What is extremal combinatorics

Extremal combinatorics deals with questions of the following form: given a graph G on n vertices, how big certain global invariants can be when G does not exhibit certain local substructures? What are the graphs without such local substructures that have maximal global invariants?

The questions we will discuss: how many edges can G have if G does not have certain types of subgraphs.

We start with the easiest such result. All graphs in these two lectures will be simple.

Proposition 1. If G is a bipartite graph on n vertices, then G can have $\leq \frac{n^2}{4}$ edges.

Remark. This falls under the previous paradigm since G is bipartite if and only if G does not contain any polygon of odd length.
The maximal number of edges of a bipartite graph

Proof of the proposition. If G is a bipartite graph on n vertices, then we have disjoint subsets A and B of $V(G)$, with k and $n - k$ elements, such that every edge of G joins a vertex in A with a vertex in B. It follows that

$$\#E(G) \leq k(n - k) \leq \left(\frac{k + (n - k)}{2} \right)^2 = \frac{n^2}{4},$$

where the inequality is given by the inequality between the arithmetic and geometric means.

Proof of the remark. The fact that a bipartite graph contains no polygon of odd length is clear. Suppose now that G contains no such polygon and let’s show that G is bipartite. By treating each connected component of G separately, we may assume G is connected. Fix a vertex v_0 of G and let A and B be the subsets of $V(G)$ that can be connected to v_0 via a path of even (respectively, odd) length. We clearly have $A \cup B = V(G)$ and the hypothesis implies $A \cap B = \emptyset$. Moreover, it implies that no two vertices in A (or B) can be neighbors in G. Hence $G = G(A, B)$ is bipartite.
Graphs with no triangles

With a bit more work, we can prove a stronger version of the previous result.

Proposition 2 (Mantel, 1907). If G is a graph on n vertices that does not contain any triangle, then $\#E(G) \leq \frac{n^2}{4}$.

Proof. Let $m = \#E(G)$. For every $x \in V(G)$, let $d_x = \text{deg}(x)$. Given any two adjacent vertices $x, y \in V(G)$, the hypothesis implies that x and y have no common neighbors. We thus have $d_x + d_y \leq n$. Therefore

$$\sum_{\{x,y\} \in E(G)} (d_x + d_y) \leq mn.$$

On the other hand, we have

$$\sum_{\{x,y\} \in E(G)} (d_x + d_y) = \sum_{x \in V(G)} d_x^2.$$
Recall now that the Cauchy-Schwarz inequality says that for every a_1, \ldots, a_n and b_1, \ldots, b_n, we have

$$\left(\sum_{i=1}^{n} a_i^2 \right) \cdot \left(\sum_{i=1}^{n} b_i^2 \right) \geq \left(\sum_{i=1}^{n} a_i b_i \right)^2.$$

By taking $b_1 = \ldots = b_n = 1$, we obtain

$$n \cdot \left(\sum_{i=1}^{n} a_i^2 \right) \geq \left(\sum_{i=1}^{n} a_i \right)^2.$$

Applying this and our inequalities, we obtain

$$mn^2 \geq n \cdot \sum_{x \in V(G)} d_x^2 \geq \left(\sum_{x \in V(G)} d_x \right)^2 = (2m)^2 = 4m^2,$$

hence $m \leq n^2/4$.

Remark. It follows from the proof of Proposition 2 that if G is as in the proposition and $m = \frac{n^2}{4}$, then for every edge $\{x, y\}$ in $E(G)$, every vertex of G is a neighbor of precisely one of x and y. If A consists of the neighbors of x and B consists of the neighbors of y, since G contains no triangles, we see that G is the complete bipartite graph on A and B. If $a = \#A$ and $b = \#B$, then $n = a + b$ and $\#E(G) = ab = (a + b)^2 / 4$, hence $a = b$.

Remark. If n is odd and G is a graph on n vertices that does not contain any triangles, then it follows from Proposition 2 that $\#E(G) \leq \frac{n^2 - 1}{4}$. This is sharp, as can be seen by taking the complete bipartite graph $K_{k+1,k}$, where $k = \frac{n-1}{2}$.

