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Abstract

The single-item stochastic inventory control problem is to find an inventory replenishment policy in the
presence of independent discrete stochastic demands under periodic review and finite time horizon. In
this paper, we prove that this problem is intractable and for any ε > 0, we design an algorithm with
running time polynomial in the size of the problem input and in 1/ε, that finds a policy whose value is
within a factor (1 + ε) of the value of an optimal policy. In addition, we formally prove that finding an
optimal policy is intractable.

1 Introduction

The standard single-item stochastic inventory control problem is to find replenishment quantities in each
time period that minimize the expected procurement and holding/backlogging cost. We assume dynamic
time replenishment over a finite number of time periods. We assume also that the holding cost, which
includes a potential penalty for backlogging, is convex. In addition, the procurement cost is convex and
nondecreasing. In the case of linear procurement costs, it is well known that the base stock policy is optimal,
see e.g., [SCB05, Zip00]. This policy assumes a time-dependent number called the base-stock level, and
the policy places an order that brings the inventory level up to the base-stock level. If the inventory level
is above the base-stock level, then no order is placed. While this theory shows the existence of base-stock
levels, it does not provide an efficient way to compute these levels.

In the linear procurement cost case, the computation of the optimal base-stock levels is a nontrivial
task. It is for this reason that we resort to approximation algorithms. Our main result is a fully polyno-
mial time approximation scheme (FPTAS) for the aforementioned stochastic inventory control problem. A
minimization problem has an FPTAS if for every ε > 0 and for every instance I we have

A(I) ≤ (1 + ε)opt(I), (1)

where opt(I) is the optimal value and A(I) is the value returned by the approximation algorithm A. The
running time of algorithm A must be polynomial in 1/ε and the size of the problem input.

We assume that the demands are discrete, independent random variables, but not necessarily identically
distributed. We also assume that the distributions are known in advance and there is zero lead time.
Although the policy structure in the general convex nondecreasing procurement cost case is not known, our
FPTAS works also in this case.

The standard dynamic programming approach gives a pseudo-polynomial algorithm. This algorithm is
linear with respect to the maximum demand value, which is exponential in the input size. This dynamic
program considers an exponential number of different inventory levels. To circumvent this, in each time
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period we carefully select only a subset of possible inventory levels and compute an approximation of the
optimal value function on this subset. At all other inventory levels, the approximate value function is
interpolated. Our approach differs from other FPTAS’s, that rely on scaling and rounding the data to
reduce the state space.

We note that Woeginger’s general framework for transforming a DP into an FPTAS [Woe00] does not in-
clude our problem. First of all, his approach does not consider cases in which the action space is exponentially
large. Second, he does not consider applications to stochastic optimization problems.

Perhaps the most closely related technique methodologically to our approach is that of [DGV08], who
also rely on using an approximation function combined with linear interpolation (see Section 6, proof of
Lemma 9 in their work). In addition to the standard inventory control problem, we also show how to obtain
an FPTAS from our framework for many extensions: the capacitated and discounted versions, the lost sales
model, the model where disposal of excess inventory at a cost is allowed, and a model where only a non-exact
evaluation of the cost functions is available. We also provide a reduction that shows the NP-hardness of the
stochastic problem with linear procurement and holding costs.

The main methodological contribution of this work is the development of FPTASs using approximate,
efficiently-representable value functions. While this concept is widely used in computational dynamic pro-
gramming algorithms, to the best of our knowledge, we are the first to use this approach to develop FPTASs.
Another key contribution is the hardness proof of the basic stochastic inventory control problem.

The manuscript is structured as follows. We introduce and state the stochastic inventory control problem
in Section 3. In Section 4, we show that this problem is NP-hard. The framework of approximation sets
and functions is given in Section 5. In Section 6, we present the FPTAS and its analysis. In Section 7, we
provide FPTASs for several extensions of the basic inventory control problem. We conclude the introduction
with a literature review.

Literature review

The stochastic inventory control problem is one of the most widely studied problems in inventory theory.
The so called (s, S) policy, which results from the economies of scale in procurement, is a widely used policy
in practice. We refer the reader to the books [SCB05, Por02, Zip00] for an in-depth coverage of the topic.

For the finite time horizon inventory control problems with linear cost functions, the base-stock levels
can be computed in pseudopolynomial time recursively from the optimality equations. For infinite horizon
problems, the optimality equation still holds. [ZF91] and [FZ84b] propose algorithms for finding an optimal
policy for the infinite horizon inventory control problem. The multi-echelon problem, [FZ84a], and a variant
of inventory control with fixed cost for backlogging, [RM00], have also been considered, although no efficient
approximation algorithms have been developed for these problems.

The deterministic capacitated lot-sizing problem was solved with FPTASs by [VW01] and [SO95].
However, their approach does not appear to extend to the stochastic lot-sizing problem.

Recently there is a growing interest in approximation algorithms for stochastic problems. [SS06] provide
an FPTAS for a broad class of linear 2-stage stochastic recourse problems, even in the case of exponentially
many second stage variables. Their algorithm is based on the standard convex programming formulation.
They solve the linear programming relaxation by the ellipsoid algorithm and then they round the solution
to the closest integral vector. The multi-stage setting is considered in [SS05].

