
RESEARCH ARTICLE

Global Electricity Trade Network: Structures
and Implications
Ling Ji1, Xiaoping Jia2, Anthony S. F. Chiu3, Ming Xu4,5,6*

1 School of Economics and Management, Beijing University of Technology, Beijing, China, 2 School of
Environment and Safety Engineering, Qingdao University of Science & Technology, Qingdao, China,
3 Department of Industrial Engineering, De La Salle University, Manila, Philippines, 4 School of Natural
Resources and Environment, University of Michigan, Ann Arbor, Michigan, United States of America,
5 Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, United
States of America, 6 Sustainable Development and New-Type Urbanization Think Tank, Tongji University,
Shanghai, 200092, China

*mingxu@umich.edu

Abstract
Nations increasingly trade electricity, and understanding the structure of the global power

grid can help identify nations that are critical for its reliability. This study examines the global

grid as a network with nations as nodes and international electricity trade as links. We ana-

lyze the structure of the global electricity trade network and find that the network consists of

four sub-networks, and provide a detailed analysis of the largest network, Eurasia. Russia,

China, Ukraine, and Azerbaijan have high betweenness measures in the Eurasian sub-net-

work, indicating the degrees of centrality of the positions they hold. The analysis reveals

that the Eurasian sub-network consists of seven communities based on the network struc-

ture. We find that the communities do not fully align with geographical proximity, and that

the present international electricity trade in the Eurasian sub-network causes an approxi-

mately 11 million additional tons of CO2 emissions.

Introduction
In 2011, electricity generation contributed 19% of global primary energy use [1] and 42% of
global CO2 emissions. The electricity generation industry was traditionally a tightly regulated
sector, if not a national monopoly. Increasingly liberalized electricity markets worldwide [2]
enable open access and free transit for international electricity exchanges, enabling trade in
electricity between nations. Cross-border electricity trade can increase power plants’ effective
capacity factor, enable a more diversified portfolio of generated resources, and improve the sta-
bility of individual grids [3]. For instance, the internal energy market (IEM) policy proposed
the concept of the “European Supergrid” consisting of an integrated power system to better bal-
ance electricity supply and demand [4, 5]. However, cross-border electricity trade can increase
uncertainty and risk to transmission capacities and local electricity systems, and thus such elec-
tricity trade requires special attention to ensure a reliable interconnected electricity network
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[6]. It is therefore crucial to identify critical national grids to enhance the stability of the global
power grid, which requires an understanding of the structure of the global power grid.

Network analysis is widely used to uncover structural features of complex systems [7], with
wide use in many fields such as scientific collaboration [8], biology [9, 10], food web [11],
transportation [12–14], economics [15–19], social networks [9, 20], and environmental net-
works [21–24]. It can identify the role of nodes, discover communities, and predict a network’s
future evolution. For example, Saracco et al. (2015) found that the behavior of the World
Trade Web differs significantly from the monopartite analogue, showing highly non-trivial
patterns of self-organization [25]. Vidmer et al. (2015) predicted the future evolution of inter-
national trade networks though link prediction algorithms [26]. Network analysis was recently
introduced to analyze the structure of the global energy product trade network. For instance, Ji
et al. (2014) analyzed the overall features, regional characteristics, and stability of the oil trade
network, finding that it displays a scale-free behavior [27]. Zhang et al. (2014) found increasing
intensity in the competition in the global oil trade [28]. Moreover, other studies focused on
analyzing the structure of regional power grids to evaluate vulnerabilities related to cascading
failures and intentional attacks [29–31]. However, there is no study, to the best of our knowl-
edge, examining the structure of interconnected grids at the global scale, which facilitates iden-
tification of national grids critical for stability.

This is the first study to analyze the structural features of the global power grid from the per-
spective of a global electricity trade network, in which nations are nodes linked via interna-
tional electricity exchanges. This study offers two main contributions. First, it analyzes the
basic features and evolution of the global electricity trade network in terms of basic properties,
important nodes (i.e., nations), and community structure with special focus on the largest Eur-
asian sub-network. Second, it evaluates the CO2 implications of this global electricity trade net-
work in terms of CO2 mitigation.

