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Abstract
Purpose This study aims to compare the life cycle greenhouse
gas (GHG) emissions of two cellulosic bioenergy pathways
(i.e., bioethanol and bioelectricity) using different references
and functional units. It also aims to address uncertainties
associated with a comparative life cycle analysis (LCA) for
the two bioenergy pathways.
Methods We develop a stochastic, comparative life cycle
GHG analysis model for a switchgrass-based bioenergy sys-
tem. Life cycle GHG offsets of the biofuel and bioelectricity
pathways for cellulosic bioenergy are compared. The refer-
ence system for bioethanol is the equivalent amount of gaso-
line to provide the same transportation utility (e.g., vehicle
driving for certain distance) as bioethanol does. We use mul-
tiple reference systems for bioelectricity, including the average
US grid, regional grid in the USA according to the North
American Electric Reliability Corporation (NERC), and aver-
age coal-fired power generation, on the basis of providing the
same transportation utility. The functional unit is one unit of
energy content (MJ). GHG offsets of bioethanol and

bioelectricity relative to reference systems are compared in
both grams carbon dioxide equivalents per hectare of land per
year (g CO2-eq/ha-yr) and grams carbon dioxide equivalents
per vehicle kilometer traveled (g CO2-eq/km). For the latter,
we include vehicle cycle to make the comparison meaningful.
To address uncertainty and variability, we derive life cycle
GHG emissions based on probability distributions of individ-
ual parameters representing various unit processes in the life
cycle of bioenergy pathways.
Results and discussion Our results show the choice of refer-
ence system and functional unit significantly changes the com-
petition between switchgrass-based bioethanol and bioelectric-
ity. In particular, our results show that the bioethanol pathway
produces more life cycle GHG emissions than the bioelectricity
pathway on a per unit energy content or a per unit area of crop
land basis. However, the bioethanol pathway can offer more
GHG offsets than the bioelectricity pathway on a per vehicle
kilometer traveled basis when using bioethanol and bioelectric-
ity for vehicle operation. Given the current energy mix of
regional grids, bioethanol can potentially offset more GHG
emissions than bioelectricity in all grid regions of the USA.
Conclusions The reference and functional unit can change
bioenergy pathway choices. The comparative LCA of
bioenergy systems is most useful for decision support only
when it is spatially explicit to address regional specifics and
differences. The difference of GHG offsets from bioethanol
and bioelectricity will change as the grid evolves. When the
grids get cleaner over time, the favorability of bioethanol for
GHG offsets increases.
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1 Introduction

Driven by increasing demand for alternative energy sources
and rising concerns on climate change mitigation through
reducing greenhouse gas (GHG) emissions, biomass-based
energy (bioenergy) has experienced rapid development in
the last decade. Bioenergy derived from cellulosic feedstocks
(non-food-based feedstocks including crop residues, wood
residues, dedicated energy crops, and industrial wastes) is
particularly promising for increasing renewable energy supply
and reducing GHG emissions (Carroll and Somerville 2009;
Liang et al. 2012).

Cellulosic biomass can be converted into two more usable
forms of energy: liquid fuels (e.g., bioethanol) or electricity. In
the USA, cellulosic biofuel development is strongly supported
by the current government policies. The Renewable Fuel
Standard (RFS) mandates the production of biofuels to reach
36 billion gallons per year by 2022, with 21 billion gallons
from cellulosic and other advanced biofuels (i.e., biofuels
other than derived from corn starch or other food crops) (US
EPA 2012). On the other hand, state governments have
established Renewable Portfolio Standards (RPS) to promote
electricity generation from renewable sources, including bio-
mass (bioelectricity) (DSIRE 2012). It is estimated that the
potential market value of bioelectricity will reach $53 billion
by 2020 (Pike-Research 2010).