A 2-approximation algorithm for stochastic inventory control is presented in [LPRS07]. They assume
stochastic lead times with no order crossing, possibly correlated demand distributions, and the “no spec-
ulative cost assumption”, which is equivalent to assuming that there is no ordering cost. The first two
assumptions are more general than our assumptions, whereas their latter assumption is more restrictive.
They study the so called dual-balancing policy, which is not a base-stock policy. An extension to the ca-
pacitated version is given in [LRST08]. In [LRS07], the authors use sampling to analyze the inventory
control problem with convex cost functions. Their model is more general than ours since they do not assume
an explicit knowledge of the demand distribution. The algorithm is based on sampling, and they provide
approximate base-stock levels. The number of required samples to achieve an ε approximation is upper
bounded by 1/ε, the number of time periods, and (h + b)2/ min{b, h}2, where h is the stationary per unit
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holding cost and b is the stationary per unit backlog penalty. Note that this bound is not polynomial in
the input size and therefore their algorithm is possibly exponential in the size of the instance and in 1

ε . In
addition, their algorithm is not deterministic.

The approaches in [SS06] and [LRS07] are significantly different. While both use sampling, the former
relies heavily on optimization techniques and the latter exploits the underlying nature of stochastic inventory
problems. To the contrary of these two approaches, we do not use sampling and our approach is more
combinatorial in nature.

2 Notation

Let R,Z,Z+,N denote the set of real numbers, integers, nonnegative integers, and positive integers, respec-
tively. For any pair A,B of integers with −∞ < A < B < ∞, let [A,B] = {A,A+1, . . . , B} denote the set of
integers between A and B. For any function f over [A,B] we denote by fmax the maximal value f achieves
over [A, B]. Let U = B − A + 1 be the number of points in the domain, and Ū = fmax be the maximal
value f achieves on the domain. For any subset D′ ⊆ [A,B], a function f is called unimodal over D′ if
there exist x∗ ∈ D′ such that f is nonincreasing over [A, x∗] and nondecreasing over [x∗, B]. The value x∗ is
called an arg min of f . For any subset D′ ⊆ [A,B], we define the piecewise linear extension of f induced by
D′ as the continuous function obtained by making f linear between successive values of D′. For any subset
D′ ⊆ [A,B], a function f on [A, B] is called convex over D′ if its piecewise linear extension induced by D′ is
convex. For any function f on [A,B] and subset D′ ⊆ [A,B], we define the convex extension of f induced by
D′ to be the piecewise linear extension of f induced by D′′ ⊆ D′, where D′′ is the projection of the convex
hull of {(x, f(x)) | x ∈ D′} on the x-axis. The base two logarithm of z is denoted by log z.

3 Problem statement

Let T be the length of the planning horizon. At the beginning of a time period, we observe the inventory
level and a replenishment decision is made. If we place an order, it arrives immediately, i.e., we assume
there is no lead time. Backlogging is represented as a negative inventory level. A single convex holding cost
function is used to model both backlogging and positive inventory. The holding cost is accounted for at the
end of the time period. For each time period t = 1, ..., T we define:

xt : procurement quantity in time period t;
It : inventory level at the beginning of time period t;
Īt : inventory level at the end of period t (i.e., It = Īt−1);
ct(xt) : procurement cost in time period t, given an order of size xt;
ht(Īt) : holding cost in time period t, given inventory level Īt.

For each time period t = 1, ..., T , we assume that there is an oracle that computes functions ct, ht, and there
is a discrete random variable Dt describing the demand in time period t. For each Dt, we are given nt,
the number of different values it admits with positive probability, and the demand values dt,1 < ... < dt,nt .
Moreover, we are also given positive integers qt,1, ..., qt,nt such that

Prob[Dt = dt,i] =
qt,i∑nt

j=1 qt,j
.

3



The random variables Dt are assumed to be independent for different t. We define for every t = 1, ..., T and
i = 1, ..., nt the following values:

pt,i = Prob[Dt = dt,i] probability that there is a demand of dt,i units in time period t;
n∗ = maxt nt maximum number of different values Dt can take over the entire

time horizon;
d∗ = maxt dt,nt

maximum demand over the entire time horizon;
D∗ =

∑T
t=1 dt,nt

maximum total demand over the entire time horizon;
Qt =

∑nt

j=1 qt,j a common denominator of all the probabilities in time period t;
Mt =

∏T
j=t Qj a common denominator of all the probabilities in all time

periods following time period t− 1;
MT+1 = 1.

We make the following assumptions.

Assumption 3.1. All demand, procurement and inventory levels are integral. Moreover, the demand and
procurement levels are nonnegative.

Assumption 3.2. The procurement cost function ct is nondecreasing nonnegative convex over Z+ for every
t = 1, ..., T .

Assumption 3.3. The holding cost function ht is nonnegative convex over Z for every t = 1, ..., T .

Assumption 3.4. All cost functions can be evaluated in polynomial time at any value in their domain.

Note that the binary input size of the problem is bounded below by

Ω(T + n∗ + log d∗ + log max
t
{ct(D∗), ht(D∗), ht(−D∗)}).

The last term takes into account the space needed for storing the value of ct or ht at D∗ (see more details
about this aspect in Section 6.1).

The objective is to minimize the total expected cost. The problem can be formulated as finding a policy
xt = xt(It) for t = 1, ..., T that realizes

z∗ = min
xt

ED(
T∑

t=1

ct(xt) + ht(It + xt −Dt)),

subject to the system dynamics

It+1 = It + xt −Dt, t = 1, ..., T.

The action space requirement is xt ∈ Z+ for t = 1, ..., T , and the initial state is I1 = 0.
Note that in the above context we have ED(

∑T
t=1 ct(xt)+ht(It+xt−Dt)) =

∑T
t=1 ct(xt)+

∑nt

j=1 pt,jht(It+
xt − dt,j). The standard optimality equation is presented later in Section 6.1.