Methods and Data

Network analysis
The global electricity trade network is weighted (i.e., each nation has a value of electricity
imports and/or exports) and directed (i.e., electricity trade from nation A to nation B differs
from that of nation B to nation A). Assume there are n nodes (nations) connected by l links
(i.e., international electricity exchanges). The adjacency matrixWt

D represents the global elec-
tricity trade network, where wt

Dði; jÞ represents the volume of electricity trade from nation i to
nation j in year t.

We use the following metrics to show the global electricity trade network structure: node
degree, betweenness centrality, cluster coefficient, and community structure.

Node degree is one of the most common metrics in evaluating the importance of nodes in
a network by counting its nearest neighbors. The Node in-degree of a particular nation counts
the import relationship with other nations measured by total number of links from other
nations to the focal nation. The Node out-degree counts the export relationship with other
nations measured by total number of links from the focal nation to other nations. Node
strength is an extended definition of node degree that adds the weights of links with its near-
est neighbors, and measures the total weight of its connected links. Average nearest-neighbor
degree (Knn), defined as the average degree of the nearest neighbor for vertices with degree k,
is an important index analyzing network assortativity. We also define here the average near-
est-neighbor strength (Snn) as the average strength of the nearest neighbor for vertices with
degree k.

Global Electricity Trade Networks
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Node degree only reflects the importance of nodes locally, while betweenness centrality
(B), defined by counting the fraction of shortest paths passing through a given node [32], mea-
sures the global importance of nodes as information bridges in the network[24, 33]. The short-
est path between two nodes is the path connecting two nodes with the least steps [34, 35].

The Clustering coefficient (C) is also an important metric to examine a network’s cluster-
ing feature, defined as the probability that two nodes both connected to a third node are also
connected to each other.

Community structure is common for many real-world networks. Community detection
attempts to find groups of nodes with dense internal connections and loose external connec-
tions. Researchers have proposed many algorithms to detect community structure [9, 17, 36].
We apply the modularity maximization approach [37] to detect the community structure of
the global electricity trade network as it has the advantage of a faster run time.

CO2 implications
Changes in CO2 emissions from electricity trade are calculated by:

EG ¼
X

ði;jÞwijðEFi � EFjÞ ð1Þ

where EFi and EFj are CO2 emission factors of electricity generation in exporting country i and
importing country j, respectively; wij is the volume of electricity exports from nation i to nation
j; EG is the total CO2 emission changes from electricity trade. A negative value of EG indicates
reduced CO2 emissions, while a positive value indicates an increase.

Data sources
This study uses international electricity trade data from 1990 to 2010 from the UN Comtrade
database (http://comtrade.un.org). Electricity trade is reported in both monetary ($) and physi-
cal units (MWh), though the early records in physical units are incomplete. We thus use data
in physical units to conduct the network analysis for 2010 and monetary data to analyze the
historical trend. We keep the trade data recorded by importing countries, and filtered certain
unreasonable trade records. For example, Slovenia reportedly imported 3,182 MWk of electric-
ity from Cyprus, which is beyond reasonable geographic extent. We deleted this record to
avoid errors. After such data processing, the global electricity trade network covers 114 nations
expressed by ISO 3 code abbreviations (S1 Table). We obtain CO2 emissions factors of electric-
ity generation for each nation from the International Energy Agency [38].

