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Many have witnessed the increasing popularity of “big data” in the past couple of years.
Indeed, big data has been transforming how business is done in many industries. For example,
online advertisements are increasingly customized for individual consumers based on their
purchase history. Big data has also instigated many new areas of investigation, mostly in
fields such as computer sciences and statistics. There are many areas in industrial ecology
(IE) that can potentially benefit from big data. In this article, we try to explore what big

What is Big Data?

Although the term “big data” is ubiquitously accepted and
used in many areas, there is no consensus of defining big data.
The uprising of big data seemed to take place around 2011,
indicated by the increasing search interests of the keyword big
data, as shown in figure 1. Although the increase of number of
searches for big data can be the result of changing search algo-
rithms (Lazer et al. 2014), it is somewhat correlated with the
rapid development and deployment of information and com-
munications technology (ICT), especially the usage of mobile
devices (KPCB 2014). In general, ICT makes available two
types of information in the form of big data: new information
created from ICT applications (e.g., social media, online doc-
uments, and phone records) and existing information that is
previously unavailable (e.g., business transaction data collected
at a large scale with detailed records or daily travel trajectories
of individual vehicles equipped with a global positioning system
[GPS]).

Diving deeper into what exactly big data means, Ward and
Barker (2013) recently surveyed existing definitions of big data
in academia, industry, and media. They identified three fea-
tures differentiating big data from other data we commonly
encounter:

® Size: Big data is often large in volume (e.g., in terabytes
or larger);

® Complexity: Big data often contains highly complex sets
of information that are not easy to understand; and

® Technology: Tools and techniques that are used for pro-
cessing and analyzing traditional data are not suitable for
big data.

Among those three factors, the “technology” factor is actu-
ally dependent on the other two factors. New tools and tech-
niques are obviously needed if the data are too large or too
complex to surpass the capacity of existing methods to process
and analyze. Therefore, it seems that “size” and “complexity”
are the fundamental features that characterize big data.

Big data enabled by ICT naturally grows rapidly and becomes
massive. That is why big data is often large in volume. However,
size is not necessarily a defining factor for big data. By flipping
a coin trillions or quadrillions of times, one can generate a
large set of data in terabytes or petabytes, which meets the
size criterion in big data definitions. But, the only challenge
of processing and analyzing this “large” data set would relate to
hardware (i.e., storing and retrieving data in such large volume).
Existing analytical techniques, such as statistical analysis, are
sufficient enough to comprehend it. Therefore, a large data is
not necessarily a big data (MIKE 2.0 2014). The size factor is
then not necessarily a determining factor for big data. Big data
needs to be “big” in complexity, not necessarily in size. In other
words, big data essentially characterizes the behavior of complex
adaptive systems that are often constituted by a large number of
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Figure | Search interests of big data from Google Trend; data represent search interest relative to the highest point on the chart.

heterogeneous components interacting with one another and
evolving (Dijkema and Basson 2009).!

The degree of complexity of big data often relates to the
amount and type of unstructured data it contains. These un-
structured data are not organized in predefined fashions, may
come from multiple sources and in various formats, are masked
by noises with little obvious usefulness, and need to be pro-
cessed and analyzed—often involving significant computational
work—for hidden, but useful, information. Processing and har-
monizing such data may not be difficult methodologically. How-
ever, when the size of such unstructured data increases, the
computational challenge to automate data processing and har-
monization may become significant. An example related to
industrial ecology (IE) is from Cooper and colleagues (2013)
discussing the role of big data in life cycle assessment (LCA).
Data needed in LCA come from multiple sources in different
formats. Significant efforts are required to integrate and harmo-
nize these data before they can be used in LCA. It is also worth
noting that, although unstructured data are a more prevalent
form of big data, semistructured and structured data can also be
complex and big, requiring similar computational resources and
techniques as unstructured big data does.