4 Hardness result

In this section we show that the single-item stochastic inventory control problem is #P-hard (and thus
NP-hard) even in the case of linear procurement and holding costs. We make a transformation from a
problem concerning the evaluation of convolutions of discrete variables, which in turn is proved #P-hard
from a transformation from the Kth largest subset problem (see problem SP20 on page 225 of [GJ79] for its
NP-hardness and the same reference for its #P-hardness).

Problem: Kth largest subset
Instance: A finite set A = {a1, ..., an} of nonnegative integers and positive integer numbers K ≤ 2n and B.
Question: Are there K or more distinct subsets A′ ⊆ A for which

∑
a∈A′ a ≤ B?
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Remark: This problem is named the “Kth largest subset problem”, but it actually looks for the Kth
smallest subset of A.

In the counting version of the problem, one is asked to count the number of distinct subsets of A whose
sum is at most B.

Problem: Evaluating the cdf of convolutions of discrete random variables
Instance: Discrete random variables X1, . . . , Xn and probabilities pi,j for i = 1, . . . , n and j = 1, . . . , m, and
values q and Q. (The value pi,j = Prob(Xi = ai,j).)
Question: Is Prob(

∑n
i=1 Xi ≤ Q) ≥ q?

Theorem 4.1. The problem of evaluation the cdf of convolutions of discrete variables is #P-hard even in
the case that m = 2 and pij = 1

2 for all i = 1, . . . , n and j = 1, 2.

Proof. Let A = a1, . . . , an, K, and B be the instance of the Kth largest subset problem. For each
i = 1, . . . , n, let Xi be the random variable that equals ai with probability 1

2 and equals 0 with probability
1
2 . Let Q = B, and let q = K

2n . Then there are K or more distinct subsets of A with sum at most B if and
only if Prob(

∑n
i=1 Xi ≤ Q) ≥ q.

We next establish the #P-hardness of the single-item stochastic inventory problem.

Theorem 4.2. The single-item stochastic inventory control problem is #P-hard even in the case that all
costs are linear.

Proof. Let X1, . . . , Xn, a1, . . . , an, for i = 1, . . . , n and j = 1, 2 = m, and values q and Q be the input
for the Problem of evaluating the cdf of convolutions of discrete variables, where Xi takes value ai with
probability 1

2 and takes value 0 with probability 1
2 . This problem is #P-hard as established in the proof of

Theorem 4.1. We create an instance of the single-item stochastic inventory control problem as follows. Let
A =

∑n
i=1 a1. The Demand in period i is Di = Xi. The cost of production in period 1 is c1(x) = (1− q)x.

The cost of production in every other period i 6= 1 is ci(x) = Ax. (This gives fractional costs. One can
scale by 2n to get integral costs.) The holding costs are 0 in each period, and the backorder costs are 0 in
each period except for period n, in which hn(x) = −qx for x < 0. We now claim that there is a feasible
solution for the Problem of Evaluating the cdf if and only if there is a feasible solution to the inventory
control problem with expected cost at most A − qQ. To see that, we first note that any optimal policy
will consist of ordering only in the first period. Any unsatisfied demand in later periods will be handled
through backordering. This instance in turn is equivalent to newsvendor problem in which the cost cm of
ordering one unit too much is (1 − q), and the cost of ordering one item too few is c` = q. Therefore, the
optimal decision is to produce the minimum amount S such that Prob(D ≤ S) ≥ c`

c`+cm = c`, where D is a
random variable describing the total demand (see, e.g., [SCB05], Section 8.2.1). The optimal order level is
thus the minimum value x∗ such that Prob(

∑n
i=1 ≤ x∗) ≥ q. But calculating x∗ is polynomially equivalent

to evaluating the original cdf problem.

Remark. If costs are linear, then an optimal policy is “an order up to policy” in which there are values
b1, . . . , bn, and the optimal policy is to order up to bj in period j if inventory falls below period j. Now
suppose that b′1, . . . , b

′
n is a proposed policy. (In the lingo of complexity analysis, b’ is a certificate.) Note

that already to evaluate the expected cost of this policy is #P-hard.
We note that many #P-hard enumeration problems have a fully polynomial randomized approximation

scheme (FPRAS) including the following: counting Hamiltonian cycles in dense graphs, [DFJ98], counting
knapsack solutions, [Dye03], counting Eulerian orientations of a directed graph, [MW95], counting perfect
matchings in a bipartite graph, [JS89], and computing the permanent, [JSV04]. To the best of our knowledge,
the only deterministic FPTAS for a #P-hard problem known up-to-date and published in the literature is
the recent FPTAS of [Wei06] for counting independent sets in sparse graphs. (Counting independent sets of
graphs of maximum degree 4 is known to be #-P complete, Theorem 3.1.5 in [Rot96].)
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5 K-approximation sets and functions

A K-approximation algorithm for a minimization problem guarantees its output to be no more than K times
the optimal solution. In this section we define K-approximation functions and K-approximation sets.

Definition 5.1. Let K ≥ 1 and let f : D→R+ be a function. We say that f̃ : D→R is a K-approximation
function of f (K-approximation of f , in short) if for all x ∈ D we have f(x) ≤ f̃(x) ≤ Kf(x).

The following proposition follows directly from the definition of K-approximation functions.