Results

Global electricity trade network evolution
The increasingly liberalized electricity market is evidenced by the fact that both the number of
nations (nodes) and electricity trade volumes (links) increased during 1990–2010, from 10
nodes and 9 links in 1990 to 114 nodes and 400 links in 2010 (Fig 1), indicating increasing pop-
ularity of electricity trade between countries. Growth in the number of links outpaced that of
nodes after 2000, implying increasing interconnectedness among countries. Electricity trade
volume grows exponentially, increasing from 11.4 PWh (246.1 million $) in 1990 to 569.7
PWh (33.7 billion $) in 2010. The volume of electricity trade measured by value increased
more rapidly after 2000 than that measured by physical trade. In particular, there is a shrink in
1999 due to the data unavailability for physical electricity trade.

Global Electricity Trade Networks

PLOS ONE | DOI:10.1371/journal.pone.0160869 August 9, 2016 3 / 15

http://comtrade.un.org


Table 1 shows that the largest physical electricity flow increased from 6 PWh in 1990 to 46
PWh in 2010, while the mean flow remained relatively constant, suggesting increasing intensi-
fied electricity trade for a small number of nations.

Global electricity trade network structure
Geographical locations and transmission technologies significantly influence the structure of
the global electricity trade network. The entire network can be divided into 4 sub-networks:
African, Eurasian, South American, and North and Central American, Fig 2. The Eurasian sub-
network covering 77 nations is the largest, with the most nations participating in electricity
trade and the most intensive electricity trade (largest total electricity flow and mean node
strength, Table 2). In addition, its mean clustering coefficient (0.29) is relatively high, indicat-
ing that electricity trading nations in the Eurasian sub-network have a high tendency to cluster
and form tight trade groups. We focus the remaining analysis on the structure of the Eurasian
sub-network.

Node degree and node strength. Tables 3 and 4 present the top 10 nations in the Eurasian
sub-network in terms of node degree and node strength, respectively (Full list available in S2
and S3 Tables). The average nation in the Eurasian sub-network trades electricity with 8.8 part-
ners, ranging from 1 to 34. Both the Czech Republic and Slovenia have the most trade partners

Fig 1. Dynamics of the global electricity trade network, 1990–2010. (a) Changes in number of nodes and links; (b) Changes in electricity trade
volume. All data are normalized to the 1990 level.

doi:10.1371/journal.pone.0160869.g001

Table 1. Properties of the global electricity trade network, 1990–2010.

Index 1990 1995 2000 2005 2010

No. of nodes 10 36 64 84 114

No. of links 9 43 141 255 400

Total electricity flow (PWh) 11 61 220 434 570

Largest electricity flow (PWh) 6 40 47 40 46

Mean electricity flow (PWh) 1 1 2 2 1

Largest in-degree 3 7 9 13 18

Largest out-degree 3 7 13 14 19

Largest node degree 6 14 20 24 34

Largest node strength (PWh) 11 42 68 88 151

doi:10.1371/journal.pone.0160869.t001
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(34), followed by Germany (31). Slovenia has the largest in-degree (18) value, while Austria has
the largest out-degree (18) value. Node strength (the sum of exports and imports) measures a
nation’s total electricity trade volume, ranging from 1 MWh to 151 PWh, averaging at 12
PWh. Germany has the largest node strength (151 PWh, mostly exports). Switzerland and Ger-
many have the largest import and export strengths, indicating strong dependence on and by
other countries, respectively.

Our results are consistent with practical situations. For example, Slovenia, net energy
importer, imports about 14% of total electricity demand, mainly from Italy and Croatia. This
explains it has the largest node in-degree. Czech Republic is the world’s fifth biggest power
exporter and has few power imports. This explains why Czech Republic is ranked 3rd in export
strength but out of top 10 in import strength. Due to abundant renewable energy, Germany is

Fig 2. Global electricity trade network in 2010: African sub-network (left), Eurasian sub-network (middle), North and
Central American sub-network (upper right), and South American sub-network (lower right). Link width indicates electricity
trade volume, while node size represents the nation’s electricity exports. Full names corresponding to ISO 3 country codes are
shown in S1 Table.

doi:10.1371/journal.pone.0160869.g002

Table 2. Properties of the four sub-networks in 2010.

