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Abstract

Participants race towards completing an innovation project and learn about its feasibility from
their own efforts and their competitors’ gradual progress. Information about the status of com-
petition can alleviate some of the uncertainty inherent in the contest, but it can also adversely
affect effort provision from the laggards. This paper explores the problem of designing the award
structure of a contest and its information disclosure policy in a dynamic framework and provides
a number of guidelines for maximizing the designer’s expected payoff. In particular, we show
that intermediate awards may be used by the designer to appropriately disseminate information
about the status of competition. Interestingly, our proposed design matches several features ob-
served in real-world innovation contests.
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1 Introduction

Innovation contests are fast becoming a tool that firms and institutions use to outsource their inno-

vation tasks to the crowd. An open call is placed for an innovation project that participants compete

to finish, and the winners, if any, are awarded a prize.1 Recent successful examples include The Net-

Flix Prize and the Heritage Prize2, and a growing number of ventures like Innocentive, TopCoder,

and Kaggle provide online platforms to connect innovation seekers with potential innovators.

The objective of the contest designer is to maximize the probability of reaching the innovation

goal while minimizing the time it takes to complete the project. Obviously, the success of a con-

test depends crucially on the pool of participants and the amount of effort they decide to provide,

and a growing literature considers the question of how to best design a contest. The present paper

∗We are thankful to David Gamarnik, an Associate Editor, and two anonymous referees for their helpful comments.
†Graduate School of Business, Stanford University.
‡Department of Management Science and Engineering, Stanford University.
§Ross School of Business, University of Michigan.
1We use the terms “participant”, “competitor”, and “agent” interchangeably throughout.
2The NetFlix Prize offered a million dollars to anyone who succeeded in improving the company’s recommendation

algorithm by a certain margin and was concluded in 2009. The Heritage Prize was a multi-year contest whose goal was to
provide an algorithm that predicts patient readmissions to hospitals. A successful breakthrough was obtained in 2013.
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studies a model that has the following three key features. First, in our model, an agent’s progress to-

wards the goal is not a deterministic function of effort. As is typically the case in real-world settings,

progress is positively correlated with effort but the mapping involves uncertainty that we capture by

a stochastic component. Second and quite importantly, it is possible that the innovation in question

is not attainable, either because the goal is actually infeasible or because it requires too much effort

and resources that it makes no economic sense to pursue. We model such a scenario by having an

underlying state (that captures whether the innovation is attainable) over which participants have

some prior belief. Taken together, these two features imply that an an agent’s lack of progress may

be attributed to either an undesirable underlying state (the innovation is not attainable) or simply to

the fact that the agent was unlucky in how her effort was stochastically mapped to progress. Third,

we consider a dynamic framework to study how competition between agents evolves over time and

incorporate the fact that they learn from each other’s partial progress about the feasibility of the in-

novation project. In particular, our modeling setup includes well-defined intermediate milestones

that constitute partial progress towards the end goal. Such milestones are usually featured in real-

world innovation contests, including the ones we use as motivating examples.

The discussion above implies that news about a participant’s progress has the following inter-

esting dual role: it makes agents more optimistic about the state of the world, as the goal is more

likely to be attainable and thus agents have a higher incentive to exert costly effort. We call this the

encouragement effect.3 At the same time, such information implies that one of the participants has

a lead, which might negatively affect effort provision from the remaining agents as the likelihood of

them beating the leader and winning the prize becomes slimmer. We refer to this as the competition

effect. These two effects interact with each other in subtle ways over the duration of the contest, and

understanding this interaction is of first-order importance for successful contest design.

The primary contribution of this paper is twofold. First, while some of the features described

above — uncertainty regarding the feasibility of the end goal, stochastic mapping between effort

and progress, and intermediate milestones — appear in previous literature, to the best of our knowl-

edge, this framework is the first that explicitly combines all three into a single model. This allows

us to focus on the information disclosure policy of the contest designer and show how this policy

depends on whether the competition or the encouragement effect dominates. In particular, we con-

sider the question of whether and when should the contest designer disclose information regarding

the competitors’ (partial) progress with the goal of maximizing her expected payoff. Interestingly,

we illustrate the benefits of non-trivial information disclosure policies, where the designer with-

holds information from the agents and only releases it after a certain amount of time has elapsed.

Such designs highlight the active role that information may play in incentivizing agents to partici-

3We note that the usage of the term “encouragement” is different from the literature on strategic experimentation (e.g.,
Bolton and Harris (1999)), where an agent is encouraged to exert effort if she believes that this will make other agents exert
effort as well and therefore make more information available to all agents in the future (since experimentation outcomes
are perfectly observable by all). In the present paper, an agent becomes encouraged to exert more effort as she positively
updates her belief about the state of the world as a result of progress made by others.
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pate in the contest. As we further elaborate in the literature review, much of the extensive prior work

on innovation contests studies static single-shot models that feature no uncertainty regarding the

goal (and thus no learning).

Second, we identify the role of intermediate awards as a way for the designer to implement the

desired information disclosure policy — the policy that maximizes the effort provision of the agents

and consequently the chances of innovation taking place. Intermediate awards are very common in

innovation contests (the aforementioned NetFlix and Heritage prizes are examples of contests that

have employed intermediate awards), but the exact role they play as information revelation devices

has not yet been studied. We show how these awards may serve to both extract private information

(from those agents who have made some progress) as well as disseminate this information to the

rest of the competition through the public announcement (or not) of giving out an award.

A simple illustration of the main ideas in the paper is the following. Consider an innovation con-

test that consists of well-defined milestones. For example, the goal of the Netflix prize was to achieve

an improvement of 10% over the company’s proprietary algorithm, with a first progress prize set at

1% improvement. In this example, reaching the milestone of 1% improvement constitutes partial

progress towards the goal, and we assume that the agents and the designer are able to verifiably com-

municate this. Assume for now that the innovation is attainable with certainty given enough effort,

and that agents are fully aware of that. The lack of progress towards the goal is then solely a result

of the stochastic return on effort. When no information is disclosed about the agents’ progress, they

become progressively more pessimistic about the prospect of them winning, as they believe that

someone must have made progress and that they are now lagging behind in the race towards the

end goal. This may possibly lead them to abandon the contest, thus decreasing the aggregate level

of effort and consequently increasing the time to complete the innovation project.

In contrast, when there is uncertainty about the feasibility of the end goal, agents that have made

little or no progress towards the goal become pessimistic about whether it is even possible to com-

plete the contest. If this persists, an agent may choose to drop out of the competition as she believes

that it is not worth putting the effort for what is likely an unattainable goal, reducing aggregate ex-

perimentation in the process and decreasing the chances of reaching a possibly feasible innovation.

This discussion highlights the complex role that information about the agents’ progress may play

in this environment. In the first scenario, when the competition effect is dominant (since there is

no uncertainty regarding the attainability of the end goal), disclosing that one of the participants is

ahead may deter future effort provision as it implies that the probability of winning is lower for the

laggards. In the second case, when the encouragement effect dominates, an agent’s progress can be

perceived as good news, since it reduces the uncertainty regarding the feasibility of the end goal.

The information disclosure policy is only one of the levers that the designer has at her disposal

to affect the agents’ effort provision decisions. Another is obviously the compensation scheme that,

in the context of an innovation contest, takes the form of an award structure. In a setting with po-

tentially multiple milestones, a design may involve compensating agents for reaching a milestone or
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having them compete for a single grand prize given out for completing the entire contest. Our analy-

sis sheds light on the interplay between information disclosure and the contest’s award structure by

comparing different mechanisms in terms of their expected payoff for the designer. This essentially

brings the contest’s information disclosure policy to the forefront as we show that the probability

of obtaining the innovation as well as the time it actually takes to complete the project are largely

affected by when and what information the designer chooses to disclose.

Related Literature There is a growing literature on exploring different aspects of innovation con-

tests. For example, Taylor (1995) in an influential early work considers a tournament in which agents

decide whether to conduct (costly) research and obtain an innovation of value drawn from a known

distribution at each of T time periods after which an award is given out to the agent with the highest

draw. Taylor (1995) finds that a policy of free and open entry may give rise to low levels of effort

at equilibrium and thus restricting participation by imposing an entry fee may be optimal for the

sponsor. Relatedly, Moldovanu and Sela (2001) consider the case when the agents’ cost of effort is

their private information and show that when the cost is linear or concave in effort, allocating the

entire prize sum to the winner is optimal whereas when it is convex several prizes may be optimal.

Che and Gale (2003) find that for a set of procurement settings it is optimal to restrict the number

of competitors to two and, in the case that the two competitors are asymmetric, handicap the most

efficient one. Moldovanu and Sela (2006) explore the performance of contest architectures that may

involve splitting the participants among several sub-contests whose winners compete against each

other. Siegel (2009) provides a general framework to study such static all-pay contests that allows

for several features such as different production technologies and attitudes toward risk. Terwiesch

and Xu (2008), Ales et al. (2016a), and Ales et al. (2016b) explore static contests in which there is un-

certainty regarding the value of an agent’s contribution and explore the effect of the award structure

and the number of competitors on the contest’s performance. Finally, Boudreau et al. (2011) and

Boudreau et al. (2015) examine related questions empirically using data from software contests.

Unlike the papers mentioned above, a central feature in our model is the fact that there is uncer-

tainty with respect to the attainability of the end goal. In addition, agents dynamically adjust their

effort provision levels over time responding to the information they receive regarding the status of

the competition and the state of the world, i.e., whether the contest can be completed. Early papers

that consider the dynamics of costly effort provision in the presence of uncertainty are Choi (1991)

and Malueg and Tsutsui (1997). These papers study R&D races and assume that firms can observe

each other’s experimentation outcomes, thus abstracting away from using information about rela-

tive progress as an incentive mechanism.4 In addition, the “award”, which in this case is the value

of the innovation in question, is fixed. In contrast, in our setting each agent’s progress, i.e., the out-

comes of her experimentation process, is her private information and a third party, the designer,

4We remark that there is a conflation of the terms “contest” and “race” in our work. The two agents compete with one
another in an innovation race towards a pre-determined end goal whose feasibility is ex-ante unknown. We mostly use
the term contest throughout the paper to be in line with the literature, e.g., Halac et al. (2016).
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determines the contest’s award structure and information disclosure policy.

There is also a stream of papers (Bolton and Harris (1999), Keller et al. (2005), Keller and Rady

(2010), Bonatti and Horner (2011), and Klein and Rady (2011)) that study the dynamics of experi-

mentation within a team of agents that work towards completing a project. Strategic interactions are

driven by the fact that experimentation outcomes are observable and information is a public good

and the focus is on how the agents’ incentives to free-ride affect the level of aggregate experimen-

tation. Bimpikis and Drakopoulos (2016) also consider experimentation incentives within a team

and show that having agents work independently and then combine their efforts increases aggre-

gate welfare. Although our model builds on the exponential bandits framework that was introduced

in Keller et al. (2005), the setup and focus are considerably different than the strategic experimenta-

tion literature. In particular, agents compete with one another for a set of awards that are set ex-ante

by the designer. Furthermore, we allow for imperfect monitoring of the agents’ progress (experi-

mentation outcomes). This, along with the fact that agents dynamically learn about the attainability

of the end goal and the status of competition, significantly complicate the analysis as not only do

agents form beliefs about whether they can complete the contest but also about their progress rela-

tive to their competitors. The latter is not an issue in the strategic experimentation literature since

experimentation outcomes are typically assumed to be perfectly observable.

Our paper is also related to the literature on dynamic competition. For example, Harris and

Vickers (1987) show that in a one-dimensional model of a race between two competitors, the leader

provides more effort than the follower and her effort increases as the gap between the competitors

decreases. On the other hand, Hörner (2004) shows that firms invest most in effort provision when

they are far ahead in an effort to secure a durable leadership or when they are lagging sufficiently

behind to prevent their rival to outstrip them. Furthermore, Moscarini and Smith (2007) consider

a two-player dynamic contest with perfect monitoring where the focus is on the design of a scoring

function in which the leader is appropriately “taxed” whereas the laggard is “subsidized”.5. Unlike

these papers we allow the contest designer to choose what information and when to disclose it, thus

putting more emphasis on how the designer can incentivize agents to take a certain set of actions by

controlling the information they have access to.

Another paper related to our work is that of Lang et al. (2014) who study a two-player continuous

time contest in which there is no uncertainty about the underlying environment but agents exert

costly effort to complete as many milestones as they can before a predetermined deadline. They

characterize equilibrium behavior and, because of the lack of uncertainty and dynamic learning,

they are able to establish a close relation with the outcomes of (static) all-pay auctions thus linking

their framework with prior work on static contests (e.g., Siegel (2009)).