Another type of big data complexity comes from the com-
plexity of the underlying system behavior it describes. The data
set itself in this case might not be as complex as expected
(semistructured or structured data); but it can be used to ob-
tain useful information to characterize the complex behavior of
the underlying system. The online recommendation system is
an example that recommends products to consumers based on
purchase history of all users. The data describing the purchase
history are relatively simple: a binary matrix corresponding users
with products using 1 representing purchased and O representing
not purchased. By mining this simple, but often large, matrix,
one can characterize a particular user’s preference based on his
or her purchase history and other users’ purchase history. This
is a complex behavior that cannot be directly observed from the
purchase history data, but can be extracted by analyzing it.

What can Big Data Offer?

What big data can offer includes not only rich information
from large-scale data sets, but also an alternative modeling ap-
proach in many fields, including IE.

The mainstream modeling approaches in IE and many disci-
plines are generally based on three rational steps: developing a
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model based on theories explaining a phenomenon; validating
the model (and the underlying theories) using limited obser-
vations; and using the validated model to forecast or predict
future phenomena without observations. This is related to
what Immanuel Kant described in his Critique of Pure Reason
as a priori knowledge: One can understand the system through
logic reasoning; experiences are used only to validate the logic
model. Therefore, theories are critical in this a priori modeling
approach, whereas data only play a supporting role for theory
development and validation. Moreover, theories explaining
target phenomena are often developed using a reductionism
approach, in which a real-world phenomenon is decomposed to
aset of variables based on certain assumptions. After validation,
these variables are composed back to mimic the real-world
phenomena.

The classic theory-driven, reductionism, a priori approach
has been successful in simple, relatively static systems. However,
when it comes to complex systems, which are constituted by a
large number of heterogeneous components interacting with
one another and constantly evolving, the a priori modeling ap-
proach reaches a limit commonly known as the curse of dimen-
sionality (Bellman 1961). In particular, a complex system often
needs to be decomposed to a large number of variables owing to
its complexity. The number of variables represents the number
of dimensions of the space characterizing the system. Limited
observations used for validation in the reductionism approach
then become sparse in the high-dimensional space, which brings
the difficulty of characterizing the high-dimensional space using
sparse, low-dimensional data. On the other hand, a posteriori
modeling approaches are data driven, aiming to learn from ex-
periences (e.g., Bayesian analysis in many fields of engineering).
With big data, such data-driven approaches can be significantly
improved with significantly more data to experience with.

First, big data generated from large-scale ICT implementa-
tions can potentially provide additional information regarding
the behavior of a system from many different aspects for a rel-
atively long period of time or in real time. With appropriate
configurations (e.g., what data to collect and how to collect),
big data can potentially help address the curse of dimensionality
by increasing the number of observations for model validation.

Second, big data could provide an alternative way of model-
ing by allowing direct encapsulation of rich information into op-
erational models without the theorization step in the first place.
For example, in figure 2, limited observation of the target system
may imply that the system is either a triangle or a quadrangle.
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Figure 2 Increasing the size of observations could help to better
understand the system.

However, sufficient amount of data “speak for themselves” with-
out significant theorization that the system is actually a circle.
This is described by Kant as a posteriori knowledge: One needs
to understand a system through experiences. In a data-driven,
a posteriori modeling approach, the causality of the behavior
of a system is relatively less important to know. Characteris-
tics of the data reflect the behavioral features of the underlying
system; thus, the data-driven model can mimic the behavior of
the system without exhaustively decomposing the system to
variables, provided that the model is rigorously developed and
the data are large enough to characterize the system. Note that
more data does not always mean better representation of the
real world. Correctly collecting appropriate data with the con-
sideration of noises is the key for enabling big data speaking for
themselves (more in the Critiques section of this article).

An example that illustrates the utility of this data-driven,
a posteriori modeling approach is provided by Gonzilez and
colleagues (2008). In this study, individual human mobility
patterns are characterized using a big data of the travel trajec-
tory of 100,000 mobile phone users during a 6-month period.
The study found strong temporal and spatial regularities in in-
dividual human travels that are different from what previous
theory-driven models (i.e., Lévy flight and random walk mod-
els) predict. The modeling approach applied in this study is
purely data driven, in the way that no theory is used to describe
how individual users travel as theory-driven models usually start
with. The patterns of individual mobility are entirely derived
from analyzing the travel trajectory data.

