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a b s t r a c t

Micro-grid system management considering air pollutant control and carbon dioxide (CO2) mitigation is a
challenging task, since many system parameters such as electric demand, resource availability, system
cost as well as their interrelationships may appear uncertain. To reflect these uncertainties, effective
inexact system-analysis methods are desired. In this study, a hybrid inexact stochastic-fuzzy chance-con-
strained programming (ITSFCCP) was developed for micro-grid system planning, and interval-parameter
programming (IPP), two-stage stochastic programming (TSP) and fuzzy credibility constrained program-
ming (FCCP) methods were integrated into a general framework to manage pollutants and CO2 emissions
under uncertainties presented as interval values, fuzzy possibilistic and stochastic probabilities.
Moreover, FCCP allowed satisfaction of system constraints at specified confidence level, leading to model
solutions with the lowest system cost under acceptable risk magnitudes. The developed model was
applied to a case of micro-grid system over a 24-h optimization horizon with a real time and dynamic
air pollutant control, and total amount control for CO2 emission. Optimal generation dispatch strategies
were derived under different assumptions for risk preferences and emission reduction goals. The
obtained results indicated that stable intervals for the objective function and decision variables could
be generated, which were useful for helping decision makers identify the desired electric power gener-
ation patterns, and CO2 emission reduction under complex uncertainties, and gain in-depth insights into
the trade-offs between system economy and reliability.

� 2014 Elsevier Ltd. All rights reserved.
Introduction

Electric power industry provides basic power for human activ-
ities and economic growth, and plays an essential role in social
development. At the meantime, it is also a major source of carbon
dioxide, sulfur dioxide, and nitric oxide (e.g. CO2, SO2, and NOx)
emissions. Especially, the environmental pollution caused by tradi-
tional fossil generation becomes a serious problem, which gains
more social concern accurately. With the ever-increasing energy
demand, electric system develops fast and traditional fossil
generation still constitutes a high proportion of electricity market.
With increasing globe awareness of environmental protection,
effective generation scheduling has been extensively discussed to
reduce greenhouse gas and air pollutants emission. On the other
hand, under the pressure of both resources and environment,
renewable energy generation has become more and more popular.
Many countries have set up the goals of renewable resources gen-
eration plan for future grid construction. Due to its advantages of
convenience, flexibility and environmental friendly, micro-grid
providing better platform for renewable energy generation has
become popular and important in modern electricity system [1,2].

In order to deal with the interrelated and complex problems in
the development of modern electric power system, many great
efforts have been made on the optimal generation scheduling.
Compared with historical researches, which mainly focus on ther-
moelectric power generators, most of recent studies are about
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micro-grid and distributed generation with renewable resources.
For example, Yazawa and Shakouri (2013) analyzed the energy cost
and optimization of thermoelectric power generators, which
shows a lower initial cost compared with commercialized micro
gas turbines but higher operating cost per energy due to moderate
efficiency [3]. Guo et al. (2012) advanced the optimal generation
dispatch with wind power generation and coal-fired generation
embedded, and the optimal dispatch model was solved by a parti-
cle swarm optimization algorithm on an IEEE 30-bus system [4].
Moreover, the optimal goal has changed from simply minimizing
cost or maximizing profit into multi objective optimization like
minimizing carbon emissions and violation risks of uncertainties.
Since those goals are usually conflict, the Pareto-optimal solutions
are desired by decision makers. Considering variable penalty policy
for CO2 emission, Tang and Che (2013) developed mixed integer
nonlinear programming model to deal with the economic dispatch
problem of thermal generation [5]. In the study by Buayai et al.
(2012), the objective functions include real power loss, load volt-
age deviation and annualized investment cost, a pareto based
non-dominated sorting genetic algorithm II was proposed to deter-
mine locations and sizes of the distributed generator units within
micro-grid [6].

In fact, the electric system is extremely complex facing vari-
ous uncertainties in generation side, demand side and market
environment, which brings great challenge to the reliability of
the electricity system [7–12]. As a result, relative research and
on site projects are being carried out with a growing trend, a ser-
ies of uncertainty methods have been proposed [13–20]. Among
these methods, Two-stage stochastic programming (TSP) is a
potential uncertainty technology and widely applied in electric
generation planning and dispatch. Considering the power gener-
ation in a hydro-thermal generation system under uncertainty in
demand and prices of fuel and delivery contracts, Nurnberg and
Romisch (2002) developed a two-stage stochastic programming
model for the short- or mid-term cost-optimal electric power
production planning [21]. Nowak (2005) adopted a two-stage
stochastic integer model for the simultaneous optimization of
power production and day-ahead power trading [22]. Consider-
ing renewable energy generation, Hendrik van der Weijde
(2012) developed cost-minimising TSP model and estimated the
cost of ignoring uncertainty [23]. Combined with interval-param-
eter programming (IPP), TSP method was further developed into
interval two-stage stochastic programming (ITSP) method, which
can deal with uncertain optimization by interval and random
numbers [24].