Finally, the contemporaneous work of Halac et al. (2016) studies contests that end after the oc-

currence of a single breakthrough. They do not incorporate the possibility of partial progress and
5Relatedly, Seel and Wasser (2014) consider the design of an optimal “head start” that is given to a player whereas Seel

(2014) analyzes all-pay auctions where one agent is uncertain about the size of her competitor’s head start (Siegel (2009)
refers to an agent’s effort as her score and allows for head starts in his quite general framework for all-pay auctions)
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therefore they abstract away from the fact that agents may learn from the progress of others, i.e.,

the encouragement effect is absent in their model. Our framework shares some features with theirs,

particularly the uncertainty regarding the attainability of the end goal, but our main focus is on ex-

ploring the interplay between the contest’s award structure and the information disclosure policy

that it implies in relation to the encouragement and competition effects. This only becomes rele-

vant in the presence of partial progress towards the end goal and discounting, which are two features

that are unique to our model and that we believe capture realistic aspects of contests. As Halac et al.

(2016) consider a contest with no intermediate milestones and assume that the designer and partic-

ipants do not discount future outcomes, the time it takes to complete the contest is immaterial for

their analysis. In addition, incorporating intermediate milestones enables us to study information

disclosure policies that involve a (stochastic) delay between (partial) progress and the designer’s an-

nouncements. On the other hand, they consider multiple competitors and allow for strategies in

which the designer broadcasts a message at time t only if at least k competitors have completed the

project by that time. We focus on two competitors and as a result do not allow for such strategies.

2 Model

Our benchmark model is an innovation contest with two sequential stages, A and B, and two com-

petitors, 1 and 2.6 Innovation happens if an agent successfully completes Stage A and then Stage

B. Stage A is associated with a binary state θA that describes whether that stage can be completed

(θA = 1) or not (θA = 0). If θA = 0, then Stage A is not feasible (and, consequently, innovation is not

possible). If θA = 1, then the breakthrough to complete StageA is feasible and has an arrival rate that

is described by a Poisson process with parameter λ. Similarly, the arrival rate of the breakthrough to

complete StageB is equal to µ (throughout the paper we assume that StageB is feasible if StageA is

feasible, i.e., θA = 1).7 We assume that agents have a common prior on θA and we denote that prior

by pA = P(θA = 1).

Stage A

Rate λ when θA=1

Stage B

Rate µ

Figure 1: An innovation contest with two stages, A and B.

Agents choose their effort levels continuously over time. Agent i ∈ {1, 2} chooses effort xi,t ∈
[0, 1] at time t and incurs an instantaneous cost of effort equal to cxi,t for a constant c > 0. An agent

in Stage A who puts effort xt at time t obtains a breakthrough, i.e., completes Stage A, with instan-

taneous probability θAλxt. We assume that an agent’s effort provision level is not observable by her

6Section 6 discusses how our insights apply to multi-stage tournaments and a setting with multiple competitors.
7It is possible that agents have different skills and therefore different progress rates. This introduces a new set of ques-

tions especially when the agents’ skills are their private information. We further discuss this point in Section 6.
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competitor or by the designer. Agent i is endowed with an information set — described later in this

section — that summarizes her information about the contest at time t. Moreover, we assume that

although an agent’s effort level is her private information, progress, i.e., completing Stages A or B,

is observable by the agent and the designer (but not the agent’s competitor). We relax this assump-

tion towards the end of Section 4 and discuss how the designer may incentivize agents to share their

progress. Finally, progress can be verifiably communicated by the designer to the agents, i.e., we

abstract away from “cheap-talk” communication between the designer and the two competitors.

The designer determines and commits to the contest’s award structure and information disclo-

sure policy. In particular,RA andRB denote the awards for completing StagesA andB of the contest

respectively. Throughout the paper, we assume that the designer announces the completion of Stage

B as soon as it happens and gives out awardRB to the agent that completes it. Thus, agents have no

incentive to continue exerting effort after such an announcement and the game essentially ends.

Our main focus is on studying how different disclosure policies for the agents’ partial progress,

i.e., completing StageA, may impact their effort provision and consequently the designer’s expected

payoff. Specifically, we consider a class of policies that — conditional on an agent completing Stage

A by time t — specify the rate φt at which the designer publicly announces partial progress in time

interval [t, t+ dt). In other words, the designer’s rate of information disclosure at time t is a function

of the history up to time t, i.e., whether any of the agents has already completed Stage A:

φt : {IA1,t, IA2,t} → [0,∞),

where IAi,t ∈ {0, 1} denotes whether agent i has completed Stage A by time t. We emphasize that the

designer’s announcements are public, i.e., we abstract away from asymmetric information disclo-

sure policies that may feature different messages being communicated to the two agents.

Our analysis proceeds by first considering the full and no information disclosure benchmarks in

Section 3 (corresponding to φt = ∞ if IAi,t = 1 for some i and φt = 0, respectively), whereas Section

4 explores designs in which progress is disclosed with some delay. Finally, in terms of the award RA,

we assume that it is given out to the agent that first completes Stage A or split equally between the

two competitors if they both complete the stage before the designer discloses any information about

their respective progress.

Payoffs are discounted at a common rate r for both the designer and the agents. Throughout

the paper we assume that the expected budget allocated to the contests’ award(s) is kept fixed and

we compare different information disclosure policies in terms of the payoff they generate for the

designer (thus, focusing our analysis on information disclosure).8

On the other hand, an agent’s strategy is a mapping from her information set at time t to an

8To optimize over the designer’s net payoff, i.e., the utility from obtaining the innovation minus the budget allocated to
the award structure, one could use our analysis (that provides a characterization of how to optimally use a fixed budget for
awards) and then optimize over the size of the budget. As it turns out, when the value of obtaining the innovation is suffi-
ciently high for the designer, our findings illustrate that the optimal design takes qualitatively the same form irrespective
of the exact size of the budget.
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effort provision level xi,t ∈ [0, 1].9 Agent i’s information set at t includes the calendar time, the

contest’s award structure and information disclosure policy, the agent’s effort levels up to time t,

i.e., {xi,τ}0≤τ<t, whether the agent has already completed Stage A, i.e., IAi,t, and, last, whether the

designer has announced that she or her competitor have already completed Stage A.

Finally, agents hold a set of beliefs {pi,t, qi,t} that evolve over time, where pi,t denotes agent i’s

belief about the feasibility of Stage A and qi,t denotes her belief about whether her competitor has

already completed Stage A conditional on the stage being feasible, e.g., qi,t = 1 implies that at time

t, agent i believes with certainty that her competitor is in Stage B. Note that the agents’ beliefs co-

evolve through their interaction with the designer’s information disclosure policy, since the only way

to obtain information about a competitor’s progress is through the designer’s announcements.

3 Real-time Leaderboard and Grand Prize

We begin our exposition by considering two intuitive contest designs. The first, which we call real-

time leaderboard, features full information disclosure from the designer, i.e., the agents’ progress is

publicly disclosed on an online leaderboard by the designer as soon as it happens.10 The second,

which we call (single) grand prize, is such that the designer only discloses the completion of the

entire contest, i.e., StageB, and thus an agent determines her effort provision levels over time solely

based on observing the outcomes of her own experimentation as well as the beliefs she forms about

her competitor’s effort levels and progress.

To allow for tractable analysis, we assume that conditional on the innovation being feasible, Stage

B takes more time to complete in expectation than Stage A (a number of our results are actually

stated for the limit µ → 0). This assumption together with the assumption that pA < 1 provide a

good approximation of the dynamics at the early stages of a contest, when there is both a significant

amount of uncertainty as well as plenty of time before a competitor reaches the end goal.

Given that the designer discloses the completion of StageB as soon as it happens in both designs,

the information disclosure policy centers around partial progress, i.e., the completion of StageA. Be-

low, we describe the agents’ belief update process under the two extremes of information disclosure

corresponding to the real-time leaderboard and grand prize designs.

- Full disclosure: If agents can observe each others’ outcomes, then the law of motion of agent

i’s posterior belief pFi,t in the absence of any progress is given by (superscript F refers to full

disclosure):

ṗFi,t = −pFi,t(1− pFi,t)(xi,t + x−i,t)λdt, (1)

9Section 4 discusses the case when an agent’s progress is privately observed. For that we expand an agent’s strategy
space to include her decision of whether to reveal her progress to the designer.

10Recall that for much of the paper we assume that the designer observes the agents’ experimentation outcomes. When
the latter are the agents’ private information, the designer would have to incentivize agents to post their progress to the
online leaderboard. We discuss how intermediate awards can be designed to ensure that agents disclose their progress as
soon as it happens towards the end of Section 4.
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Figure 2: Posterior belief over time in the absence of progress (here λ = 3 and µ = 1).

where xi,t denotes the effort provision level by agent i at time t and x−i,t denotes the effort level

that agent i believes her competitor is exerting at time t.

- No information disclosure: In the absence of partial progress (and assuming that her competi-

tor has not claimed the final award), the law of motion of agent i’s belief at t is given by:

ṗNi,t = −pNi,t(1− pNi,t)(λxi,t + µqNi,t)dt, (2)

where qNi,t denotes the belief agent i assigns to the event that her competitor has already com-

pleted Stage A conditional on the stage being feasible (superscript N refers to no disclosure).

Note that the law of motion for qNi,t takes the following form:

q̇Ni,t = (1− qNi,t)
(
λx−i,t − qNi,tµ

)
,

where as above x−i,t denotes the effort level that agent i believes her competitor is exerting at

time t in the absence of progress.

Intuitively, full information disclosure allows for the fast dissemination of the good news of an

agent’s progress (completion of StageA), since it resolves the uncertainty about the feasibility of the

end goal and therefore instantly affects the competitors’ future effort provision. On the flip side,

absence of progress makes agents pessimistic at a faster rate than when information is not public.

Indeed, by comparing Expressions (1) and (2) and examining Figure 2, one can easily deduce that

agents’ beliefs move downward faster under full disclosure. This comparison clearly highlights one

of the designer’s main tradeoffs: on the one hand, sharing progress between competitors allows

for timely dissemination of good news and induces agents to exert effort. On the other hand, the

absence of partial progress early in the process can make agents pessimistic about the feasibility of

the underlying project and adversely affect their effort provision.
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Real-Time Leaderboard The first contest design we study involves full information disclosure, i.e.,

the designer continuously discloses information about the agents’ progress. In addition, the awards

for completing Stages A and B are given out to the agent that completes them first.

Consider the subgame that results when one of the agents, the leader, completes Stage A. The

leader’s optimal effort provision takes a very simple form for t ≥ τA, where τA is the random time at

which Stage A was completed. In particular, if we index the leader by i, we have

x∗i,t =


1 if RB ≥ c

µ

0 otherwise
, for t ≥ τA.

Thus, the designer should set RB to be at least as high as c/µ in order to ensure that the contest

is going to be completed (recall that Stage B can be completed with probability one, so as soon as

an agent breaks through to that stage, she will continue putting effort until the contest is complete

assuming that the value of the award is high enough to cover her cost of effort). Similarly, the laggard

continues putting effort in the contest if her expected payoff is higher than the instantaneous cost

of effort, i.e., x∗j,t = 1 for τA ≤ t ≤ τB if

λ
µRB − c
2µ+ r

≥ c⇒ RB ≥
c

µ

(
1 +

2µ+ r

λ

)
,

where j is the index of the laggard and τB is the time at which Stage B gets completed (and the

contest ends).11 In other words, upon completion of StageA, both the leader and the laggard remain

in the contest and put full effort until one of them completes Stage B if the final award RB is at least

RB ≥ Rmin
B ≡ c

µ

(
1 +

2µ+ r

λ

)
. (3)

If, on the other hand, cµ ≤ RB < Rmin
B , the laggard drops out of the contest while the leader continues

putting full effort until the end. We let Π(k, `, RB) denote the expected payoff of agent i when she is

in Stage k, her competitor is in Stage `, and the final award is equal toRB . Then, it is straightforward

to obtain the following:12

Π(A,B,RB) =


λ

λ+µ+r
µ

2µ+rRB −
λ+2µ+r

(λ+µ+r)(2µ+r)c if RB ≥ Rmin
B

0 otherwise
(4)

Π(B,A,RB) =


(

λ
λ+µ+r

µ
2µ+r + µ

λ+µ+r

)
RB − λ+2µ+r

(λ+µ+r)(2µ+r)c if RB ≥ Rmin
B

µRB−c
µ+r otherwise

(5)

11We note that µRB−c
2µ+r

is equal to the expected payoff for each agent when both agents are in Stage B (refer to the
Preliminaries in the Appendix for more details).