Index Eurasian Continent Africa North and Central America South America

No. of nodes 77 18 9 10

No. of links 340 31 13 16

Total electricity flow (PWh) 465 21 69 14

Mean node degree 8.8 3.4 2.9 3.2

Mean node strength (106 MWh) 12 2.4 15 2.8

Mean clustering coefficient 0.29 0.18 0 0.24

Mean betweenness centrality 0.03 0.01 0.13 0.09

doi:10.1371/journal.pone.0160869.t002
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the largest exporter with a net exporter by 20% during the year 2010, which makes it have the
largest export strength. Austria, with approximately two thirds of the electricity generated pro-
vided by renewables, is net importer. This fact agrees our result that Austria ranks 5th in import
strength and 6th in export strength (Table 4).

The link weights range from 1 MWh to 33 PWh, with a mean value of 1.3 PWh. The largest
link in the Eurasian sub-network is electricity trade from Germany to Switzerland, accounting
for 7% of the total electricity trade volume in this network (Table 5). The second largest link is
from France to Switzerland, with 29 PWh and 6.1% of total trade volume. Refer to S4 Table for
more information.

Both probability density and cumulative density of node strength in the Eurasian sub-net-
work follow the exponential distribution (Fig 3). The probability density of node degree follows
the power law, while cumulative density of node degree follows the stretched exponential dis-
tribution (Fig 3).

Average nearest-neighbor degree and strength. Here we use the average nearest-neigh-
bor degree Knn to analyze network assortativity, which measures similarity between connected

Table 3. Top 10 Eurasian sub-network nations: node degree, 2010.

Rank Out-degree In-degree Total node degree = out-degree + in-
degree

Country kout Country kin Country k

1 Austria 18 Slovenia 18 Czech Rep. 34

2 Czech Rep. 17 Czech Rep. 17 Slovenia 34

3 Germany 16 Germany 15 Germany 31

4 Slovenia 16 Switzerland 14 Austria 30

5 Switzerland 14 Greece 14 Switzerland 28

6 Hungary 13 Serbia 13 Hungary 24

7 Italy 13 Austria 12 Italy 24

8 Croatia 11 Croatia 11 Serbia 24

9 Russian Federation 11 Hungary 11 Greece 23

10 Serbia 11 Italy 11 Croatia 22

Notes: Full results available in S2 Table of the Supporting Excel file.

doi:10.1371/journal.pone.0160869.t003

Table 4. Top 10 Eurasian sub-network nations: node strength, 2010 (Unit: PWh).

Rank Export strength Import strength Total node strength = Export strength
+ Import strength

Country sout Country sin Country s

1 Germany 100.0 Switzerland 70.6 Germany 150.8

2 France 75.8 Germany 50.8 France 95.2

3 Czech Rep. 26.7 Italy 49.9 Switzerland 86.5

4 Russian Federation 22.4 France 19.4 Italy 55.7

5 China 20.9 Austria 17.0 Czech Rep. 39.1

6 Austria 16.7 Hungary 15.9 Austria 33.7

7 Switzerland 15.8 Netherlands 15.7 Netherlands 29.6

8 Sweden 14.1 Finland 15.7 Sweden 29.0

9 Netherlands 13.9 Norway 15.1 China 26.5

10 Spain 13.8 Sweden 14.9 Belgium 25.6

Notes: Full results available in S3 Table of the Supporting Excel file.

doi:10.1371/journal.pone.0160869.t004
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nodes. If nodes with high degrees are more likely to connect to other nodes with high degrees,
the network has the property of assortativity. Otherwise, if nodes with high degrees tend to
connect to nodes with low degrees, the network is disassortative. Albania has the largest aver-
age nearest-neighbor degree at 15.3, followed by Bosnia-Herzegovina (14) and Bulgaria (13).
Fig 4(a) shows no obvious correlation between average nearest-neighbor node degree Knn(k)
and node degree k. In general, for most nodes with few trading partners, these partners may
also have few trade neighbors. However, sometimes, a nation with many trading partners
depends mainly on its partners’ neighbors. For example, China’s node degree is 13, and its
average nearest neighbor is 3.3, while Albania’s node degree is 12 and its average nearest neigh-
bor is 15.3. This is mainly because Albania trades with many other nations that in turn have
many trading partners, like Greece and the Czech Republic. Fig 4(b) shows no obvious correla-
tion between the average nearest-neighbor strength Snn(k) and node degree k, indicating that a
nation in the Eurasian sub-network with few trading partners is likely to connect to nations
with large electricity trade volumes.