What can Big Data Bring to Industrial
Ecology?

Several studies in IE have involved big data and techniques
dealing with big data. The main focus thus far has been using
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communication and computational infrastructure to facilitate
virtual collaboration among researchers. For example, Kraines
and colleagues (2001) developed a distributed object-based
modeling environment (a cloud-based computational infras-
tructure, in modern terms) to facilitate virtual collaboration
among researchers. Kraines and colleagues (2005) presented
an Internet-based knowledge integration and collaboration
platform for integrated environment assessment. Davis and
colleagues (2010) proposed an Industrial Ecology 2.0 agenda to
utilize the World Wide Web for collecting, processing, curating,
and sharing data as a community, rather than individuals. More
recently, Lenzen and colleagues (2014) used a cloud-based com-
putational infrastructure to develop and apply multiregional
input-output (I-O) models by allowing researchers at different
sites to collaborate on a virtual platform.

In addition to virtual collaboration, big data and big data
concepts have been discussed in the IE literature, such as for
better measuring environmental footprints of human consump-
tion (Hubacek et al. 2014) and data challenges in LCA (Cooper
et al. 2013). Nevertheless, big data and the suite of analytical
tools available for analyzing big data offer opportunities to ad-
dress some long-standing issues in IE or provide alternative
approaches.

Despite the increasing level of sophistication, many areas of
[E still rely on aggregated data to represent averages of industrial
systems at various scales. For example, LCA mainly uses indus-
trial average data to measure life cycle environmental impacts
of product or service systems. With the increasing availability
of big data, it is possible to bring IE to the next phase focusing
more on the spatial, temporal, and demographic heterogene-
ity of industrial systems, through new data, new data analysis
techniques, or the combination of both. Note that industrial
ecologists do not necessarily need to be experts in sourcing and
collecting data themselves. Instead, research focuses should be
on utilizing newly available data and newly developed data an-
alytics tools to complement existing data and methods through
interdisciplinary collaborations.

The most obvious and direct application of big data in IE
is to help develop more-realistic complex systems models (e.g.,
agent-based models) to better capture essential features of hu-
man behavioral dynamics (Axtell et al. 2008). Based on suffi-
cient data directly reflecting human behavior (e.g., social media
data), it is possible to derive more-realistic characterization of
human behavioral dynamics, instead of solely relying on as-
sumptions or loosely tested theories. For example, Amazon’s
Mechanical Turk? provides a crowdsourcing platform for con-
ducting quick, inexpensive surveys that can help characterize
human behaviors in agent-based models. Mining social media
data can help understand consumer preferences toward prod-
ucts with different environmental implications. Incorporating
with geospatial information, big data can help design spatially
explicit models to reflect the spatial heterogeneity of human
behaviors. On the other hand, increasingly available big data
directly recording human activities, such as GPS-enabled travel
trajectories, can be used to validate and calibrate models that
were previously difficult to do (Windrum et al. 2007).
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Material/substance flow analysis (MFA/SFA) usually models
stock changes of materials or products using average or assumed
product lifespan (e.g., Yu et al. 2010; Bollinger et al. 2011).
Many forms of big data can help better characterize human
consumption behavior, such as purchase history from online
retailers or calorie intake recorded by smartphone apps. The re-
sults will be useful to model stock changes of materials or prod-
ucts with higher spatial and temporal resolutions in MFA/SFA.