12Choi (1991) provides similar expressions for the expected payoffs of the leader and the laggard in a model where
experimentation outcomes are publicly observable, effort levels are binary, quitting the race is irreversible, and the value
of winning an innovation race is fixed ex-ante.
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Furthermore, given that the designer would only have the incentive to organize the contest if her

ex-ante expected payoff was positive, Assumption 1 below states that the utility she obtains from the

innovation is sufficiently high, i.e., higher than the size of award Rmin
B .13

Assumption 1. The utility the designer obtains from the innovation is strictly higher than Rmin
B .

Following the discussion above, agent i’s optimization problem can be written as follows:

max
{xi,τ}τ≥0

∫ ∞
0

[
xi,τ (pFi,τλ(RA + Π(B,A,RB))− c) + xj,τp

F
i,τλΠ(A,B,RB)

]
e−

∫ τ
0 (pFi,sλ(x1,s+x2,s)+r)dsdτ,

where the first term between the brackets, i.e., xi,τ (pFi,τλ(RA + Π(B,A,RB)) − c)dτ , is equal to the

agent’s (expected) instantaneous payoff from exerting effort xi,τ at time τ . On the other hand, the

second term captures the agent’s expected payoff if her competitor completes Stage A at time τ

(which occurs with probability xj,τpFi,τλdτ ).

We are interested in characterizing the unique symmetric equilibrium in Markovian strategies in

this setting. Proposition 1 below states that agents follow a cutoff experimentation policy in Stage A

and the aggregate amount of experimentation increases with the size of the intermediate award. The

proposition considers awards for completing Stage B that can take one of two values, i.e., RB = c/µ

or RB = Rmin
B , since it is straightforward to establish that given a fixed budget it is optimal for the

designer to consider only these two values and allocate her remaining budget to RA (for a formal

argument refer to Lemma 1 in the Appendix).

Proposition 1. Consider a contest design in which progress is publicly observable and the awards for

completing StagesA andB are equal toRA andRB respectively. Then, there exists a unique symmetric

equilibrium in which agents experiment as follows:

(i) Agents follow a cutoff experimentation policy in StageA, i.e., in the absence of progress they quit

the contest at time tF given below

x∗i,t =


1 for t ≤ tF ≡ 1

2λ ln
(

1−pF
pF
· pA

1−pA

)
0 otherwise

.

The cutoff belief pF is given as follows

pF =



c

λ
(
RA + µRB−c

µ+r

) if RB =
c

µ

c

λ
(
RA +

(
λ

λ+µ+r
µ

2µ+r + µ
λ+µ+r

)
RB − 2µ+λ+r

(λ+µ+r)(2µ+r)c
) if RB = Rmin

B

. (6)

(ii) If Stage A has been completed, experimentation continues as follows

13As becomes evident in the next section, this assumption is necessary for exploring designs that feature delayed dis-
closure of information.
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(a) If RB = Rmin
B : Both agents experiment with rate one until the end of the contest.

(b) If c/µ ≤ RB < Rmin
B : The laggard drops out of the contest whereas the leader experiments

with rate one until the end.

Before concluding the discussion on full information disclosure, note that Proposition 1 clearly il-

lustrates the tradeoff the designer faces when she decides how to split her budget between awards

RA andRB . In particular, settingRB equal toRmin
B provides an incentive for the laggard to stay active

in the contest until it is over. In constrast, setting RB equal to c/µ implies that the leader is the only

agent that puts effort in Stage B (the laggard quits the contest) and thus it may take longer to reach

the end goal. On the other hand, a higher fraction of the designer’s budget is allocated to RA when

RB = c/µ as opposed to when RB = Rmin
B . As the cutoff belief pF is decreasing in RA, this implies

that the aggregate amount of experimentation in StageA— and thus the probability that the contest

is going to be completed eventually — is maximized by setting RB = c/µ.14 Thus, when setting the

sizes of the two awards the designer trades off a higher probability of obtaining the innovation (by

setting RB = c/µ) with getting it sooner (by setting RB = Rmin
B ).

Grand Prize At the other extreme of information disclosure, we have contests that feature a single

final award R for completing the entire contest, i.e., Stage B, and no information disclosure in the

interim. Agent i’s optimization problem can be then expressed as follows:

max
{xi,τ}

∫ ∞
0

xi,τ
(
λpNi,τ

(
qNi,τΠ(B,B,R) + (1− qNi,τ )Vi,τ (B,A)

)
− c
)
e−

∫ τ
s=0[pNi,s(q

N
i,sµ+λxi,s)+r]dsdτ,

where Vi,τ (B,A) denotes the continuation value for agent iwhen she has completed StageAwhereas

her competitor has not. Agent i cannot observe agent j’s progress (as long as agent j has not com-

pleted Stage B). Therefore, she forms beliefs about whether her competitor has completed Stage A.

Specifically, qNi,τ denotes agent i’s belief that her competitor has advanced to Stage B by time τ .

As we show in Proposition 2, equilibrium behavior takes the form of a cutoff experimentation

policy as in the case of full information disclosure. However, in this case the time threshold tN after

which an agent stops experimenting in the absence of partial progress depends on her own effort

provision as well as her belief about her competitor’s progress over time. Like before, as soon as the

agent completes Stage A then it is optimal for her to put effort until the contest is over. The proof of

the proposition is omitted since it is using similar arguments as those in the proof of Proposition 7

(for more details refer to the proof of Proposition 7).

Proposition 2. Consider a contest design with a single final award in which no information about

partial progress is ever disclosed. Then, there exists a unique symmetric equilibrium in which agents

experiment as follows:

14Lemma 2 formally establishes that setting RB = c/µ leads to more aggregate experimentation in Stage A than setting
RB = Rmin

B
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(i) Agents follow a cutoff experimentation policy in Stage A, i.e.,

x∗i,t =


1 for t ≤ tN

0 otherwise
,

where the cutoff time tN is given as the unique solution to the following equation

pNi,tN

(
qNi,tN

µR− c
2µ+ r

+ (1− qNi,tN )
µR− c
µ+ r

)
=
c

λ
.

Here, the posterior beliefs pNi,t and qNi,t are given by the following expressions:

pNi,t =
pAe

−λt
(
λe−µt−µe−λt

λ−µ

)
pAe−λt

(
λe−µt−µe−λt

λ−µ

)
+ (1− pA)

and qNi,t =
λe−µt − λe−λt

λe−µt − µe−λt
.

(ii) If an agent completes Stage A, then she experiments with rate one until the end of the contest.

The juxtaposition of Propositions 1 and 2 illustrates the main tradeoff that the designer faces.

In particular, equilibrium experimentation takes the form of a cutoff policy under both full and no

information disclosure with different time cutoffs tF and tN respectively. As we establish below,

assuming that both designs consume the same budget in expectation and RB = Rmin
B in the real-

time leaderboard design (so that conditional on an agent completing Stage A, both agents compete

until Stage B is complete), tN > tF , i.e., the probability that Stage B is going to be completed (and

thus the designer will obtain the innovation) is higher when no information about partial progress

is ever disclosed and the entire budget is allocated to a single final award for completing the project.

On the other hand though, there is a positive probability that in the case when information about

partial progress is not disclosed, one of the agents drops out even though the other has completed

Stage A. The latter case never occurs under full information disclosure (when RB = Rmin
B ). Thus,

conditional on one agent completing Stage A, the contest is completed earlier in expectation when

experimentation outcomes are publicly observable.

Proposition 3. Consider a design that features full information disclosure with RB = RminB and a

design that features no information disclosure and has a single final award. Assume that the two

designs consume the same budget in expectation. Then, the probability that an agent will complete

the entire contest, i.e., Stage B, is higher for the design that features no information disclosure. On

the other hand, conditional on the contest being completed, it takes less time to reach the innovation

under full information disclosure.

We plot the ratio of expected payoffs for the designer under the two designs as a function of the

discount rate in Figure 3. When the agents and the designer are sufficiently patient, i.e., the discount

rate takes small values, disclosing no information about partial progress outperforms a design where

progress is publicly observable.
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(b) λ = 10µ

Figure 3: The ratio of the designer’s payoffs for the designs that induce full information disclosure
and no information disclosure respectively as a function of the discount rate for λ = 2, µ = 0.04
and λ = 2, µ = 0.02 (the prior belief and the budget allocated to awards are pA = 0.2 and B = 5
respectively).

This tradeoff motivates the search for alternative information disclosure policies that combine

the benefits of these two extremes. In the next section, we establish that appropriately timing the de-

signer’s announcements about the status of competition between the agents leads to strictly better

outcomes for the designer.

4 Delaying the Disclosure of Information

We have established that full disclosure allows for the fast dissemination of good news, but may also

adversely affect effort provision as agents become pessimistic about the feasibility of Stage A in the

absence of partial progress. The fact that “no news is bad news” motivates exploring alternative de-

signs that may feature silent periods — time intervals in which the designer does not disclose any

information regarding the competitors’ progress (obviously, a special case is the design that features

no information disclosure). In particular, we consider designs parameterized by T , RA, and RB in

which the designer’s information disclosure policy takes the following form: if any of the agents

completes Stage B, then the designer discloses this information and the contest is over. For partial

progress, the designer follows a policy that features a silent period: she does not disclose any infor-

mation until time T . At T she discloses any partial progress that has occurred before then. Finally,

after T she discloses any progress as it happens. In other words,

φt =


0 if t < T

∞ if t ≥ T and IAi,t = 1 for some i
.

On the other hand, the contest’s award scheme is such that RB is given out to the first agent that

completes Stage B whereas RA is awarded only if Stage A has been completed by time T . If both

agents complete it before T , then they both get RA/2 (at the time they complete the stage).15

15As a side remark, Equation (7) below clarifies why it is optimal for the designer to split the intermediate award RA
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Note that the silent period design described above combines elements from both designs we

studied in the previous section. In particular, before time T no information is disclosed and thus

agents become pessimistic at a relatively slow rate in the absence of any partial progress. On the

other hand, partial progress is disclosed at time T and thus it is still likely that both agents will con-

tinue competing until the contest is complete. Interestingly, as we establish below, when T is chosen

appropriately, a design with a silent period of length T outperforms both the real-time leaderboard

and the grand prize designs. For the remainder of this section, we assume thatRB = Rmin
B which en-

sures that the laggard finds it optimal to compete with the leader until the contest is complete. Apart

from simplifying the analysis, this is in line with our focus on the early stages of a contest when there

is significant uncertainty and plenty of time until the contest is over.

As a first step in our analysis of silent period designs, we establish that agents follow a cutoff

experimentation policy when information about partial progress is disclosed after an appropriately

chosen time tS .

Proposition 4. Consider a design with awards RA and RB = Rmin
B that has a silent period of length

tS such that:

pSi,tS

(
qSi,tS

(
RA/2 + Π(B,B,Rmin

B )
)

+ (1− qSi,tS )
(
RA + Π(B,A,Rmin

B )
))

=
c

λ
, (7)

where the posterior beliefs are such that

pSi,t =
pAe

−λt
(
λe−µt−µe−λt

λ−µ

)
pAe−λt

(
λe−µt−µe−λt

λ−µ

)
+ (1− pA)

and qSi,t =
λe−µt − λe−λt

λe−µt − µe−λt
.

Then, there exists a unique symmetric equilibrium in which agents set their effort levels to one until

time tS and quit if the designer does not disclose any partial progress. Otherwise, i.e., if the designer

discloses that Stage A has been completed, both agents compete until Stage B is complete.

Proposition 4 allows us to compare silent period designs with full and no information disclosure.

First, Proposition 5 states that having a silent period always leads to a higher expected payoff for the

designer than full information disclosure.

Proposition 5. Consider a design that features a silent period of length T = tS defined as in Expression

(7). Then, this design outperforms one that features full information disclosure when the budgets

allocated to awards for the two designs are equal in expectation and RB = Rmin
B for both.

The main difference between the two designs is the rate at which beliefs drift downward in the

absence of progress: under full information disclosure, agents become pessimistic at a faster rate

to the two agents if both complete Stage A before time T (as opposed to giving out a higher fraction of the award to the
agent that completed the stage first). As times goes by, the probability that a given agent will be the first to complete Stage
A conditional on both completing it decreases and thus splitting RA in half guarantees that agents maximize their effort
provision.
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Figure 4: The ratio of payoffs for the designer corresponding to the designs that feature a silent pe-
riod and a single final award (no information disclosure) or a real-time leaderboard (full information
disclosure) respectively as a function of µ. Here, λ = 2 and r = 1 (the prior belief and the budget
allocated to awards are pA = 0.2 and B = 5 respectively).

as they can observe the experimentation outcomes of their competitors. The proof of Proposition

5 relies on this observation and establishes that when the budget allocated to awards in the two

designs is kept fixed agents stop experimenting earlier under full information disclosure than in a

design with a silent period of length tS .

