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Abstract

We provide a model of all-or-nothing crowdfunding in which consumers arrive sequentially and

make decisions about whether to pledge or not. Pledging is not costless, and hence consumers

would prefer not to pledge if they think the campaign will not succeed. This uncertainty can lead

to cascades where a campaign fails to raise the required amount even though there are enough con-

sumers who want the product. The central contribution of the paper is the introduction of a novel

stochastic process — anticipatory random walks— to analyze this collective action problem. We use

this process to prove a series of inequalities that show that the success probability of crowdfunding

is bimodal: the outcomes concentrate around succeeding with high probability or failing with cer-

tainty. In addition to crowdfunding, this random walk and its analysis can find wider applications

in other contexts and dynamic problems where decisions made in the present are not only based

on history but also stochastically depend on future outcomes.

1 Introduction

Crowdfunding is an approach that allows businesses and entrepreneurs to decentralize the funding

process by directly appealing to the end consumer as a funding source. In a crowdfunding environ-

ment, a seller solicits financial contributions from the crowd, usually in the form of consumers buying

a still-unrealized product, and commits to producing the product if the total amount pledged is above

a certain threshold. The threshold is usually chosen to cover the amount of funds required to start

production, and the product is not funded if the campaign is unable to reach that threshold within
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an allotted amount of time. This funding paradigm can rectify some of the common inefficiencies

found in the traditional supply and demand process, as a seller does not commit to production until

demand is observed and necessary capital is raised, while consumers who are interested in products

that might be considered too risky or too specialized get a chance to help bring these products to

market. Crowdfunding platforms like Kickstarter and Indiegogo connect sellers with potential con-

sumers, as well as regulate these campaigns by a) vetting the seller and the proposed project, and

b) ensuring that consumers who make a pledge to buy follow through with their purchase if the

campaign is successful.

This paper presents a dynamic model of crowdfunding where consumers arrive sequentially and

make decisions on whether to back a product or not. The focus is on all-or-nothing funding schemes

similar to the one used exclusively on Kickstarter. Consumers have their own valuations for the

product and make their pledging decision after observing the following: a) the price of the product,

b) the aggregate contribution made by previous backers, c) the campaign funding target, and d) the

duration of the campaign. Pledging is not costless: after making a pledge and until the campaign

is over, a backer may have to pass on opportunities to use their money in anticipation of using it

to pay for their pledge if the campaign is successful. However, if the campaign fails, then not only

does the backer not get the product, but she has also forfeited the option to use the funds in the

interim. Because of this, consumers need to estimate the chances that a campaign will succeed before

they decide to make a pledge. This can lead to cascades where the absence of earlier pledges makes

those who arrive later pessimistic about the chances of campaign success, and therefore discourages

them from pledging, leading to a vicious cycle. Conversely, a pattern may emerge where consumers

estimate the success probability to be high and create a virtuous cycle through pledging. The goal of

this paper is to understand how and when do these different dynamics arise.

Contribution The primary contribution of this paper is methodological. We analyze the behavior of

consumers through introducing a novel stochastic process that we call an anticipatory random walk,

which has the property that the transition probability at every step of the walk depends on the prob-

ability of the walk eventually reaching a particular success state in the future. This random walk

is complicated to analyze because it anticipates the success probability at every time step, and this

anticipation takes into consideration future anticipations as well, leading to a recursive structure. We
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% funding received 0% 1− 20% 21− 40% 41− 60% 61− 80% 81− 99% ≥ 100%
Number of campaigns 55,847 205,635 32,268 13,562 5,605 4,210 199,581

Table 1: Total number of campaigns and the percentage of funding goal they received since the in-
ception of Kickstarter. Data collected on 4/9/2021. More on https://www.kickstarter.com/
help/stats

circumvent this difficulty by introducing a related dynamic process that is completely deterministic,

and whose analysis allows us to obtain concentration results for the anticipatory random walk and

the associated crowdfunding problem. In particular, we obtain bounds in terms of the problem’s pa-

rameters that characterize the regions in which campaigns fail with certainty or succeed with high

probability, and show the existence of a phase transition between these two regions. We believe that

this random walk and its analysis can find wider applications in other contexts and dynamic prob-

lems where the decisions made by current actors are not only based on history but also stochastically

depend on how they will affect the decisions of future actors. We mention some of these applications

in Section 5.

On the modeling side, the paper suggests that uncertainty arising from the collective action prob-

lem can be one of the salient features that affect pledging behavior, and embeds this feature in a

dynamic framework. We note that the predictions of our model agree with a sharp pattern observed

in the data on crowdfunding campaigns, namely, the bimodal distribution of campaign outcomes.

Campaigns either succeed, or fail to generate any substantial fraction of their funding goal, i.e. it is

unlikely that a campaign would fail by raising, for example, 85% of its target funding. The possible

outcomes are overwhelmingly tilted towards either success or dismal failure. Table 1 shows that out

of all projects on Kickstarter, 50% failed to generate more than 20% of their goal while ≈40% were

successfully funded. Our analysis of anticipatory random walks lead to similar concentration results,

suggesting that the model might be capturing some element of the underlying dynamics of crowd-

funding. It is important to point out that the paper does not claim to provide a singular explanation

for all crowdfunding outcomes or what makes a campaign successful. Instead, the goal of the paper

is to isolate what we believe is an important factor —uncertainty arising from the collective action

problem— and examine its effect on campaign outcomes.

Related Literature The potential for using crowds to improve the decisions and operations of firms
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has attracted a lot of recent attention. Araman and Caldentey (2016) and Marinesi and Girotra (2013)

explore the idea of using a crowd voting mechanism to gauge demand and interest in a product before

committing to production. Voting is costless and does not come with a commitment to purchase, and

hence their focus is on how the firm can use this information to update its estimates of demand and

adjust its funding target. Lobel et al. (2017) study how crowd referrals can be used as a marketing

tool for the firm. On the empirical front, Mollick (2014) provides a detailed analysis of data from ∼

48,500 Kickstarter projects. Similar to Table 1, he finds that projects either succeed, or they fail by large

margins, with failed campaigns raising only 8% of their funding target on average. Kuppuswamy and

Bayus (2013) use data to try and empirically understand the dynamics of crowdfunding, and find

that the propensity of backers to contribute is influenced by how much has already been pledged.

Similar effects are found by Wu et al. (2014) in the context of group buying. This is consistent with

the empirical and experimental literature on public goods. In a randomized experiment, List and

Lucking-Reiley (2002) find that donors give more when they are told that the required funding for

a project is near its goal. Similarly, Vesterlund (2003) finds that announcing contributions generates

more contributions. This self-reinforcing behavior is also observed in our dynamic model, where

backers’ decisions are influenced by the current contribution level. Bagnoli and Lipman (1989) and

Varian (1994) study if public goods can be curated through collecting private donations in an all-or-

nothing mechanism. In contrast to their work, the product in our model is a private good produced

through collective action, and no free-riding can happen since consumers only get the good if they

pay for it. Additionally, prices and the number of people required for success are set by the campaign

designer instead of letting donors decide their own contribution levels.

On the theory side, Belleflamme et al. (2014) develop a static model to explore when the campaign

creator should offer a pre-ordering scheme (like the one explored in this paper) or an equity-based

scheme where backers become investors. Anand and Aron (2003) also use a static model to examine

when group-buying is preferred to a posted-price mechanism and the timing of pricing and produc-

tion decisions when there is uncertainty about the size of the market. Jing and Xie (2011) show that

social interactions between informed and uninformed consumers can improve the efficiency of group

buying. In more recent work, Hu et al. (2015) adopt a product-line design approach to the crowdfund-

ing problem. They show that offering slightly-differentiated products and an accompanying menu of
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prices is optimal, whereas our main interest is in understanding how consumers in a dynamic setting

respond to the choices of product price and consequently the number of pledges required to reach an

exogenous goal. Hu et al. (2013) compare sequential and simultaneous group-buying mechanisms.