The traditional TSP or ITSP method cannot only provide an
effective tool for energy policy scenarios analysis, but also han-
dle the uncertain issue with certain probability [25,26]. How-
ever, in distributed energy generation system, the forecasting
load of wind and solar power are usually obtained based on
numerical weather prediction, which belongs to fuzzy informa-
tion. If take them as deterministic parameters, it might easily
mislead or bias the decision makers and lead to resource waste.
In order to deal with the vague and obscure information, fuzzy
set theory has provided a convenient formalism for classifying
available renewable energy sources conditions. Fuzzy credibility
constraints programming (FCCP) was proposed recently as a
measure of confidence level in fuzzy environment to tackle
uncertainties expressed as fuzzy sets. It was recognized as a
competent measure of the confidence level regarding fuzzy con-
straints in optimization models [27,28]. Compared with other
fuzzy programming approaches, the FCCP has a relatively low
computational requirement and can obtain a series of solutions
leading to high system benefits at allowable violation risk levels
[29,30]. FCCP has been applied to many real-world cases due to
its simplicity and efficiency in reflecting the fuzziness inherited
with parameters associated with subjective consideration. Xue
et al. (2012) developed an optimization model based on fuzzy
credibility constraints programming for micro-grid operation
with the uncertainties related to load and wind speed into con-
sideration [31]. Based on mixed integer programming and FCCP,
Zhang et al. (2012) developed integer fuzzy credibility con-
strained programming (IFCCP) to minimize the total cost of an
independent regional power system [32]. Xu and Zhuan (2012)
studied the optimization of wind power capacity for an electric
power system with the system operation, economy and reliabil-
ity emphasized, which is addressed by the FCCP approach [33].
Nevertheless, few previous studies were focused on develop-
ment of inexact two-stage stochastic credibility constrained pro-
gramming method through integrating IPP, TSP and FCCP into a
general framework for electric schedule management within
considering the pollutants and CO2 emission control.

Therefore, the objective of this study is to develop an inexact
stochastic-fuzzy chance-constrained optimization model for elec-
tric schedule management. Interval-parameter programming,
two-stage stochastic programming and fuzzy credibility con-
strained programming methods are integrated into a general
framework to manage pollutants and CO2 emissions under uncer-
tainties presented as interval values, fuzzy possibilistic and sto-
chastic probabilities. It shows the impact for accounting for both
risk-averse and emission reduction goal in a two-stage stochastic
optimization model. Within this framework, a new formulation is
proposed to determine the operation of traditional and renewable
resources generation over a 24-h optimization horizon with both
economic and environmental considerations, where pollutant
management should follow a real time and dynamic control strat-
egy, and total amount control for CO2 emission.

The remaining sections of this paper are organized as follows:
Section ‘‘Methodology’’ introduces the main theory of interval
two-stage stochastic programming and credibility constrained pro-
gramming. The framework of electric system operation with wind
and photovoltaic power is presented in Section ‘‘Case study’’. A
case study and results analysis are illustrated in Section ‘‘Results
analysis and discussion’’. Finally, some conclusions are provided
in Section ‘‘Conclusion’’.
Methodology

A hybrid inexact stochastic-fuzzy chance-constrained program-
ming (ITSFCCP) model was based on interval-parameter program-
ming, two-stage stochastic programming, and fuzzy credibility
constraints programming (as shown in Fig. 1). Each technique
has its unique contribution in enhancing the ITSFCCP’s capacities
for tackling the uncertainties and making the trade-offs between
system economy and reliability. For example, in micro-grid system,
the interval two-stage stochastic programming is used to reflect
the uncertainty of energy market and technical parameters that
expressed as intervals and the random characteristics of electric
demand that expressed as stochastic numbers; and the system risk
and the fuzzy availability of renewable energy sources were
reflected through FCCP.

Interval two-stage stochastic programming

Two-stage stochastic programming (TSP) is effective for
addressing problems where an analysis of policy scenarios is
desired periodically over time and uncertain parameters are
expressed as probability distribution functions (PDFs). A general
TSP model can be formulated as follows [34]:



Fig. 1. Schematic diagram of ITSFCCP model.
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min f ¼ cT xþ
XN

s¼1

psQðy;xsÞ ð1aÞ

subject to : ax 6 b ð1bÞ
TðxsÞxþWðxsÞy ¼ hðxsÞ ð1cÞ
x P 0; yðxsÞP 0 ð1dÞ

where x is vector of first-stage decision variables; cTx is first-stage
benefits; x is random events after the first-stage decisions are
made; s is the scenario of the happening of random events; ps is
probability of event xs,

P
ps = 1; Q(y, xs) is system recourse at the

second-stage under the occurrence of event xs;
PN

s¼1psQðy;xsÞ is
expected value of the second-stage system penalties.

The existing TSP methods are effective in handling probabilistic
uncertainties in the model’s right-hand sides which are often
related to resources availability; however they have difficulties in
dealing with independent uncertainties of the model’s left-hand
sides and cost coefficients. Interval-parameter programming (IPP)
is an alternative for handling uncertainties in the model’s left-
and/or right-hand sides as well as those that cannot be quantified
as membership or distribution functions, since interval numbers
are acceptable as its uncertain inputs. Let x± be a set of intervals
with crisp lower bound (e.g., x�) and upper bounds (i.e., x+), but
unknown distribution information. Let x be a set of closed and
bounded interval numbers x± [35]:

x� ¼ ½x�; xþ� ¼ tjx� 6 t 6 xþf g ð2Þ

Through introducing interval parameters into Model 1, the ITSP
model can be formulated as follows:

min f� ¼ c�x� þ
XN

s¼1

psQ y�;x�s
� �

ð3aÞ

subject to : a�x� 6 b� ð3bÞ
Tðx�s Þx� þWðx�s Þy� ¼ hðx�s Þ ð3cÞ
x� P 0; y x�s

� �
P 0 ð3dÞ
Fuzzy credibility constrained programming

Fuzzy credibility constrained programming (FCCP), which based
on credibility conception, can be expressed as follows [36]:
Min cjxj ð4aÞ

Subject to : Cr
Xn

j¼1

aijxj 6
~bi; i ¼ 1;2; . . . ;m

( )
P ki ð4bÞ

xj P 0; i ¼ 1; . . . ;n ð4cÞ

where x = (x1, x2, . . ., xn) is a vector of non-fuzzy decision variables;
cj are cost coefficients; aij are technical coefficients; ~bi are
right-hand side coefficients; Cr{�} denotes the credibility of the
event {�}; k is the confidence level.