Furthermore, as we show below, the latter design also outperforms no information disclosure

(assuming that Stage B takes relatively longer to complete than Stage A conditional on the innova-

tion being feasible). Note that comparing the two designs is not straightforward as they have differ-

ent award structures: in the case of a single grand prize, the designer’s budget is allocated entirely to

the award for completing the contest. On the other hand, silent period designs involve intermediate

awards that may be split between the two competitors. As Proposition 6 states, when µ→ 0, having

a silent period of length tS and offering an intermediate award to the agent(s) that complete StageA

by tS yields a higher expected payoff for the designer.

Proposition 6. Assume µ → 0 and consider a design that features a silent period of length T = tS

defined as in Expression (7) and awards RA and RB = Rmin
B . Then, there exists pA such that for

pA < pA the silent period design outperforms a design with a single grand prize when the budget

allocated to awards is the same in expectation for the two designs.

The main benefit of a silent period design compared to no information disclosure is that the

probability of both agents competing until the end of the contest is higher. In addition, this benefit

is more pronounced when StageA is a relatively short part of the contest. Figure 4 llustrates that the

silent period design dominates full and no information disclosure for a wide range of values for µ.
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Probabilistic Delay in Announcing Progress So far, we have established that disclosing no infor-

mation about the status of competition until some pre-determined time leads to a higher expected

payoff for the designer than both full and no information disclosure. Next, we generalize this finding

by showing that the silent period design we discussed above outperforms any design in which infor-

mation about partial progress is disclosed at some (constant) rate φ (as opposed to being disclosed

at a pre-determined time).

In particular, we consider a design that features the following information disclosure policy:

φt =


0 if IA1,t = IA2,t = 0

φ otherwise
.

In other words, conditional on at least one agent having completed Stage A by time t, the designer

announces that partial progress has been made with probability φdt in time interval [t, t + dt). In

addition, the design also features an intermediate award RA for the agent(s) that complete Stage A

as well as an award RB given out to the first agent that completes Stage B. We assume that award

RA is given out to the first agent that completes Stage A unless both complete it before the designer

discloses any information in which case they split it equally. As before, we first establish that when

information is disclosed at rate φ, agents follow a cutoff experimentation policy.

Proposition 7. Consider a design with awards RA and RB = Rmin
B in which the designer discloses

partial progress at rate φ. Then, there exists a unique symmetric equilibrium such that agents put full

effort until time tφ given by:

pφtφ

(
qφtφ

(
RA/2 + Π(B,B,Rmin

B )
)

+ (1− qφtφ)
(
RA +

µRmin
B + φΠ(B,A,Rmin

B )− c
µ+ φ+ r

))
=
c

λ
, (8)

where

pφi,t =
pAe

−λt
(
λe−(µ+φ)t−(φ+µ)e−λt

λ−µ−φ

)
pAe−λt

(
λe−(µ+φ)t−(φ+µ)e−λt

λ−µ−φ

)
+ (1− pA)

and qφi,t =
λe−(µ+φ)t − λe−λt

λe−(µ+φ)t − (µ+ φ)e−λt
.

In the absence of partial progress, an agent sets her effort level to zero after tφ until the designer

discloses that Stage A has been completed.

Comparing expressions (7) and (8) illustrates the difference of having the designer disclose in-

formation about partial progress at a pre-determined time tS as opposed to doing so at a rate φ. In

the former case, at any time t < tS and in the absence of any information about partial progress,

agents are relatively more optimistic about the feasibility of Stage A than in the latter case (as when

the designer discloses progress at rate φ no news is still relatively bad news). On the other hand, in

the former case, given that they have no information about their competitors, the probability they

assign to the event that their competitor has already completed Stage A and thus they would have

to share award RA in the case of breaking through, is higher. As we establish in Proposition 8 below,

17



the first effect dominates the second and the designer finds it optimal to disclose information about

partial progress at a pre-determined (deterministic) time as opposed to making announcements at

stochastic times.

Proposition 8. Assume that µ → 0 and consider a design with awards RA and RB = Rmin
B that has

a silent period of length tS as given in Expression (7). Then, the design with silent period of length tS
leads to a higher expected payoff for the designer than a design at which information about partial

progress is disclosed at rate φ > 0 with awards R′A and RB = Rmin
B such that the budget allocated to

awards is the same in expectation for the two designs.

Incentivizing Agents to Disclose their Progress So far we have assumed that agents’ progress is

observable to the designer. But in many practical settings it may only be the agents’ private in-

formation and the designer would have to incentivize them to disclose it. Expression (7) suggests

that, when agents’ progress is only privately observable, the design with a silent period of length tS
remains incentive compatible if the intermediate award given out for disclosing such information

is high enough. In particular, note that the relevant incentive constraint is given by the following

expression:16

qS
(
RA/2 + Π(B,B,Rmin

B )
)

+ (1− qS)
(
RA + Π(B,A,Rmin

B )
)

≥ qSΠ(B,B,Rmin
B ) + (1− qS)

µRmin
B − c
µ+ r

)
, (9)

where

qS =
λe−µtS − λe−λtS
λe−µtS − µe−λtS

,

denotes the probability an agent assigns to the event that her competitor has completed Stage A by

time tS . The right hand side of inequality (9) describes an agent’s expected payoff assuming that she

completes StageA at time tS and decides not to report her progress to the designer. In that case, the

agent does not claim award RA but in the case that her competitor has not already completed Stage

A she can continue in the contest with no competition. Inequality (9) implies that if RA satisfies the

inequality below reporting her progress is always optimal for an agent

RA ≥

(
1− qS/2

1− qS/2

)(
µRmin

B − c
µ+ r

−Π(B,A,Rmin
B )

)
. (10)

Belief qS is increasing in RA and, in turn, the first term on the right hand side of the inequality is

decreasing in RA. Thus, there exists RA such that the design described in Proposition 4 with RA ≥
RA remains incentive compatible even when agents’ progress is their private information (note that

an upper bound for RA is obtained by setting qS = 0, i.e., RA <

(
µRmin

B −c
µ+r − Π(B,A,Rmin

B )

)
. Thus,

16It is straighforward to see that when the size of the intermediate award is fixed over time the binding incentive con-
straint is the one that corresponds to time tS , i.e., ifRA is such that the agent finds it optimal to disclose her progress at tS
if she completes StageA at tS , then she would find it optimal to disclose her progress as soon as it happens for any t ≤ tS .
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assuming that the budget allocated to awards is large enough, setting the contest’s intermediate

awardRA to a value higher thanRA guarantees that agents disclose their progress to the designer as

soon as it happens.

We conclude the section by noting that the silent period design we describe here resembles the

structure of many real-world tournaments. As an example, apart from the final grand prize, partici-

pants in the Netflix prize competed for intermediate awards that were given out at pre-determined

times. In particular, Netflix was offering an annual progress prize to the team that showed the most

improvement during the year, as long as this improvement was above a given threshold. This mir-

rors the design with a silent period: the designer gives out an intermediate award to the agent(s)

that has completed Stage A, i.e., has progressed above a threshold, by some pre-determined time.

Interestingly, the Netflix design allowed participants to disclose their progress as it happened in a

publicly observable real-time leaderboard. However, since the awards were given out once a year,

i.e., at pre-determined times, most of the teams posted their progress in the proximity of the dead-

line, effectively implementing a silent period until the intermediate award was given out.17

5 When Competition is Dominant

Sections 3 and 4 consider contest design in the presence of uncertainty regarding the end goal. In

this section, we discuss a complementary case when, given enough time and effort, innovation oc-

curs with probability one (pA = pB = 1). We also assume that StageB is shorter (in expectation) than

StageA (µ > λ). These two assumptions can be thought of as providing an approximation of the dy-

namics towards the end of the contest when uncertainty has been largely resolved and competition

between the agents intensifies.

Since innovation is certain, the interest of the contest designer is in achieving it as quickly as

possible. Having both agents actively participating in the contest, i.e., exerting effort towards its

completion, naturally expedites innovation compared to the case when only one of them remains

active in the race, and thus the focus of the designer is on providing the right informational incen-

tives for agents to continue experimenting and not drop out of the contest. These incentives may

involve signaling to the agents that, relative to the competition, they are not lagging behind.

In particular, assume that the designer’s budget and consequently the award structure is such

that if an agent observes her competitor completing StageA she has no incentive to continue putting

effort in the contest (this is the most interesting case when pA = pB = 1). Then, unlike the case we

study in Sections 3 and 4, no progress by her competitor is actually good news for an agent. This fact

leads to a different tradeoff for the designer: her objective is to delay announcing progress by either

17Although it is hard to know exactly how much information regarding their progress teams were holding back be-
fore the deadline for each progress prize, much of the online discussions allow us to infer that teams were very
strategic regarding to what information to post to the leaderboard and when. See for example the discussion in
http://www.decompilinglife.com/post/5758898924/the-netflix-prize-competition.
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of the agents as long as she can to maximize the probability that both of them complete Stage A

(and thus compete until the end). Agents, on the other hand, form beliefs about the progress of their

competitors and, in the absence of any announcement from the designer, become more pessimistic

of their prospects of winning as they find it more likely that they are lagging behind.

For the remainder of the section, we assume that the designer’s budget is entirely allocated to a

single award given out to the first agent that completes the entire contest and focus on the impact

of different disclosure policies on the agents’ incentives for effort provision. As before, we first com-

pare effort provision under full and no information disclosure about the agents’ partial progress.

When agents can perfectly observe each other’s progress, they compete in Stage A by exerting full

effort until one of them advances to Stage B at which point the laggard finds it optimal to quit. On

the other hand, in the absence of any announcements about partial progress, an agent’s belief that

her competitor is already in Stage B (which would imply that she should quit) increases. As a re-

sponse, agents drop their effort levels to strike a balance between quitting the competition early and

persisting in an attempt to win, without losing too much if it turns out they were lagging behind.

Although the agents’ incentives for effort provision and the designer’s tradeoff are quite different

than in the case we covered in Sections 3 and 4, it turns out that a design that features silent periods

again outperforms both full and no information disclosure (under some assumptions on the budget

the designer allocates to awards). Instead of stating the results formally, we provide some intuition of

why this is the case by describing how equilibrium behavior evolves over time depending on whether

agents observe their competitors’ progress.

In particular, under full information disclosure, agents race towards completing Stage A by ex-

erting full effort. Upon the stage’s completion, the leader continues towards completing Stage B

whereas the laggard finds it optimal to quit. On the other hand, when agents cannot observe their

competitors’ partial progress, they form beliefs about whether they have already completed Stage

A. As before, if we let q1,t denote the probability that agent 1 assigns at time t to the event that her

competitor is in Stage B, then we have

q̇1,t = (1− q1,t)(x2,tλ− q1,tµ).

Here, x2,t is the amount of effort that agent 1 believes agent 2 would allocate if she is still in Stage A

(she would allocate effort equal to one if she is in Stage B). Interestingly, there exists a symmetric

equilibrium in Markovian strategies that takes a simple form: in the absence of progress, agents put

full effort up to some time tN , after which they drop their effort level to qtNµ/λ, where qtN denotes

an agent’s belief that her competitor has completed Stage A by time tN . In other words, neither of

the agents quits, but instead they continue exerting effort until one of them completes the entire

contest (albeit with rate lower than one after time tN ).

Finally, as we mention above, a design that features silent periods leads to a higher expected

payoff for the designer than both full and no information disclosure. In particular, consider the

designer announcing the status of competition every tS time periods for some tS . As in the case

20



when there is no disclosure, agents form beliefs regarding the likelihood that their competitors have

already advanced to Stage B before the designer’s announcement. Beliefs are reset at time tS if no

progress is announced and the game essentially restarts. The probability that both agents progress

to StageB is positive (unlike the case when progress is publicly observable) and if the silent period is

sufficiently short, effort levels are higher than in the case of no information disclosure (since beliefs

are reset every t). These two observations for the design with silent periods, i.e., the probability that

agents will compete until the end of the contest is positive and beliefs are reset after each of the

designer’s announcements, imply that it outperforms both full and no information disclosure.

As a final comment on the case when there is no uncertainty regarding the feasibility of the

contest, note that the proposed design could be implemented in a straightforward way even when

agents’ progress is only privately observed. In particular, agents have the incentive to disclose their

(partial) progress to the designer as soon as they complete a stage since such information would

induce their competitors to quit the contest. Thus, unlike Sections 3 and 4 implementing the design

does not require an intermediate award of a sufficiently high value to incentivize agents to disclose

their progress.