Exercise. Show that in this case, too, if $\#E(G) = \frac{n^2 - 1}{4}$, then G is isomorphic to $K_{k+1,k}$.
Graphs with no K_{t+1}

Next: we want to extend the result in Proposition 2, by asking what is the maximum number of edges for a graph on n vertices that does not contain any K_{t+1}, for some $t \geq 2$ (recall: K_{t+1} is the complete graph on $t + 1$ vertices).

How to construct graphs without any K_{t+1}: let $V = V_1 \sqcup \ldots \sqcup V_t$. If we consider the graph G with $V(G) = V$ and where the edges in G are given by all edges that connect vertices in different V_i, then G does not contain any K_{t+1} (for any $t + 1$ vertices of G, two of them must lie in the same V_i by the pigeonhole principle).

Note: in this example, if $d_i = \# V_i$, then $\# V = d_1 + \ldots + d_t$ and $\# E(G) = \sum_{i<j} d_i d_j$.

Easy fact: if $n = d_1 + \ldots + d_t$ is fixed, then $\sum_{i<j} d_i d_j$ is maximal precisely when $d_i - d_j \in \{0,1,-1\}$ for all i,j.
Graphs with no K_{t+1}, cont’d

Let’s prove this fact when t divides n. In this case, we have

$$\sum_{i<j} d_id_j = \frac{(d_1 + \ldots + d_t)^2 - (d_1^2 + \ldots + d_t^2)}{2}.$$

The Cauchy-Schwarz inequality gives

$$t \cdot (d_1^2 + \ldots + d_t^2) \geq (d_1 + \ldots + d_t)^2$$

(it also says that equality holds iff $d_1 = \ldots = d_t$). We thus conclude that

$$\sum_{i<j} d_id_j \leq \frac{n^2 - \frac{n^2}{t}}{2} = \frac{n^2}{2} \left(1 - \frac{1}{t}\right)$$

(with equality iff $d_i = n/t$ for all i).
The proof of the fact in the general setting (when t might not divide n is similar). Note that the condition $d_i - d_j \in \{0, 1, -1\}$ for all i and j uniquely determines the graph we constructed, up to isomorphism. Indeed, if $n = tk + r$, with $r \in \{0, 1, \ldots, t - 1\}$, then after reordering the V_i, we may assume that $d_i = k + 1$ for $1 \leq i \leq r$ and $d_i = k$ for $r + 1 \leq i \leq t$. The corresponding graph is the Turán graph $T_{n,t}$.

Remark. The number of edges of the Turán graph $T_{n,t}$ is equal to

\[
\frac{n^2}{2} \left(1 - \frac{1}{t}\right) + \text{lower degree terms in } n. \tag{1}
\]

This is immediate if t divides n: in this case every V_i has $\frac{n}{t}$ elements, hence the number of edges is

\[
\frac{1}{2} t \cdot \frac{n}{t} \cdot \left(n - \frac{n}{t}\right) = \frac{n^2}{2} \left(1 - \frac{1}{t}\right).
\]

Exercise. Prove the formula in (1) in general.
Pál Turán is another famous Hungarian mathematician, who lived 1910-1976. Worked mostly in number theory, but also in analysis and graph theory. He collaborated extensively with Paul Erdős. As a Jew, he could not get a university job for several years and was sent to labour service at various times between 1940-44. Peter Franks: “Mathematicians have only paper and pen, he doesn’t have anything in camp. So he created extremal combinatorics for which he did not need either.”
Turán’s theorem

Theorem (Turán). For every $t \geq 2$, among all graphs on n vertices that contain no K_{t+1}, the graph $T_{n,t}$ has the most edges; moreover, it is unique with this property.

Proof. We argue by induction on $t \geq 2$. For $t = 2$, we have seen that among the graphs on n vertices that contain no triangles, the unique one with the maximal number of edges is $K_{k,k}$ (if $n = 2k$ is even) or $K_{k+1,k}$ if $n = 2k + 1$ is odd. We now consider $t \geq 3$ and assume the theorem known for $t - 1$.

Let G be a graph on n vertices with no K_{t+1} subgraphs. Choose $v \in V(G)$ such that its degree $d_v := \deg_G(v)$ is maximal. Let $S_v \subseteq V(G)$ be the subset consisting of the neighbors of v (hence $\#S_v = d_v$) and $T_v = V(G) \setminus S_v$.