Proposition 5.2. Let K > 1, let f1, f2 : D→R+ be functions over domain D, let f̃1, f̃2 : D→R+ be
K-approximations of f1, f2, respectively, let g : D→D, and let α, β ∈ R+. The following properties hold:

1. α + βf̃1 is a K-approximation of α + βf1,

2. f̃1 + f̃2 is a K-approximation of f1 + f2,

3. f̃1(g) is a K-approximation of f1(g),

4. f̃3(y) := minx∈D{f̃1(x) + f̃2(x + y)} is a K-approximation of f3(y) := minx∈D{f1(x) + f2(x + y)}.
In order to get a polynomial time approximation scheme, we consider only a subset of all possible optimal
inventory values, whose cardinality is polynomially bounded by the input size. Of course this can only be
done by sacrificing accuracy in the final solution. We use the following definition.

Definition 5.3. Let K > 1 and let f : [L,U ]→Z+ be a monotone function. A K-approximation set of f is
an ordered set S = {i1 < ... < ir} of integers satisfying the following two properties:

1. L,U ∈ S ⊆ {L, . . . , U};

2. for each k = 1 to r − 1, if ik+1 > ik + 1, then f(ik)
K ≤ f(ik+1) ≤ Kf(ik);

The canonical K-approximation set for a monotonically nondecreasing function is defined as follows:
i1 ← L;
for k ≥ 1, if ik < U, then ik+1 ← max{ik + 1, max{x | f(x) ≤ Kf(ik) and x ≤ U}}

The canonical K-approximation set for a monotonically nonincreasing function is defined analogously except
that

ik+1 ← max{ik + 1, max{x | f(x) ≤ f(ik)/K and x ≤ U}}.
One can determine each element of the canonical K-approximation set in O(log(U−L)) time by using binary
search. We have just proved the following lemma.

Lemma 5.4. Let f : [L,U ]→Z+ be a monotone function. For every K > 1 there exists a K-approximation
set S of f of cardinality O(logK fmax). Furthermore, it takes O((1 + tf ) logK fmax log(U − L)) time to
construct this set, where tf is the time needed to evaluate f .

We use K-approximation sets to construct approximations functions in the following way.

Definition 5.5. Let K > 1 and let f : [L,U ]→Z+ be a monotone function. Let S be a K-approximation set
of f . A function f̂ defined as follows is called the approximation of f corresponding to S. For any integer
L ≤ x ≤ U and successive elements ik, ik+1 ∈ S with ik < x ≤ ik+1 let

f̂(x) :=
{

f(x) if x ∈ S;
max{f(ik), f(ik+1)} otherwise.

Note that if we calculate the values of f on S in advance and store them in a sorted array (x, f(x)), then any
query for the value of f̂(x), for any x, can be calculated in O(log |S|) = O(log logK fmax) time. This is done
by performing binary search over S to find the consecutive elements ik, ik+1 ∈ S such that ik < x ≤ ik+1.
The following proposition follows directly from the above definitions.
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Proposition 5.6. Let K > 1, let f : [L,U ]→Z+ be a nondecreasing function, and let S be a K-approximation
set of f . If f̂ is the approximation of f corresponding to S, then f̂ is a nonnegative nondecreasing integer-
valued step K-approximation function of f .

We extend the definition of K-approximation sets to nonnegative unimodal functions in the following way.

Definition 5.7. Let K ≥ 1 and let f : [L,U ]→Z+ be a unimodal function with minimum value occurring
at J . A K-approximation set of f if it can be expressed as the union S = S1 ∪ S2 of a K-approximation
set S1 of the nonincreasing function f : [L, J ], and a K-approximation set S2 of the nondecreasing function
f : [J, U ]. A function f̂ is called the approximation of f corresponding to S if it merges the approximations
of f corresponding to S1 and S2.

Definition 5.5 holds for convex functions of one variables defined on an integer domain. Suppose now that
f attains its minimum at x∗ (if x∗ is not unique, we set x∗ = min{argminx∈[L,U ]f(x)} to be the smallest
such minimizer). Since f is convex, finding x∗ can be done efficiently by standard binary search. Therefore,
Lemma 5.4 and Proposition 5.6 hold for such functions as well. We summarize the results of this section as
follows.

Theorem 5.8. Let f : [L,U ]→Z+ be a unimodal function with a given x∗ = arg min f . For every
K > 1 there exists a K-approximation set S for f of cardinality O(logK fmax) that can be constructed
in O(tf logK fmax log(U −L)) time, where tf is the time needed to evaluate f . Furthermore, the approxima-
tion f̂ of f corresponding to S is a nonnegative integer-valued unimodal step K-approximation function of
f , whose query time is O(log logK fmax).

We denote an algorithm that calculates a canonical K-approximation set for a unimodal f with a given
x∗ = arg min f by ApxSet(K, f, x∗).

6 An FPTAS

In this section we develop an FPTAS for the inventory control problem defined in Section 3.

6.1 Preliminaries

Let gt(It) denote the optimal total expected cost for periods t, ..., T , starting in period t with an inventory
of It. Therefore, our goal is to calculate z∗ = g1(0). Let rt(Īt) be the expected cost for periods t, ..., T , if
the inventory at the end of period t is Īt. It follows that for t = 1, ..., T we have

rt(Īt) = ht(Īt) + gt+1(Īt), (2)

and

gt(It) = min
xt∈Z+

{ct(xt) +
nt∑

j=1

pt,jrt(It + xt − dt,j)}, (3)

where gT+1(y) = 0 for any y. Let us define an auxiliary function yt as follows.

yt(z) =
nt∑

j=1

pt,jrt(z − dt,j),

so yt(z) is the expected total cost for periods t, ..., T after a procurement decision has been made in period
t, and the procurement plus the inventory level is z. We note that

gt(It) = min
xt∈Z+

{ct(xt) + yt(It + xt)}. (4)

7



Let us also define

Rt = Mt+1rt,

Yt = Mtyt,

Gt = Mtgt.