6 Concluding Remarks

This paper studies the role of information in innovation contests and how it is inextricably linked

to the encouragement and competition effects present in this setting. In particular, we examine

the role of intermediate awards as information revelation devices that can be used to improve the

performance of contests both in terms of the probability of reaching the end goal as well as the time

it takes to complete the project. Interestingly, the role of an intermediate award depends on which of

the two effects dominates: for the competition effect, an intermediate award that is not handed out

is good news for the agents and increases their willingness to put in effort, since they believe they

are still in the running to win the contest. When the encouragement effect dominates, an award that

is handed out makes agents more optimistic about the feasibility of the project and hence provides

an incentive for them to continue experimenting. This implies that the designer has to trade-off a

higher level of aggregate experimentation in the early stages of the contest with a larger number of

participants in later stages (and hence, faster completion of the contest) when determining the sizes

of the awards.

We use a two-stage contest to provide a reasonable approximation of the dynamics in multi-

stage contests. Naturally, the more progress being made, the less uncertain agents are about the

feasibility of the end goal. Thus, at a high level a multi-stage contest can be thought of as having two

distinct phases. First, during the early stages, uncertainty regarding the attainability of the end goal

is the main driving force behind the competitors’ actions. Competition is of secondary importance

as there is still plenty of time for the laggards to catch up. We capture this situation as a two-stage

contest in which the feasibility of the discovery required to complete the first stage is uncertain, i.e.,
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pA < 1. On the other hand, the second stage – which models the remainder of the contest – takes on

average a much longer time to complete, i.e., the arrival rate associated with stage B is much lower

than that of stage A.

As the contest draws to an end, the dynamics become quite different. Agents are more optimistic

about the feasibility of the end goal, but the chances for the laggards to catch up with the leader are

slimmer. Thus, the agents’ behavior is mainly prescribed by the competition effect. We capture this

scenario by examining two successive stages that feature little or no uncertainty.

We show that a design that features silent periods — time intervals in which there is no informa-

tion disclosure about the status of competition — as well as appropriately sized and timed interme-

diate awards for partial progress outperforms both the design when information about progress is

not shared among competitors (implemented as a single grand prize for reaching the end goal) and

the design that has a real-time leaderboard and gives out awards for partial progress as it happens

(and thus agents are certain about the status of competition at all times). Silent periods have been

been implemented explicitly and implicitly as parts of real-world innovation contests. For exam-

ple, although the Netflix Prize had an online real-time leaderboard most of the activity was recorded

close to the deadline of the annual progress prizes (the intermediate awards for partial progress),

effectively imposing a silent period between two consecutive such deadlines. Matlab programming

contests organized by Mathworks explicitly feature a silent period early on in the contest, the so-

called “Darkness Segment”, after which participants are allowed to share their progress with their

competitors (in what are known as the “Twilight” and “Daylight” segments of the contest).

The modeling framework in the paper can be used as a foundation for subsequent work that in-

vestigates the role of information disclosure policies as well as award structures in dynamic compe-

tition settings. More generally, our work is applicable to settings that involve mechanisms by which

a designer or a social planner selectively provides feedback to the agents involved. Finally, although

we believe our setting captures the most important features of a dynamic contest, it has a number of

limitations. Exploring optimal dynamic policies in the presence of both learning and competition is

quite challenging, and to the best of our knowledge this is among very few recent papers that incor-

porate both of these features. Below we provide a list of potentially interesting directions for future

research along with our thoughts on how they might affect the results in this paper.

Uncertainty in Both Stages The first part of the paper considers the early stages of an innovation

contest. For the sake of tractability, we assume that StageB can be completed conditional on StageA

being completed, so that there is uncertainty only about the feasibility of StageA. Our analysis indi-

cates that there is a trade-off between more experimentation in StageA (and thus higher probability

of having at least one agent move to Stage B) and the time it takes to complete the contest. Even in

the absence of discounting, a similar trade-off exists if there is uncertainty regarding the feasibility of

both stages in the contest. The designer may find it optimal to incentivize agents to remain active in

the contest even after a competitor completes Stage A in order to increase the aggregate amount of
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experimentation in the second Stage, and thus we expect that our main qualitative insights regard-

ing the optimality of designs that feature silent periods will continue to hold. The analysis becomes

quite challenging however, with the main difficulty being that in addition to the agents’ beliefs about

the feasibility of StageA and the status of competition, the agents also have to form beliefs about the

feasibility of Stage B, which in turn depend not only on whether a competitor has completed Stage

A but also on when exactly this happened.

Skill Heterogeneity We assume that agents are symmetric with respect to their skills as captured

by rates λ and µ. An interesting direction for future research would be to relax this assumption and

instead consider a setting in which agents are privately informed about their skills. In that case,

giving out an intermediate award introduces an additional trade-off. The completion or not of Stage

A by a competitor provides a signal regarding her skills and may thus further affect effort provision.

The choice of the timing and size of awards becomes even more involved as the designer has to take

this additional signal into account.

Contests with Many Stages A typical contest may involve several milestones. As we have already

argued, our analysis aims to capture the dynamics near the beginning and towards the end of the

contest, where the encouragement and the competition effects respectively dominate. A contest

consisting of a large number of stages may involve multiple intermediate awards. We conjecture

that the interval between two consecutive awards increases at the beginning of the contest, thus

reflecting the fact that as competitors progress uncertainty regarding the feasibility of the end goal

is gradually resolved and the need for encouragement decreases. The situation is different after

enough time goes by and the competition effect becomes dominant, with agents becoming pes-

simistic regarding their progress relative to their competitors. Because of this, the interval between

consecutive announcements by the designer, i.e., intermediate awards, decreases. At any given stage

one of the two effects will be dominant and so our analysis would still apply. However, figuring out

the optimal timing of giving out the intermediate awards can be quite challenging for the reasons

we outline when discussing about incorporating uncertainty in both stages of the contest.

Multiple Competitors Our analysis focuses on the case when there are only two competitors. This

is adequate for the purpose of bringing out the subtle role of the designer’s information disclosure

policy and the contest’s award structure. Many of our structural results hold true for the case when

there are N competitors. However, allowing for multiple competitors introduces additional degrees

of freedom for the designer and thus deriving expressions for the optimal award structure and for the

timing of the intermediate award becomes challenging. For example, the designer can incentivize

any number of agents to compete in Stage B by changing the size of the final award or may find it

optimal to disclose information only if more than a given number of agents complete Stage A.
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Appendix: Proofs

Preliminaries

Throughout the appendix we use Π(k, `, RB) to denote the expected payoff that agent i obtains when

she is in Stage k, her competitor is in Stage `, and the final award is RB . We have:

• The expected payoff for an agent when both have completed Stage A (but not B) is given by

Π(B,B,RB) =


µRB−c
2µ+r if RB ≥ c

µ

0 otherwise
. (11)

• The expected payoff for agent i when she is in Stage A and j is in Stage B is given by

Π(A,B,RB) =


λΠ(B,B,RB)−c

λ+µ+r if RB ≥ RBmin

0 otherwise
. (12)

• The expected payoff for agent i when she is in Stage B and j is in Stage A is given by

Π(B,A,RB) =


λΠ(B,B,RB)−c

λ+µ+r + µRB
λ+µ+r if RB ≥ RBmin

µRB−c
µ+r if c

µ ≤ RB < Rmin
B

. (13)

Notation In the proofs that follow we use repeatedly expressions for an agent’s beliefs that StageA

is feasible and that her competitor has already completed Stage A denoted p and q respectively. The

superscripts in the beliefs refer to the respective contest designs. In particular, we have the following:

• Real-time leaderboard: Along the equilibrium path agents have a common belief about the

feasibility of Stage A which in the absence of progress can be expressed as:

pFi,t =
pAe

−
∫ t
τ=0 λ(x1,τ+x2,τ )dτ

pAe
−

∫ t
τ=0 λ(x1,τ+x2,τ )dτ + (1− pA)

.

Here, superscript F refers to full information disclosure.

• Grand prize: Assuming that both agents experiment with rate one up to time t, agent i’s belief

about the feasibility of Stage A can be expressed as:

pNi,t =
pAe

−λt
(
λe−µt−µe−λt

λ−µ

)
pAe−λt

(
λe−µt−µe−λt

λ−µ

)
+ (1− pA)

.

Here, superscriptN refers to no information disclosure. Also, when agents cannot directly ob-

serve their competitor’s progress, they form beliefs about whether they have already completed

Stage A. For the grand prize design we have:

qNi,t =
λe−µt − λe−λt

λe−µt − µe−λt
.
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• Silent periods: The expressions for beliefs pSi,t and qSi,t before the time at which the designer

makes her first announcement about the status of competition take the same form as those for

the grand prize design (superscript S refers to silent period).

• Announcing progress at rate φ: Assuming that both agents experiment with rate one up to time

t, agent i’s belief about the feasibility of Stage A can be expressed as:

pφi,t =
pAe

−λt
(
λe−(µ+φ)t−(φ+µ)e−λt

λ−µ−φ

)
pAe−λt

(
λe−(µ+φ)t−(φ+µ)e−λt

λ−µ−φ

)
+ (1− pA)

.

Here, superscript φ refers to rate at which the designer discloses partial progress. Also, agent

i’s belief about whether her competitor has already completed Stage A is equal to:

qφi,t =
λe−(µ+φ)t − λe−λt

λe−(µ+φ)t − (µ+ φ)e−λt
.

Proof of Proposition 1

Assume that agent 2 is using effort provision strategy {x2,t}t≥0. We establish that the best response

for agent 1 takes the form of a cutoff, i.e., set her effort level to one up to some time and then quit

the contest if neither of the agents complete Stage A. Consider agent 1’s optimization problem:

max
{x1,t}t≥0

∫ ∞
0

[
x1,t(p

F
1,tλ(RA + Π(B,A,RB))− c) + x2,tp

F
i,tλΠ(A,B,RB)

]
e−

∫ t
0 (pF1,τλ(x1,τ+x2,τ )+r)dτdt,

where the term e−
∫ t
τ=0 p

F
1,τλ(x1,τ+x2,τ )dτ is equal to the probability that neither of the agents has com-

pleted Stage A by time t.

Given that the final award for completing the contest is such that RB ≤ Rmin
B = c

µ

(
1 + 2µ+r

λ

)
, it

is straightforward to see that Π(A,B,Rmin
B ) = 0, i.e., the continuation value of agent 1 if she is the

laggard in the contest is equal to zero. Thus, we can rewrite the agent’s optimization problem as

max
{x1,t}t≥0

∫ ∞
0

[
x1,t(p

F
1,tλ(RA + Π(B,A,RB))− c)

]
e−

∫ t
0 (pF1,τλ(x1,τ+x2,τ )+r)dτdt. (14)

The coefficient of x1,t in the expression above is decreasing over time since in the absence of

progress pF1,t is non-increasing in t. This implies that agent 1’s best response to any strategy from

agent 2 is to set her effort level to one up to some time and then quit the contest in the absence of

progress.

Finally, to complete the claim we show that putting effort up to time tF , where tF is given as in

the statement of the proposition, constitutes a symmetric equilibrium. To see this assume that agent

2 puts full effort up to time tF . Then according to the first part of the proof the best response strategy

for agent 1 takes the form of a time cutoff. Optimization problem (14) implies that the time at which

agent 1 stops putting effort satisfies:

λpF1,t

(
RA + Π(B,A,RB)

)
= c,
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which together with Expression (13) for Π(B,A,RB) completes the proof.

To conclude the discussion on full information disclosure, we state and prove Lemma 1 below

that establishes the optimality of setting award RB to c/µ or Rmin
B .

Lemma 1. Consider a contest design in which progress is publicly observable and the designer’s ex-

pected budget for awards RA and RB is fixed and sufficiently high. Then, it is optimal for the designer

to set RB = c/µ or RB = Rmin
B .

Proof. Assume for the sake of contradiction that the designer’s expected utility under full informa-

tion disclosure is higher for some R′B > Rmin
B than when RB = Rmin

B . In particular, assume that∫ ∞
t=0

e−rte−λ
∫ t
τ=0(x∗1,τ+x∗2,τ )dτ (x∗1,t + x∗2,t)

[
λ

λ+ µ+ r

2µ

2µ+ r
+

µ

λ+ µ+ r

]
dt

>

∫ tF

t=0
e−(r+2λ)t2λ

[
λ

λ+ µ+ r

2µ

2µ+ r
+

µ

λ+ µ+ r

]
dt, (15)

where {x∗1,t}, {x∗2,t}denote the equilibrium effort levels of agents 1 and 2 respectively whenRB = R′B .

Next, we compare the (expected) budget allocated to awards for the two designs described above.