More recent work in Strausz (2017) and Belavina et al. (2020) examines the design of platform rules

in the presence of moral hazard (for example, sellers running away with the backers’ money), while

Babich et al. (2020) investigate when should entrepreneurs select crowdfunding vs. other methods of

funding. Chakraborty and Swinney (2020) show how a seller can use prices to communicate infor-

mation to consumers about the quality of the unrealized product.

This paper is also related to the social and observational learning literature, e.g., Lobel and Sadler

(2015); Acemoglu et al. (2011); Bikhchandani et al. (1992) and the survey in Acemoglu and Ozdaglar

(2011), where agents arrive sequentially and observe other agents’ choices, and then update their

beliefs about an underlying state of the world. The important difference is that the environment we

consider in this paper adds an element of collective action that is absent in that literature. Agents

do not act just to maximize their current utility (for example, by choosing a better retailer or a better

restaurant), but also because of the consequence of their choices on the actions of those agents who

follow, whose own choices affect the agents’ utility through the dependence of everyone’s payoff on

campaign success. Because of this, the underlying dynamics of these two environments are quite

different.

Finally, global games is a standard methodology for modeling uncertainty arising from collective

action (see, Carlsson and Van Damme (1993)). This framework captures similar situations to the one

we study in this paper where a collection of agents need to coordinate on an action (for example,

whether to show up for a protest, as in Ali (2011) or whether to go on a bank run Diamond and

Dybvig (1983)) and one of the challenges of that framework is the multiplicity of equilibria (see An-

geletos and Werning (2006)), which, as Dahleh et al. (2016) show, depends on the structure of the

information exchanged between agents. We remark that a static version of our problem can perhaps

be modeled following Dahleh et al. (2016), where information about the desirability of the product in

a network can be summarized by signals that agents utilize and compare against a threshold in order

to coordinate over whether to pledge or not. The setup employed in our paper however proposes

that consumers arrive sequentially in order to capture the temporal aspect of these campaigns, which
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cannot be modeled directly by global games, in which agents move simultaneously.

The paper is organized as follows. We introduce our benchmark model in Section 2. Section 3

is the main section of the paper: it defines anticipatory random walks and analyzes a related deter-

ministic process to obtain bounds on their success probability. Section 4 extends the model in several

directions, some related to the analysis of the stochastic process itself and some related to extending

the modeling choices of the benchmark model. Section 5 discusses model limitations and concludes

the paper.

discusses the limitations of our model and the associated difficulties with generalizing some of

the results, and Section 5 concludes the paper.

2 Benchmark Model

Our benchmark model has a seller who offers a (still-unrealized) product to consumers through an

all-or-nothing crowdfunding platform. The seller is interested in raising an exogenous minimum

target fund G to cover the various production costs, and chooses a pledge amount, or price p, for

the product being sold. The campaign has duration N and consumers arrive sequentially, with one

consumer arriving in each time period. We refer to the consumer arriving in period i = 1, ..., N , as

consumer i. Consumers can pledge p to the project upon their arrival or exit without pledging. If by

the deadline N the total amount raised is at least equal to the goal G (equivalently, if the total number

of pledges made is at least equal to k =
⌈
G
p

⌉
), then the campaign is successful: backers are charged p

each, funds are allocated to the seller, and production commences. Conversely, if the campaign falls

short of its goal, no one is charged. We assume that the seller has a prior on consumer valuations. In

particular, valuations are independent and consumer i, i = 1, .., N has valuation vi, where

vi =


vH with probability πi

vL with probability 1− πi

where vH is the consumer’s high valuation, and vL < vH is the consumer’s low valuation. Different

consumers need not have the same probability of having a high valuation, which can be used to

model different situations; for example, high-valuation consumers being more likely to arrive earlier
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in the campaign and so on. If consumer i decides to pledge, she gets utility equal to vi − p if the

campaign is successfully funded. As discussed in the introduction, consumers who pledge anticipate

paying the pledge amount at the conclusion of the campaign and therefore forfeit the opportunity to

use the funds in the interim. If the campaign fails, then backers would have tied up their money and

got nothing in return. This scenario is captured by having an opportunity (uncertainty) cost c > 0

that a backer incurs in case of campaign failure.

The utility of backer i can thus be written as

ui =


vi − p if campaign successfully funded ,

−c if not funded.
(1)

A consumer who does not pledge gets utility zero. Based on this discussion, a consumer’s decision

to pledge depends on the valuation for the product as well as the price, but also crucially hinges

on their belief about whether the campaign will succeed in reaching its goal G or not. This belief

changes from one backer to the next depending on the information set Ii of backer i, where Ii =

{mi, N − i + 1,π, vH , c, p}. This information set summarizes the current state of the campaign, with

mi being the total number of pledges made up to (and including) period i − 1, N − i + 1 indicating

how much time is left in the campaign (including the current period), and the remaining components

indicating the primitives of the problem, with π being the vector of probabilities of high valuations.

Let α(Ii) be the campaign success probability that consumer i estimates using her information set,

which we will denote by αi for short, then using (1) to write the expected utility E[ui], we get

E[ui] = αi(vi − p)− (1− αi)c,

which means that backer i will pledge only if her valuation vi satisfies

vi ≥
(

(1− αi)c
αi

+ p

)
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or equivalently, if the estimated success probability satisfies

αi ≥
c

vi − p+ c
= βi

The previous inequality indicates that a consumer will pledge if they estimate the probability of

success to be at least equal to a threshold βi. For backers to make a decision then, they need to be

able to estimate the success probability αi. The sequential nature of the problem can be described by

a recursion that we introduce and analyze in the next section.

3 Backer Behavior and Anticipatory Random Walks

We start this section by observing that if the price satisfies p ≤ vL, then everyone pledges as long as

Np ≥ G and no one pledges otherwise, i.e. there is no uncertainty about the outcome. If on the other

hand the price satisfies vL < p ≤ vH , then low valuation consumers will not pledge, which is the

more involved case and the one we consider in the rest of the paper. We can then assume without

loss of generality that vL is equal to zero. As discussed in the previous section, consumers estimate

success probabilities in order to decide whether to pledge or not. We can rewrite the inequality above

so that high-valuation consumers pledge only if the success probability they estimate satisfies

αi ≥
c

vi − p+ c
=

c

vH − p+ c
= β (2)

Note that the consumer’s problem is time and path-dependent: it matters not only how many con-

sumers have high valuations, but also the times at which these consumers arrive and what happened

up to that time.

The following recursion computes the probability of success at each time step. Let sji be the success

probability that consumer i estimates given that j pledges have been made up to and including her

own pledge. Recall that πi is the probability that consumer i has high valuation and that a campaign

succeeds if at least k pledges are made by time N . The probabilities sji can be written recursively as

8



follows:

sji =



0 i = N, j < k

1 i = N, j ≥ k

sji+1 i < N, sj+1
i+1 < β

πi+1s
j+1
i+1 + (1− πi+1)sji+1 j < N, sj+1

i+1 ≥ β

. (3)

We are interested in the campaign success probability s0
0. The next subsection defines a stochastic

process that corresponds to the above recursion and proves a few concentration inequalities that can

be used to characterize the likelihood of different campaign outcomes.