Betweenness centrality and clustering coefficient. Nodes with high betweenness play a
crucial role in a network by acting as bridges connecting other nodes [24, 33]. Russia, China,
Ukraine, and Azerbaijan have the highest betweenness (Table 6 and S5 Table). These countries
are thus critical to facilitating trade in the entire Eurasian electricity trade network, and are
thus important for network stability. Fig 5 shows no obvious correlation between node
betweenness and node degree. For example, Ukraine and Azerbaijan have small node degrees
and node strengths, but high node betweenness. This indicates that, despite having few trading
partners and less intensive electricity trade, these two nations are important facilitators in the
entire Eurasian electricity trade network.

The clustering coefficient C quantifies the local cliquishness of a network [12]. A higher
clustering coefficient for a node indicates dense interconnectedness among its neighbors. The
mean value of C for the Eurasian electricity trade network is 0.3507. The clustering coefficient
of Andorra, Qatar, China Hong Kong, Lao People’s Dem. Rep, Moldova, Myanmar, and Mon-
golia are the highest at 1 (Table 6, S5 Table), implying that the probability that two of its neigh-
bors are linked is 100%, in other word, all of its neighbors connected.

Communities. A community in the electricity trade network consists of a group of nations
tightly connected by electricity trade. Changes in one nation have more effects on nations
within the same community than nations outside the community. The community structure of

Table 5. Top 10 Eurasian sub-network nations: link weights, 2010 (Unit: PWh).

Export country Import country Quantity

Germany Switzerland 32.51

France Switzerland 29.03

France Italy 21.34

Germany Italy 16.54

France Germany 14.34

Germany Austria 14.30

Czech Rep. Germany 12.56

Russian Federation Finland 11.64

China China, Hong Kong 11.11

Germany Netherlands 8.94

Notes: Full results available in S4 Table of the Supporting Excel file.

doi:10.1371/journal.pone.0160869.t005
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the electricity trade network provides the foundation for assessing the impacts of cascading
failures and intentional attacks on its stability.

The Eurasian sub-network has seven communities (Fig 6 and Table 7). The largest commu-
nity (C1) has 23 nations connected by 202 links. The smallest community (C7) consists of the

Fig 3. (a) Probability density of node degree; (b) cumulative density of node degree; (c) probability density of node strength;
and (d) cumulative density of node strength. Black circles represent data, red lines represent fitted distributions.

doi:10.1371/journal.pone.0160869.g003

Fig 4. (a) Average nearest-neighbor node degreeKnn against node degree k; (b) average nearest-neighbor node strength Snn

against node degree k.

doi:10.1371/journal.pone.0160869.g004
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UAE and Oman, both of which lack electricity trade with other countries. India, Sri Lanka, and
Nepal form an isolated three-node community, C6.

Geographical proximity plays an important role in community formation, as short distances
make it easier to build transmission lines, but community structures show that this is not the
only factor. Electricity trade among nations are also influenced by other factors such as political
relationships and the landscape influencing grid construction costs (e.g., mountains versus flat-
lands). For example, Kazakhstan, is located near Russia but belongs to different communities.
This may because that Kazakhstan is a bi-continental country and has once belonged to For-
mer Soviet Union. Although there is electricity trade relationship between Russia and Kazakh-
stan, Russia has more frequent trade relationship with other European countries. The
diplomacy relationship between them may be also an influence factor. Moreover, Pakistan is
located near China and has strong economic interactions with it, but they belong to different
communities in the Eurasian electricity trade network. This mainly due to the topography fea-
tures obstacle the power facilities construction between China and its western neighbors. One
the one hand, the electricity industry in sparsely populated Tibet in West China is poor. On the

Table 6. Top 10 Eurasian sub-network nations: node betweenness and clustering coefficient, 2010.