Note that for the design for which RB = R′B we have:∫ ∞
t=0

e−rte−λ
∫ t
τ=0(x∗1,τ+x∗2,τ )dτλ(x∗1,t + x∗2,t)

(
R′A +

[
λ

λ+ µ+ r

2µ

2µ+ r
+

µ

λ+ µ+ r

]
R′B

)
dt, (16)

whereas for the design for which RB = Rmin
B we have∫ tF

t=0
e−(r+2λ)t2λ

(
RA +

[
λ

λ+ µ+ r

2µ

2µ+ r
+

µ

λ+ µ+ r

]
Rmin
B

)
dt. (17)

Expressions (15), (16), and (17) along with the fact that the budget allocated to awards is the same in

the two designs (i.e., Expressions (16) and (17) are equal) imply that

RA +

[
λ

λ+ µ+ r

2µ

2µ+ r
+

µ

λ+ µ+ r

]
Rmin
B > R′A +

[
λ

λ+ µ+ r

2µ

2µ+ r
+

µ

λ+ µ+ r

]
R′B. (18)

The proof of the claim follows from showing that inequality (18) implies that the belief at which

agents stop experimenting when RB = Rmin
B is lower than the one that they stop experimenting

when RB = R′B , i.e., agents experiment more when RB = Rmin
B . In particular, agents stop experi-

menting when their expected instantenous payoff is equal to c which, in turn, implies that the cor-

responding cutoff beliefs at which agents stop experimenting are such that:

p′

(
R′A +

(
λ

λ+ µ+ r

µ

2µ+ r
+

µ

λ+ µ+ r

)
R′B −

2µ+ λ+ r

(λ+ µ+ r)(2µ+ r)
c

)
= c, and (19)

p

(
RA +

(
λ

λ+ µ+ r

µ

2µ+ r
+

µ

λ+ µ+ r

)
RB −

2µ+ λ+ r

(λ+ µ+ r)(2µ+ r)
c

)
= c. (20)
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From Equations (19) and (20) we obtain that p < p′ if

R′A +

[
λ

λ+ µ+ r

µ

2µ+ r
+

µ

λ+ µ+ r

]
R′B < RA +

[
λ

λ+ µ+ r

µ

2µ+ r
+

µ

λ+ µ+ r

]
Rmin
B . (21)

Inequality (21) follows from (18) and the fact that R′B > Rmin
B which leads to a contradiction. Using

similar arguments we can also show that the designer’s expected utility is the same for any c/µ ≤
RB < Rmin

B .

Lemma 2. Consider a contest design in which progress is publicly observable and the designer’s ex-

pected budget for awards RA and RB is fixed and sufficiently high. Then, setting RB = c/µ leads to

more aggregate experimentation in Stage A than setting RB = Rmin
B .

Proof. Consider the following two contest designs in both of which progress is publicly observable:

the first features awards for completing Stages A and B that are equal to some RA and RB = c/µ

respectively. The second is such that the corresponding awards areR′A andRB = Rmin
B . Furthermore,

let tF and t′F denote the times at which agents stop putting effort in the absence of progress under

the two designs. For the sake of contradiction, assume that agents exert more aggregate effort in

stageA under the design with final awardRmin
B , i.e., t′F > tF and, in turn, the corresponding stopping

beliefs are such that p′F < pF . Recall that according to Expression (6), we have:

p′F

(
R′A + Π(B,A,Rmin

B )
)

=
c

λ
and

pF

(
RA +

µRB − c
µ+ r

)
=
c

λ
.

(22)

The equalities above imply that:

R′A +
µRmin

B

λ+ µ+ r
> RA. (23)

Since both designs have to use the same budget in expectation, we have:∫ tF

t=0
e−(2λ+r)t2λ

(
RA +

µ

µ+ r

c

µ

)
dt =

∫ t′F

t=0
e−(2λ+r)t2λ

(
R′A +

( µ

λ+ µ+ r
+

λ

λ+ µ+ r

2µ

2µ+ r

)
Rmin
B

)
dt.

(24)

According to our assumption that t′F > tF we obtain thatRA+ µ
µ+r

c
µ > R′A+

(
µ

λ+µ+r+ λ
λ+µ+r

2µ
2µ+r

)
Rmin
B .

Substituting the expression for Rmin
B yields

RA > R′A +
µRmin

B

λ+ µ+ r
+
( λ

λ+ µ+ r

2µ

2µ+ r

2µ+ λ+ r

λ
− µ

µ+ r

) c
µ
,

which contradicts inequality (23).

Proof of Proposition 3

First, it is straightforward to see that conditional on the contest being completed under both full

and no information disclosure, the time it would take to reach the end goal is shorter in expectation
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under full disclosure. This is a direct consequence of the fact that the real-time leaderboard design

incentivizes both agents to compete by putting full effort until one completes the entire contest

(when RB = Rmin
B ). This is not necessarily the case in the grand prize design since even conditional

on completing the contest there is positive probability that the laggard quits.

In what follows we establish the first claim, i.e., tN > tF . To this end, note that Proposition 2

states that in the design with a single grand prize of size R and no information disclosure about

partial progress, agents put effort with rate one up to time tN such that

λpNtN

(
qNtNΠ(B,B,R) + (1− qNtN )

µR− c
µ+ r

)
= c. (25)

The proof consists of two steps. In the first step, we consider the full information disclosure de-

sign that uses final award Rmin
B and consumes the same budget in expectation as the no disclosure

design. If agents quit earlier than tN in the full disclosure design, then the statement of the proposi-

tion follows. Otherwise, we assume by way of contradiction that tF ≥ tN and find an upper bound

on the value of the intermediate award RA. In the second step, we show that

λpFtN

(
RA + Π(B,A,Rmin

B )
)
< c, (26)

which contradicts our assumption that under full information disclosure with final awardRmin
B agents

put full effort up to time tF .

Step 1 Let BN and BF denote the total budgets allocated to awards in the designs that feature no

and full information disclosure respectively. In particular, note that the budget allocated to final

award R in the design with no information disclosure is equal to the following in expectation:

E[BN ] =

∫ tN

t=0
e−(2λ+r)t2λ

(∫ tN−t

τ=0
e−(µ+λ+r)τ

(
µR+ λ

2µ

2µ+ r
R

)
dτ + e−(µ+λ+r)(tN−t) µ

µ+ r
R

)
dt

=
2λµR

(µ+ r)(λ+ µ+ r)(2µ+ r)

((
1− e−(2λ+r)tN

)(µ+ r)(2λ+ 2µ+ r)

2λ+ r
− e−(2λ+r)tN

(
e(λ−µ)tN − 1

) λr

λ− µ

)
.

(27)

Next, we obtain an upper bound onRA by calculating the budget allocated to awardsRA, Rmin
B under

full disclosure when agents stop at tN .18 We have

E[BF ] ≥
∫ tN

t=0
e−(2λ+r)t2λ

(
RA +

(
λ

λ+ µ+ r

2µ

2µ+ r
+

µ

λ+ µ+ r

)
Rmin
B

)
dt

=
2λ

2λ+ r
(1− e−(2λ+r)tN )(RA +

(
λ

λ+ µ+ r

2µ

2µ+ r
+

µ

λ+ µ+ r

)
Rmin
B ).

(28)

Thus, since the two designs consume the same budget in expectation we obtain:

E[BN ] ≥ 2λ

2λ+ r
(1− e−(2λ+r)tN )(RA +

(
λ

λ+ µ+ r

2µ

2µ+ r
+

µ

λ+ µ+ r

)
Rmin
B ). (29)

18This gives an upper bound onRA under the assumption that tF ≥ tN – note that we impose that the budgets allocated
to awards are equal under full and no information disclosure.
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Finally, using Equation (27) yields the following upper bound on RA:

RA ≤
(2λ+ 2µ+ r)µR

(λ+ µ+ r)(2µ+ r)
− (2λ+ r)e−(2λ+r)

(1− e−(2λ+r)tN )

µR

(µ+ r)(λ+ µ+ r)(2µ+ r)

λr

λ− µ

(
e(λ−µ)tN − 1

)
−Rmin

B

(
λ

λ+ µ+ r

2µ

2µ+ r
+

µ

λ+ µ+ r

)
.

(30)

Step 2 In this step, we show that inequality (26) holds and thus conclude that tF < tN . Note that

by using Equation (25) we can replace the right hand side of inequality (26) with

λpNtN

(
qNtNΠ(B,B,R) + (1− qNtN )

µR− c
µ+ r

)
.

Our goal then is to show that

pFtN

(
RA + Π(B,A,Rmin

B )
)
< pNtN

(
qNtNΠ(B,B,R) + (1− qNtN )

µR− c
µ+ r

)
.

First, note that pFtN =
pNtN

(1−qNtN )

1−pNtN q
N
tN

. Thus, we can rewrite inequality (26) as

(1− qNtN )
(
RA + Π(B,A,Rmin

B )
)
< (1− pNtN q

N
tN )
(
qNtNΠ(B,B,R) + (1− qNtN )

µR− c
µ+ r

)
.

Using Equation (25) once again, we can further simplify the right hand side and rewrite the above

inequality as follows:

(1− qNtN )
(
RA + Π(B,A,Rmin

B )
)
<
(
qNtNΠ(B,B,R) + (1− qNtN )

µR− c
µ+ r

R
)
− qNtN

c

λ
.

Note that

−Rmin
B

(
λ

λ+ µ+ r

2µ

2µ+ r
+

µ

λ+ µ+ r

)
+ Π(B,A,Rmin

B ) = − λ

λ+ µ+ r

2µ

2µ+ r
Rmin
B ,

Also, recall that Π(B,B,R) = µR−c
2µ+r , and

qNtN =
λ(e−µtN − e−λtN )

λe−µtN − µe−λtN
and Rmin

B =
c

µ

(
1 +

2µ+ r

λ

)
.

Substituting the upper bound for RA from (30), using the expressions above, and some straightfor-

ward algebra yields

λµrR

(λ+ µ+ r)(2µ+ r)(µ+ r)

(
(λ+ µ+ r)(µ+ r)

r
+

(2λ+ r)e−(2λ+r)tN

(1− e−(2λ+r)tN )
− (λ− µ)

e−(λ−µ)tN

1− e−(λ−µ)tN

)
>

c(2µ+ λ+ r)

(2µ+ r)
− (λ− µ)

e−(λ−µ)tN

1− e−(λ−µ)tN

c(λr + r2 + 3rµ+ 2µ2)

(µ+ r)(λ+ µ+ r)(2µ+ r)
.

(31)

Next, we show that the term in the parenthesis in the left hand side is positive, i.e.,

(λ+ µ+ r)(µ+ r)

r
+

(2λ+ r)e−(2λ+r)tN

(1− e−(2λ+r)tN )
− (λ− µ)

e−(λ−µ)tN

1− e−(λ−µ)tN
> 0. (32)
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Ignoring term µ+r
r (since it is greater than one) and simplifying the above expression, we obtain

(2λ+ r)(1− e−(λ−µ)tN )− (λ− µ)(1− e−(2λ+r)tN )

(1− e−(2λ+r)tN )(1− e−(λ−µ)tN )
> 0.

The denominator is positive since we assume that λ > µ and thus it is enough to show that the

numerator is positive as well. The latter follows since for tN = 0 the numerator is equal to 0 and its

derivative with respect to tN is positive.

Finally, note that R ≥ Rmin
B and thus the left hand side of inequality (31) is minimized when

R = Rmin
B . Thus, the claim follows by establishing that (31) holds when we substitute Rmin

B for R.

Straightforward algebra yields this last step and concludes the proof.

Proof of Proposition 4

First, we show that an agent’s best response takes the form of a cutoff experimentation policy before

time tS . In particular, assume that agent 2 follows some strategy {x2,t}t≥0 in the absence of partial

progress. Then, agent 1’s optimization problem takes the following form:

max
{x1,t}t≥0

∫ tS

t=0
x1,t

(
λpS1,t

(
qS1,t(RA/2 + Π(B,B,Rmin

B )) + (1− qS1,t)V1,t(B,A)− c
)
e−

∫ t
τ=0 p

S
1,τ (qS1,τµ+λx1,τ )dτe−rtdt

+ e−
∫ tS
τ=0 p

S
1,τ (qS1,τµ+λx1,τ )dτ (1− pS1,tSq

S
1,tS )

∫ ∞
t=tS

x1,t(λp
S
1,tΠ(B,A,Rmin

B )− c)e−
∫ t
τ=tS

λpS1,τ (x1,τ+x2,τ )dt
e−rtdt,

(33)

where for any t ≤ tS , we have pS1,t = pN1,t and qS1,t = qN1,t, whereas for t > tS we have pS1,t = pF1,t.

First, note that the instantaneous payoff for agent 1 is decreasing in time before tS (first integral

in Expression (33)). Thus, it is optimal for agent 1 to employ a cutoff experimentation policy before

tS . As a result, for the remainder of the proof, we only focus on cutoff experimentation policies for

both agents 1 and 2. In other words, we assume that in the absence of any partial progress agent 2

sets her effort level to one up to some point T2 ≤ tS and then to zero until time tS , i.e., we let

x2,τ =


1 for τ ≤ T2

0 for T2 ≤ τ ≤ tS
x2,τ for τ > tS

.