We state several basic properties of functions rt, yt, gt, Rt, Yt and Gt.

Proposition 6.1. For every t = 1, ..., T , functions rt, gt and yt are convex over Z.

Proof. We prove this by backward induction. We consider first the base case of t = T . Since gT+1 = 0
we get that rT = hT , which is convex by assumption. Since the convexity of rT (z) induces the convexity of
rT (z +d) for every constant d, and since a convex combination of convex functions is convex, we get that yT

is convex. We next prove that gT is convex. From the definition of convex functions over discrete domains
(see Section 2), it suffices to show that 2g(I) ≤ g(I + 1) + g(I − 1) for all I. (For convenience we drop the
subscript T .) Consider now a fixed value of I. Choose x′ and x” so that

g(I − 1) = c(x′) + y(x′ + I − 1);
g(I + 1) = c(x”) + y(x” + I + 1).

Case 1. x′ = x”. Then 2g(I) ≤ 2c(x′)+2y(x′+I) ≤ 2c(x′)+y(x′+I−1)+y(x′+I+1) = g(I−1)+g(I+1).

Case 2. x′ ≥ x” + 1. Then 2g(I) ≤ c(x′ − 1) + y((x′ − 1) + I) + c(x” + 1) + y(x” + 1 + I). Therefore,
2g(I)− g(I + 1)− g(I − 1) ≤ c(x′ − 1) + c(x” + 1)− c(x′)− c(x”), which is true because x′ > x” and c
is convex.

Case 3. x′ ≤ x” − 1. Then 2g(I) ≤ c(x′ + 1) + y((x′ + 1 + I) + c(x” − 1) + y(x” − 1 + I). Therefore,
2g(I)− g(I + 1)− g(I − 1) ≤ c(x′ + 1) + c(x”− 1)− c(x′)− c(x”) + y((x′ + 1 + I) + y(x”− 1 + I)−
y(x′ + I − 1)− y(x” + I + 1) ≤ 0. The latter inequality holds by the convexity of c and y and the fact
that x′ ≤ x”− 1.

Thus gT is convex over Z. Let us assume by induction that rt+1, gt+1 and yt+1 are convex over Z. We need
to prove that rt, gt and yt are convex over Z as well. By assumption ht is convex over Z. By the induction
hypothesis also is gt+1. Hence, rT is convex over Z as the summation of two such functions. The rest of the
proof for this case is similar to the base case.

We next show that all the values of gt(·), rt(·) and yt(·) over all inventory levels and time periods are rational
numbers, and we bound the least common multiple of their denominators.

Proposition 6.2. For every t = 1, ..., T , functions Mt+1rt,Mtgt,Mtyt, Rt, Yt and Gt are nonnegative,
integer valued and convex over Z.

Proof. The proof for Mt+1rt and Mtgt is by induction. Since rT ≡ hT , and gT+1 ≡ 0, rT is an integer
function. Considering gT we have

gT (IT ) =
1

QT
min
xT

{QT cT (xT ) +
nT∑

j=1

qT,jrT (IT + xT − dT,j)}.

Since cT and rT are integer-valued functions, QT gT is an integer-valued function as well. Assuming by
induction that the statement holds for t = k + 1, we get immediately from (2) that the statement holds for
rk as well. From (3) we have

gk(Ik) =
1

Qk
min
xk

{Qkck(xk) +
nk∑

j=1

qk,jrk(Ik + xk − dk,j)}.
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Since ck and Mk+1rk are both integer-valued functions, by the induction hypothesis, Mkgk is an integer-
valued function as well. We conclude the proof for Mt+1rt and Mtgt by applying Proposition 6.1.

The proof for Mtyt is due to the fact that yt is a convex combination of several rt’s, and that Qt is a
common denominator of all the probabilities in time period t. The integrality and convexity of Rt, Yt and
Gt immediately follows.

The inventory It at the beginning of time period t following an optimal policy satisfies

−D∗ ≤ −
t−1∑

j=1

dj,nj
≤ It ≤ D∗ −

t−1∑

j=1

dj,1 ≤ D∗

for every t = 1, ..., T . (To see this, note that the lower bound holds for any policy since
∑t−1

j=1(xj −Dj) ≥
−∑t−1

j=1 dj,nj . The upper bound holds for any optimal policy, since any such policy will order at most a total
of D∗ over the time horizon. Moreover, for every time period t, the inventory It + xt after the procurement
decision has been made satisfies −D∗ ≤ −∑t−1

j=1 dj,nj
≤ It +xt ≤ D∗−xt−

∑t−1
j=1 dj,1 ≤ D∗.) Hence, xt can

be restricted to take values between 0 and D∗. The running time for computing the values of gt and rt by
dynamic programming for all possible optimal inventory levels and for every period t = 1, ..., T , is therefore
O(n∗TD∗2), i.e., pseudo polynomial in the input size. By the discussion above we restrict without loss of
generality the domain of rt and gt to be [−D∗, ..., D∗] and let L = −D∗, U = D∗.

We conclude this section by giving several properties of approximation functions.

Proposition 6.3. Let K > 1 and f be an integer-valued function. If f ′ is a (general) K-approximation of
f then bf ′c is an integer-valued K-approximation of f .

This proposition is due to f ≤ bf ′c ≤ f ′ ≤ Kf , where the first inequality derives from the integrality of f
and since f ′ is a K-approximation of f .

Proposition 6.4. Let K > 1 and f be an integer-valued function. If f̌ is a convex K-approximation of f
with arg min f = x∗, then bf̌c is a unimodal integer-valued K-approximation of f with the same arg min.