Rank Betweenness (B) Clustering coefficient (C)

1 Russian Federation 0.4227 Andorra 1

2 China 0.2018 Qatar 1

3 Ukraine 0.1863 China, Hong Kong 1

4 Azerbaijan 0.1257 Lao People's Dem. Rep. 1

5 Spain 0.0959 Rep. of Moldova 1

6 Mongolia 0.0943 Myanmar 1

7 Finland 0.0900 Mongolia 1

8 Slovakia 0.0860 Albania 0.8937

9 Norway 0.0791 TFYR of Macedonia 0.8930

10 Czech Rep. 0.0745 Bosnia Herzegovina 0.8631

Notes: Full results available in S5 Table of the Supporting Excel file.

doi:10.1371/journal.pone.0160869.t006

Fig 5. Node betweenness B against node degree k.

doi:10.1371/journal.pone.0160869.g005
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other hand, the Himalayas on the border is the natural Barrie. Thus, the community structure
of the Eurasian electricity trade network reveals new interdependence relationships among
nations. The countries in the same cluster have closer and stronger relationships with one
another. Friendly diplomatic and favorable geographical conditions contribute a lot to reach an
agreement on allocation mechanism and power facilities construction. Cross-board electricity
trade benefits resource allocation on a larger scale, especial with the increasing development of
unstable renewable energy generation.

The within-community degree z-score (Table 8) quantifies how well-connected a node is to
other nodes within the community [12, 39]. A higher z-score indicates a greater importance in
the community’s formation. S6 Table shows the nations with the highest z-score in each com-
munity. For example, China (2.9795) and Spain (2.6954) are the most important in the forma-
tion of communities C3 and C4, respectively.

CO2 implications of electricity trade
Fig 7 shows the CO2 implications of electricity trade in the Eurasian sub-network in 2010.
Nations can reduce its CO2 emissions by importing electricity from other countries. For

Fig 6. Eurasian sub-network community structure. Full names corresponding to ISO 3 country codes are shown in S1
Table.

doi:10.1371/journal.pone.0160869.g006
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example, Albania has the lowest CO2 emission factor (2 kg/MWh) due to the significant share
of renewable energy sources. Moreover, Albania exports 365 GWh of electricity to Greece,
which has a much higher CO2 emission factor (718 kg/MWh). For Greece, importing less
CO2-intensive electricity from Albania can reduce its own generation of CO2-intensive electric-
ity, thus reducing CO2 emissions by approximately 0.3 million tons (Mt). However, interna-
tional electricity trade in the entire sub-network actually increases CO2 emissions (11.0 Mt
more) compared to a scenario where all countries produce their own electricity.

To date, the primary goal of international electricity trade is economical, cost-efficient elec-
tricity supply, with little attention paid to environmental issues, such as CO2 emissions. With
increasingly stringent environmental regulations targeting the power sector [40, 41], especially
in the European Union, one might expect to see more exports of “cleaner” electricity and less
exports of “dirty” electricity, thus favoring the production of less emission-intensive electricity
over emission-intensive electricity. It is no longer proper to evaluate the actual CO2 emissions
associated with the terminal electricity consumption by calculating the local production- or
consumption-based emission factors due to CO2 emissions from the electricity trade. Further,
“carbon leakage” [42], where emission-intensive electricity produced in countries without
stringent regulations may gain favor without universal regulations for an interconnected elec-
tricity trade network, could occur.