To complete the proof, we show that agent 1’s best response to {x2,t}t≥0 described above involves

setting x1,t = 1 for t ≤ tS . Note that the instantaneous payoff for agent 1 inside each integral is

decreasing in time. Thus, establishing that agent 1’s instantaneous payoff just before tS is higher

than her instantaneous payoff after tS implies that if it is optimal to put any effort after tS (in the

absence of any announcement about partial progress), it is also optimal to put full effort up to tS .

Assume that agent 1 sets x1,τ = 1 for τ ≤ T1 ≤ tS . Then, her instantaneous payoff for putting effort

just before tS is given by:

λpS1,tS

(
qS1,tS (RA/2 + Π(B,B,Rmin

B )) + (1− qS1,tS )Π(B,A,Rmin
B )

)
− c, (34)
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with

pS1,tS =
e−λT1

(
λe−µtS
λ−µ + e−λT2

)
pA

1− pA + e−λT1
(
λe−µtS
λ−µ + e−λT2

)
pA

and qS1,tS =
λe−µtS (1− e−(λ−µ)T2)

λe−µtS (1− e−(λ−µ)T2) + (λ− µ)e−λT2
.

On the other hand, her instantaneous payoff for putting effort just after tS is given by:

(1− pS1,tSq
S
1,tS )(λp1,t+S

Π(B,A,Rmin
B )− c), (35)

where p1,t+S
= pAe

−λ(T1+T2)

1−pA+pAe
−λ(T1+T2)

where p1,t+S
denotes agent 1’s belief just after the designer switches

to full information disclosure at time tS . Moreover, note that Π(B,B,Rmin
B ) = c

λ and

(1− pS1,tSq
S
1,tS )p1,t+S

= pS1,tS (1− qS1,tS ).

Putting these together yields the desired result, i.e., that the instantaneous payoff for agent 1 is higher

before tS than after tS if the designer does not announce Stage A has been completed. Finally, note

that tS is chosen so that the instantaneous payoff for agent 1 is non-negative for t ≤ tS for any

T2 ≤ tS . Thus, agent 1’s best response to agent 2’s strategy is to put full effort up to time tS . The

claim follows by noting that if both agents put full effort up to tS their instantaneous payoff at tS is

exactly equal to zero. Thus, in the absence of any announcement by the designer they set their effort

levels to zero after tS .

Proof of Proposition 5

Consider a full information disclosure design and recall that tF denotes the time at which agents

stop putting effort in Stage A if none of them has completed it. Recall also that with intermediate

award RA and final award Rmin
B , tF is the solution of the following equation:

λpFtF
(
RA + Π(B,A,Rmin

B )
)

= c, (36)

where pFtF = pAe
−2λtF

pAe
−2λtF+(1−pA)

is the agents’ common posterior belief about the feasibility of Stage A

at time tF . The proof follows by showing that tS given by Expression (7) is such that tS > tF . This

directly implies that the designer’s expected payoff is higher for the silent period design than under

full information disclosure (since Proposition 4 implies that both agents will experiment with rate

one until tS). In particular, the claim follows by showing that

λpFtS
(
RA + Π(B,A,Rmin

B )
)
< λpStS

(
qStS
(
RA/2 + Π(B,B,Rmin

B )
)

+ (1− qStS )
(
RA + Π(B,A,Rmin

B )
))
.

First, recall that by definition tS satisfies:

λpStS
(
qStS
(
RA/2 + Π(B,B,Rmin

B )
)

+ (1− qStS )
(
RA + Π(B,A,Rmin

B )
))

= c.
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Also note that since λ(RA/2+Π(B,B,Rmin
B )) ≥ c, by substituting it in the right hand side of the above

equation, and rearranging terms we obtain the following inequality:

pStSq
S
tS (1− qStS )

1− pStSq
S
tS

(
RA + Π(B,A,Rmin

B )
)
< qStS

(
RA/2 + Π(B,B,Rmin

B )
)
. (37)

After some algebra we can rewrite inequality (37) as:

pStS (1− qStS )
(
RA + Π(B,A,Rmin

B )
)

1− pStSq
S
tS

< pStS
(
qStS
(
RA/2 + Π(B,B,Rmin

B )
)

+ (1− qStS )
(
RA + Π(B,A,Rmin

B )
))
.

(38)

Finally, noting that

pFtS =
pStS (1− qStS )

1− pStSq
S
tS

,

implies that inequality (38) can be rewritten as

λpFtS
(
RA + Π(B,A,Rmin

B )
)
< λpStS

(
qStS
(
RA/2 + Π(B,B,Rmin

B )
)

+ (1− qStS )
(
RA + Π(B,A,Rmin

B )
))
,

which completes the claim.

Proof of Proposition 6

First, we provide expressions for the expected payoffs for the designer in the two contest designs we

consider. Then, we establish that under the assumptions of the proposition the contest with a silent

period of length tS leads to a higher expected payoff for the designer than the contest that features

no information disclosure.

Consider a design that features a silent period of length tS given by Expression (7). Then, the

expected payoff for the designer is given by

US = U ·
∫ tS

0
2λe−(2λ+r)t

(
λ

λ+ µ+ r

2µ

2µ+ r
+

µ

λ+ µ+ r

)
dt

=
2λµ · U

(λ+ r + µ)(2µ+ r)

2λ+ 2µ+ r

2λ+ r

(
1− e−(2λ+r)tS

)
, (39)

where U denotes the instantaneous utility that the designer derives from obtaining the innovation.

Next, for the design with a single final award and no information disclosure we have

UN = U ·
∫ tN

t=0
e−(2λ+r)t2λ

(∫ tN−t

τ=0
e−(λ+µ+r)τ (λ

2µ

2µ+ r
+ µ)dτ + e−(λ+µ+r)(tN−t) µ

µ+ r

)
dt

=
2λµ · U

(µ+ r)(λ+ µ+ r)(2µ+ r)

((
1− e−(2λ+r)tN

)(µ+ r)(2λ+ 2µ+ r)

2λ+ r
− e−(2λ+r)tN

(
e(λ−µ)tN − 1

) λr

λ− µ

)
.

(40)
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Similarly, we obtain the following expressions for the (expected) budgets BS ,BN corresponding to

the two designs:

E[BS ] ≤
∫ tS

t=0
e−(2λ+r)t2λ

(
RA +

( µ

λ+ µ+ r
+

λ

λ+ µ+ r

2µ

2µ+ r

)
Rmin
B

)
dt

=
2λ
(

1− e−(2λ+r)tS
)

2λ+ r

(
RA +

( µ

λ+ µ+ r
+

λ

λ+ µ+ r

2µ

2µ+ r

)
Rmin
B

)
, (41)

where the inequality is due to the fact that the intermediate award may be split between the two

agents (when they both complete the stage before time tS). Also, by equation (27) we have:

E[BN ] =
2λµR

(µ+ r)(λ+ µ+ r)(2µ+ r)

((
1− e−(2λ+r)tN

)(µ+ r)(2λ+ 2µ+ r)

2λ+ r
− e−(2λ+r)tN

(
e(λ−µ)tN − 1

) λr

λ− µ

)
.

(42)

Expressions (39), (40), (41), and (42) along with the fact that E[BS ] = E[BN ] yield the following in-

equality for the ratio of the expected payoffs for the designer

US

UN
≥ (2λ+ 2µ+ r)µ

(λ+ µ+ r)(2µ+ r)

R

RA +
(

µ
λ+µ+r + λ

λ+µ+r
2µ

2µ+r

)
Rmin
B

. (43)

The rest of the proof establishes that the right hand size of (43) is strictly greater than one. In partic-

ular, we show that

R ≥ (λ+ µ+ r)(2µ+ r)

(2λ+ 2µ+ r)µ
RA +Rmin

B . (44)

To establish (44), we turn our attention to the cutoff times tS and tN . Note that if tS ≥ tN , the

claim follows directly as then trivially the expected payoff for the designer is higher in the silent

period design. So, we consider the case when tS < tN , and equivalently pStS > pNtN . Then, by the

characterization of the cutoff times we obtain:

qStS

(
RA
2

+
µRmin

B − c
2µ+ r

)
+ (1− qStS )

(
RA +

µRmin
B

λ+ µ+ r

)
< qNtN

µR− c
2µ+ r

+ (1− qNtN )
µR− c
µ+ r

.

Note that qStS < qNtN when tS < tN , thus, we can rewrite the inequality above as:

qStS

(
RA
2

+
µRmin

B − c
2µ+ r

)
+ (1− qStS )

(
RA +

µRmin
B

λ+ µ+ r

)
< qStS

µR− c
2µ+ r

+ (1− qStS )
µR− c
µ+ r

. (45)

The definition of Rmin
B implies that c

µ+r = λµ
(2µ+λ+r)(µ+r)R

min
B . Thus, we can cancel out and rearrange

the terms involving c and rewrite (45) as

qStS

(
RA
2

+
µRmin

B

2µ+ r

)
+ (1− qStS )

(
RA +

(
µ

λ+ µ+ r
+

λ

2µ+ λ+ r

µ

µ+ r

)
Rmin
B

)
< qStS

µR

2µ+ r
+ (1− qStS )

µR

µ+ r
<

µR

µ+ r
. (46)
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For the remainder of the proof, we assume that pA < pA where pA is such that

qStS <
λr

(2λ+ 2µ+ r)(µ+ r)
.

Note that both tS and qStS are decreasing in pA, thus such pA always exists. Inequality (46) along with

the upper bound on qStS yield

R >

(
1− λr

2(2λ+ 2µ+ r)(µ+ r)

)
µ+ r

µ
RA +

µ+ r

2µ+ r
Rmin
B . (47)

Inequality (47) implies that the ratio given in (43) is strictly greater than one when

RA >
2cµ(2λ+ 2µ+ r)(2µ+ λ+ r)

λ2r(2µ+ r)
. (48)

Finally, note that inequality (48) always holds when µ→ 0 as the right hand size also goes to zero at

the limit, which completes the proof of the claim.

Proof of Proposition 7

The proof relies on showing that the best response of agent 1 to any strategy {x2,t}t≥0 from agent 2

is a cutoff experimentation policy. To this end, consider agent 1’s optimization problem:

max
{x1,t}t≥0

∫ ∞
t=0

(
λx1,tp

φ
1,tV1,t(B) + pφ1,tq

φ
1,tφΠ(A,B,Rmin

B )− cx1,t

)
Ψte

−
∫ t
τ=0 p

φ
1,τλx1,τdτe−rtdt, (49)

where (with some abuse of notation) V1,t(B) denotes the continuation value of agent 1 at time t

when she has completed StageA and the designer has not disclosed any information about agent 2’s

progress. Also, we let Ψt denote the probability that the designer has not disclosed any information

about agent 2’s progress, i.e., Ψt is given by the following expression

Ψt = e−
∫ t
τ=0 p

φ
1,τ q

φ
1,τµdτe−

∫ t
τ=0 p

φ
1,τ q

φ
1,τφdτ . (50)

Finally, note that since Π(A,B,Rmin
B ) = 0 we can ignore the second term in the parenthesis and

rewrite the optimization problem (49) as follows:

max
{x1,t}t≥0

∫ ∞
t=0

x1,t

(
λpφ1,tV1,t(B)− c

)
Ψte

−
∫ t
τ=0 p

φ
1,τλx1,τdτe−rtdt. (51)

Next, we show that the coefficient of x1,t, i.e., expression
(
λpφ1,tV1,t(B)− c

)
Ψte

−
∫ t
τ=0 p

φ
1,τλx1,τdτe−rtdt,

is decreasing in t. This, in turn, implies that agent 1’s optimal strategy is to follow a cutoff experi-

mentation policy, i.e., put full effort up to some time and, in the absence of progress or positive news

from the designer, stop exerting effort altogether. Note that since e−
∫ t
τ=0 p

φ
1,τλx1,τdτe−rtdt is decreasing

in t, it is enough to show that (λpφ1,tV1,t(B)− c)Ψt is also decreasing in t. In addition, V1,t(B) is given

as follows:

V1,t(B) = qφ1,t

(
RA/2 + Π(B,B,Rmin

B )
)

+ (1− qφ1,t)V1,t(B,A), (52)
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where the first term is the continuation value for agent 1 conditional on agent 2 having already com-

pleted Stage B whereas the second term is the continuation value for agent 1 when agent 2 has

not completed Stage A up to t. For the rest of the analysis, it is helpful to further split V1,t(B,A)

into V RA
1,t (B,A) and V RB

1,t (B,A) that denote the expected payoff for agent 1 from awards RA and RB
respectively (note that agents split award RA if they both complete Stage A before the designer dis-

closes the progress). Thus, the claim follows if the derivative below is negative

d

dt

(
λpφ1,t

(
qφ1,t
(
RA/2 + Π(B,B,Rmin

B )
)

+ (1− qφ1,t)
(
V RA

1,t (B,A) + V RB
1,t (B,A)

))
− c
)

Ψt < 0. (53)

First, we obtain expressions for the following derivatives q̇φ1,t, ṗ
φ
1,t, Ψ̇t, V̇

RA
1,t (B,A), and V̇ RB

1,t (B,A). In

particular, we have

ṗφ1,t = −pφ1,t(1− p
φ
1,t)(q

φ
1,tφ+ qφ1,tµ+ λx1,t), and (54)

q̇φ1,t = (1− qφ1,t)
(
λx2,t − qφ1,tφ− q

φ
1,tµ
)
. (55)

Furthermore, from Expression (50) we obtain

Ψ̇t = −Ψtp
φ
1,tq

φ
1,t (µ+ φ) . (56)

Continuation values V RA
1,t (B,A) and V RB

1,t (B,A) are differentiable and their derivatives can be ob-

tained by noting that

V RA
1,t (B,A) =

(
µ+ λx2,t/2 + φ

)
RAdt+ (1− µdt− λx2,tdt− φdt)V RA

1,t+dt(B,A),

and

V RB
1,t (B,A) =

(
µRmin

B + λx2,tΠ(B,B,Rmin
B ) + φΠ(B,A,Rmin

B )− c
)
dt

+ (1− µdt− λx2,tdt− φdt− rdt)V RB
1,t+dt(B,A).