Proof. The monotonicity of the floor function coupled with the convexity of f̌ implies that bf̌c is a
unimodal function that is minimized at x∗. Function bf̌c is an integer-valued K-approximation of f due to
the previous proposition.

Proposition 6.5. Let K > 1, f be a convex function, S be a K-approximation set of f , and f̂ be the
approximation of f corresponding to S. Then the convex extension of f̂ induced by S is a convex K-
approximation of f .

Proof. This proposition is true because the convex extension of f̂ induced by S is the greatest convex
function which does not lie above f̂ , and the fact that f itself is a convex function (i.e., the convex extension
of f̂ induced by S is “sandwiched” between f̂ from above, and f from below).

6.2 Algorithm

In this section we give a formal description of our approximation scheme for rt, gt, and yt for t = 1, ..., T .
The outline of the proof of correctness of the algorithm goes as follows. Since gT+1 ≡ 0 and hT is given
explicitly, we can calculate rT ≡ hT by a single query to hT and calculate yT by performing nT queries
to hT . Since cT (x) and yT (z + x) are convex functions in x for any fixed z, calculating gT (z) is done
by performing binary search in the action space [−D∗ − z,D∗ − z] to find an action x that minimizes
cT (x) + yT (z + x). This results in log U queries to cT and yT . As for calculating gt(z), in order not to
perform overall O(logT+1−t U) queries, which is exponential in the input size, our algorithm will efficiently
compute a compressed approximation for gt, so a query to it will cost only O(log logK Ū) time, for any
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1: Function FPTAS(ε)
2: Let K := 1 + ε

2T and ǦT+1 := 0
3: for t := T downto 1 do
4: Let Řt := Mt+1ht + Ǧt+1

5: Let Y̌t := Qt

∑nt

j=1 pt,jŘt(z − dt,j)
6: Let G′t(z) := minx∈[−D∗−z,D∗−z]{Mtct(x) + Y̌t(z + x)}
7: Let x∗ := arg min G′t and Ḡt := bG′tc
8: Let St :=ApxSet(K, Ḡt, x

∗
t ) and Ĝt be its corresponding K-approximation function

9: Let Ǧt be the convex extension of Ĝt induced by St

10: end for
11: Return Ǧ1(0)

M1

Algorithm 1: An FPTAS.

t. The algorithm proceeds backwards from t = T down to t = 1. In the (T − t + 1)th iteration, given a
previously calculated approximation for gt+1, the algorithm approximates rt, yt, and gt. The relative error
of these later approximations is only slightly worse than the one of the given gt+1, and the accumulated
error throughout the execution of the algorithm is under control.

6.3 Analysis

Let ε > 0 be given, where we seek a (1+ε)-approximation, as in (1). In this section we show that Algorithm 1
produces the required approximation, and runs in time that is polynomial in both the input size and 1

ε .

Lemma 6.6. Algorithm 1 computes Ǧt, which is a convex KT+1−t-approximation of Gt, for every t =
1, . . . , T + 1.

Proof. We first note that Ḡt is an integer-valued unimodal function. To see this, note that by Proposi-
tion 6.1, G′t is a convex function, and the floor function is monotone.

We prove the approximation ratio by backwards induction. We consider first the base case of time period
T . Since GT+1 = ǦT+1 = 0, we get from the definition of Ř that ŘT = RT . Hence, Y̌T = YT and G′T = GT .
Therefore, by Proposition 6.2, G′T is an integer-valued convex function, and ḠT = GT . By Theorem 5.8,
ĜT is an integer-valued K-approximation function of GT . By Proposition 6.5, ǦT is a (not necessarily
integer-valued) convex K-approximation function of GT as needed.

We assume inductively that Ǧt+1 is a convex KT−t-approximation of Gt+1. By the second property of
Proposition 5.2 we get that Řt is a (convex) KT−t-approximation of Rt (Mt+1ht is a KT−t-approximation
of itself). By the first two properties of the same proposition, Y̌t is a convex KT−t-approximation of Yt.
By the last three properties of the same proposition and Proposition 6.1, we get that G′t is a convex KT−t-
approximation function of Gt. Due to Proposition 6.4, Ḡt is a convex KT−t-approximation function of Gt,
i.e.,

Gt ≤ Ḡt ≤ KT−tGt. (5)

By Theorem 5.8, Ĝt is a K-approximation of Ḡt, Therefore, by (5) we have

Gt ≤ Ḡt ≤ Ĝt ≤ KḠt ≤ KT+1−tGt;

so Ĝt is a KT+1−t-approximation of Gt. We conclude the proof by applying Proposition 6.5.

We conclude this section by proving that Algorithm 1 is an FPTAS for our problem.

Theorem 6.7. Algorithm 1 gives an FPTAS for the single-item discrete stochastic inventory control problem
when K = 1 + ε

2T , for any ε < 1.

10



Proof. By Lemma 6.6, the approximation ĝ1(0) := Ǧ1(0)
M1

of the optimal total expected cost in periods
1, ..., T starting in period 1 with an inventory of 0 satisfies g1(0) ≤ ĝ1(0) ≤ KT g1(0). Setting K = 1 + ε

2T
gives g1(0) ≤ ĝ1(0) ≤ (1+ ε

2T )T g1(0). From the inequality (1+ x
n )n ≤ 1+2x, which holds for every 0 ≤ x ≤ 1,

and since the optimal solution is g1(0), we get that z∗ ≤ ĝ1(0) ≤ (1 + ε)z∗.
We now compute upper bounds on the values of the functions computed during the execution of the

algorithm. Let

A = 2T max
t
{ct(D∗), ht(D∗), ht(−D∗)} ≥

T∑
t=1

(ct(D∗) + max{ht(D∗), ht(−D∗)})

be an upper bound for the values of the rt’s and gt’s. Let

B = KT M1A.