3.1 Anticipatory Random Walks

An anticipatory random walk is a stochastic process that is characterized by having current transitions

depend on the probability that future transitions satisfy a certain event. Formally

Definition 1. Given a probability β ∈ (0, 1), a target k ∈ N, and a sequence of independent Bernoulli

random variables X1, . . . ,Xn with known means π1, . . . , πn ∈ (0, 1], an anticipatory random walk is

given by a sequence of positions on the real line denoted by Y0,Y1, . . . ,Yn defined as follows:

Yi | Yi−1,Xi =


Yi−1 + Xi if Pr[Yn ≥ k | Yi = Yi−1 + Xi] ≥ β

Yi−1 if Pr[Yn ≥ k | Yi = Yi−1 + Xi] < β

Y0 = 0

A realization of an anticipatory random walk is called successful if it advances at least a total of k units

by the end of time n, i.e. if Yn ≥ k.

Informally, an anticipatory random walk advances one unit at time i if Xi = 1 and if the probability

of eventual success conditioned on current position at time i is at least equal to β. We are interested

in computing the probability of success at time 0. We note that the term anticipatory in our setting is

used to indicate thinking about, rather than actually seeing into, the future: transitions depend on

probabilities of future outcomes and not on the knowledge of the actual outcomes themselves. This
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departs from how the term is sometimes used in the stochastic processes literature. In the parlance of

that literature, the anticipatory random walk as defined above is an adapted process (see Grimmett

and Stirzaker (2001)).

Connection to crowdfunding Consider a scenario with n backers where the parameters of the prob-

lem are such that a consumer with high value pledges only if she believes that the campaign will be

funded with probability at least β (c.f. Equation (2)). This can be modeled as an anticipatory random

walk as follows:

- The target parameter k of the anticipatory random walk is the same as the minimum number of

pledges required for the success of the crowdfunding campaign.

- The parameter β from the anticipatory random walk is equal to the pledging threshold c
vH−p+c

of a backer in the crowdfunding problem.

- Each Bernoulli random variable Xi in the anticipatory random walk corresponds to the arrival

(or not) of one backer in the crowdfunding problem.

- Pr[Xi = 1] = Pr[vi = vH ] = πi, i.e. the probability that the Bernoulli random variable Xi = 1 is

the same as the probability that backer i has high valuation.

Thus, the success probability sji of the crowdfunding campaign when j pledges are made by i backers

is equal to Pr[Yn ≥ k|Yi = j], the success probability of an anticipatory random walk at time i given

that it advanced j steps. In particular, the ex-ante success probability of the anticipatory random walk

by the end of n time steps, i.e., Pr[Yn ≥ k], is exactly equal to the ex-ante success probability s0
0 of the

corresponding crowdfunding campaign.

The main result of our paper is the following concentration theorem:

Theorem 1. An anticipatory random walk as given in Definition 1 satisfies the following two properties:

• if
∑

i πi ≥ k(ln(1/(1− β)) + 1), then Pr[Yn ≥ k] ≥ β,

• if
∑

i log( 1
1−πi ) ≤ k ln(1/(1− β)), then Pr[Yn ≥ k] < β.
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The next section is devoted to proving this theorem. One novel aspect of our analysis is that, while

the process in Definition 1 is stochastic, the process we introduce and analyze in the next section is

completely deterministic.

3.2 A Flow Process

This section analyzes a dynamic flow process that enables us to obtain bounds on sji and in particular,

on s0
0, the probability of success of the anticipatory random walk and the corresponding crowdfund-

ing campaign. The process is deterministic and involves a fluid material flowing between nodes

according to set rules. We note some differences between this process and a traditional network flow

process: in the process we analyze, nodes are not merely conduits for flow, but also function as “con-

tainers” and store fluid themselves, up to unit capacity. Unlike classical flow problems, the focus is

not on the maximum or minimum amount of flow in a network of arbitrary topology, but rather on

the amount of fluid stored in these nodes as a function of how much time had elapsed.

Definition 2 (Dynamic Flow Process). Given a sequence q1, . . . , qn ∈ (0, 1) and an infinite sequence

of initially empty nodes indexed by integer numbers, the amount of fluid in node j ∈ N ∪ {0} at the

end of time step t ∈ {0, . . . , n} is given by btj , defined as follows:

btj =



qtb
t−1
j−1 + (1− qt)bt−1

j bt−1
j−1 ≥ β

0 bt−1
j−1 < β

0 t = 0, j ≥ 1

1 j = 0

(4)

This process can be visualized by seeing that the following takes place at every time step t ∈

{1, . . . , n}:

• Simultaneously for all nodes j ∈ N: if the amount of fluid in node j is at least β, a fraction qt of

the fluid in that node is moved to node j + 1, otherwise a fraction qt is discarded.

• qt units of fluid are added to node 1.
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Parameter Crowdfunding Anticipatory Random Walk Flow Process
Probability (Fraction of Fluid) Pr[vi = vH ] = πi Pr[Xi = 1] = πi qn−i+1 = πi

Success Probability (Amount of Fluid) sji Pr[Yn ≥ k|Yi = j] bn−ik−j

Table 2: Notation for equivalent quantities across the different Models

Connection to anticipatory random walks An anticipatory random walk with parameters β, k, and

π1, . . . , πn is related to a flow process with parameters q1, . . . , qn as follows:

- The target parameter k of the anticipatory random walk is the index of the kth node in the flow

process.

- For all nodes j, the threshold β from the anticipatory random walk is equal to the amount of

fluid in node j beyond which a fraction of fluid moves from node j to node j + 1 (and below

which a fraction of fluid in j is discarded).

- Pr[Xi = 1] = πi = qn−i+1, i.e., the probability that the Bernoulli random variable Xi = 1 is

equal to the fraction of fluid moved out of each node at time n− i+ 1.

Thus, the success probability of an anticipatory random walk at time i and given that it advanced j

steps, i.e., Pr[Yn ≥ k|Yi = j], is the same as the amount of fluid in node k− j at time n− i. Then from

the equivalence of Pr[Yn ≥ k|Yi = j] and sji , we have

sji = bn−ik−j . (5)

Table 2 provides the equivalent notation across the three processes. We are interested in comput-

ing bounds on the success probability s0
0, which from Equation (5), is the same as the amount of fluid

stored in node k at time n, bnk . Thus bounding this quantity enables us to get our desired result. To

this end, we give a few definitions and auxiliary results that help us derive the main theorem at the

end of this section.

Definition 3 (Critical Node). For each t ∈ {1, . . . , n}, the critical node at the end of time t is the node

whose index λt is given by

λt = max
{
j
∣∣ btj > 0, j ∈ N

}
∀t ∈ {1, . . . , n} . (6)
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We also define Bt to denote the total amount of fluid in all nodes (except node 0) at time t, i.e.

Bt =
∑
j∈N

btj ∀t ∈ {0, . . . , n} . (7)

Definition 4 (Critical Onset Time). For each j ∈ N, the critical onset time of node j, denoted by τj , is

the first time at which node j becomes the critical node:

τj = min
({
t
∣∣ λt = j

}
,∞
)

= min
({
t
∣∣ btj > 0

}
,∞
)

(8)

Observe that node j is the critical node only within the times t ∈ {τj , . . . , τj+1 − 1}, assuming

τj+1 <∞.

We are now ready to present our formal results about the above flow process. These results are

used to prove Theorem 1. The proofs of all results can be found in the appendix.

The following lemma states that the amount of fluid in a node increases over time and that nodes

are filled left-to-right, with any node having at most an amount of fluid that is equal to the amount of

fluid in a node with a lower index.

Lemma 1. The value of btj is (weakly) decreasing in j and (weakly) increasing in t. Furthermore, bt′j′ ≥ β for

all j′ ≤ j and all t′ ≥ τj+1 − 1, and bt′j′ < β for all j′ ≥ j and all t′ < τj+1 − 1.