Let n be a fuzzy variable with membership function l, and let u
and r be real numbers. Dubois and Prade proposed the following
indices defined by possibility and necessity measures [36,37]:

Pos n 6 rf g ¼ sup
u6r

lðuÞ ð5aÞ

Nec n 6 rf g ¼ 1� Posfn > rg ¼ 1� sup
u>r

l ð5bÞ

The credibility measure Cr is the average of the possibility
measure and the necessity measure:

Crfn 6 rg ¼ 1
2

Posfn 6 rg þ Necfn 6 rgð Þ ð6Þ

Let the fuzzy variable n be fully determined by the triplet ðt; t;�tÞ
of crisp numbers with ðt < t < �tÞ, whose membership function is
given by

lðrÞ ¼
ðr � tÞ=ðt � tÞ if t 6 r 6 t;

ð�t � rÞ=ð�t � tÞ if t 6 r 6 �t;

0 otherwise:

8><
>: ð7Þ

From the above definitions, the possibility, necessity, and cred-
ibility of r 6 n are provided as follows:

Posfn 6 rg ¼
0 if r 6 t
r�t
t�t if t 6 r 6 t

1 if r P t

8><
>: ð8aÞ

Necfn 6 rg ¼
0 if r 6 t
r�t
�t�t if t 6 r 6 �t

1 if r P �t

8><
>: ð8bÞ

Crðr 6 nÞ ¼

0 if r 6 t
r��t

2ðt��tÞ if t 6 r 6 t
2t�t�r
2ðt�tÞ if t 6 r 6 �t

1 if r P �t

8>>>><
>>>>:

ð8cÞ

Let
Pn

j¼1aijxj be replaced by si. Thus, the constraint (4b) can be
represented as:

Cr si 6
~bi; i ¼ 1; . . . ;m

n o
P ki; ð9Þ

Normally, a significant credibility level should be greater than
0.5. Therefore, based on the definition of credibility, we have the
following equation for each 1 P l~ti

P ki P 0:5:

2bi � bi � si

2ðbi � biÞ
P ki ð10Þ

where ~bi are right-hand side coefficients fully determined by the
triplet ðbi; bi;

�biÞ of crisp numbers with bi < bi <
�bi, whose member-

ship function is l.
Let

Pn
j¼1aijxj ¼ si be the credibility constraints. The interval

credibility levels, parameters and variables for such constraints
can be formulated as:

Crfsi 6
~bi; i ¼ 1; . . . ;mgP ki: ð11Þ
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Therefore, based on the definition of credibility, we have the fol-
lowing expression for each 1 P l~ti

P ki P 0:5:

2bi � bi � si

2ðbi � biÞ
P ki ð12Þ

Thus, the FCCP can be transformed to an equivalent model as
follows:

Min
Xn

j¼1

cjxj ð13aÞ

Subject to :
Xn

j¼1

aijxj 6 bi þ ð1� 2kiÞðbi � biÞ ð13bÞ

xj P 0; 8j ð13cÞ

Inexact stochastic-fuzzy chance-constrained programming

To tackle multi-type uncertainties, the ITSP and FCCP methods
can be incorporated within a general optimization framework.
Then an inexact stochastic-fuzzy chance-constrained program-
ming model can be formulated as follows:

Min f� ¼
Xn

j¼1

c�j x�j þ
Xn

j¼1

Xm

h¼1

pjhd�j y�jh ð14aÞ

subject to :
Xn

j¼1

a�ij x�j 6 biþ 1�2k�i
� �

ðbi�biÞ ð14bÞ

Tðx�s Þx�j þWðx�s Þy�jh ¼ hðx�s Þ ð14cÞ
x�j P 0;x�j 2 X�; j¼ 1;2; . . . ;n1 ð14dÞ
y�jh P 0;y�jh 2 Y�; j¼ 1;2; . . . ;n2; h¼ 1;2; . . . ;m: ð14eÞ

Model (14) can be transformed into two deterministic submod-
els that correspond to the lower and upper bounds of desired objec-
tive function value. This transformation process is based on an
interactive algorithm, which is different from the best/worst case
analysis [38]. The objective function value corresponding to f� is
desired first because the objective is to minimize net system costs.
Based on the above solutions, the submodel for f� can be formulated
as follows:

Min f� ¼
Xk1

j¼1

c�j x�j þ
Xn

j¼k1þ1

c�j xþj þ
Xk2

j¼1

Xm

s¼1

psd
�
j y�js

þ
Xn

j¼k2þ1

Xm

s¼1

psd
�
j yþjs ð15aÞ

subject to :
Xk1

j¼1

a�ij
��� ���þsignða�ij Þx�j þ

Xn

j¼k1þ1

a�ij
��� ����signða�ij Þxþj 6 bi

þ ð1� 2kþi Þðbi � biÞ ð15bÞ

Xk1

j¼1

a�rj

��� ���þsign a�rj

� �
x�j þ

Xn1

j¼k1þ1

a�rj

��� ����signða�rjÞxþj 6 b�r ;8r ð15cÞ

Xk1

j¼1

Tðx�s Þx�j þ
Xn

j¼k1þ1

Tðx�s Þxþj þ
Xk2

j¼1

Wðx�s Þy�js

þ
Xn

j¼k2þ1

Wðx�s Þyþjs ¼ hðx�s Þ8s ð15dÞ

Xm

s¼1

ps ¼ 1 ð15eÞ

x�j P 0; j ¼ 1;2; :::; k1 ð15fÞ
xþj P 0; j ¼ k1 þ 1; k1 þ 2; :::;n ð15gÞ
y�js P 0; 8s; j ¼ 1;2; :::; k2 ð15hÞ
yþjs P 0; 8s; j ¼ k2 þ 1; k2 þ 2; :::;n ð15iÞ
where x�j , j = 1, 2, . . ., k1, are interval variables with positive coeffi-
cients in the objective function; x�j , j = k1 + 1, k1 + 2, . . ., n are inter-
val variables with negative coefficients; y�jh, j = 1, 2, . . ., k2 and h = 1,
2, . . ., v, are random variables with positive coefficients in the
objective function; y�jh, j = k2 + 1, k2 + 2, . . ., n and h = 1, 2, . . ., v,
are random variables with negative coefficients [28,34,35]. Solu-
tions of x�j opt (j = 1, 2, . . ., k1), xþj opt (j = k1 + 1, k1 + 2, . . ., n), y�js opt

