An Open Access Environmentally Extended Input-Output Database for China

Sai Liang¹, Tiantian Feng^{1,2}, Ming Xu^{1,3}

- 1. School of Natural Resources and Environment, University of Michigan, Ann Arbor, United States
- 2. School of Economics and Management, North China Electric Power University, Beijing, China
- 3. Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, United States

Environmentally extended input-output (EEIO) database

EEIO is increasingly popular

Web of Science

Topics: "Input-output" AND "environment or environmental or emissions or energy or water"

- Environmental footprints
- Embodied energy/emissions
- Hybrid life cycle assessment

• • • • • • •

EEIO for China is also increasingly popular

The problems with EEIO databases for China in existing studies

- Not publicly available
 repeated efforts
- Inconsistent, using different data sources and approaches

 preventing continuous, consistent updating
- Lacking transparency
- Limited environmental satellite accounts

Needs for an EEIO database for China:

- Open access
- Using publicly available data sources to allow continuous, consistent updating
- Transparent with detailed documentation
- Comprehensive coverage of environmental satellite accounts

To develop a Chinese EEIO (CEEIO) database

- Use publically available data
 - IO tables: Benchmark IO tables by China's National Bureau of Statistics (1992, 1997, 2002, and 2007)
 - Environmental satellite accounts: Government statistics
- Use commonly used approaches in literature to match environmental data to sectors at multiple classifications
 - Straightforward approaches, commonly used in literature, nothing fancy
- Document to ensure transparency

The CEEIO database

- 1992, 1997, 2002, and 2007 when benchmark IO tables are available
- Multiple sector classifications
 - Original sector classifications (100+);
 - a 45-sector classification commonly used in China's environmental statistics;
 - a 91-sector classification with maximized sector resolution ensuring temporal consistence
- 256 types of resources and 31 types of pollutants

Comparison with Yang and Suh (2011): total intensity of CO_2 in 2002

	CEEIO		Yang and Suh (2011)	
Rank	Sectors	Total intensity	Sectors	Total intensity
		(g CO ₂ /US		(g CO ₂ /US
		Dollars)		Dollars)
1	Electricity and heat	21,356	Cement	23,007
2	Non-metallic products	14,426	Electricity and heat	20,987
3	Cement	14,314	Iron smelting	16,656
4	Glass and glass products	13,635	Steel smelting	9,919
5	Fireproof products	13,628	Chemical fertilizers	9,448
6	Ceramic products	13,270	Non-metallic products	7,112
7	Steel processing	13,151	Steel processing	6,867
8	Steel smelting	12,122	Iron alloy smelting	6,571
9	Iron alloy smelting	11,944	Raw chemical materials	6,362
10	Iron smelting	11,098	Coking	5,738

Difference mainly caused by

Emission factors used

 IPCC guidelines 2006 in CEEIO vs 1996 (Yang and Suh, 2011)

 Emission-generating chemical processes covered
 o 11 in this study vs 2 (Yang and Suh, 2011) chemical processes

Kendall rank correlation of sector rankings by the two studies

Total intensity of CO₂ emissions in 2002

Kendall rank correlation of sector rankings by the two studies

Where to get it?

- Email me: <u>mingxu@umich.edu</u> (for now)
- Web-based interface (work-in-progress)
 - Access will be provided at <u>http://ComplexSustainability.snre.umich.edu</u>

or

just Google "Ming Xu Umich"

Thank you!

Sai Liang¹, Tiantian Feng^{1,2}, Ming Xu^{1,3}

- 1. School of Natural Resources and Environment, University of Michigan, Ann Arbor, United States
- 2. School of Economics and Management, North China Electric Power University, Beijing, China
- 3. Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, United States

mingxu@umich.edu