Lemma 1 together with Definition 2 imply that in each iteration, the only discarded fluid comes

from the critical node. We use this property to characterize the total increase in fluid between two

consecutive time steps.

Lemma 2. The increase in the total amount of fluid in all nodes at time step t ∈ {1, . . . , n} is

Bt −Bt−1 = qt · (1− bt−1
λt ) (9)

We next calculate an upper bound on the amount of fluid in a node at any time t after that node

becomes critical. As we show shortly, combining that upper bound with Lemma 2 provides a lower-

bound on the total amount of fluid added in each step of the process.
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Lemma 3. The amount of fluid in node j ∈ N at time t ≥ τj is at most

btj ≤ 1−
t∏

t′=τj

(1− qt′). (10)

The next result is the main lemma used to prove the theorem at the end of this section. Utilizing

the shorthand notation (x)+ to denote max(x, 0), we can write

Lemma 4. The increase in the total amount of fluid in all nodes during the times that node j ∈ N is critical is

at least

Bt† −Bτj−1 ≥ β + (1− β)

 t†∑
t=τj

qt − ln(1/(1− β))

+

(11)

where t† = τj+1 − 1, or t† < τj+1 − 1 and
∑t†

t=τj
qt ≥ ln(1/(1− β)).

We now give the main result of this section.

Theorem 2. The flow process in Definition 2 satisfies the following two properties for any k ∈ N:

• if
∑

t qt ≥ k (ln(1/(1− β)) + 1), then bnk ≥ β

• if
∑

t log( 1
1−qt ) < k ln(1/(1− β)), then bnk < β.

The idea of the proof is to show that if the first condition in the theorem holds by the end of time n,

then the total amount of fluid in all nodes indexed 1 and higher must be greater than k, but since each

node has unit capacity, it must be that there are at least k + 1 non-empty nodes. But by Definition 2

and Equation (4), node k + 1 will only start filling up if node k has more than β amount of fluid in it,

and so the result follows.

Having proved Theorem 2, we can show the analogous result for anticipatory random walks:

Proof of Theorem 1 The proof follows immediately from Equation (5) and the fact that Pr[Yn ≥ k] =

s0
0 = bnk .
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3.3 Phase Transition and Success with High Probability

We use the results from the previous section to show the existence of a phase transition in the suc-

cess probability of the anticipatory random walk. In particular, the next proposition establishes the

existence of a threshold above which the random walk fails with certainty.

Proposition 1. (Phase Transition) An anticipatory random walk has a phase transition around k∗, for which

the following properties hold:

• if k ≤ k∗, then Pr[Yn ≥ k] ≥ βπ1,

• if k > k∗, then Pr[Yn ≥ k] = 0.

Furthermore, ∑n
i=2 πi

ln(1/(1− β)) + 1
≤ k∗ − 1 ≤

∑n
i=2 ln( 1

1−πi )

ln(1/(1− β))

In contrast to Proposition 1, Proposition 2 shows that a slight perturbation of the first condition

in Theorem 1 leads to the anticipatory random walk succeeding with probability close to 1: for every

0 < ε < 1, there is a corresponding threshold value such that if k is less than that value then the walk

succeeds with probability 1− ε.

Proposition 2. (Success with High Probability) For any ε > 0, there exists δ0(ε, n0) > 0 such that for all

δ ≥ δ0(ε, n0), if
∑n

i=1 πi ≥ (k + 1)(ln 1
1−β + 1)(1 + δ), then Pr[Yn ≥ k] ≥ 1 − ε, where n0 is such that∑n

i=n0
πi ≥ k(ln 1

1−β + 1).

Propositions 1 and 2 show that the outcomes of the anticipatory random walk concentrate around

success and failure, similar to the underlying crowdfunding application. Together with Theorem 1,

these results can apply to the problem of price selection. In particular, combining the fact that p = G/k

and the expression for β from Equation (2), we can write the first condition of Theorem 1 as

G ≤
∑
i

πi
p

ln
(

1 + c
vH−p

)
+ 1

=
∑
i

πih(p)
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where h(p) is a concave function in p and is maximized at p∗. This gives a quick bound on G as any

target goal with value less than
∑

i πih(p∗) succeeds with probability at least β. Similarly, we can

rewrite the condition from Proposition 2 to obtain a sufficient but more complicated expression for

the relationship between the parameters of the problem that guarantees success with probability 1−ε

for ε > 0. We have

1

1 + ln 1
1−β

n∑
i=1

πi ≥ (k + 1)(1 + δ)

= (G/p+ 1)

(
1 +

(ln(1/ε) ln(n))1/2

n(k/n)(1 + ln 1
1−β )

)

= (G/p+ 1)

(
1 +

(ln(1/ε) ln(n))1/2

(G/p)(1 + ln 1
1−β )

)

where the first equality follows from using the lower bound for δ from the proof of Proposition 2 (see

page 29). Noting that 1 + ln 1
1−β > 1, we see that given parameters n, c, vH , πi, and target goal G and

ε > 0, the campaign succeeds with probability at least 1− ε if the price p satisfies

1

1 + ln (1 + c
vH−p)

n∑
i=1

πi ≥ (G/p+ 1)

(
1 +

(ln(1/ε) ln(n))1/2

G/p

)

4 Extensions

4.1 Infinite and Stochastic Number of Periods

The focus of our paper has been on examining the behavior of the anticipatory random walk when the

number of periods is fixed. As is standard in the stochastic processes literature, we examine how our

results change if a) the number of periods is infinite or b) the number of periods is stochastic. While

not directly applicable to crowdfunding, these variations model situations like startup or venture

funding within a single investment round. Such endeavors usually consist of a sequence of stages

that should be completed, and it is possible that the process terminates at one of these stages be-

fore successfully concluding. Anticipating the probability of such termination changes the transition

probabilities themselves.

The next result shows that the anticipatory random walk always succeeds when the number of
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periods goes to infinity.

Proposition 3. For any fixed k, lim
n→∞

Pr [Yn ≥ k] ≥ β.

We now consider what happens with uncertain ending times. Continuing from above, assume

that the process can go on indefinitely, but that it can terminate every period with probability 1 − r.

Denote the random time of termination by n̄, then Definition 1 changes to:

Yi | Yi−1,Xi =


Yi−1 + Xi if Pr[Yn̄ ≥ k | Yi = Yi−1 + Xi] ≥ β

Yi−1 if Pr[Yn̄ < k | Yi = Yi−1 + Xi] < β

Y0 = 0

The process above fails if Yn̄ < k and succeeds otherwise. In what follows, we let πi = π for all i. We

note that without this assumption, the process is non-homogeneous and computing the absorption

probabilities in the proof of the next result becomes more challenging.

Proposition 4. An anticipatory random walk with target k, continuation probability r at every step, and

threshold β∗ =
(

rπ
1−(1−π)r

)k
satisfies the following for all β ∈ (0, 1):

• If β ≤ β∗, then Pr[Yn̄ ≥ k] =
(

rπ
1−(1−π)r

)k+1

• If β > β∗, then Pr[Yn̄ ≥ k] = 0.

4.2 Heterogeneous Costs

The benchmark model assumes that all consumers have the same uncertainty cost c. We now consider

the case where these costs are different from one backer to the next. This can account for the fact that

backers have different outside options and opportunity costs for tying up their money. We consider

the setup we have worked with so far (binary valuations) but let consumer i have cost ci. Recall that

βn−i+1 = ci
vH−p+ci

, and hence this is equivalent to having thresholds β1, ..., βn, with the conditions in

Equation (4) being btj > 0 only if bt−1
j−1 ≥ βj−1 for all j.