(j = 1, 2, . . ., k2), and yþjs opt (j = k2 + 1, k2 + 2, . . ., n) can be obtained
through submodel (15). Based on the above solutions, the second
submodel for f+ can be formulated as follows:

Min fþ ¼
Xk1

j¼1

cþj xþj þ
Xn

j¼k1þ1

cþj x�j þ
Xk2

j¼1

Xm

s¼1

psd
þ
j yþjs

þ
Xn

j¼k2þ1

Xm

s¼1

psd
þ
j y�js ð16aÞ

subject to :
Xk1

j¼1

a�ij
��� ����signða�ij Þxþj þ

Xn

j¼k1þ1

a�ij
��� ���þsignða�ij Þx�j 6 bi

þ ð1� 2k�i Þðbi � biÞ ð16bÞ

Xk1

j¼1

a�rj

��� ����signða�rjÞxþj þ
Xn1

j¼k1þ1

a�rj

��� ���þsignða�rjÞx�j 6 bþr ;8r ð16cÞ

Xk1

j¼1

Tðxþs Þxþj þ
Xn

j¼k1þ1

Tðxþs Þx�j þ
Xk2

j¼1

Wðxþs Þyþjs

þ
Xn

j¼k2þ1

Wðxþs Þy�js ¼ hðxþs Þ8s ð16dÞ
Xm

s¼1

ps ¼ 1 ð16eÞ

xþj P x�jopt P 0; j ¼ 1;2; . . . ; k1 ð16fÞ
xþj opt P x�j P 0; j ¼ k1 þ 1; k1 þ 2; . . . ;n ð16gÞ
yþjs P y�js opt P 0;8s; j ¼ 1;2; . . . ; k2 ð16hÞ
yþjs opt P y�js P 0;8s; j ¼ k2 þ 1; k2 þ 2; . . . ;n ð16iÞ

Solutions of x�j opt (j = 1, 2, . . ., k1), xþj opt (j = k1 + 1, k1 + 2, . . ., n), yþjs opt

(j = 1, 2, . . ., k2), and y�js opt (j = k2 + 1, k2 + 2, . . ., n) can be obtained
through submodel (16). Through integrating solutions of submodels
(15) and (16), interval solution for model (14) can be obtained as
f�opt ¼ ½f

�
opt; f

þ
opt�, x�j opt ¼ ½x�j opt ; x

þ
j opt �, and y�js opt ¼ ½y�js opt; y

þ
js opt �.
Case study

Overview of the study system

The electric power system in this study is a micro-grid consisted
of coal-fired generation, gas-fired generation, wind power and pho-
tovoltaic power generation. These conventional and renewable
recourses are served for the regional electric demand. Besides,
coal-fired power has a residual capacity of 2.5 GW, natural gas-fired
power has a residual capacity of 1.5 GW, wind power and photovol-
taic power generations have installed capacity of 0.95 and 1.15 GW.
It supposes that the shortage of electricity would be satisfied by
electricity purchased from the main grid, while that the electric
power generated in micro-grid is self-consumed and not allowed
to be sold to main grid. In order to encourage efficient forecasting
and dispatch, there are penalties for deviations between the real
time delivery and pre-designed schedules. From the aspect of envi-
ronment protection, regional pollution emission control policy is
considered in operation management. Extra pollutant treatment
cost would be necessary to meet environmental demand.
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Fig. 2. Different load demand level for 24 h.
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The decision maker can formulate the problem as minimizing
the expected operation cost of regional power grid for day ahead
and real time schedule. Moreover, decision makers always seek
to control the emissions of environmental pollutants, and green-
house gas (GHG) in order to meet the regional environmental
requirement. According to the load demand and renewable energy
generation forecasting, day-ahead generation is pre-designed.
However, if the pre-designed generation plan could not satisfy
the real-time demand, penalty for forecasting deviation would
cause higher operation cost. In general, the study system is related
to cost-effective generation scheduling optimal program consider-
ing distributed energy generation. Furthermore, a variety of uncer-
tainties of operation cost, emissions of GHG and pollutants,
environmental limitation and energy supply/demand are involved
in this system.

The uncertainties of wind and photovoltaic power are formu-
lated as probabilistic-based chance constrained programming.
The regional power demand is expressed as three different scenar-
ios (low, medium and high) by interval numbers with various
probabilities (0.25, 0.60 and 0.15), which are given in Fig. 2. The
price of sources (coal and natural gas) and the purchase price from
the main grid are also handled by interval numbers. The operation
cost for pre-designed and excess generation and pollutant treat-
ment cost are described in Table 1. The representative costs and
Table 1
Value of relative parameters.

k = 1 k = 2

PV±(103$/GW h) [4.89, 5.78] [4.5
PP±(103$/GW h) [6.87, 8.53] [6.2
SOT�kt(tonne/GW h) [6, 7.25] [0.0

NOT�kt(tonne/GW h) [3.15, 3.42] [0.6

POT�kt(tonne/GW h) [0.95, 1.16] [0.0

COT�kt(kilotones/GW h) [0.93, 0.98] [0.6
technical data are investigated based on governmental reports
and other related literature [39-41]. In addition, here we suppose
that a real time and dynamic amount control strategy is imple-
mented on the emission of SO2, NOX and PM. While CO2 emission
is monitor by daily total amount control strategy.