Urban metabolism, which has long relied on sector-
aggregated or industrial average data to measure resource and
energy demand in urban areas, is another area that can benefit
greatly from big data. With big data that can better characterize
the consumption activity of urban residents, one may be able
to develop better urban metabolism models and provide more-
effective policy interventions. For example, location-based big
data, such as GPS-enabled travel trajectories and geotagged so-
cial media data, is increasingly used to characterize human travel
behaviors at the individual level (e.g., Gonzilez et al. 2008).
This potentially can help refine urban metabolism models to
reach finer spatial and temporal resolutions in transportation-
related areas. Hubacek and colleagues (2014) discussed the po-
tential of using geodemographics data and social media data to
measure the environmental footprints of human consumption
at high spatial resolution. Similar data can also be applied to
urban metabolism and quantify urban teleconnetions (Liu et al.
2013). Last, big data on urban consumption activities can also
be used to validate and calibrate some of the microsimulation
efforts seen in the urban metabolism literature to better model
human activities (e.g., Keirstead and Sivakumar 2012).

One of the key tasks for an LCA is to characterize the sup-
ply chain of a product or service system. Static, aggregated
characterization of supply-chain relationships works fine for es-
tablished systems, but faces challenges for emerging, dynamic
systems (McKone et al. 2011; Miller et al. 2012). Consumer
behavior patterns informed by big data (e.g., social media data)
can also be used to add a new human dimension to LCA. In
addition to the general application to LCA, big data, particu-
larly those data characterizing human mobility dynamics (e.g.,
geotagged social media data), can be useful to improve LCA
studies for transportation systems (e.g., Hawkins et al. 2013)
by incorporating the dynamics of user travel patterns. This is
useful to facilitate the development of emerging transportation
technologies, such as electric vehicles. For example, Cai and
Xu (2013) used travel trajectory data of more than 10,000 taxi
cabs to study the impacts of electric vehicle design, cost, and
government subsidy to the adoption and utilization of electric
vehicles and the consequent greenhouse gas emissions.

[-O analysis (IOA) in IE has long been challenged by the
limited availability of I-O tables (IOTs). Government statistics
are the main source of IOTs. However, government-sponsored
[OTs usually are available for every couple of years and do not
cover all countries. Developing time-series IOTs for the global
economy with high sector and country resolutions has been an
impossible mission until recently, owing to increased capacity
of dealing with big data. The University of Sydney has de-
veloped a time-series high-resolution world multiregional I-O
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model, Eora, using sophisticated computational infrastructure
and techniques to harmonize and reconcile large amounts of raw
data from many different sources (Lenzen et al. 2012). Cloud
computing is also used for virtual laboratories for collabora-
tively developing large-scale I-O models with high resolutions
(Lenzen 2014). Although the data involved in these efforts are
large in volume, they are less complex in the sense that the
underlying I-O methodology is still based on linear relation-
ships between sectors. However, computational infrastructure
and techniques such as cloud computing that were developed
partially for analyzing big data played a critical role in these
endeavors. A relevant effort enabled by big data is the Billion
Prices Project,’ which uses high-frequency price data from hun-
dreds of global online retailers on a variety of topics related to
price in macroeconomics and international economics, such
as developing inflation data on a daily basis. I-O research can
potentially also use online retailer price data to improve [-O
models with respect to prices.

The success of industrial symbiosis (IS) is partially facilitated
by information sharing (Chertow 2007; Ashton 2008). Grant
and colleagues (2010) evaluated ICT-based information-
sharing tools for IS development. The Delft University of
Technology has set up an online platform for documenting
eco-industrial parks around the world.* Data generated from
these information-sharing platforms are big data in the sense
that they come from different sources characterizing different
systems. Analyzing and mining the ensemble of those data can
potentially help to better understand IS.

Last, but not least, data visualization has been an important
research approach in many fields to observe patterns from raw
data, guide further analysis, and communicate the results with
stakeholders. Big data brings challenges of how to effectively
visualize large amounts and various types of data in meaningful
ways. This is particularly relevant for industrial ecologists to
communicate with decision makers given that the ultimate goal
of many IE studies is to shape policy making. There are several
projects visualizing data generated from environmental IOA.
For example, Economy Map 2.0° turns the results of a typical
environmental IOA, environmental impacts induced by the
consumption of goods or services, in particular, industries in
the U.S. economy, into an interactive visual map. Another
example is the interactive visualization of the 2007 IOT for the
United States,® which allows users to see the direct and indirect
economic relationship between industries.