Clear: since v is a common neighbor of all vertices in S_v, the assumption on G implies that the subgraph of G spanned by S_v contains no K_t subgraph.
Turán’s theorem

We now modify G to get a new graph G' with $V(G') = V(G)$, as follows:
- We keep all edges in $E(G)$ between the vertices in S_v.
- We add edges between the vertices in S_v and the vertices in T_v.
- We remove all edges in $E(G)$ between the vertices in T_v.

Claim. For every vertex w in $V(G)$, we have $\deg_{G'}(w) \geq \deg_G(w)$.
- This is clear if $w \in S_v$ (we have only added some new edges incident to w).
- If $w \in T_v$, then

$$\deg_{G'}(w) = \#S_v = d_v \geq \deg_G(w),$$

by the maximality in our choice of v.

The claim, together with the formula relating the sum of the degrees with the number of edges gives

$$\#E(G') \geq \#E(G).$$
Turán’s theorem

By induction hypothesis for the subgraph $\langle S_v \rangle$ of G spanned by S_v:

$$\#E(\langle S_v \rangle) \leq \#E(T_{d_v, t-1}).$$

Since G' contains no edges between vertices in T_v and contains all edges between vertices in S_v and vertices in T_v, we conclude that

$$\#E(G) \leq \#E(G') = (#T_v) \cdot d_v + \#E(\langle S_v \rangle)$$

$$\leq (#T_v) \cdot d_v + \#E(T_{d_v, t-1}) \leq \#E(T_{n, t}).$$

Furthermore, if $\#E(G) = \#E(T_{n, t})$, then we see that in G already every vertex in S_v was adjacent to every vertex in T_v (otherwise, by the previous computation $\#E(G') > \#E(G)$). Moreover, S_v has to be isomorphic to $T_{d_v, t-1}$. Since G contains no K_{t+1}, it follows that no vertices of T_v are adjacent in G. Hence G is constructed out of subsets V_1, \ldots, V_t. Maximality in the number of edges implies that G is isomorphic to $T_{n, t}$.
The Erdős-Stone theorem

We now consider the following general problem. Given a fixed graph H, estimate for large n the number $\text{ex}(n, H)$ consisting of the maximum number of edges of a graph on n vertices that does not contain any graphs isomorphic to H. The answer is provided by the Erdős-Stone theorem. Of course, this is not interesting if $E(H) = \emptyset$ (in which case every graph with $n \geq \#V(H)$ vertices contains a subgraph isomorphic to H).

Recall that the chromatic number $\chi(H)$ is the smallest number c such that the vertices of H can be colored with c colors such that no two adjacent vertices get the same color. Note that $\chi(H) = 1$ if and only if $\#E(G) = \emptyset$.

Theorem (Erdős-Stone). For every (finite simple) graph H with $E(G) \neq \emptyset$ and for every $\epsilon > 0$, for $n \gg 0$, we have

$$\frac{1}{2} \left(1 - \frac{1}{\chi(H) - 1} - \epsilon \right) n^2 < \text{ex}(n, H) < \frac{1}{2} \left(1 - \frac{1}{\chi(H) - 1} + \epsilon \right) n^2.$$
The Erdös-Stone theorem

Example. If \(H = K_{t+1} \) (when \(\chi(H) = t + 1 \)), this matches the assertion given by Turán’s theorem, which gives

\[
\text{ex}(n, K_{t+1}) = \frac{1}{2} \left(1 - \frac{1}{t} \right) n^2 + \text{lower order terms in } n
\]

(depending on the residue of \(n \) when divided by \(t \)).

Remark. The formula in the Erdös-Stone theorem implies that if \(\chi(H) \geq 3 \), then

\[
\lim_{n \to \infty} \frac{\text{ex}(n, H)}{n^2} = \frac{1}{2} \left(1 - \frac{1}{\chi(H) - 1} \right) > 0.
\]

Hence we understand the behavior of \(\text{ex}(n, H) \) for \(n \to \infty \). The situation is more delicate when \(\chi(H) = 2 \) (that is, for bipartite graphs), when we can only conclude that for every \(\epsilon > 0 \), we have \(\text{ex}(n, H) \leq \epsilon n^2 \) for \(n \gg 0 \). We will discuss some examples in the next lecture.
This part is easy: say $\chi(H) = k + 1$. Since the Turán graph $T_{n,k}$ has vertices in k disjoint sets, with neighbors being precisely vertices in different such subsets, it follows that $\chi(T_{n,k}) = k$. Since $\chi(H) = k + 1$, we deduce that $T_{n,k}$ has no subgraph isomorphic to H. We thus conclude that $\text{ex}(n, H) \geq \#E(T_{n,k})$. We have seen that

$$\#E(T_{n,k}) = \frac{1}{2} \left(1 - \frac{1}{k} \right) n^2 + \text{lower order terms in } n$$

(with the precise formula depending on the residue of n divided by t).