Due to Lemma 6.6, B is an upper bound for the values of the various Řt, Y̌t, G
′
t, Ḡt’s and Ǧt’s. Therefore, B

serves as an upper bound for the functions considered throughout the algorithm. Note that Assumption 3.4
implies that log B is polynomially bounded by the input size. Since U = O(D∗), log U is also polynomially
bounded by the input size.

We next consider the running time of our algorithm. It consists of T iterations. We next analyze the
running time for iteration t only. Step 4 is executed in constant time. A query to Řt is done by performing
a single query to each of ht and Ǧt. The former takes th time, and the later takes O(log logK B) time due to
Theorem 5.8. Step 5 is done in constant time, and each query to Y̌t is performed in O(nt(th + log logK B))
time. Step 6 is done in constant time. A calculation of G′t(z) is carried out by performing binary search over
[−D∗−z,D∗−z] since Mtct(x)+Y̌t(z+x) is a convex function of x for every fixed z. Hence, a query of G′t(·) is
done in O(log U(tc+nt(th+log logK B))) time. As for Step 7, due to Proposition 6.1 G′t is convex. So finding
x∗ is done by binary search over [−D∗, D∗], resulting in a total time of O(log2 U(tc + nt(th + log logK B))).
By Theorem 5.8, Step 8 is performed in O(log2 U logK B(tc + nt(th + log logK B))). Since the elements in
S are kept sorted, the construction of the convex extension in Step 9 is done in linear time in |S| [PS85].
Therefore, the running time of each iteration of the for loop is dominated by Step 8. The the total running
time of the algorithm for iteration t is

O(T log2 U logK B(tc + nt(th + log logK B))).

Note that O(logK B) = O(T + logK(M1A)). Without loss of generality, we can assume that ε < 1 and
thus that K < 2. So O(logK Y ) = O( 1

K−1 log Y ) for every Y . Replacing K with 1 + ε
2T we obtain

O(logK Y ) = O(T
ε log Y ). In this way we get that O(logK B) = O(T

ε log(M1A)).
Replacing a query time of ct and ht by tf we conclude that the running time of the algorithm is

O

(
T 2 log2 U log(M1A)

ε
[n∗(tf + log(

T log(M1A)
ε

))]
)

,

which is polynomial in the binary size of the input data and 1
ε . The dependance on T is almost quadratic,

and that of 1
ε is almost linear.

7 Extensions

7.1 Capacitated version

Convex cost functions can model capacity limits by making the procurement cost sufficiently high beyond
these limits, while preserving convexity. Thus, our results hold also for single-item stochastic capacitated
inventory control problems with discrete demands.

11



7.2 The lost sales model

So far, we have assumed that excess demand is backlogged. We now consider the case when the excess
demand is lost. Even if the costs are convex, the value function gt is not necessarily convex. However,
we can transform the lost sales case to the previous convex cost case if all costs are linear, and under a
reasonable assumption on the cost of lost sales, to be specified next.

We consider a problem with lost sales, in which It ≥ 0 in each period t, and where the lost sales in period
t is Lt = max(0,−Īt). In addition, the linear costs of production, inventory, and lost sales in period t are
ctxt, htĪt, and `tLt respectively. We also assume that `t ≥ ct+1−ht for t = 1, . . . , T . Note that this condition
is typically true in practice since typically `t ≥ ct+1 in practice. [Zip00], pages 386-387 showed under this
assumption that the optimal value function is convex, and a base stock policy is optimal. We next give an
alternative proof by transforming this lost sales instance to an instance of our original stochastic inventory
control problem with convex costs and backordering. We transform the lost sales model by splitting period
t in the original problem into two periods in the transformed problem, denoted as periods 2t − 1 and 2t.
Period 2t − 1 corresponds to period t of the original problem. Production in period 2t in the transformed
problem corresponds to lost sales in period t of the original problem. As such we define costs c′t(x) and
h′t(Īt) for the transformed problem as follows: c′2t−1(x) = ctx, h′2t−1(I) = 0, D′

2t−1 = Dt; c′2t(x) = `tx,

h′2t(I) =
{

htI for I ≥ 0;
−MI otherwise,

and D′
2t = 0, where M is a very large number polynomially bounded by the input size (e.g., M = D∗maxt ct).

Note that h′2t is convex.
Suppose that we have a feasible policy to the original problem. For any realization of the demand and

for any solution with cost C, we can transform a feasible solution for the original problem into a feasible
solution for the transformed problem with the same cost by setting x′2t = xt and x′2t+1 = Lt.

We may restrict attention to solutions for the transformed problem that have x′2t = backordering in
period 2t − 1. There is no additional production in period 2t since any additional unit would need to be
inventoried to period 2t + 1, and due to our assumptions above the cost would be no higher by producing
the unit in period 2t + 1.

Any solution satisfying the condition stated in the above paragraph leads to a solution for the original
problem with the same cost.

7.3 Discounted version

In the discounted single-item stochastic inventory control problem, we are also given a rational discounting
factor 0 < λ = λ1

λ2
< 1, where λ1 and λ2 are positive integers. In this version the objective function changes

to

z∗ = min ED(
T∑

t=1

λt−1(ct(xt) + ht(It + xt −Dt))).