In particular, we have

V̇ RA
1,t (B,A) = (µ+ λx2,t + φ)V RA

1,t (B,A)− (µRA + λx2,tRA/2 + φRA), (57)

and

V̇ RB
1,t (B,A) = (µ+λx2,t+φ+ r)V RB

1,t (B,A)− (µRmin
B +λx2,tΠ(B,B,Rmin

B )+φΠ(B,A,Rmin
B )− c). (58)
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Using the expressions for q̇φ1,t, ṗ
φ
1,t, Ψ̇t, V̇

RA
1,t (B,A), and V̇ RB

1,t (B,A) from Equations (54)–(58) we can

write the derivative in Expression (53) as:

Ψt

(
λpφ1,t

(
(1− qφ1,t)

(
λx2,t − qφ1,tφ− q

φ
1,tµ
)(
RA/2 + Π(B,B,Rmin

B )− V RA
1,t (B,A)− V RB

1,t (B,A)
)

+ (1− qφ1,t)
(

(µ+ λx2,t + φ)V RA
1,t (B,A)− (µRA + λx2,tRA/2 + φRA)

+ (µ+ λx2,t + φ+ r)V RB
1,t (B,A)− (µRmin

B + λx2,tΠ(B,B,Rmin
B ) + φΠ(B,A,Rmin

B )− c)
))

(59)

− pφ1,t(1− p
φ
1,t)(q

φ
1,tφ+ qφ1,tµ+ λx1,t)λV1,t(B)

)

−Ψtp
φ
1,tq

φ
1,t(µ+ φ)

(
λpφ1,t

(
qφ1,t(RA/2 + Π(B,B,Rmin

B )) + (1− qφ1,t)(V
RA

1,t (B,A) + V RB
1,t (B,A))

)
− c
)
< 0.

We can further simplify Expression (59) by canceling out all terms involving x2,t. Also, since the

coefficient of x1,t is negative, it is sufficient to show the following inequality:

Ψt

(
λpφ1,t

(
(1− qφ1,t)q

φ
1,t(−φ− µ)

(
RA/2 + Π(B,B,Rmin

B )− V RA
1,t (B,A)− V RB

1,t (B,A)
)

+ (1− qφ1,t)
(

(µ+ φ)V RA
1,t (B,A)− (µRA + φRA)

+ (µ+ φ+ r)V RB
1,t (B,A)− (µRB + φΠ(B,A)− c)

))
− pφ1,t(1− p

φ
1,t)q

φ
1,t (µ+ φ)λV1,t(B)

)

−Ψtp
φ
1,tq

φ
1,t (µ+ φ)

(
λpφ1,t

(
qφ1,t(RA/2 + Π(B,B,Rmin

B )) + (1− qφ1,t)(V
RA

1,t (B,A) + V RB
1,t (B,A))

)
− c
)
< 0.

Next, replacing V1,t(B) using (52) and canceling out common terms yields

Ψt

(
λpφ1,t

(
(1− qφ1,t)(−q

φ
1,tφ− q

φ
1,tµ)(RA/2 + Π(B,B,Rmin

B )) + (1− qφ1,t)
(

(µ+ φ)V RA
1,t (B,A)− (µRA + φRA)

+ (µ+ φ+ r)V RB
1,t (B,A)− (µRmin

B + φΠ(B,A,Rmin
B )− c)

))
− λpφ1,tq

φ
1,t (µ+ φ)

(
qφ1,t(RA/2 + Π(B,B,Rmin

B ))
))

+ Ψtp
φ
1,tq

φ
1,t (µ+ φ) c < 0.

Finally, since the coefficients of V RA
1,t (B,A) and V RB

1,t (B,A) are positive, we replace them with their

respective upper bounds (obtained when agent 2 does not put effort towards completing Stage A

unless the designer announces that agent 1 has already completed it). In other words, we bound

V RA
1,t (B,A) and V RB

1,t (B,A) by

V RA
1,t (B,A) ≤ RA,

V RB
1,t (B,A) ≤

∫ ∞
τ=0

e−τ(φ+µ+r)
(
µRmin

B + φΠ(B,A,Rmin
B )− c

)
=

1

µ+ φ+ r

(
µRmin

B + φΠ(B,A,Rmin
B )− c

)
. (60)
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Substituting the upper bounds obtained in (60) and canceling out common terms we obtain:

Ψt

(
λpφ1,t

(
(− qφ1,tφ− q

φ
1,tµ)(Π(B,B,Rmin

B ) +RA/2)
))

+ Ψtp
φ
1,t(q

φ
1,tµ+ qφ1,tφ)c < 0,

and since Π(B,B,Rmin
B ) = c

λ (recall that Rmin
B = c/µ(1 + (2µ+ r)/λ))) we get:

−Ψt

(
pφ1,tq

φ
1,t(φ+ µ)

(
λ
( c
λ

+RA/2
)
− c
))

< 0, (61)

which holds and, thus, it completes the proof.

As a final remark, note that Proposition 2 follows from the same line of arguments when setting

φ = RA = 0 and allocating the entire budget to the award for completing Stage B.

Proof of Proposition 8

The proof consists of two steps. We first show that when the designer uses the same intermediate

award RA and final award Rmin
B in both information disclosure policies, then agents exert more cu-

mulative effort under the silent period design than under the φ-design, i.e., when partial progress is

disclosed at rate φ. In the second step, we show that the result from the first step still holds when the

two designs use the same budget.

Step 1 Recall that according to Proposition 7 when the designer discloses partial progress at rate φ

and the design has awards RA and Rmin
B , agents put full effort up to time tφ, which is defined by:

λpφtφ

(
qφtφ

(RA
2

+ Π(B,B,Rmin
B )

)
+ (1− qφtφ)

(
RA +

µRmin
B + φΠ(B,A,Rmin

B )− c
µ+ φ+ r

))
− c = 0. (62)

Next, consider a design featuring a silent period with length equal to tφ defined above. The remain-

der of the proof establishes that when µ→ 0 both agents exert full effort under this disclosure policy

at least up to time tφ, thus implying that the probability of completing the first stage (and the contest)

in that design is higher than that of the disclosure policy induced by rate φ. Furthermore, disclosing

information at time tφ ensures that the probability that both agents complete Stage A and compete

until the contest’s completion is higher than in the equilibrium induced in the φ-design.

Denote by pStφ and qStφ the beliefs that agents have about the feasibility of Stage A and about

whether the competitor is in Stage B, respectively, under the silent period design with length tφ.

Note that the claim follows if we have

λpStφ

(
qStφ

(RA
2

+ Π(B,B,Rmin
B )

)
+ (1− qStφ)

(
RA + Π(B,A,Rmin

B )
))
≥ c,

or equivalently by (62) if

pStφ

(
qStφ

(RA
2

+ Π(B,B,Rmin
B )

)
+ (1− qStφ)

(
RA + Π(B,A,Rmin

B )
))
≥

pφtφ

(
qφtφ

(RA
2

+ Π(B,B,Rmin
B )

)
+ (1− qφtφ)

(
RA +

µRmin
B + φΠ(B,A,Rmin

B )− c
µ+ φ+ r

))
. (63)
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Next, we multiply both sides of (63) by (1 − qStφ + pφtφ(qStφ − qφtφ))(1 − qφtφ) and use Equation (62) to

rewrite (63) as:

pStφ

(
1− qStφ + pφtφ(qStφ − q

φ
tφ

)

(1− qφtφ)pφtφ

)
(1− qφtφ)

(
qStφ

(RA
2

+ Π(B,B,Rmin
B )

)
+ (1− qStφ)

(
RA + Π(B,A,Rmin

B )
))
≥

(1− qStφ)

(
qφtφ

(RA
2

+ Π(B,B,Rmin
B )

)
+ (1− qφtφ)

(
RA +

µRmin
B + φΠ(B,A,Rmin

B )− c
µ+ φ+ r

))
+ (qStφ − q

φ
tφ

)c/λ.

(64)

Note that RB = Rmin
B implies that Π(B,B,Rmin

B ) = c/λ and thus we can replace the last term in

the right hand side of the inequality above by (qStφ − q
φ
tφ

)Π(B,B,Rmin
B ). Also, note that we have:

pφtφ(1− qφtφ)

1− qStφ − p
φ
tφ

(qφtφ − q
S
tφ

)
= pStφ . (65)

Finally, using Equation (65) we can rewrite (64) as:

(qStφ − q
φ
tφ

)
RA
2
− (1− qφtφ)(1− qStφ)

(
µRmin

B + φΠ(B,A,Rmin
B )− c

µ+ φ+ r

)
−Π(B,A,Rmin

B )

)
≥ 0. (66)

Note that the above inequality holds since when φ > 0 we always have qStφ > qφtφ and, in addition,

when µ→ 0 it holds that limµ→0

(
µRmin

B +φΠ(B,A,Rmin
B )−c

µ+φ+r −Π(B,A,Rmin
B )

)
= 0.

Step 2 In step 1 we established that if both information disclosure policies use the same interme-

diate and final awards then agents exert more effort under the design featuring a silent period of

appropriately determined length tS than in the φ-design. This step completes the proof by showing

that the same finding holds even when the two designs consume the same budget for their awards

in expectation.

To this end, assume that in the design with a silent period we reduce the intermediate award from

RA to R′A < RA, such that the two designs consume the same budget. Then, there are two cases to

consider. First, note that if agents stop exerting effort in the absence of any news under the φ-design

earlier than under the design with a silent period, i.e., if tφ < tS , the result follows directly. Thus, for

the remainder of the proof we show that the claim holds also when tφ ≥ tS . In that case, note that

since R′A < RA, the designer spends a higher fraction of her budget on intermediate awards under

the φ-design than under a silent period design. This holds since the expected budget allocated to

the intermediate award in the φ-design is lower bounded as follows:∫ tφ

t=0
e−(2λ+r)t2λ

(∫ tφ−t

τ=0
e−(λ+µ+φ+r)τ

(
(µ+ φ)erτRA + λ

(RA
2

+ erτ
RA
2

))
+ e−(λ+µ+φ+r)(tφ−t)er(tφ−t)RA

)
dt

≥
∫ tφ

t=0
e−(2λ+r)t2λ

(∫ tφ−t

τ=0
e−(λ+µ+r)τ

(
µerτRA + λ

(RA
2

+ erτ
RA
2

))
+ e−(λ+r)(tφ−t)er(tφ−t)RA

)
dt

≥
∫ tS

t=0
e−(2λ+r)t2λ

(∫ tS−t

τ=0
e−(λ+µ+r)τ

(
µerτR′A + λ

(R′A
2

+ erτ
R′A
2

))
+ e−(λ+r)(tS−t)er(tS−t)R′A

)
dt,
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where the first inequality holds, since for a fixed stopping time tφ, the expression is decreasing in φ

(and, thus, it is minimized for φ = 0). The second inequality holds since we consider the case that

tφ ≥ tS and also RA > R′A.

Finally, note that the last expression is equal to the budget allocated to the intermediate award

for the silent period design in expectation. Thus, in order to have both designs use the same budget

in expectation, it must be the case that the designer allocates a higher fraction of her budget to the

final award Rmin
B in the silent period design. In turn, this implies that the designer’s utility from

obtaining the innovation is also higher under the silent period design since the latter is discounted

at the same rate as the final award Rmin
B .
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