These two cellulosic bioenergy pathways generate different
life cycle GHG emissions. Life cycle analysis (LCA) studies
have separately measured life cycle GHG emissions of cellu-
losic biofuels (e.g., Bessou et al. 2011; Fu et al. 2003; Hill
et al. 2006; Liang et al. 2012; Uihlein and Schebek 2009;
Kumar and Murthy 2012; Bai et al. 2010) and bioelectricity
(e.g., Heller et al. 2003; Mann and Spath 1997; Luk et al.
2013). However, what is more relevant to policy making is to
compare these two pathways under the same system boundary
and same assumptions. To date, only a few studies have
conducted comparative life cycle GHG analysis for the two
cellulosic bioenergy pathways. Campbell et al. found that
bioelectricity can power approximately 81 % more transpor-
tation mileage and produce an average of 108 % more GHG
emissions offsets than cellulosic ethanol on a per unit area of
cropland basis (Campbell et al. 2009). Rowe et al. also found,
on a per unit energy content basis, the cellulosic biofuel
pathway resulted in more life cycle GHG emissions and fossil
energy inputs than the pathway of producing heat and power
using cellulosic biomass (Rowe et al. 2011).

While bioelectricity seems to offer more life cycle GHG
offsets than cellulosic biofuels do, these studies only compare
particular aspects of these two bioenergy pathways due to the
selection of functional units. In particular, Campbell et al.
(2009) only compare these two pathways on a per unit area
of cropland basis, while Rowe et al. (2011) choose energy
content of the final products as the comparison basis. Neither

of them compares these two pathways based on the actual
functions of biofuels and bioelectricity. For biofuels, the pri-
mary function obviously is to provide transportation utility.
However, functions of bioelectricity are more complex due to
the fact that bioelectricity generation will most likely be
connected with the grid. Thus, bioelectricity could be used
for many more purposes than charging batteries for electric
vehicles (EVs) as studied in Campbell et al. (2009). In addi-
tion, the GHG offsets from bioelectricity largely depend on
the regional energy mix on the grid; but such grid-dependent
GHG offsets are not well quantified.

Moreover, inherent uncertainty and variability exist in
LCA, which pose significant challenges to the interpretation
of LCA results for decision support (McKone et al. 2011).
While quite a few recent studies have discussed the uncertain-
ty and variability in LCA of biofuels (e.g., Campbell et al.
2009; Mullins et al. 2011; Stratton et al. 2011; Whitaker et al.
2010) and bioelectricity (e.g., Campbell et al. 2009; Johnson
et al. 2011) individually, to our knowledge, there are no
published studies examining the uncertainty and variability
associated with a comparative LCA of the biofuel and bio-
electricity pathways for cellulosic bioenergy. Such kinds of
studies can provide significant additional information for pol-
icy making on cellulosic bioenergy.

In this paper, in order to address the two research needs
noted above, we present a comparative and stochastic life
cycle GHG analysis of the biofuel and bioelectricity pathways
for cellulosic bioenergy. We use an attributional LCA ap-
proach in this study to address the impacts due to the produc-
tion of biofuel and bioelectricity instead of considering indi-
rect effects arising from changes in the outputs of biofuel and
bioelectricity (Brander et al. 2008). We quantify the life cycle
GHG emissions of each pathway, comparing with reference
fossil-based energy systems at the regional level likely to be
displaced by either biofuels or bioelectricity. To address un-
certainty and variability, we derive the life cycle GHG emis-
sions based on probability distributions of individual param-
eters representing various unit processes in the life cycle of
bioenergy pathways. Given that cellulosic biofuels and bio-
electricity production compete with each other for limited
supply of land and biomass, this research is directly relevant
to bioenergy policy-making in the USA.

Analysis in this research focuses on bioethanol and
bioelectricity derived from switchgrass. As a perennial
grass native to North America, switchgrass is widely con-
sidered as a popular candidate crop for the cellulosic eth-
anol production under the RFS and can be used to generate
electricity at the utility scale by direct firing or gasification
process (McLaughlin and Kszos 2005). The comparative
and stochastic life cycle GHG analysis framework for
different bioenergy pathways will be generally applicable
to other cellulosic sources such as willow plant or corn
stover.
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2 Methods and data