Discussion and Conclusion
This is the first study offering an analysis of the structure of the global electricity trade network
consisting of four sub-networks: African, Eurasian, South American, and North and Central
American. As the largest sub-network, this study uses the Eurasian sub-network as an example
to identify critical nations in the global electricity trade network using various metrics. Cross-
border electricity trade is intensive in Europe. Germany, France, and the Czech Republic are
the largest electricity exporters, and the reliability of their national grids is important to down-
stream partners. Cross-border electricity trade can take full advantage energy, especially renew-
able energy generation. Those great net electricity importers (e.g. Italy) may face significant
energy security issues. They should thus aim to diversify their sources and adopt long-term
cooperation strategies to guarantee electricity supply security.

Table 7. Eurasian sub-network communities, 2010.

Community
index

No. of
nations

Description

C1 23 Albania, Austria, Bulgaria, Bosnia Herzegovina, Switzerland, Czech Rep.
Germany, Greece, Croatia, Hungary, Italy, Luxembourg, Moldova,
Macedonia, Montenegro, Poland, Romania, San Marino, Serbia, Slovakia,
Slovenia, Ukraine, Holy See

C2 16 Armenia, Azerbaijan, Belarus, Denmark, Estonia, Finland, Georgia, Iran,
Iraq, Lithuania, Latvia, Norway, Pakistan, Russia, Sweden, Turkey

C3 15 China, China-Hong Kong, Kazakhstan, Cambodia, Lao People's Dem.
Rep., China-Macao, Myanmar, Mongolia, Malaysia, People’s Rep. of
Korea, Thailand, Tajikistan, Uzbekistan, Viet Nam

C4 11 Andorra, Belgium, Algeria, Spain, France, United Kingdom, Ireland,
Morocco, Netherlands, Portugal, Qatar

C5 7 Egypt, Israel, Jordan, Lebanon, Libya, State of Palestine, Syria

C6 3 India, Nepal, Sri Lanka

C7 2 United Arab Emirates, Oman

Notes: Full results available in S6 Table of the Supporting Excel file.

doi:10.1371/journal.pone.0160869.t007
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Table 8. Most important nations and z-scores in each community, 2010.

Community index No. of nations Links within community Links among communities Most important nation z-scores

C1 23 202 43 Czech Republic 1.7481

C2 16 48 27 Russia 2.1412

C3 15 23 5 China 2.9795

C4 11 22 30 Spain 2.6954

C5 7 11 1 Egypt 1.9597

C6 3 2 0 India 1.4142

C7 2 1 0 - -

Notes: Full results available in S6 Table of the Supporting Excel file.

doi:10.1371/journal.pone.0160869.t008

Fig 7. CO2 implications of electricity trade in the Eurasian sub-network. The direction of links reflects the flows of
electricity trade; the width of links is proportional to the change of CO2 emissions due to electricity trade; and the color of
links represents the effect of electricity trade on CO2 emissions (red for reduction and blue for increase). Full names
corresponding to ISO 3 country codes are shown in S1 Table.

doi:10.1371/journal.pone.0160869.g007
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Russia, Ukraine, China, and Azerbaijan have more central positions as measured by
betweenness centrality. They are major bridges connecting intensive European communities
with less active Asian communities in cross-border electricity trade. They also play an impor-
tant role in the security of Eurasian sub-network from the overall view. Due to the diplomacy
relationship and the geomorphological conditions, communities in the Eurasian sub-network
do not fully align with geographical proximity. Moreover, the present international electricity
trade in this sub-network creates an approximately 11 million additional tons of CO2 emissions
in 2010. This analysis shows that electricity trade networks could also be used to analyze other
environment influences from global electricity trading.

There are many other index in network analysis, e.g. motif, scale-free feature, distance of
networks, cliques, matching, dominating sets, degree assortativity coefficient, degree Pearson
correlation coefficients, degree mixing matrix, edges weighted of networks. This work is the
first attempt to analyze global electricity trade network. In our future study, more network
analysis indexes will be adopted, and deeper policy implication will be explored.
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