx]| = 0. Also,

lze — Fo(ze)|l < ok — zpqall + [|zp41 — Folor) ||

= llox = @rqall + | Fxipn (1) — Fo(an)]

<lee — zrsall + A1 Lllzrll < [lek — 2rgtll + A4 1C —k 00 0.
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Therefore, every limit point of the sequence {z} is a fixed point solution of the map Fj.
Property B1 implies that any limit point is also a fixed point solution of 7. In addition,
since the sequence {z;} is bounded, it has at least one limit point. W

The previous theorem states that the limit points of the sequence induced by the iterative
scheme (6) are, indeed, fixed points of T. Can we, as before, characterize these limiting
fixed points? To do so, we consider a stronger version of assumptions B1-B4, obtained by
replacing conditions B2 and B3 with the following stronger conditions.

B2' F\ = F(G)), with F: K — K and G) : K — K satisfying the assumptions:

e F' is nonexpansive and FP(T) C FP(F).
e Gy is nonexpansive, FP(T) C FP(Gy), and there exists a € (0, 1] such that

1GA(z) = GA(W)] < (1 —a)|lz —yll, Yo,y € K

For all A € [0,1], all z € K and all * € FP(T),
GA(x*)t(m —z%) < )\Gl(:c*)t(m —z*) 4+ (1 - )\)Gg(m*)t(m — ).

B3’ For some constant L > 0, ||Gx(z) — G,(z)|| < LIA — p| - [|z|| for any A, u € [0,1] and
any z € K.

As demonstrated in the following proposition, the last assumption of condition B2’ is
essentially a weaker version of condition A5 of Section 2.

Proposition 4 Suppose the family of maps Gy : K — K, X € [0,1] satisfies condition A5,
i.e., for all A € [0,1], all x € K and all z* € FP(T),

Ga(z)l(z — 2*) < AG1(2)(z — %) + (1 — N)Go(z)' (z — z*).
Suppose further that for all X € [0, 1], the map G is continuous. Then
Ga(e)! (& — 2*) < AG1(5")! (@ — 2*) + (1 = \Gol#*)! (¢ — o)

for all X € [0,1], all x € K and all * € FP(T).

Proof: Let A € [0,1], z* € FP(T) and y € K be arbitrary. For ¢t € (0,1], let z =
ty + (1 — t)z* € K. Then by supposition,
tGa(ty + (1 — t)x*)(y — %) < tAG1(ty + (1 — t)x*) + (1 — N)Go(ty + (1 — t)z*)](y — ),
and since ¢t > 0,

Galty + (1 —t)z*)t(y — «*) < [AGi(ty + (1 — t)z*) + (1 — M) Go(ty + (1 — t)a*))'(y — =*)
Letting t — 0T, this inequality implies that
Gr(a")(y — o) < AG1(#")! (y — ") + (1 = NGo(a*)(y — ). 1

Note that the Examples 1 through 4 of generalized averaging mappings satisfy these
new conditions with F' and G defined as follows:
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1. F=1TIand G\ = Ag(x) + (1 = N)T'(z).
2. F =T and Gy = Ag(z) + (1 — N)a.

3. F=Tand Gy = (1 — N1

4. F = Jyy_7) and Gy = (1 - \)a.

The next result establishes convergence of the sequence {z}} induced by the iterative
scheme (6) if it satisfies conditions B1, B2, B3’ and BA4.

Theorem 3 Suppose T : K — K is a nonezpansive map with FP(T) # 0. Suppose further
that the sequence {\;} and the family of functions F satisfy conditions B1, B2, B3 and
B/. Then the sequence {xy} induced by the iterative scheme (6) converges to the fized point
solution x* = Prpp(1)G1(z*) € FP(T).

Proof: First observe that condition B2’ implies that the map G;(z) is a contraction.
Therefore, the map Prpp(7)G1 : FP(T) — FP(T) is also a contraction, and so it has a unique
fixed point z* € FP(T') C FP(Gy). The definition of the Euclidean projection implies that

(% — 2*)(G1(z*) — #*) < 0 for all 7 € FP(T). (8)

From Theorem 2, any limit point of the sequence {z}} induced by the iterates (6) is a
fixed point of T and therefore, of Gy. Consequently,

lim sup(Go(ax) — ) (G1 (") — 2*) = limsup(ay — 2*)!(G1(a") — &%) <O,

k—o00 k—o00

with the inequality following from expression (8). Therefore, for any € > 0,
(Go(zx) — 2")"(G1(z") —2") < e (9)

for k sufficiently large.
Define C' = max{L||z*||, supj>oL||lzk||} (recall from the proof of Theorem 2 that the
supremum is finite). For any € > 0,

207\, < e (10)

for k sufficiently large.
Let € > 0 be arbitrary, and suppose k is sufficiently large as required by conditions (9)
and (10). Then if we let A = Ag41,

1 = 2|* = [ F(Ga(zr)) — F(Go(z*))|* < |Ga(zx) — Go(z")|?