2.1 System boundary

As shown in Fig. 1, the system boundary of this study includes
agricultural inputs for switchgrass cultivation, feedstock col-
lection and transportation, production, distribution, and end
use. We assume that switchgrass feedstock is converted into
electricity through integrated gasification combined cycle
(IGCC). Fossil-based energy usage and GHG emissions are
accounted for in each stage within the system boundary. Other
environmental impacts are not covered in this study, which
represent an important research avenue in the future to avoid
shifting environmental impacts from one to another (Liang
et al. 2012, 2013; Yang et al. 2012). Although CO2 emissions
from biomass combustion can potentially have relatively sig-
nificant contribution to global warming (Cherubini et al.
2011), we assume carbon neutrality for bioenergy production
for simplicity in this study. In particular, usable form of energy
is generated using a feedstock (switchgrass) which is grown
specifically for this purpose. The carbon sequestered in
switchgrass growth offsets the carbon emissions from
bioethanol combustion or biomass combustion for power
generation. We account for the difference between EVs and
liquid fuel-powered vehicles in this study based on the litera-
ture results. Indirect land use change (ILUC) impacts are
important in bioenergy LCA (Chamberlain et al. 2011;
Mathews and Tan 2009; Plevin et al. 2010; Rowe et al.
2011; Sanchez et al. 2012; Hertel et al. 2010; Kløverpris
et al. 2008, 2010; Searchinger et al. 2008; Tonini et al. 2012;
Vázquez-Rowe et al. 2013; Reinhard and Zah 2011). Howev-
er, this study conducts the LCA from an attributional perspec-
tive, which only considers direct impacts in different parts of
the life cycle (Brander et al. 2008). Moreover, GHG emissions
from ILUC will be the same per hectare of switchgrass re-
gardless of ultimate end use. We hence do not account for
GHG emissions associated with ILUC in this study. Detailed
information regarding assumptions made for this study can be
found in the Electronic Supplementary Material.

2.2 Reference system

The reference system refers to a fossil fuel alternative to which
bioenergy is compared. Energy from bioethanol has a different
utility than energy from electricity. Bioethanol helps with
meeting the demand of alternative fuels for the transportation
sector, whereas bioelectricity helps in reducing the fossil fuel
consumption in the electric power generation. We consider the
savings in GHG emissions of bioenergy systems from the
displacement of fossil fuels along particular pathways. Based
on this criterion, it becomes important to quantify the life
cycle GHG emissions impacts of each pathway as compared
to the reference case—the fossil energy system. A reference

case energy system is chosen that is realistically likely to be
displaced by the particular bioenergy system. In the case of
cellulosic bioethanol in the USA, it is most likely to replace
gasoline use in internal combustion engine vehicles. Hence,
the reference system chosen for cellulosic bioethanol is the
equivalent amount of gasoline that provides the same trans-
portation utility as cellulosic bioethanol does. Choosing a
reference system for bioelectricity is more complex. Bioelec-
tricity is most likely to replace average grid electricity in a
region. However, the environmental profiles of grid electricity
vary from region to region due to different energy mix for
power generation. In this research, we use multiple reference
systems for bioelectricity, including the average US grid,
regional grid in the USA according to the NERC, and average
coal-fired power generation. More details on the reference
system can be found in the Electronic Supplementary Material.

2.3 Functional unit

The life cycle GHG emissions from the bioethanol pathway
are expressed in grams carbon dioxide equivalents per
megajoule of energy output (g CO2-eq/MJ). The lower heating
value (LHV) of bioethanol is used to convert it from volumet-
ric units to megajoule. Using megajoule instead of volumetric
units makes it easy to compare bioethanol with its fossil-based
counterpart, gasoline system, as well as bioelectricity life
cycle GHG analysis results of which are also expressed on a
per unit energy content (MJ) basis. It is a convenient unit to
compare bioelectricity with other reference electricity systems
such as the US grid average, regional grids, or coal-fired
power plants. GHG offsets of bioethanol and bioelectricity
relative to reference systems are compared in both grams
carbon dioxide equivalents per hectare of land per year

Fig. 1 System boundary of comparative life cycle GHG analysis for
switchgrass-based bioenergy pathways in this study
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(g CO2-eq/ha-yr) and grams carbon dioxide equivalents per
vehicle kilometer traveled (g CO2-eq/km). For the latter, the
vehicle cycle is included in the system boundary to make the
comparison meaningful. More details on the functional unit
can be found in the SI.