ITSFCCP model for regional power electric system planning

The objective of the proposed model is to obtain a preferred
plan for various energy activities by minimizing the total cost,
which is related to energy resource supply, energy conversion,
capacity expansion and environmental protection. The model con-
straints involve mass balance, emission, and technical restrictions.
The regional power electric system planning problem can then be
formulated as follows:

Minimize f� ¼
X4

i¼1

X24

t¼1

PR�it � Z
�
it þ

X4

k¼1

X24

t¼1

PV�kt �W
�
kt

þ
X4

k¼1

X24

t¼1

X3

h¼1

pth � PP�kt � Q
�
kth þ

X24

t¼1

PPE�t � IE
�
t

þ
X4

k¼1

X24

t¼1

X3

r¼1

X3

h¼1

W�
kt þ pth � Q

�
kth

� �
� PD�krt � CT�krt ð17aÞ
k = 3 k = 4

5, 5.25] [8.21, 8.97] [6.57, 7.29]
, 7.4] [10.18, 11.22] [8.13, 9.62]
5, 0.07] – –

, 0.75] – –

5, 0.76] – –

1, 0.68] – –
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Fig. 3. Expected cost of electric power system under different k and b.

Table 2
Pre-designed power generation strategies under different k and b on typical hours (GW h).

k = 1 k = 2 k = 3 k = 4 k = 1 k = 2 k = 3 k = 4 k = 1 k = 2 k = 3 k = 4

k = 1.0 b = 0 b = 0.90 b = 0.80
t = 4 0.443 0.180 0 0.047 0.350 0.366 0 0.047 0.200 0.516 0 0.047
t = 8 0.676 0.180 0.174 0.105 0.350 0.832 0.174 0.105 0.240 0.942 0.174 0.105
t = 12 0.547 0.200 0.294 0.275 0.350 0.593 0.294 0.275 0.260 0.683 0.294 0.275
t = 16 0.443 0.180 0.112 0.500 0.350 0.366 0.112 0.500 0.260 0.456 0.112 0.500
t = 20 1.034 0.180 0 0.381 0.619 1.010 0 0.381 0.374 1.500 0 0.381
t = 24 0.571 0.180 0 0.275 0.350 0.621 0 0.275 0.220 0.751 0 0.275

k = 0.8 b = 0 b = 0.80 b = 0.60
t = 4 0.420 0.180 0 0.070 0.420 0.180 0 0.070 0.200 0.470 0 0.070
t = 8 0.520 0.180 0.278 0.156 0.520 0.180 0.278 0.156 0.240 0.631 0.278 0.156
t = 12 0.260 0.200 0.470 0.409 0.260 0.200 0.470 0.409 0.260 0.200 0.470 0.409
t = 16 0.301 0.180 0.179 0.575 0.301 0.180 0.179 0.575 0.260 0.180 0.179 0.575
t = 20 0.848 0.180 0 0.568 0.848 0.180 0 0.568 0.260 1.265 0 0.568
t = 24 0.436 0.180 0 0.409 0.436 0.180 0 0.409 0.220 0.483 0 0.409

k = 0.6 b = 0 b = 0.80 b = 0.60
t = 4 0.397 0.180 0 0.093 0.397 0.180 0 0.093 0.397 0.180 0 0.093
t = 8 0.365 0.180 0.383 0.207 0.365 0.180 0.383 0.207 0.365 0.180 0.383 0.207
t = 12 0.260 0.200 0.442 0.543 0.260 0.200 0.442 0.543 0.260 0.200 0.442 0.543
t = 16 0.260 0.180 0.246 0.575 0.260 0.180 0.246 0.575 0.260 0.180 0.246 0.575
t = 20 0.840 0.180 0 0.575 0.840 0.180 0 0.575 0.425 1.010 0 0.575
t = 24 0.302 0.180 0 0.543 0.302 0.180 0 0.543 0.254 0.180 0 0.543
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subject to:
(1) Constraint for coal balance

W�
1t þ Q�1th

� �
� FE�1t 6 Z�1t;8t;h ð17bÞ

(2) Constraint for natural gas balance

W�
2t þ Q�2th

� �
� FE�2t 6 Z�2t;8t;h ð17cÞ

(3) Constraint for solar power
Cr W�
3t þ Q�3th

� �
� FE�3t 6 Z�3t

	 

P k�;8t;h ð17dÞ

(4) Constraint for wind power

Cr W�
4t þ Q�4th

� �
� FE�4t 6 Z�4t

	 

P k�;8t;h ð17eÞ

(6) Constraint for electricity demand

X4

k¼1

W�
kt þ

X4

k¼1

Q�kth þ IE�t P Dth;8t; h ð17fÞ
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Fig. 4. Optimal dispatch of electric system with k = 0.8 and b = 0.
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(7) Constraint for environmental protectionX4

k¼1

W�
kt þ Q�kth

� �
� SOT�kt � 1� g�kt

� �
6 ES�t ;8t ð17gÞ

X4

k¼1

W�
kt þ Q�kth

� �
� NOT�kt � 1� g�kt

� �
6 EN�t ;8t ð17hÞ

X4

k¼1

W�
kt þ Q�kth

� �
� POT�kt � 1� g�kt

� �
6 EP�t ;8t ð17iÞ

X24

t¼1

X4

k¼1

W�
kt þ Q�kth

� �
� COT�kt 6 EC�t ;8t ð17jÞ

(8) Constraint for environmental protection

W�
kt þ Q�kth 6 RCk � ST�kt � b

�
k ;8k; t ð17kÞ

Q�kth 6W�
kt 6W�

kt max;8k; t ð17lÞ
(9) Constraint for technical and non-negative

Z�it P 0;8i; t ð17mÞ
W�

kt P 0;8k; t ð17nÞ

The detailed nomenclatures for the variables and parameters
are provided in Appendix A.
Results analysis and discussion

Through solving the proposed model, detailed generation
scheduling strategies are obtained under different confidence lev-
els (k = 1.0, 0.9, 0.8, 0.7 and 0.6) and CO2 emission goal (0%, 10%,
20%, 30% and 40% emission reduction). According to interval opti-
mal theory, the value of objective function is also expressed as
interval number. The lower bound and upper bound of expected