Go(z))

= |Ga(zr) — GaA(@*)]1* + IGA(z*) — Go(z*) |1 + 2(G (k) — Ga(z®)
Go Go(z™))

(
= [|Ga(zr) = GA(@) I + GA(e") = Go(a")[I* + 2(G(x) — Golxs)
+2(Go(xr) — Go(¢"))"(Ga(z") = Go(z")) = 2/|Gx(z") — Go(z")|>

)
)
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< (1 —aN)?||zr — 2¥])? +20°2% 4+ 2(Go () — Go(z*)) (Ga(z*) — Go(z*)).

To obtain the previous inequality, we have made use of the Cauchy-Schwartz inequality and
conditions B2" and B3'. Applying condition B2’ with x = Gy(zy) to the last term in this
expression and using the fact that Go(z*) = z* gives

laksr — I < (1 — Al — ]2 + 202X + 2X(Go(zx) — ") (G1(a") — Go(a™))

< (1—ad)?||lzg — 2| + 2C%2% + 2)e < (1 — a))? ||z — 2*)® + 3Xe.
Recall that A = Ag4q. Since 1 —adgg <1,

leksr — z*)* < (1 — adprr) ok — 2% + 3ehppa. (11)
Let
k
oy =1-— H(l—a)\iﬂ), m < k.
i=m

Observe that oy, € [0, 1] for any m. We will show that
*)12 3 *||2
21 = 2" < —eam + (1 = am)llzm — 27| (12)

for any m < k, with m chosen sufficiently large to satisfy conditions (9) and (10).
For m = k, ap = a\gy1, and we rewrite relationship (11) as

3e
zher — 2 * < (1= ag)llzg — 2| + = %)

establishing (12) for m = k.
Suppose (12) holds for some m < k. By definition,

am-1=1—(1—=alp)(1 — am) = am + aA\p(1 — ap).

Applying (11) to the term ||z, — z*||?, we obtain
fenss = oI < (1= am)lem — o[ + eam
< (1— am) (1 = aAm)lmet — 27 + 3eAm) + %eam
= (1= amt)lmer — 2" |2+ %e(am + (1= am)adm)

3
=1 —-am1)l|tm1— x*H2 + aeam,l,

establishing (12).
We conclude that for m sufficiently large,

k
3
loksr = "2 < Zeap + am — 2| T] (1 - aris)

i=m
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for any k > m. Note that the sequence {a);} € [0,1) converges to 0 and satisfies

o0

D (ki) = +oo.

i=1
Therefore, [[2,(1 — aX;) = 0 (see, for example, Proposition 2.1 of Bauschke [1]), and so

— 3
li —z*? < Ze.
lngkarl " < o€

Therefore, since € is arbitrarily small,
*
k41 — 27| — k00 0.

We conclude that the sequence {z}} converges to the fixed point solution z* of T satisfying
the property z* = Prgp(7)(G1(z*)), completing the proof. |
Remark:

Following Halpern [8], as an alternative of the approximate averaging framework we have
introduced, we could consider multiple applications of the averaging map F), , rather than
one. As a result we can impose less restrictive assumptions on the sequence of step sizes
{M\r}. By applying the averaging map F),,, several times, we approximate the trajectory
of the parameterized fixed point subproblems more accurately.

To provide some motivation, consider the sequence x) induced by the parameterized
fixed point subproblem x) = Fy(z)) as in (2). If conditions B1-B3 are valid, then the
trajectory {x)} is bounded, and as A — 0T, the limit points of z, are fixed point solutions
of the original problem. If, in addition, F) is a contractive map for every A > 0, then we
can compute the fixed point xy as

zy = lim Ff(Xo) (13)

for any starting point Xy € K. We therefore consider an iterative scheme that “follows”
the path of fixed points {x)}. That is, given a sequence A\ — 0, \x € (0, 1] and a sequence
of nonnegative integers {my}, for an arbitrary Xy € K, we can approximate the original
fixed point problem through

X1 = Fy 1 (Xi) (14)

by ensuring that the iterates Xy, stay “close” to the fixed point solutions of the corresponding
subproblems zy, = Fy, (x), ).
The following result formalizes this iterative scheme.