2.4 Comparison of greenhouse gas offsets per hectare of land

The comparison of GHG offsets per hectare (ha) of land is
formulated to indicate GHG offset potentials in terms of land
use efficiency or GHG offset potentials from a unit area of
cropland. The reference system for the bioethanol pathway is
gasoline, while the references for the bioelectricity pathway
are the US average grid and coal-fired power generation. We
assume that all the switchgrass produced in a year from a
hectare of land is either used to produce ethanol or electricity.

2.5 Comparison of greenhouse gas offsets per vehicle
kilometer of travel

Comparison of GHG offsets per vehicle kilometer (km) of
travel is formulated assuming that all the biomass is used only
for powering the transportation sector. We assume that bio-
electricity is used to charge EVs, and bioethanol is used to
power flex fuel vehicles (FFVs). We account for both the fuel
cycle and vehicle cycle GHG emissions in this comparison.

2.6 Monte Carlo simulation to address uncertainty

Instead of using single average values for input parameters in
the life cycle GHG analysis, we define a domain of possible
values using probability distributions for each parameter. We
then use Monte Carlo simulation (100,000 samples) to gener-
ate random inputs from the probability distributions defined
for each parameter, perform deterministic computation on the
inputs, and aggregate the results (Hung and Ma 2009). These
parameters are assumed to be independent of each other for
simplicity given the focus of this research on reference sys-
tems. Addressing the interdependence of key parameters (e.g.,
switchgrass yield and herbicide application rate) in future
research can potentially change the result of the comparative
life cycle GHG analysis; however, the importance of selecting
the right reference system remains valid. The MATLAB soft-
ware is used to perform these simulations. The total life cycle
GHG emissions are the sum of the emissions at each stage.

2.7 Data sources

To obtain probability distributions of input parameters for
Monte Carlo simulations, we examined a variety of data
sources to derive the means and variations for each parameter.
We develop probability distributions for parameters following
Binkman et al. (2005). All input parameters are assumed to

follow normal distributions or triangular distributions with
adjustment for unrealistic results (e.g., negative values), which
are detailed in the Electronic Supplementary Material. Data
for the agriculture phase are obtained from the studies of
Davis et al. (2008), Groode (2008), and Johnson et al.
(2011). Table S1 in the Electronic Supplementary Material
summarizes the mean and standard deviation values of major
LCA input parameters in the switchgrass agricultural phase.
Fig. S1 (Electronic Supplementary Material) shows the prob-
ability distribution for switchgrass yield used in our analysis.
We use the integrated biomass supply analysis and logistics
(IBSAL) model to estimate the energy use and GHG emis-
sions associated with switchgrass collection and transporta-
tion logistics (Kumar and Sokhansanj 2007). Data for the
cellulosic bioethanol production process are obtained from
the studies of Humbird et al. (2011) and MacLean and Spatari
(2009) based on a detailed technical process design. Fuel
economy data for vehicle driving using gasoline, bioethanol,
and electricity are acquired from West et al. and the Depart-
ment of Energy (DOE 2012; West et al. 2007). Conversion
efficiencies for biomass to electricity are assimilated from
existing deployed bioelectricity power plants (Bessou et al.
2011; Brown et al. 2009; Peterson and Haase 2009). Appro-
priate GHG emission factors are taken from the Greenhouse
gases, Regulated Emissions, and Energy use in Transportation
(GREET) model 1.8 version (ANL 2012). Vehicle cycle GHG
emissions are from Hawkins et al. (2013). In addition, feed-
stock logistics and biorefinery chemical uses are poorly doc-
umented in literature given the huge regional variations. We
have reviewed the most recent literature and referred to the
most relevant data sources. Detailed information regarding
data sources and derived probability distributions for life cycle
GHG analysis parameters can be found in the Electronic
Supplementary Material.