In Appendix B, we verify that our results hold for the case of heterogeneous uncertainty costs,

with slight modifications to our main theorem. To demonstrate the result, note that for example,
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customers who arrive earlier wait for longer until the campaign concludes, and hence also tie up

their funds for longer and as a result might incur higher penalties in case of failure, which will be

captured by having c1 ≥ c2 ≥ ... ≥ cn. Recall from Equation (5) that node indices in the flow process

run in the opposite direction to consumer indices, so that β1 ≤ ... ≤ βn. This implies that node i

takes longer to fill up to its respective βi as i increases (which corresponds to earlier arrivals requiring

higher success probabilities to pledge), therefore reducing the quantity of fluid in bnk . Nevertheless,

just like Theorem 2, Theorem 3 in Appendix B gives us a bound on bnk in terms of the other parameters

of the problem.

4.3 Managing Price

We have assumed that the price is fixed throughout the horizon. However, prices can be used as a

lever throughout the campaign in order to deal with specific realizations of sample paths as well as

compensate consumers differently for the level of risk they take on when they pledge. A consumer

who arrives on the last day of the campaign or after the campaign is successful faces no uncertainty

compared to someone who arrived before the funding target was met, and can therefore be offered a

different price to account for this fact. We now examine what happens if the price can be updated as

the campaign goes along. The primary difference between this case and the one we analyzed is that

once the price is fixed, as in the latter, the success probability is only a function of future arrivals. In

the former case however, the success probability is a function of both future arrivals and future prices.

Denote by gi the amount of target goal left after period i, with g0 = G, and let αi(gi) be the success

probability that consumer i estimates after she had made her pledging decision and the remaining

amount is gi.

Proposition 5. Denote by p∗i (gi−1) the optimal price in period i = 1, ..., N when there is gi−1 target goal left,

then p∗i (gi−1) satisfy

p∗i (gi−1) =


vH gi−1 > (N − (i− 1))vH

max
{

0, vH + c
(

1− 1
παi+1(gi−1−p∗i−p∗i+1)+(1−π)αi+1(gi−1−p∗i )

)}
gi−1 ≤ (N − (i− 1))vH

The right hand side can be considered consumer i’s effective valuation, which combines her valu-
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Figure 1: Success Probability for uniform, normal, and triangle distributions

ation for the product with the uncertainty she faces (assuming that future prices are optimally set).

The price p∗i extracts the entire effective valuation. Note that the resulting prices can fluctuate up

and down on any sample path, and do not necessarily have properties like earlier customers getting

charged less. Nevertheless, we remark that in this setting these prices are “fair”, in the sense that they

have built-in discounts to compensate consumers for the risk they take on.

5 Discussion and Model Limitations

The success of a crowdfunding campaign hinges on understanding and accurately predicting the be-

havior of potential backers. A model that accounts for the myriad behavioral and other idiosyncratic

factors that go into a backing decision is likely to be analytically intractable. In this paper, we iso-

late what we believe is a salient feature of these campaigns – backers’ uncertainty about the outcome

resulting from the collective action problem– and embed it in a dynamic framework whose analysis

helps illustrate the prevalent success and failure pattern observed in crowdfunding outcomes.

The paper’s central contribution is the introduction of anticipatory random walks. These stochas-

tic processes have the property that their transitions at each time step probabilistically depend on the
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walk reaching a certain state in the future, which complicates their analysis. Our technical results

show that outcomes of these walks concentrate around failure and success with high probability, and

provide conditions under which each of these outcomes materialize. These walks and their analysis

can be applied to a broad range of settings. One particular setup that resembles our framework is

how donations are made to candidates running for office (e.g., Mutz (1995)). Donors anticipating that

a particular candidate will not generate a lot of donation money are less inclined to put in their own

money. Similarly, Andreoni (2006) discusses how a large donor might back a candidate in anticipa-

tion of how this backing can signal future potential donors to contribute as well. Another example is

initial coin offerings (e.g., Gan et al. (2019)), which are quite similar to how crowdfunding operates ex-

cept that valuations can also change over time with how the process evolves (which ties this setup to

the correlated values discussion in the previous section). Single-round venture funding mentioned in

Section 4 is another example where present actions are affected by the likelihood of future outcomes.

Limitations Our model makes some simplifying assumptions to focus on the uncertainty aspect and

achieve tractability, but it can be extended on several fronts. The first of these would be to consider

the model in a setting where the valuations and costs come from arbitrary distributions. We believe

that the bimodal structure will still be maintained in this case, though the analysis becomes more

challenging (we refer the interested reader to Appendix B for details). The model in this case is

similar to a Markov jump system where the probabilities in the jump matrix Pij at time t depend

on the future jump probabilities. We are unaware of any work that addresses or even defines this

problem.

Despite the difficulty of deriving analytical results for the general valuations case, we conjecture

that the bimodal structure is preserved. Figure 1 provides simulation results for three valuation dis-

tributions that have the same mean (5) and standard deviation (2.88): uniform, normal, and triangle

distributions. It can be seen that for different prices and number of required pledges, the structure is

quite similar to the binary case we have analyzed in the paper.

Other venues for extension could be to consider correlated valuations, where not only the actions

but also the valuations of consumers are influenced by past backing behavior (so that projects that

attract early interest for example become more desirable). We also assume that consumers either

pledge or exit, and do not have the option to wait before making a pledge. There is a wealth of
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literature on pricing for strategic and/or patient agents (e.g., Besbes and Lobel (2015); Lobel (2020),

but no work that we are aware of that addresses the collective action problem of this paper, which

will require consumers to solve correlated optimal stopping problems whose equilibria are difficult

to pin down.

We are hopeful that the anticipatory random walk finds use beyond the setting developed in

this paper. There are multiple directions to extend this work in terms of application and methodol-

ogy. Beyond the suggestions highlighted above, continuous time analogs, for example, “anticipatory

Brownian motion” are also a potential extension and constitute yet another interesting area of future

research.
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Appendix

A Proofs

Proof of Lemma 1. We first show that btj is decreasing in j, using induction on t. For t = 0, b00 = 1 and

b0j = 0 for all j > 0. We next assume that for all t′ < t, bt
′
j ≥ bt

′
j+1, for all j, and we prove that btj ≥ btj+1,

for all j < λt−1. Using (4), we have

btj = qtb
t−1
j−1 + (1− qt)bt−1

j ≥ qtbt−1
j + (1− qt)bt−1

j+1 = btj+1,

where the first inequality holds by induction. Moreover, for j = λt−1, by definition btj > btj+1 = 0, and

for j > λt−1, btj = btj+1 = 0, completing the inductive proof of the first part. Using this property, we

next show that btj is weakly increasing in t. For all nodes with bt−1
j > 0, using (4), we have

btj = qtb
t−1
j−1 + (1− qt)bt−1

j = bt−1
j + qt(b

t−1
j−1 − b

t−1
j ) ≥ bt−1

j ,

where the last inequality follows from btj being weakly decreasing in j.

Finally by definition, at τj+1, bτj+1

j+1 > 0 for the first time, which can only happen if bτj+1−1
j ≥ β. Using

the first two parts of this lemma, it implies that for all j′ ≤ j, and for all t′ ≥ τj+1−1, bt
′
j′ ≥ β. Similarly,

at t′ < τj+1, bt
′
j+1 = 0, which implies that bt

′−1
j < β. Combining this with the first two parts of the

lemma, we have for all t′ < τj+1 − 1, and for all j′ ≥ j, bt′j′ < β, completing the proof.