Proposition 5 Suppose F : K — K satisfies conditions B1-B3. Assume the sequences
{Ar} and {my} satisfy the conditions A\, — 0 and (1 — aX;)™ — 0 as k — oco. Then the
limit points of the sequence {X}} induced by relation (14) are fized points of T

Proof: Tt is not hard to see that the trajectory {x)} Ae(0,1] is bounded. Moreover, following
an argument similar to the one employed in the proof of Theorem 2, we can show that the
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sequence { X} is also bounded. Consequently, for some constant L, || X; — x| < L for all
k >0 and all A € (0,1]. Furthermore, since x), is a fixed point solution of the map F),
and, therefore, of the map F;: k

1Kt — @rg | = I (X0) — Byt (@)

< (1= 1) ™ Xy — wa | < (1= 0dgq) ™ L —p00 0.

Therefore, the set of limit points of the sequence {X}} are contained in the set of limit
points of the trajectory {zx}xe(o,1), which, by Theorem 2, are fixed points of 7. [

4 Approximate averaging trajectories — a second approach

In the previous section, we introduced a general averaging framework that induced points
lying close to the trajectory of fixed points of a class of parameterized subproblems. The
averaging maps F) for this analysis were contractive for each fixed value of A € (0,1). We
next study a similar general averaging framework when the map F) is nonexpansive rather
than contractive. To compensate for this weaker property on map F), we need the additional
assumption that its fixed points contain those of the original map T'. The points generated
in this case approximate the trajectory of fixed points of the parameterized subproblems
FP(F)) satisfying assumptions A1-A6b. Averaging with the identity map (line search
procedures) is a type of averaging that is a special case. This averaging scheme has received
much attention in the literature (see for example among others [5], [10], [11]). For this
type of averaging, the averaging map F) is nonexpansive rather than contractive and its
fixed point solutions include those of the original map 7. Our averaging framework in this
section incorporates this type of averaging.

In particular, as before, we will consider the sequence of iterates

o € K) Lh+1 = F)\k+1 ($k)a k> 0, (15)

with the sequence of parameter values A\ € (0,1] and the family of functions F) : K — K
satisfying the following conditions:

C1 FP(F,) = FP(T) # 0.
C2 F) = F(G)), with F: K —» K and G) : K — K satisfying the assumptions

e F is nonexpansive and FP(T') C FP(F).
e G is nonexpansive and FP(T) = FP(G)).
e (31 is nonexpansive and FP(T) C FP(G,).
C3 For all A € [0,1], all z* € FP(T) and all z € K,
Ga(z*)(x — 2*) < AG (") (z — 2*) + (1 — N)Go(z*) (z — 2*),
which in light of C2 implies

(Ga(z™) = Go(z"))'(x —2*) < 0.
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C4 For all A € [0,1], all 2* € FP(T') and all z € K,
IGA(2) = GaA(")II* < lle = «*|* = v(N)llz = Go (@)%,
for some function 7 : [0,1] — R,..

C5 The step sizes \;, satisfy the conditions > 77, v(A;) = +o00.

Once again, we begin by examining several special cases:

1. Averaging with the identity map: We begin by considering a classical averaging
scheme and describing how it fits into this generalized averaging framework:

Fy(z) =Xz + (1 = N1 ().

This averaging scheme (see Dunn [5] and Magnanti and Perakis [10], [11]) is applicable
for a map T that is nonexpansive.

C1 Fy =T, so the condition holds trivially.

C2 F=1, Gy=A[+(1-MNT,1ie,Gy=T and G; = I, so the condition is satisfied.
C3 Holds trivially since Gy = AG1 + (1 — \)G).

C4 For all A € [0,1], all z* € FP(T') and all z € K, since z* = G(z*), we have (see
Dunn [5]):

1GA(2)=GA(@) P+AA=-NIT ()2 |* = [Az+(1-NT () =" P +A(1-N) | T (z)—|

=11 = N(T(x) =) + (x — ") + A1 = V)| T(2) — 2|
=2(1=N)(T(2) — a)'(z — ") + [lz — "> + (1 = V)| T(z) — ]
= (1= (2T (2) - 2)(z —2") + | T(2) — 2 + o —*|*) + Az — 2*|]”
= (1= MIIT(z) — 2" + Az — 2*||* < ||z — «*|]%,

ie.,

IGA(2)=Ga(a")|I* < lle—a”|P=A(1=-NIT () ~z|* = lz—2* >~ A1) | Go(a) —z|*.

Therefore, the condition is satisfied with y(A) = A(1 — A).

C5 The condition can be satisfied by selecting the sequence {A\;} C [0, 1] to satisfy
Y opeq Ak(1 — Ag) = oo, just as in the cited papers.