3 Results

3.1 Life cycle greenhouse gas emissions

Our results complement Campbell et al. (2009) and confirm
with Rowe et al. (2011) that the life cycle GHG emissions of
the switchgrass-based bioethanol pathway are generally
higher than those of the bioelectricity pathway on a per unit
energy content basis (Fig. 2a). Delivering 1 MJ worth of
bioethanol derived from switchgrass on average produces
7.1 g CO2-eq GHG emissions more than delivering 1 MJ
worthy of bioelectricity, ranging from 1.4 to 12.4 g CO2-eq.
The probability distributions of the life cycle GHG emissions
for switchgrass-based bioethanol and bioelectricity pathways
are both skewed to the right (Fig. S5, Electronic Supplemen-
tary Material). These right-tailed distributions lead to the left-
tailed distribution of the difference between bioethanol and
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bioelectricity in the life cycle GHG emissions (Fig. S6, Elec-
tronic Supplementary Material). It suggests that, under highly
unlikely circumstances (left tail in Fig. S4, Electronic Supple-
mentary Material), producing bioelectricity using switchgrass
as the feedstock could generate slightly more life cycle GHG
emissions than producing bioethanol could.

Figure 2b shows the life cycle GHG emissions of the
bioethanol pathway by different processes including switch-
grass agriculture, feedstock logistics, biorefinery, and ethanol
distribution. The average life cycle GHG emissions are 35.6 g
CO2-eq/MJ of energy delivered, ranging from 26.8 to 52.5 g
CO2-eq/MJ. This result is comparable with the previous stud-
ies on the life cycle GHG emissions of cellulosic ethanol (e.g.,
Campbell et al. 2009; Farrell et al. 2006). Switchgrass agri-
culture, feedstock logistics, and biorefinery contribute approx-
imately 31, 37, and 27 % of the life cycle GHG emissions.
Notably, the switchgrass agriculture process among all pro-
cesses contributes the most variation to the life cycle emis-
sions. To measure the feasibility of bioethanol in terms of net
energy gain, we use energy return on investment (EROI), a
ratio of the amount of usable energy delivered in particular
energy product to the amount of nonrenewable energy inputs
required to produce the product. The EROI of switchgrass-
based bioethanol is on average 4.1 MJoutput/MJinput, ranging
from 2.4 to 5.4 MJoutput/MJinput (Fig. S7, Electronic Supple-
mentary Material).

Figure 2c shows the life cycle GHG emissions of the
bioelectricity pathway by different processes including
switchgrass agriculture and feedstock logistics. The average
life cycle GHG emissions are 28.4 g CO2-eq/MJ, ranging
from 16.5 to 48.8 g CO2-eq/MJ. The switchgrass agriculture
and feedstock logistics contribute approximately 46 and 54 %
of the life cycle GHG emissions, respectively. The variation of
the life cycle GHG emissions predominantly comes from the
variation of emission in the switchgrass agriculture phase. The
EROI of switchgrass-based bioelectricity is lower than that of
bioethanol, ranging from 1.9 to 4.9 MJoutput/MJinput with the
mean of 3.5 MJoutput/MJinput (Fig. S7, Electronic Supplemen-
tary Material).

The switchgrass agriculture process contributes most vari-
ations to the life cycle GHG emissions of both bioethanol and
bioelectricity. Figure 2d breaks down GHG emissions from
the switchgrass agriculture process according to sources of
emissions. On a per unit area of cropland basis, GHG emis-
sions for switchgrass agriculture are on average 856 kg CO2-
eq/ha-yr, ranging from 353 to 1,549 kg CO2-eq/ha-yr. Our
results are comparable with the previous estimate (971 kg
CO2-eq/ha-yr) by Farrell et al. (Farrell et al. 2006), but also
provide the variation of results due to parameter variability.
Energy use in producing and transporting nitrogen fertilizer
(Fig. S6, Electronic Supplementary Material) and direct N2O
emissions contribute approximately 32 and 58 % to the total
GHG emissions from switchgrass agriculture, respectively.

Notably, these two processes also contribute most variations
to the total GHG emissions in the agriculture phase.

3.2 Emissions offsets under different reference systems
and functional units

The comparison of life cycle GHG emissions of switchgrass-
based bioenergy implies that the bioethanol pathway generally
produces more GHG emissions than the bioelectricity path-
way does on an energetic basis. However, the quality of
energy is significantly different for bioelectricity and
bioethanol in the way that one unit of bioelectricity can be
converted to more mechanical work than one unit of
bioethanol. Thus the “net” impact of bioenergy systems on
GHG emissions depends on the choice of reference systems,
that is, the fossil-based counterparts that bioenergy systems
replace and the choice of functional units, that is, on what
basis the two pathways are compared. Figure 3a compares
potential emissions offsets of bioethanol derived from switch-
grass replacing gasoline. Approximately 53.6 g CO2-eq GHG
emissions can be saved if fossil-based gasoline is replaced by
switchgrass-based bioethanol, ranging from 37.5 to 63.2 g
CO2-eq, on a per unit energy content (MJ) basis. The potential
GHG offsets are roughly equivalent to a 60% reduction in life
cycle emissions.