Proof of Lemma 2. Using Lemma 1 at time t − 1, we have bt−1
j ≥ β for all j ≤ λt − 1, which implies

that except for the first node (with index 1) and the critical node (with index λt), any movement of

fluid is confined to be from one node to another, and thus the net change is equal to the amount of

fluid that enters the first node, which is qt, minus the amount of fluid that is discarded from the critical

node, which implies that

Bt −Bt−1 = qt · (1− bt−1
λt ).
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Proof of Lemma 3. The proof is by induction on t. The base case is t = τj for which the statement

holds trivially because

b
τj
j = qτjb

τj−1
j−1 + (1− qτj )b

τj−1
j

≤ qτj

where the equality follows from (4) and the inequality from the facts that bτj−1
j−1 ≤ 1 and bτj−1

j = 0. To

prove the induction step for t > τj observe that

btj = qtb
t−1
j−1 + (1− qt)bt−1

j

≤ qt + (1− qt)

1−
t−1∏
t′=τj

(1− qt′)


= 1−

t∏
t′=τj

(1− qt′).

where the inequality follows from b
τj−1
j−1 ≤ 1 and the induction hypothesis.

Proof of Lemma 4. First observe that if
∑t†

t=τj
qt ≤ ln(1/(1− β) and t† = τj+1 − 1, the right hand side

of eq. (11) is β, so the inequality holds trivially because

Bt† −Bτj−1 ≥
∑
j′

bt
†
j′ − b

τj−1
j′

≥ bt†j − b
τj−1
j

≥ β

where the second inequality is by monotonicity of bt
′
j′ in t′ and the third inequality is because bτj−1

j = 0

and bt
†
j ≥ β by Lemma 1. For the rest of the proof we assume without loss of generality there exists a

t∗ ∈ {τj , . . . , t†} and ∆ ∈ [0, qt∗ ] such that
∑t∗−1

t=τj
qt + ∆ = ln(1/(1 − β). Observe that by definition of

τj for all times t ∈ {τj , . . . , t†}, the critical node is j, that is λt = j. Therefore

Bt† −Bτj−1 =
t†∑
t=τj

Bt −Bt−1
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=
t†∑
t=τj

qt · (1− bt−1
j ) by Lemma 2 and λt = j

=
t∗−1∑
t=τj

qt · (1− bt−1
j ) + ∆ · (1− bt∗−1

j )

+

Ψ︷ ︸︸ ︷
(qt∗ −∆)(1− bt∗−1

j ) +

t†∑
t=t∗+1

qt · (1− bt−1
j )

≥
t∗−1∑
t=τj

qt ·
t−1∏
t′=τj

(1− qt′) + ∆ ·
t∗−1∏
t′=τj

(1− qt′) + Ψ by Lemma 3

=
t∗−1∑
t=τj

(1− (1− qt)) ·
t−1∏
t′=τj

(1− qt′) + ∆ ·
t∗−1∏
t′=τj

(1− qt′) + Ψ

=

t∗−1∑
t=τj

 t−1∏
t′=τj

(1− qt′)−
t∏

t′=τj

(1− qt′)

+ ∆ ·
t∗−1∏
t′=τj

(1− qt′) + Ψ

= 1− (1−∆)
t∗−1∏
t′=τj

(1− qt′) + Ψ by refactoring

≥ 1− e
−∆−

∑t∗−1
t′=τj

qt′
+ Ψ by e−x ≥ 1− x

= β + Ψ by definition of t∗ and ∆

= β + (qt∗ −∆)(1− bt∗−1
j ) +

t†∑
t=t∗+1

qt · (1− bt−1
j ) by expanding Ψ

≥ β + (qt∗ −∆)(1− β) +

t†∑
t=t∗+1

qt · (1− β) by Lemma 1

= β + (1− β)

 t†∑
t=τj

qt − ln(1/(1− β))

 by definition of t∗ and ∆

Proof of Theorem 2. We start by proving the first statement. We show that the index of the critical

node at time nmust be at least k+1 which then implies bnk ≥ β. The proof is by contradiction. Suppose

the index of the charging node at time n is j∗ ≤ k and first assume that
∑n

t=τj∗−1
qt ≥ ln(1/(1 − β)

then
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Bn =

j∗−1∑
j=1

Bτj+1−1 −Bτj−1

+Bn −Bτj∗−1

≥

j∗−1∑
j=1

β + (1− β)

τj+1−1∑
t=τj

qt − ln(1/(1− β))

++Bn −Bτj∗−1 by Lemma 4

≥ j∗ · β + (1− β)

(
n∑
t=1

qt − j∗ ln(1/(1− β))

)+

> j∗ · β + (1− β) (k · ln(1/(1− β)) + k − j∗ · ln(1/(1− β))) by theorem’s hypothesis

≥ j∗,

which is a contradiction, implying that j∗ > k. Note that each node has at most 1 unit of fluid and the

critical node has at most β amount of fluid. We next consider
∑n

t=τj∗−1
qt ≤ ln(1/(1 − β). Similar to

the previous argument we have

Bn =

j∗−1∑
j=1

Bτj+1−1 −Bτj−1

+Bn −Bτj∗−1

≥

j∗−1∑
j=1

β + (1− β)

τj+1−1∑
t=τj

qt − ln(1/(1− β))

++Bn −Bτj∗−1 by Lemma 4

≥ (j∗ − 1) · β + (1− β)

(τj∗−1∑
t=1

qt − (j∗ − 1) ln(1/(1− β))

)
+Bn −Bτj∗−1

≥ (j∗ − 1) · β + (1− β)

 n∑
t=1

qt −
n∑

t=τj∗−1

qt − (j∗ − 1) ln(1/(1− β))

+

+Bn −Bτj∗−1

≥ (j∗ − 1) · β + (1− β)

(
n∑
t=1

qt − j∗ ln(1/(1− β))

)+

+Bn −Bτj∗−1

> (j∗ − 1) · β + (1− β) (k · ln(1/(1− β)) + k − j∗ · ln(1/(1− β))) +Bn −Bτj∗−1

> (j∗ − 1) + bnj∗ ,

which is a contradiction (where the next to last inequality follows from the theorem’s hypothesis),

again implying j∗ > k.

25



We now prove the second statement. Suppose, bnk ≥ β, then combining with Lemma 3, we have

(1− β)k ≥ (1− bnk)
k−1∏
i=1

(1− bτi+1−1
i )

≥

(
1− (1−

n∏
t=τk

(1− qt))

)
×
k−1∏
i=1

1− (1−
τi+1−1∏
t=τi

(1− qt))


=

n∏
t=1

(1− qt) = e
∑
t ln(1−qt)

> e
−k ln( 1

1−β )
= (1− β)k,

which is a contradiction, implying bnk < β and completing the proof.

Remark 1: Using a Taylor series expansion, the left-hand side of the second bullet in the statement of

the theorem can be written as
∑

i qt −O(q2
t ). Assuming qt are sufficiently small, a first-order approxi-

mation of the sum can be rewritten as
∑

t qt < k ln(1/(1− β).

Remark 2: Theorem 2 can be generalized to the case where the uncertainty costs are heterogeneous.

Please see Appendix B for details.

Proof of Proposition 1. We first show the existence of the threshold k∗. Let

k∗ = max{k : Pr(Yn ≥ k|Y1 = 1) ≥ β}

If k > k∗, we show that Yn = 0 via induction. Using Definition 1, we have Y1 = Y0 = 0. We next

show that Yi = 0, assuming Yi−1 = 0. We have

Pr [Yn ≥ k | Yi = 1] < Pr [Yn ≥ k | Y1 = 1] < β,

which implies that Yi = Yi−1 = 0 as desired. Now, if k ≤ k∗ then we have

Pr [Yn ≥ k] ≥ Pr [Yn ≥ k | Yi = 1]×Pr [Yi = 1] ≥ β × π1,

which shows the first part of the proposition. The proof of the upper and lower bounds for k∗ fol-
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lows from the equivalence in Equation (5) and noticing that s1
1 = bn−1

k−1 . Using the first statement of

Theorem 2, we have

k∗ ≥ k1 =

∑n
t=2 qt − q1

ln( 1
1−β ) + 1

+ 1 ≥
∑

t qt

ln( 1
1−β ) + 1

Also, using the second statement of Theorem 2, we have

k∗ ≤ k2 =

∑n
t=2 ln( 1

1−qt )

ln( 1
1−β )

+ 1,

completing the proof.