0

0.5

1

1.5

2

2.5

lo
w

m
ed

iu
m

hi
gh lo
w

m
ed

iu
m

hi
gh lo
w

m
ed

iu
m

hi
gh lo
w

m
ed

iu
m

hi
gh lo
w

m
ed

iu
m

hi
gh lo
w

m
ed

iu
m

hi
gh lo
w

m
ed

iu
m

hi
gh lo
w

m
ed

iu
m

hi
gh lo
w

m
ed

iu
m

hi
gh lo
w

m
ed

iu
m

hi
gh lo
w

m
ed

iu
m

hi
gh lo
w

m
ed

iu
m

hi
gh

t=1 t=3 t=5 t=7 t=9 t=11 t=13 t=15 t=17 t=19 t=21 t=23

G
W

h

Lower bound Upper bound

(a) λ=1

0

0.5

1

1.5

2

2.5

lo
w

m
ed

iu
m

hi
gh lo
w

m
ed

iu
m

hi
gh lo
w

m
ed

iu
m

hi
gh lo
w

m
ed

iu
m

hi
gh lo
w

m
ed

iu
m

hi
gh lo
w

m
ed

iu
m

hi
gh lo
w

m
ed

iu
m

hi
gh lo
w

m
ed

iu
m

hi
gh lo
w

m
ed

iu
m

hi
gh lo
w

m
ed

iu
m

hi
gh lo
w

m
ed

iu
m

hi
gh lo
w

m
ed

iu
m

hi
gh

t=1 t=3 t=5 t=7 t=9 t=11 t=13 t=15 t=17 t=19 t=21 t=23

G
W

h

Lower bound Upper bound

(b) λ=0.9

0

0.5

1

1.5

2

2.5

lo
w

m
ed

iu
m

hi
gh lo
w

m
ed

iu
m

hi
gh lo
w

m
ed

iu
m

hi
gh lo
w

m
ed

iu
m

hi
gh lo
w

m
ed

iu
m

hi
gh lo
w

m
ed

iu
m

hi
gh lo
w

m
ed

iu
m

hi
gh lo
w

m
ed

iu
m

hi
gh lo
w

m
ed

iu
m

hi
gh lo
w

m
ed

iu
m

hi
gh lo
w

m
ed

iu
m

hi
gh lo
w

m
ed

iu
m

hi
gh

t=1 t=3 t=5 t=7 t=9 t=11 t=13 t=15 t=17 t=19 t=21 t=23

G
W

h

Lower bound Upper bound

(c) 

0

0.5

1

1.5

2

lo
w

m
ed

iu
m

hi
gh lo
w

m
ed

iu
m

hi
gh lo
w

m
ed

iu
m

hi
gh lo
w

m
ed

iu
m

hi
gh lo
w

m
ed

iu
m

hi
gh lo
w

m
ed

iu
m

hi
gh lo
w

m
ed

iu
m

hi
gh lo
w

m
ed

iu
m

hi
gh lo
w

m
ed

iu
m

hi
gh lo
w

m
ed

iu
m

hi
gh lo
w

m
ed

iu
m

hi
gh lo
w

m
ed

iu
m

hi
gh

t=1 t=3 t=5 t=7 t=9 t=11 t=13 t=15 t=17 t=19 t=21 t=23

G
W

h

Lower bound Upper bound

(d) λ=0.7

Fig. 5. Output of coal-fired generation with different k values and b = 0.
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cost under different scenarios are illustrated in Fig. 3. It indicated
that a higher confidence level and stricter emission goal, a higher
the expected cost of electric system. For example, under confidence
level k = 1.0, the expected cost of electric system would be $
[1.2628, 1.5226] � 109, $ [1.3003, 1.5412] � 109, and $ [1.3447,
1.5775] � 109 with 0%, 10% and 20% CO2 emission goal, respec-
tively. In addition, under the scenarios of 20% CO2-mitigation, the
expected cost would be [1.1260, 1.3747], [1.0271, 1.2663],
[0.9524, 1.1802] and [0.9055, 1.1241] � 109 $ under k = 0.9, 0.8,
0.7, and 0.6, respectively. Moreover, when the confidence level is
low, the change of expected cost under different emission goals
would be small. As shown in Fig. 3, as the confidence level
decrease, the expected system cost is lower. At the meanwhile,
the changes of emission reduction goal impact the cost less.
Especially, when the value of confidence level k were fixed at 0.7
and 0.6, the values of objective function are the same for 0%, 10%,
20% and 30% emission reduction goals.

Table 2 presents the pre-designed power generation strategies
of various technologies with different k and b. Given the forecasted
renewable generation under a certain confidence level, the coal-
fired generation would decrease with the stricter environmental
policy, and gas-fired generation would increase. For instance, when
k set as 1.0, with the 10% emission reduction goal, the pre-designed
coal-fired power generation would be 0.350, 0.350 and 0.619 GW h
at 4:00, 12:00 and 20:00, respectively; for the 20% emission reduc-
tion goal, it would be 0.200, 0.2600 and 0.374 GW h accordingly. By
contrast, in the former situation, the gas-fired generation would be
0.366, 0.593 and 1.010 GW h, respectively; and it would increase as
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Fig. 6. Output of wind power generation with different k values and b = 0.
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0.516, 0.683 and 1.500 for the latter emission goal. In the other
hand, the lower confidence level indicates higher forecasted value
of renewable energy generation, thus the pre-designed traditional
generation would be less, which lower the system security when
emergency occurs. For example, with the same 20% emission
reduction goal, the total pre-designed coal-fired generation and
gas-fired generation at 4:00 and 12:00 would be 0.577 and 0.440
GW h under k set as 0.6; and under k set as 0.8 the corresponding
pre-designed generation would be 0.600 and 0.460 GW h,
respectively.