It is easy to adapt our algorithm to this case. The recursive formula (2) for rt changes to

rt(Īt) = ht(Īt) + λgt+1(Īt), (6)

while (3) remains intact. We need to account for the fact that rt(Īt) is not necessarily integer valued even if
gt+1(Īt) is integer valued. However, by multiplying (6) by λ2, i.e., by changing Qt to be Qt = λ2

∑nt

j=1 qt,j ,
we recover integrality, and we can use the same algorithm. The analysis of the running time can be easily
extended. The only change is that M1 is multiplied by λT

2 , and therefore the running time of the entire
algorithm is multiplied by O(T log λ2). Therefore, it remains polynomial in the binary size of the data.
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7.4 Disposal at a cost

We can also approximate a version of the problem where the procurement cost function is defined over Z−
as well. If the procurement level is positive, then the actual procurement is occurred, otherwise, a disposal
cost is charged. We replace Assumption 3.2 by the following assumption.

Assumption 7.1. The procurement cost function ct is nonnegative convex over Z and ct(0) = 0 for every
t = 1, ..., T .

By extending the value of the procurement level of an optimal policy to be in the interval [−D∗, D∗] we get
that our results carry over for this case as well.

7.5 Constant lead time

Under general lead times, the value function is multivariate. It is well known that this dynamic program can
be transformed into a single variate dynamic program (the state corresponds to inventory position, which is
defined as the inventory on-hand and all outstanding inventory) of the same form as the one presented in
Section 3. It is easy to show that this transformation preserves the approximation ratio and as a result it
suffices to find an FPTAS for this single variate dynamic program. If L > 0 is an arbitrary lead time, then
the underlying demand distribution of the transformed problem is D̄t =

∑t+L−1
t̂=t

Dt̂. The presented FPTAS
requires that we know Prob[D̄t = d̄t,i], which is a convolution of L distributions. As a result, computing
these probabilities takes (n∗)L time. If L is 2 or 3 (or any other constant value), then the term (n∗)L is
polynomial, and the algorithm is an FPTAS. If L is not constrained to be small (e.g., L = T/4), then the
running time is exponentially large. In the latter case, our algorithm is not an FPTAS. It is an open question
whether one can modify the approach and create an FPTAS for the problem in which the lead times are
permitted to be a fraction of T .

Note that due to Theorem 4.1, in the presence of lead times it is hard to compute even a myopic policy
that aims to minimize the period cost a lead time ahead.

7.6 Non-exact evaluation of cost functions

In Assumption 3.4, we require that c and h be evaluated in polynomial time. We can weaken this assumption
as follows.

Assumption 7.2. For every δ ≥ 0 and for every time period t there exist convex integer-valued convex
functions c̃δ

t and h̃δ
t such that

|c̃δ
t (x)− ct(x)|

ct(x)
≤ δ,

|h̃δ
t (x)− ht(x)|

ht(x)
≤ δ,

for every x, and these functions can be evaluated in polynomial time in the input size and 1/δ.

This assumption is equivalent to the statement that for every K > 1, ct and ht have a two-sided K-
approximation.

Definition 7.3. Let K > 1 and let f : D→R be a function. We say that f̃ : D→R is a two-sided K-
approximation of f if for all x ∈ D we have f(x)/K ≤ f̃(x) ≤ Kf(x).

Let f be either ct or ht. By assumption 7.2, for every K̄ > 1 there exists an integer-valued convex function
f̃K̄ such that f(x)/K̄ ≤ f̃(x)K̄ ≤ K̄f(x) for every x. Let tf̃ be the time needed to evaluate fK̄ on x. By
Assumption 7.2, tf̃ is polynomially bounded in the size of the problem and in 1

K̄−1
. We set K̄ = 3

√
K so

that for every pair x1, x2 of succeeding elements in the K̄-approximation set S of f̃K̄ we get

f(x2)
f(x1)

≤ K̄f̃K̄(x2)
1
K̄

f̃K̄(x1)
= K̄2 f̃K̄(x2)

f̃K̄(x1)
≤ K̄3 = K.
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Theorem 5.8 remains true with the exception that the approximation corresponding to S is a two-sided K-
approximation. The FPTAS for the inventory control problem remains the same, its analysis is identical, and
the resulting approximation functions are two-sided (1 + ε)-approximations. In particular g1(0)

1+ε ≤ ĝ1(0) ≤
(1 + ε)g1(0).

Note that (1 + ε)ĝ1(0) serves as a one-sided (1 + ε)2-approximation for g1(0). In order to get a one-
sided (1 + ε)-approximation we change Step 2 of Algorithm 1 such that K := 1 +

√
1+ε−1
2T , so the algorithm

calculates ĝ1, which is a two-sided (
√

1 + ε)-approximation of g1. Therefore, (
√

1 + ε)ĝ1 is a one-sided (1+ε)-
approximation of g1 as needed.

8 Conclusions and Future Research

We presented the first FPTAS for the single-item stochastic inventory control problem. Other recent develop-
ments in approximation algorithms for stochastic dynamic and multistage programs are based on gradients
or sampling. Our framework is based on the notion of approximation sets and functions. We still use
the standard optimality equation or recursion; however, we consider only polynomially many states. Our
algorithm relies on the convexity of the value function.

We presented extensions to the basic model that do not require substantial modifications to the algorithm.
It is an interesting open question of whether there is an FPTAS if one relaxes the assumption of constant
lead time. Yet another interesting open extension is the consideration of the infinite time horizon problem
under stationary data.

In [DGGJ03], the authors investigate classes of counting problems that are interreducible under approx-
imation-preserving reductions. One of these classes is the class of counting problems that admit an FPRAS.
It is therefore interesting in this context to investigate the class of counting problems that admit an FPTAS.
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