Proof of Proposition 2. Define θ = ln 1
1−β , and π̄ = k

n , i.e. π̄ is the fraction of required pledges to the

total number of arrivals (and is a constant). We break the proof into the following steps:

1. We first show that under the proposition assumption for all 1 ≤ i ≤ n0, Yi = Yi−1 +Xi.

2. We then show that under the proposition assumption, for t > n0, under the event that
∑i

j=1Xj ≥∑i
j=1 πj − δ(1 + θ)(1 + k), we have Yi = Yi−1 +Xi, for all i ≤ t.

3. Finally, we show that under the proposition assumption, the probability that
∑t

j=1Xj ≥
∑t

j=1 πj−

δ(1 + θ)(1 + k) for all t ≥ n0, is at least 1− ε.

4. Combining the preceding three steps implies that under the proposition assumption, with prob-

ability 1− ε, we have Yn =
∑n

i=1Xi ≥ k, completing the proof.

To show the first step we should show that Yi = Yi−1 + Xi for all 0 ≤ i ≤ n0, i.e. a consumer will

pledge if she has high valuation. By the definition of n0, we have

n∑
i=n0

πi ≥ k(1 + θ).

Using Theorem 2, this would imply that at step i ≤ n0, even if no one before i pledges, Pr[Yn > k|Yi =

Yi−1 +Xi] ≥ β, therefore by Definition 1 we have Yi = Yi−1 +Xi, i.e., Yn0 =
∑n0

j=1Xj , completing the

proof of the fist part.

We next show the proof of the second step.
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We let At denote the event that at time t,
∑t

j=1Xj ≥
∑t

j=1 πj − δ(1 + θ)(1 + k). We next show

that when the proposition condition holds, i.e.,
∑n

i=1 πi ≥ (k + 1)(θ + 1)(1 + δ), and when the event⋂t
i=n0

Ai also holds, then Yi = Yi−1 + Xi, for all i ≤ t. As was shown in step (1), for all i ≤ n0,

Yi = Yi−1 +Xi, therefore, we only need to prove the statement for i > n0. The proof of this step is via

induction.

Assume by way of induction that for t− 1, under the proposition assumption and when the event⋂t−1
i=n0

Ai holds, that Yi = Yi−1 + Xi for all i ≤ t − 1. We prove that at time t, if the event
⋂t
i=n0

Ai

holds, then Yi = Yi−1 + Xi for all i ≤ t as well. Using the induction hypothesis, and since
⋂t−1
i=n0

Ai

holds, for all i ≤ t − 1, we have Yi = Yi−1 + Xi =
∑i

j=1Xj . Therefore, it suffices to show that

Yt = Yt−1 + Xt. Using Definition 1, Yt = Yt−1 + Xt if Pr[Yn ≥ k|Yt = Yt−1 + Xt] ≥ β. We next show

that under the proposition’s assumption when event
⋂t
i=n0

Ai holds, Pr[Yn ≥ k|Yt = Yt−1 +Xt] ≥ β.

Let s denote the integer for which s(1 + θ) ≤
∑n

i=t+1 πi ≤ (s+ 1)(1 + θ). This implies that
∑t

i=1 πi ≥

(k + 1)(1 + δ)(1 + θ)− (s+ 1)(1 + θ) = (k − s)(1 + θ) + δ(1 + θ)(1 + k). We then have

Pr [Yn ≥ k|Yt = Yt−1 +Xt] = Pr

Yn ≥ k|Yt =
t−1∑
j=1

Xj +Xt


= Pr

Yn ≥ k|Yt =
t∑

j=1

Xj


≥ Pr [Yn ≥ k|Yt ≥ (k − s)(1 + θ)]

≥ Pr [Yn − Yt ≥ s− (k − s)θ] ,

where the first equality follows from the induction hypothesis and the next to last inequality holds

because we assumed event At holds. Moreover, we have
∑n

j=t πj ≥ s(1 + θ). Combining this with

Theorem 2 implies that

Pr [Yn − Yt ≥ s− (k − s)θ] ≥ Pr [Yn − Yt ≥ s] ≥ β,

completing the induction proof, and therefore the proof of the second step.

Finally, we prove that assuming
∑n

i=1 πi ≥ (k+1)(1+θ)(1+δ), for δ ≥ δ0(ε, n0) =
(

ln (1/ε) ln (n−n0)
nπ̄2(1+θ)2

)1/2
,

then the probability that
⋂n
i=n0

Ai holds is at least 1− ε. We let Āi denote the complement of event Ai,
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i.e., Āi denote the event that at time i,
∑i

j=1Xj ≤
∑i

j=1 πj − δ(1 + θ)(1 + k). We show that for any

i ≥ n0, Pr[Āi] ≤ ε. Using Hoeffding’s inequality we have,

Pr
[
Āi
]

= Pr

 i∑
j=1

Xi ≤
i∑

j=1

πj − δ(1 + θ)(1 + k)


= Pr

(Ei[X]− 1

i

i∑
j=1

Xi) ≥
δ(1 + θ)(1 + k)

i


≤ e−2i(

δ(1+θ)(1+k)
i

)2 .

Using the bound on Pr[Āi] we next bound the the probability of the event
⋂n
i=n0

Ai. In particular, we

have

Pr

[
n⋂

i=n0

Ai

]
= 1−Pr

[
n⋃

i=n0

Āi

]
≥ 1−

n∑
i=n0

e−2i(
δ(1+θ)(1+k)

i
)2

≥ 1−
n∑

i=n0

e−2n(δ(1+θ)π̄)2 ≥ 1− (n− n0)e−2n(δ(1+θ)π̄)2 ,

where the second inequality follows from the definition of π̄. Therefore for δ ≥ δ0(ε, n0) =
(

ln (1/ε) ln (n−n0)
nπ̄2(1+θ)2

)1/2
,

the anticipatory random walk succeeds with probability at least 1− ε.1

Proof of Proposition 3. This is immediate from the first condition in Theorem 1 and the fact that

πi > 0 for all i, as

lim
n→∞

n∑
i=1

πi =∞ > k(ln(1/(1− β)) + 1

and therefore bnk ≥ β.

Proof of Proposition 4. We construct the transitions in Figure 2 on top of the random walk, where the

state j denotes 0, 1, ..., k−1, along with the two absorbing states F and S to denote the process failing

or succeeding, respectively. Let sj = Pr[Yn = k | Yi = j], i.e. the (non-anticipatory) probability of

reaching state S from state i, then from the transition probabilities in Figure 2, we get

sj =

(
rπ

1− (1− π)r

)k−j+1

1 Note that δ0(ε)→ 0 as n grows larger.
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Figure 2: Transition probabilities for stochastic end times. State S denotes success while state F de-
notes Failure.

i.e. sj > sj−1. In particular, s1 =
(

rπ
1−(1−π)r

)k
= β∗ ≥ β =⇒ sj ≥ β for all j > 1. Thus if s1 < β,

Yn = 0 for all n. In particular, Yn̄ = 0 and the walk fails, as in the second statement of the proposition.

Similarly, If s1 ≥ β, then the process succeeds with Pr[Yn = k | Y0 = 0] = s0 =
(

rπ
1−(1−π)r

)k+1
,

proving the first statement of the proposition.