Figure 3b compares bioelectricity derived from switchgrass
with its fossil-based counterparts, electricity produced from
coal-fired power generation, and electricity from the average
US grid. Potential GHG offsets from replacing coal-fired
electricity by bioelectricity are approximately 272.4 g CO2-
eq/MJ, or a 91 % reduction. If the reference system is the
average US grid, approximately 151.9 g CO2-eq/MJ of GHG
emissions could be offset from replacing with bioelectricity,
equivalent to an 84 % reduction of life cycle emissions.
Although the bioethanol pathway generally implies more life
cycle GHG emissions than the bioelectricity pathway
(Fig. 1a), potential GHG offsets from bioelectricity are much
higher than those from bioethanol on a per unit energy content
basis due to different reference systems.

Figure 3c compares switchgrass bioenergy pathways with
their fossil-based counterparts on a per unit area of cropland
basis, a functional unit used by previous studies (e.g., Heller
et al. 2003). Our results agree with previous research that the
bioelectricity pathway offsets more GHG emissions than the
bioethanol pathway does on a per unit area of cropland basis.
This result holds true regardless of the choice of references for
the bioelectricity pathway. On average, the bioelectricity path-
way can potentially offset 5.9 or 13.9 tons CO2-eq/ha-yr more
GHG emissions than the bioethanol pathway can if replacing
the average US grid electricity or coal-fired electricity,
respectively.

Figure 3d shows the comparison of swithchgrass bioenergy
pathways using vehicle kilometer traveled as the functional
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unit, including the vehicle cycle. Life cycle GHG emissions
for per vehicle kilometer traveled using bioethanol are esti-
mated using the fuel economy of ethanol driven FFVs at
twenty miles per gallon (mpg) (Kumar and Sokhansanj
2007). Similarly, life cycle GHG emissions of gasoline on a
per vehicle kilometer traveled basis are estimated using the
average life cycle GHG emissions of gasoline (West et al.
2007) and the fuel economy of gasoline powered FFVs at
25 mpg (Kumar and Sokhansanj 2007). The results show that
approximately 142.4 g CO2-eq/km GHG emissions could be
offset if fueling FFVs using bioethanol instead of gasoline,
ranging from 100.8 to 164.0 g CO2-eq/km. Potential GHG
offsets on a per vehicle kilometer traveled basis for bioelec-
tricity are estimated using emissions of the average US grid,
average emissions of coal-fired power generation in the USA
in 2009 (EPA 2012), and the fuel economy of Nissan LEAF
electric car (Humbird et al. 2011). Using the average US grid
electricity as the reference, bioelectricity can potentially offset
70.6 g CO2-eq/km GHG emissions, which are less than the
potential offsets offered by bioethanol. If replacing average
coal-fired electricity, bioelectricity could offset approximately

157.2 g CO2-eq/kmGHG emissions which are a little bit more
than what bioethanol could offset.

Given that the potential GHG offset of bioelectricity highly
depends on the energy mix of the regional grid, we compare
GHG offset potentials of bioethanol fueling FFVs and bio-
electricity powering EVs on a per vehicle kilometer traveled
basis in each of the 26 NERC subregions (Peterson and Haase
2009). As shown in Table S3, bioethanol-fueled FFVs offer
more GHG offsets than bioelectricity-powered EVs do in all
NERC subregions. In general, bioethanol is less favored in
regions with “dirtier grid”, such as the RockyMountain Power
Area (RMPA) than in regions with “cleaner grid”, such as
Northeast Power Coordinating Council/Upstate New York
(NYUP). Davis et al. (Davis et al. 2008) indicate that switch-
grass yields are characteristically low in the Western USA.
Therefore, although there might exist large differences in
GHG offsets in western NERC subregions (e.g., NWPP and
CAMX), the amount of switchgrass that can be grown and
thus the amount of switchgrass-based bioenergy that can be
produced in these regions are relatively marginal. Also note
that the spatial variations related to switchgrass agriculture are