Fig. 4 presents the performance of various generation technolo-
gies with confidence level at 0.8 and no emission reduction goal. In
general, the pre-regulated electricity generated by coal-fired
power, gas-fired power, photovoltaic and wind power conversion
technologies would increase with the electricity demand level
increasing. For example, at 19:00, the coal-fired generation would
be [1.001, 1.334], [1.579, 1.624] and [1.929, 2.013] GW h for low,
medium and high load demand level, respectively. At 5:00, the
gas-fired generation would be 0.18, [0.18, 0.185] and [0.18,
0.185] GW h for low, medium and high load demand level. Due
to the low cost of power generation and resources supply, the elec-
tricity demand would be firstly satisfied by coal-fired power, espe-
cially during periods of demand peak. The power curves of
renewable energy are almost determined by the weather condi-
tion, and the photovoltaic power generation would fluctuate over
the planning horizon. The night load peak is mainly met by coal-
fired generation and wind power. For example, in the high demand
scenario, at 21:00, the power of coal-fired generation, gas-fired
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Fig. 7. Schedule of traditional generation with k = 1.0 for different emission reduction goals.
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generation, photovoltaic and wind power generation would be
[1.530, 1.625], [0.180, 0.185], 0 and 1.15 GW h, respectively; and
[0.765, 1.080], [0.180, 0.185], 0 and 0.925 GW h under the low
demand level, respectively.

The performances of coal-fired generation with different confi-
dence levels without emission reduction are compared in Fig. 5.
The maximum power generation of coal-fired power would be dur-
ing 19:00–21:00, which was consistent with the night peak load
demand. During the period of 1:00–3:00 and 13:00–15:00, elec-
tricity generation of coal-fired power would be relatively lower.
As the increasing confidence level, power output of coal-fired gen-
erator would increase gradually. For example, at 13:00, in order to
satisfy the medium load demand, the coal-fired power generation
would be [0.280, 0.285], [0.280, 0.324], [0.421, 0.465] and [0.698,
0.742] GW h under the confidence level k set as 0.7, 0.8, 0.9 and
1.0, respectively. In addition, for the same time period, in high load
demand scenario, the output power of coal-fired generator would
be [0.280, 0.285], [0.493, 0.550], [0.770, 0.834] and [1.048, 1.119]
GW h, accordingly. It indicated that without CO2 mitigation, as
the confidence level increasing, the renewable energy would be
insufficient and the output of photovoltaic and wind power con-
version technologies would decrease, and the coal-fired power
generation would be the most significant part of electricity supply.

Compared with the traditional generation technology, the per-
formances of renewable energy generation are different under
the scenarios of 0% CO2 mitigation. Fig. 6 shows the wind power
generation without CO2 emission reduction under different confi-
dence levels. From 15:00 to 21:00, the wind power generation
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Fig. 8. Schedule of traditional generation with k = 0.8 for different emission reduction goals.
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would be in a high loading operation condition. For example, under
the high demand level, the wind power generation would be
[0.378, 0.383] and [0.611, 0.620] GW h in 5:00 and 19:00, when
the confidence level is fixed at 0.9. In addition, as the confidence
level increasing, the wind energy resources would be decreased,
and the output of the wind power would decrease. For example,
under the high load demand at 15:00, wind power generation
would be 1.15, 1.15, [1.105, 1.122] and [0.888, 0.901] GW h with
the confidence level fixed at 0.7, 0.8, 0.9 and 1.0, respectively. For
the low load demand scenario, the wind power generation would
be [0.575, 0.590], [0.575, 0.590], 0.553 and 0.444 GW h, with the
confidence level fixed at 0.7, 0.8, 0.9 and 1.0, respectively. It also
indicated that due to the security consideration and risk-averse,
the wind power generation would be lower, and that would reduce
the risk of unsteady of wind power supply.
Figs. 7 and 8 present the impact of emission reduction goal on
the scheduling of traditional power generation technologies. With
GHG-emission reduction increasing, strict environmental policies
for GHG mitigation management would be adopted. Thus, electric-
ity generated from coal-fired power conversion technologies
would significantly decrease. Under the highest confidence level
(k = 1), the performance of coal-fired generator with b = 0.9 is
much lower than that under b = 0.8 during daytime. At 9:00, under
k = 1and b = 0.9, the power output of coal-fired generator would be
[0.350, 0.405], [0.350, 0.381], [0.700, 0.761] GW h for low, medium
and high demand level, respectively. For the same situation, under
k = 1and b = 0.8, the power output of coal-fired generator would be
0.240, 0.240, [0.240, 0.287] GW h, respectively. While the power
generated from gas-fired generator has obviously increased when
emission reduction goal going up. For instance, at 11:00, under
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Fig. 9. Output of coal-fired generation with 40% emission reduction goal under different confidence level.
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k = 1 and b = 0.9, the power output of gas-fired generator would be
[0.881, 0.907] GM h for all demand level; and when k = 1and
b = 0.8, it would increase to [0.971, 1.065], [0.971, 1.021] and
[1.321, 1.360] GM h for low, medium and high power demand,
respectively. Compared with the power generation of the two
energy conversation technologies under CO2 mitigation condition
in Figs. 7 and 8, as the confidence level and CO2-mitgation increas-
ing, the regional electricity system would face double pressures
from environmental protection and insufficient renewable energy.
Natural gas power would be more popular than coal-fired power in
considering the case of GHG-emission reduction. This is because
the totaling amount of GHG emissions would be confined with a
certain level during the planning periods, while coal-fired power
conversion technology corresponds to a higher GHG-emission rate,
compared with natural gas-fired conversion technologies.