It thus follows that given $\epsilon > 0$, we have

$$\text{ex}(n, H) \geq \#E(T_{n,k}) > \frac{1}{2} \left(1 - \frac{1}{k} - \epsilon \right) n^2 \quad \text{for } n \gg 0.$$
Lemma. Given positive integers k and t, and $0 < \epsilon < 1/k$, for every graph G on n vertices, with n large enough (depending on k, t, and ϵ) and with $m \geq \frac{1}{2} \left(1 - \frac{1}{k} + \epsilon \right) n^2$ edges, there are disjoint subsets A_1, \ldots, A_{k+1} of $V(G)$, all of size t, such that any two vertices in two different A_i and A_j are neighbors in G.

Proof. We first prove the following Claim:
Given any p and every ϵ', with $0 < \epsilon' < \epsilon$, if n is large enough, then for every graph G on n vertices, with $\#E(G) \geq \frac{1}{2} \left(1 - \frac{1}{k} + \epsilon \right) n^2$, we can find a subgraph G' of G on $\geq p$ vertices, such that for every $v \in V(G')$, we have
\[
\deg_{G'}(v) \geq \left(1 - \frac{1}{k} + \epsilon' \right) \cdot \#V(G').
\]
We construct G' by successively removing the “bad” vertices.
A lemma for the upper bound in Erdős-Stone, cont’d

More precisely, we construct a sequence of subgraphs G_1, G_2, \ldots of $G = G_0$ as follows: if G_i has been constructed and it contains a vertex v_i with $\deg_{G_i}(v_i) < (1 - \frac{1}{k} + \epsilon') \cdot \#V(G_i)$, then we take G_{i+1} to be the subgraph of G_i spanned by $V(G_i) \setminus \{v_i\}$; if there is no such v_i, then we stop.

We need to show that if $n \gg 0$, we can’t reach a subgraph G_ℓ such that $\#V(G_\ell) < n'$. If this is the case, note that $q := \#V(G_\ell) = n - \ell < n'$. In this case, we have $\#E(G_\ell) \leq \frac{q(q-1)}{2} < \frac{n'^2}{2}$.

On the other hand, for every $i \geq 0$, we have $\#E(G_i) \leq \#E(G_{i+1}) + \left(1 - \frac{1}{k} + \epsilon'\right) \cdot \#V(G_i) = \#E(G_{i+1}) + \left(1 - \frac{1}{k} + \epsilon'\right) \cdot (n - i)$.

By combining all these, we get $\#E(G) \leq \frac{n'^2}{2} + \sum_{i=0}^{\ell-1} \left(1 - \frac{1}{k} + \epsilon'\right) \cdot (n - i) = \frac{n'^2}{2} + \left(1 - \frac{1}{k} + \epsilon'\right) \cdot \left(\frac{n(n+1)}{2} - \frac{q(q+1)}{2}\right)$.
Since q is bounded above and $\epsilon' < \epsilon$, this implies that for n large enough, we get

$$\#E(G) < \frac{1}{2} \left(1 - \frac{1}{k} + \epsilon\right)n^2,$$

a contradiction. This completes the proof of the claim.

The claim implies that from now on (after possibly replacing ϵ by a smaller value), we may assume that we have a graph on n vertices, such that every vertex has degree $\geq \left(1 - \frac{1}{k} + \epsilon\right)n$. We show by induction on q, with $1 \leq q \leq k + 1$, that for all t, if $n \gg 0$, then we can find disjoint subsets A_1, \ldots, A_q of $V(G)$, all of size t, such that any two vertices in two different A_i and A_j are neighbors in G. For $q = k + 1$, we obtain the assertion in the lemma.
The assertion to prove is clear for $q = 1$, hence we may assume $q \geq 2$. We apply the induction hypothesis to get disjoint subsets A'_1, \ldots, A'_q of $V(G)$, all of size $s = \lceil t/\epsilon \rceil$, such that any two vertices in two different A'_i and A'_j are neighbors in G.