Fig. 2 Life cycle GHG emissions of switchgrass-based bioenergy: a
comparative results on an energetic basis, b bioethanol by processes, c
bioelectricity by processes, and d agricultural components on a per
hectare basis. Lines in each box represent median values of each output

variable, with top linesas the 75th percentiles and bottom linesas the 25th
percentiles. The end of whiskers represents minimum and maximum
values of each output variable excluding outliers
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not considered in this research, although it represents an
interesting avenue for future study.

3.3 Uncertainty and sensitivity analysis

Uncertainties of the life cycle GHG analysis results for the two
bioenergy pathways in our study are derived from probability
distributions of key parameters. We examine the sensitivity of
the result—difference of life cycle GHG emissions of
bioethanol and bioelectricity—to these distributions. The re-
sults of the sensitivity analysis found that the difference of life
cycle GHG emissions is most sensitive to the means of distri-
butions of five parameters including mass fraction of cellulose
in switchgrass, mass fraction of xylan in switchgrass, conver-
sion efficiency of IGCC system, heating value of switchgrass
(Fig. 4), and switchgrass yield (Fig. S8, Electronic Supple-
mentary Material). Increasing mass fractions of cellulose and
xylan in switchgrass and decreasing IGCC conversion effi-
ciency and switchgrass heating value can make the bioelec-
tricity pathway produce more life cycle GHG emissions than
the bioethanol pathway do. In addition, switchgrass yield can

dramatically change the variation of the life cycle GHG emis-
sion difference between the two pathways, but not necessarily
the mean value of the result. Whereas switchgrass composi-
tion (i.e., fractions of cellulose and xylan) are constrained to
fairly small ranges, switchgrass yield is both highly variable
and uncertain. Switchgrass yield can be affected by geogra-
phy, soil type, precipitation, and management practices. Each
of these factors contributes to a large range of viable switch-
grass yields. In addition to variability arising from geographic
heterogeneity, yields are also uncertain. Switchgrass is not
currently cultivated as a commodity crop, and many of the
yield predictions are based on extrapolation of controlled field
experiments. This suggests the results of this study may have
regional variation according to actual switchgrass yields. Fi-
nally, it is reasonable to expect that IGCC conversion efficien-
cy will improve over time, resulting in similar trends of the
initial analysis. The comparison results do not change very
much when changing the means of other parameters (Figs. S8
and S10, Electronic Supplementary Material), standard devi-
ations of normally distributed parameters (Fig. S9, Electronic
Supplementary Material), and upper and lower limits of

Fig. 3 Life cycle GHG offsets of switchgrass-based bioenergy: a offsets
of bioethanol replacing gasoline on a per megajoule basis, b offsets of
bioelectricity replacing the coal-fired electricity and the average US grid
electricity on a per megajoule basis and offsets of bioethanol and

bioelectricity replacing their fossil-based counterparts (in parentheses), c
on a per unit area of cropland basis, and d on a per vehicle kilometer
traveled basis including emissions from the vehicle cycle
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triangularly distributed parameters (Fig. S11, Electronic Sup-
plementary Material).

4 Discussion and conclusions

Our study agrees with the previous research that the
bioethanol pathway generally produces more life cycle GHG
emissions than the bioelectricity pathway does when com-
pared on both a per megajoule and a per hectare basis. How-
ever, our results also show that, when compared as a function
of vehicle miles traveled, the two pathways are comparable
with marginal differences. In particular, using bioelectricity to
replace grid power for EVs offsets fewer life cycle GHG
emissions than using bioethanol to fuel FFVs in all of the 26
NERC subregions. This implies that, in regions with “cleaner”
(cleaner means lower GHG emissions) grids, producing elec-
tricity from cellulosic biomass could only offer marginal GHG
reduction, whereas cellulosic bioethanol becomes more prom-
ising to reduce life cycle GHG emissions. Despite the fact that
the life cycle GHG emissions of bioethanol are higher than
those of bioelectricity using the same feedstock, the potential
GHG reduction of these two bioenergy pathways highly de-
pends on the choice of reference system and the regional
specifics of the reference system. Therefore, comparative
LCA of bioenergy systems is most useful for decision support
only when it is spatially explicit to address regional specifics
and differences. Moving forward, the difference of GHG
offsets from bioethanol and bioelectricity will change as the
grid evolves. Based on the reference case in the EIA Annual
Energy Outlook 2012 (EIA 2012), which covers only CO2