If the decision maker is risk-averse, a large k value should be
employed. On the contrary, if the planner is a risk-taker, a small
k value should be utilized. Figs. 9 and 10 evaluate the performance
of traditional generation and renewable resources generation
under different confidence levels. As shown in Fig. 9, the output
power of coal-fired generation is increasing with the confidence
level increases, especially during the daytime. For example, at
7:00 with k set as 0.8, the output power of coal-fired generator
would be 0.22, 0.22 and [0.44, 0.509] GW h for low medium and
high level, respectively. When k set as 0.7, it would be 0.22,
[0.22, 0.2543] and [0.44, 0.510] GW h, for k set as 0.6, it would
be 0.22, [0.22, 0.265] and [0.297, 0.364] respectively. As to photo-
voltaic generation, illustrated in Fig. 10, its maximum output
would be at 13:00. When the value of k is 0.8, its output would
be 0.4246, 0.8064, [0.8064, 0.8321] GW h for low, medium and
high demand level. When k is fixed as 0.7, the output would be
0.4463, 0.8925 and [0.8926, 0.9684] GW h correspondingly. For
the value of k is fixed at 0.6, it would be 0.3830, 0.7660 and
[0.7660, 0.8399] GW h. It indicates that for 40% emission reduction
goals, when confidence level set as 0.7, the output of both coal-
fired and photovoltaic generation is higher. In addition, as k
increasing, the decision-maker possesses rather conservative
review to the development of renewable energy. Since the emis-
sion reduction implementation is strengthened, the electricity sys-
tem have to supply more spinning reserve to reduce the relative
risk of unsteady of wind and photovoltaic power, which also
increases the system environmental pressure and brings extra
burden.

The micro-grid system management and planning problem can
be solved under different confidence levels and pollutants mitiga-
tion intensity, and further sensitivity analysis could be undertaken
by considering the interactions among various uncertainties. Com-
pared with Table 2, and Figs. 5, 6 and 8, the detailed generation
scheduling strategies with different scenarios are associated with
lower- and upper-bound levels of different power supply activities;
they are optimistic choices and could result in a low system cost
and, at the same time, lower CO2 discharge amounts (and thus a
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Fig. 10. Output of photovoltaic generation with 40% emission reduction goal under different confidence level.
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lower risk of violating emission limitation), and a higher system
reliability (and thus a lower risk of violating the availability of
renewable energy sources). Moreover, when the decision makers
have a moderate attitude towards system cost and environmental
risk, these alternatives that represent a compromise between eco-
nomic cost and environmental requirements would become more
realistic. From Table 2, the results also demonstrate that the CO2

mitigation contribute significantly to the electric power system
adjustment, and different mitigation intensity do not much affect
the renewable energy (solar power and wind power). In addition,
the confidence level (higher forecasted value of renewable energy
generation), would lead to a lower pre-designed traditional gener-
ation, which lower the system security when emergency occurs. In
general, the provided scenarios represent multiple decision options
with various economic and environmental considerations. Willing-
ness to accept a desired electric power generation patterns, and
CO2 emission reduction under complex uncertainties will obtain
an in-depth insights into the trade-offs between system economy
and reliability.
Conclusion

This study considers pollution emission control on distributed
energy generation operation management under generation and
market uncertainties. A two-stage stochastic model combined with
fuzzy chance-constrained programming was presented to optimize
the electricity generation schedule. Day-ahead pre-designed gen-
eration schedule would be obtained through two-stage optimiza-
tion considering the fluctuant real-time renewable generation. To
better implement the environmental protection policy, the pollu-
tants (SO2, NOx and PM) are under the real-time dynamic emission
control and daily total amount control strategy for CO2. The results
illustrate that the proposed model can effectively control the
trade-off between risk and system cost for electric system opera-
tion facing volatile energy markets and intermittent renewable
energy. The electric system manager has always to make a compro-
mise between the security degree and various system cost. With
increasing renewable energy combined to the grid, there would
be less pollutants and CO2 emission; on the other hand, more
reserve capacity should be supplied by traditional generators for
the safety sake. Hence, different dispatch schedule should be pro-
vided with different confidence levels of constraints being speci-
fied, for the manager to choose.
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Appendix A. Nomenclatures for parameters and variables
f±
 Expected system cost over the planning
periods (million dollar)
i
 Index of energy resource; i = 1 for coal,
i = 2 for natural gas, i = 3 for solar power,
i = 4 for wind power, and i = 5 for
imported electricity
t
 Planning period; t = 1, 2, . . ., 24

k
 Type of power conversion technology;

k = 1 for coal power generation, k = 2 for
natural gas power generation, k = 3 for
solar power, k = 4 for wind power
r
 Type of contaminant; r = 1 for SO2, r = 2
for NOx, r = 3 for PM, r = 4 for CO2
h
 Level of power demand; h = 1 for low
level, h = 2 for medium level, h = 3 for
high level
Parameters

ph
 Probability of scenario h

RCk
 Residual capacity of power generation

technology k (GW)

PR�it
 Price of energy source i during period t

($million/TJ)

PV�kt
Operation cost of technology k in period
t ($million/GW h)
PP�kt

The operating cost for excess generation
($/GW h)
PPE�t
 Power purchase price ($/GW h)
CT�krt

Pollutant treatment cost of pollutant r
(dollar/kt)
FE�kt

Conversion efficiency of power
generation technology k in period t
(TJ/GW)
gkt
 Removal efficiency of pollutant r from
power generation technology k
SOT�kt ;NOT�kt; POT�kt

and COT�kt
SO2, NOx, PM, and CO2 emission intensity
of power generation technology k in
period t (kt/GW h)
ES�t ; EN�t ; EP�t and
EC�kt
Total allowable SO2, NOx, PM, and CO2

emissions in during period t (kt)
ST�kt

Working hours of power generation
technology k in period t (h)
b�k
 Conversion efficiency
W�
kt max
Maximum predefined electricity
generation (GW h)
Decision variables

W�

kt

Predefined electricity generation
according to load prediction (GW h)
Q�kth

Excess generated electricity by k in the
second stage when the predefined
generation unsatisfying the demand
(GW h)
IE�t
 Amount of imported electricity during
period t (GW h)
PD�krt

Amount of pollutant generated by k
(kiloton)
ECO�ht

Amount of CO2 emission during period t
(tonne)
Z�it
 Amount of energy (TJ)
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