Critiques

While having many promises, big data is also criticized for
potentially creating wrong, misleading results and unethical
practices. Boyd and Crawford (2012) raised six issues with big
data:

® “Big data changes the definition of knowledge,” which
comes with certain limitations with these new knowledge
systems;



® “Claims to objectivity and accuracy are misleading,” given
that big data may not necessarily represent the objective
truth of the underlying system;

® “Bigger data are not always better data,” because better
data come from better approach of data collection and
analysis, not necessarily from the size of the data;

® “Taken out of context, big data loses its meaning,” given
that each data set represents a particular aspect of a system
and thus is suitable for particular lines of inquiry;

® “Just because it is accessible does not make it ethical,”
because many big data available today are about human
behaviors at the individual level;

® “Limited access to big data creates new digital divides,”
which might create new injustice between groups that
have easy access to data and groups that do not.

It is worth noting that the second and third issues are partic-
ularly relevant to IE research involving modeling. Concretely,
big data’s ability of being “theory free” relies on the assumption
that the data can represent the entire system under observation
without significant sampling bias (Harford 2014). However, this
is not always the case. For example, U.S. Twitter users in 2013
only represent approximately 18% of all Internet users in the
United States and are disproportionately young (i.e., 31% be-
tween ages 18 and 29) (Pew Research Center 2013). Therefore,
it is important to understand the nature of the data and decide
whether to use it or where to use it.

When it comes to big data with significant sampling bias,
one can either try to find more data to improve representation
or use appropriate data analytic tools to examine the data with
caution. In addition to more data, what big data could offer
is new, advanced analytical tools that can be applied to many
fields. For example, matrix completion is an approach to es-
timate missing data in a matrix solely based on a few entries
(Candes and Recht 2009). It has been used in image process-
ing (Bruckstein et al. 2009) and online recommendations (Bell
et al. 2008). Similar methods are potentially useful for IE by
estimating data for I-O matrices.

Outlook

Big data seems to be a mega trend. Media attentions on big
data might fall eventually. But our dependence on ICT perhaps
will be inevitably intensified. Massive amounts of data describ-
ing how the industrial system works may become increasingly
available to industrial ecologists. Such data can function to in-
dustrial ecologists the same as data obtained from experiments
in other fields: direct observation of the research target.

Looking forward, ICT is helping develop an “Internet of
Things” that connects the real and virtual worlds with in-
creasingly widely deployed sensors and communication net-
works. The German government has started an Industrial 4.0
initiative’ to prepare for the upcoming “fourth industrial revo-
lution,” which is facilitated by the Internet of Things. If the In-
ternet of Things is successful, our ability of using data to describe
the industrial system and its socioeconomic surroundings will be
significantly improved. Many unresolved questions in IE may be
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addressed with the newly available cyberinfrastructure and data.
For example, using radiofrequency identification to track waste
electrical and electronic equipment has been discussed exten-
sively in IE literature (O’Connell et al. 2013). This could be
realized soon with the Internet of Things. More broadly, imag-
ine a world where all goods are sensored and tracked using ICT
devices. The cost of obtaining data would become marginal. We
might easily know, in real time, how much energy and materi-
als are used by particular buildings, communities, cities, regions,
countries, and even the entire world. LCA practitioners might
not need to spend too much time on sampling and collecting
life cycle inventory data; instead, data specific to their LCA
projects might be readily available at their fingertips. However,
more, better data do not necessarily mean better understanding
of the real world. Instead, much work has to be done to trans-
form data into knowledge and knowledge into action. At that
time, IE might become a field of study focusing on how to make
sense of big data and how to facilitate decision making based
on knowledge gained from analyzing big data.
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