2. Outside averaging:
FY™ () = Ag(x) + (1 = NT (@)

We consider the case when the map T is firmly nonexpansive and the map ¢ is non-
expansive with FP(g) D FP(T'), (an example of a map ¢ is the identity map).

C1 Fy =T, so the condition holds trivially
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C2 F=1,Gy=X+(1-X\NT,ie., Go =T and G; = g — by the above assumptions,
the condition is satisfied.

C3 Holds at equality, since Gy = AG1 + (1 — A\)Gy.
C4 Observe that G(z*) = z*. Therefore,

IGA(2) = Ga(2")I” = [Ag(2) + (1 = N)T () — *|* =

= Mlg(z) — 2> + (1 = N?|T(x) — 2*[* + 201 = N)(g(2) — &) (T(2) — 2") <

Nllg(z) =2 P+ (1=A)?IT (@) =2 [P +A(1-MN)llg(z) =" P+A A=V |T (z) —2*||* =

Mlg(@) =" [P+A-NIT (@) —2*|1* < Alg(e)—2*|*+(1-) Je—a*|*~ (1-N)IT (z) 2|
<l =" = (1 = N)lIGo(x) — z[|*.

The second inequality follows since T' is firmly nonexpansive. Therefore, the
condition is satisfied with y(\) = (1 — A).

C5 This condition can be satisfied by selecting the sequence {A;} C (0, 1] to satisfy
D ohe1(l = Ag) = oo.

Observe that in this method, g could be the identity map. In this case, the method
reduces to averaging with the identity map. In fact, for the case of averaging with the
identity map, it is sufficient to require that that map 7' is nonexpansive rather than
firmly nonexpansive (see for example [5], [10], [11]).

3. Outside averaging with the proximal point mapping:
Fy(z) = Ag() + (1 = N1y (@) = Ag(e) + (1 = A)(I + (I = T)) 7 (2).

We consider the case when the map 7" is nonexpansive and the map g is nonexpansive
with FP(g) D FP(T).

This is essentially an extension of the previous case, since the proximal point operator
Je(r—1) is firmly nonexpansive whenever 7' is nonexpansive.

Theorem 4 Suppose T : K — K is a nonezpansive map with FP(T) # 0. Suppose further
that the sequence {\;} and the family of functions Fy satisfy conditions C1-C6. Then the
sequence {xy} induced by the averaging scheme (15) converges to a fized point of the map
T.

Proof: Let z* € FP(T). Then
1Ga.q (zk) — 2% = |Gy, (k) — Go(2¥)]?

= |Gy (k) = Grpy ()P = |Gy, (%)= Go () [P +2(Gr, ., () —Go () (G, o, (z%)—Go(z*))
<||Grgir (k) — Gy (29117,

with the inequality obtained by applying condition C3 with z = Gy, (=)
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Conditions C2 and C4 and the fact that z* = F(G), (")) imply that

ks — & 1* = IIF (G (21) — 2112 < Gy (21) = Gy ()2

<l = "1 = vNes1) l2x — Gola) I (16)

Relation (16) implies that the sequence {||zz — z*|*} is nonincreasing, and hence converges
for any fixed point z* € FP(T). Moreover, it implies that the sequence {x} is bounded
and, therefore, has at least one limit point.

We claim that for some limit point Z of the sequence {z}, ||z — Go(Z)||* = 0. Suppose
this is not the case. Then for some sufficiently large K and some constant B > 0, ||z —
Go(zy)||? > B for all k > K. Since the sequence {\;} satisfies condition C5,

I

+00
0< lim flog —2*[* < [log — 2> = B Y y(\iy1) = —o0
k—o00 i

which is a contradiction.

We conclude that the sequence {z}} has a limit point Z satisfying the conditions
|Z—Go(Z)||* = 0, implying that # € FP(Gy) = FP(T). Therefore, the sequence {||z} —Z||?}
is convergent. Since Z is at limit point of {z}}, we conclude that limy_,o ||z — |2 = 0. N

Future research related to this work might fruitfully examine a number of issues, for exam-
ple:

1. Test these methods computationally to determine how they perform in practice.

2. Examine how this approach applies to the solution of variational inequality, comple-
mentarity, linear and nonlinear optimization problems.

3. By making necessary refinements, improve the convergence behavior of averaging
schemes. Moreover, develop results by imposing weaker assumptions on the origi-
nal problem map 7.

4. Develop results on the rate of convergence of averaging schemes, perhaps by consid-
ering additional refinements on the schemes.

Acknowledgments: We are grateful to the Associate Editor and the referees for their
constructive comments on the previous version of this paper that has led us to weaken some
of our original assumptions.
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