Let $U = V(G) \setminus (A'_1 \cup \ldots \cup A'_q)$ and consider

$$W = \{v \in U \mid v \text{ has } \geq t \text{ neighbors in each } A'_i\}.$$

We first show that we can make $\#W$ arbitrarily large by taking $n \gg 0$.

We bound in two ways the number N of missing edges in G between $U \setminus W$ and $A'_1 \cup \ldots \cup A'_q$. Since every vertex in $U \setminus W$ has $< t$ neighbors in some A'_i, it follows that

$$N \geq \#(U \setminus W) \cdot (qs - t) = (n - qs - \#W) \cdot (qs - t) \geq (n - qs - \#W)s(q - \epsilon).$$
On the other hand, since every vertex in G has degree $\geq \left(1 - \frac{1}{q} + \epsilon \right) n$ neighbors, we have

$$N \leq \#(A'_1 \cup \ldots \cup A'_q) \cdot \left(\frac{1}{q} - \epsilon \right) n = qsn \left(\frac{1}{q} - \epsilon \right) = sn(1 - q\epsilon).$$

We now combine the two inequalities involving N to get a lower bound for $\#W$:

$$(q - \epsilon)\#W \geq (n - qs)(q - \epsilon) - n(1 - q\epsilon) = n(\epsilon + 1)(q - 1) - qs(q - \epsilon).$$

Since q, ϵ, and s are fixed, we see that when we make n large enough, we may assume that $\#W$ is as large as we want.

In particular, we may and will assume that $\#W > \binom{s}{t}^q(t - 1)$.

A lemma for the upper bound in Erdös-Stone, cont’d
Proof of the upper bound in Erdös-Stone

We now make the following construction: for every \(w \in W \), we choose \(t \) neighbors of \(w \) in each of the \(A'_i \) and let \(\Gamma_w \) be their union.

Clearly, there are at most \(\binom{s}{t}^q \) such subsets \(\Gamma_w \). By our condition on \(\#W \) and the pigeonhole principle, we can find distinct \(w_1, \ldots, w_t \in W \) such that \(\Gamma_{w_1} = \ldots = \Gamma_{w_t} = \Gamma \).

If we put \(A_{q+1} = \{w_1, \ldots, w_t\} \) and let \(A_i = \Gamma \cap A'_i \) for \(1 \leq i \leq q \), we see that \(A_1, \ldots, A_{q+1} \) all have size \(t \), and any two vertices in two different \(A_i \) and \(A_j \) are neighbors in \(G \).

This completes the proof of the induction step for the assertion depending of \(q \) and thus the proof of the lemma.
We can now prove the upper bound in the Erdös-Stone theorem. Let \(k = \chi(H) - 1 \) and \(t = \#V(H) \). It follows the lemma that if \(n \gg 0 \) and \(G \) is a graph on \(n \) vertices and with \(m \geq \frac{1}{2} \left(1 - \frac{1}{k} + \epsilon \right) n^2 \) edges, we have disjoint subsets \(A_1, \ldots, A_{k+1} \) of \(V(G) \) such that any two vertices in two different \(A_i, A_j \) are neighbors in \(G \).

Since \(\chi(H) = k + 1 \), if we consider a coloring of \(H \) with colors \(1, \ldots, k + 1 \) and if we map the vertices colored by \(i \) to distinct vertices in \(A_i \), then we see that \(G \) has a subgraph isomorphic to \(H \). We thus have

\[
\text{ex}(n, H) < \frac{1}{2} \left(1 - \frac{1}{k} + \epsilon \right) n^2 \quad \text{for} \quad n \gg 0.
\]

This completes the proof of the Erdös-Stone theorem.
In the next lecture, we will consider in some examples the asymptotic behavior of $\text{ex}(n, H)$ for certain bipartite graphs H.

For more on extremal graph theory, see Jacob Fox’s MIT course, available at http://math.mit.edu/~fox/MAT307