emissions instead of GHG emissions, bioethanol will offer
more CO2 offsets than bioelectricity in all NERC subregions

on a per vehicle kilometer traveled basis (Fig. S13, Electronic
Supplementary Material). In particular, bioethanol will offer
more CO2 offsets than bioelectricity in all subregions as grids
in these subregions become cleaner. After 2015, the difference
of CO2 offsets from the two bioenergy pathways stays rela-
tively stable, except in Midwest Reliability Council/East
(MROE)—most of Wisconsin and the Upper Peninsula of
Michigan—where bioethanol becomes increasingly more fa-
vorable as the grid evolves. In general, when the grids get
cleaner over time, the favorability of bioethanol for GHG
offsets increases. However, this time-dependent comparison
does not account for potential efficiency increase of gasoline
combustion, which may decrease the offsets of bioethanol.

Note that this time-dependent comparison does not account
for potential efficiency improvements of vehicles, which may
decrease the GHG offsets of bioethanol. This is a complex
issue out the scope of this study, but represents an interesting
avenue for future research.

In addition to the selection of reference systems, the choice
of functional units reflects stakeholder interests and can sig-
nificantly impact the comparison of GHG offset potentials for
bioenergy pathways. The comparison in Figs. 4 and S13
(Electronic Supplementary Material) is made from a con-
sumption perspective using per vehicle kilometer traveled as
the functional unit. In other words, the provision of vehicle
kilometer traveled using bioenergy is the main consideration.
On the other hand, switchgrass produced from per unit area of
cropland becomes the functional unit when the utilization of
feedstock to produce bioenergy is the main concern. From this
production point of view, the bioethanol pathway can poten-
tially provide more GHG offsets than the bioelectricity path-
way using either the average US grid or coal-fired power
generation as the reference system.

Fig. 4 Difference of life cycle
GHG emissions (bioethanol less
bioelectricity) after decreasing
and increasing means of selected
parameter distributions by 50, 30,
and 10 %
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Due to variations of feedstock agriculture, technology spe-
cifics, and logistics, there are significant uncertainties associ-
ated with comparative life cycle GHG analysis of bioenergy
systems. In this research, we capture uncertainties associated
with the life cycle of switchgrass-based bioethanol and bio-
electricity. However, we only use estimates from government
databases (ANL 2012; DOE 2012; Peterson and Haase 2009)
as reference systems (i.e., life cycle GHG emissions of gaso-
line used, US grid, and coal-fired power generation) to repre-
sent the industry average. This is sufficient for the particular
purpose of this research that is to show the importance of
reference and functional unit in comparative life cycle GHG
analysis of bioenergy systems. When decisions are to be
made, however, higher resolution data should be collected to
address regional specifics of the reference system and uncer-
tainties associated with it. Other factors such as cost (Fig. S12,
Electronic Supplementary Material) should be taken into ac-
count in a multi-criteria decision analysis framework. More-
over, the system boundaries of this study only consider the life
cycle GHG emissions of the production of cellulosic
bioethanol and bioelectricity. The GHG emissions associated
with vehicle life cycle (e.g., processing of materials,
manufacturing, distribution, operation, maintenance, and
end-of-life) are not taken into account. Extending system
boundaries in future work can obtain additional information
for the comparative assessment of both biomass pathways.

Our study demonstrates that the reference and functional
unit can significantly change bioenergy pathway choices. The
comparative LCA of bioenergy systems is most useful for
decision support only when it is spatially explicit to address
regional specifics and differences. The difference of GHG
offsets from bioethanol and bioelectricity will change as the
grid evolves. When the grids get cleaner over time, the favor-
ability of bioethanol for GHG offsets increases.
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