Proof of Proposition 5. First note that when the condition gi−1 > (N−(i−1))vH holds then there are

not enough consumers to raise the required amount. The price in this case does not matter because

no one pledges.

The recursion for the success probability αi(gi) is given by:

αi(gi) =


1 gi ≤ 0

0 gi > (N − i)vH

παi+1(g − p∗i+1) + (1− π)αi+1(gi) 0 < gi ≤ (N − i)vH

Recall that if consumer i estimates success probability αi(gi) then she pledges only if βi(p∗) ≤

αi(gi). Thus the maximum price p∗i that she can be charged satisfies

βi(p
∗
i ) = αi(gi)

c

vH − p∗i + c
= αi(gi−1 − p∗i )

= παi+1(gi−1 − p∗i − p∗i+1) + (1− π)αi+1(gi−1 − p∗i )
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from which,

p∗i = vH + c

(
1− 1

παi+1(gi−1 − p∗i − p∗i+1) + (1− π)αi+1(gi−1 − p∗i )

)
.

B Additional Material

B.1 Heterogeneous Costs

We provide the details of how our analysis changes when consumers have different heterogeneous

costs. The first three lemmas immediately hold. However, Lemma 4 becomes:

Lemma 5. The increase in the total amount of fluid in all nodes during the times that node j ∈ N is critical is

at least

Bτj+1−1 −Bτj−1 ≥ βj + (1− βj)

τj+1∑
t=τj

qt − ln(1/(1− βj))

+

The analogous result for this case shows that we again have a concentration result with slightly

different conditions that mirror the heterogeneity in βi:

Theorem 3 (Theorem 2 Revisited). The flow process with β1, ..., βn and βmax = max{β1, ..., βn} satisfies

the following two properties for any k ∈ N:

• if
∑
qt ≥

∑k
i=1(1−βi)
1−βmax +

∑k
j=1 ln(1/(1− βj)), then bnk ≥ βk

• if
∑

t ln( 1
1−qt ) <

∑k
i=1 ln(1/(1− βi)), then bnk < βk.

The proofs of Lemma 5 and Theorem 3 resemble the proofs of the benchmark case with some

slight modifications. They are presented below. We omit the ∆ term found in the proof of Lemma 4

for simplicity (the presence of this term ensures integrality but is not crucial for the correctness of the

argument).
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Proof of Lemma 5 Suppose
∑τj+1

t=τj
qt > A and let t∗ be such that

∑t∗

t=τj
qt = A, then

Bτj+1−1 −Bτj−1 =

τj+1−1∑
t=τj

Bt −Bt−1

=

τj+1−1∑
t=τj

qt(1− bt−1
j )

=
t∗∑
t=τj

qt(1− bt−1
j ) +

τj+1−1∑
t=t∗+1

qt(1− bt−1
j )

≥
t∗∑
t=τj

qt

t−1∏
t′=τj

(1− qt′) +

τj+1−1∑
t=t∗+1

qt(1− bt−1
j )

=
t∗∑
t=τj

(1− (1− qt))
t−1∏
t′=τj

(1− qt′) +

τj+1−1∑
t=t∗+1

qt(1− bt−1
j )

=
t∗∑
t=τj

 t−1∏
t′=τj

(1− qt′)−
t−1∏
t′=τj

(1− qt′)

+

τj+1−1∑
t=t∗+1

qt(1− bt−1
j )

= 1−
t∗−1∏
t′=τj

(1− qt′) +

τj+1−1∑
t=t∗+1

qt(1− bt−1
j )

≥ 1− e
−

∑t∗−1
t′=τj

qt′
+

τj+1−1∑
t=t∗+1

qt(1− bt−1
j )

= βj +

τj+1−1∑
t=t∗+1

qt · (1− bt−1
j )

≥ βj +

τj+1−1∑
t=t∗+1

qt · (1− βj)

= βj + (1− βj)

τj+1−1∑
t=τj

(qt −A)


= βj + (1− βj)

τj+1−1∑
t=τj

(qt − ln(1/1− βj))



Proof of Theorem 3 Denote by A =
∑k
i=1(1−βi)
1−βmax +

∑k
j=1 ln(1/(1− βj))

Bn =

j∗−1∑
j=1

Bτj+1−1 −Bτj−1 +Bn −Bτj∗−1
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≥
j∗−1∑
j=1

βj + (1− βj)

τj+1−1∑
t=τj

qt − ln(1/(1− βj))

+

+Bn −Bτj∗−1

≥
j∗−1∑
j=1

βj + (1− βj)

τj+1−1∑
t=τj

qt − ln(1/(1− βj))

+

Noting that
∑τj+1−1

t=τj
qt ≥ A, the last expression is minimized when it is equal to

=
k∑
j=1

βj + (1− βmax)(A−
k∑
j=1

ln(1/(1− βj)))

≥

 k∑
j=1

βj + (1− βmax)(

∑k
i=1(1− βi)
1− βmax

+
k∑
j=1

ln(1/(1− βj))−
k∑
j=1

ln(1/(1− βj))


= k

which proves the first part of the theorem as the index of the critical bucket is at least k+ 1 and hence

bkn ≥ βk.

Similarly, suppose that the conditional statement in the second bullet of the theorem holds but

that bnk ≥ βk, then combining with Lemma 5, we have

k∏
i=1

(1− βi) ≥ (1− bnk)
k−1∏
i=1

(1− bτi+1−1
i )

≥

(
1− (1−

n∏
t=τk

(1− qt))

)
×
k−1∏
i=1

1− (1−
τi+1−1∏
t=τi

(1− qt))


=

n∏
t=1

(1− qt) = e
∑
t ln(1−qt)

> e
−

∑k
i= ln( 1

1−βi
)

=

k∏
i=1

(1− βi)

which is a contradiction, establishing that bnk < βk.

B.2 General Types

Suppose that each consumer has a two dimensional type (ci, vi) where the costs ci and the valuations

vi come from separate iid distributions over (0,∞). Fix a price p and recall that a consumer pledges
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when she estimates a probability of success αi > ci
vi−p+ci = βi. Thus, under price p consumer i has an

equivalent one-dimensional type βi(p). We will remove the dependence on p in what follows but it

should be implicit from that point on that everything is parameterized by p. The price p together with

the distributions on c and v induce a distribution G(β) over (−∞,∞). In particular, vi > p ⇐⇒ βi ∈

(0, 1). Let π = G(1) − G(0) and denote by F (b) = Pr(β < b|0 ≤ β ≤ 1), i.e F (β) is the (conditional)

distribution over those β values that fall in the unit interval and represent thresholds of consumers

who have an actual chance of pledging. This means that if consumer i estimates success probability

αi, then she pledges with probability πF (αi).

We then write the success probability recursion in terms of the above parameters:

sji =


πF (sj+1

i+1 ) · sj+1
i+1 + (1− πF (sj+1

i+1 )) · sji+1 i < N

1 i = N, j ≥ k

0 i = N, j < k

The corresponding anticipatory random walk is given as follows, with the difference between this

walk and the one we analyzed being the heterogeneous thresholds βi:

Yi|Yi−1, Xi =


Yi−1 +Xi if Pr[Yn ≥ k|Yi = Yi−1 +Xi] ≥ βi

Yi−1 if Pr[Yn ≥ k|Yi = Yi−1 +Xi] < βi

Y0 = 0

Finally, the flow process can be written as:

btj =


πF (bt−1

j−1)bt−1
j−1 + (1− πF (bt−1

j−1))bt−1
j t ≥ j, j ≥ 1

0 t < j

1 j = 0

(12)

We can write qjt = πF (bt−1
j−1) in the above recursion to facilitate comparison with the original recur-
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sion in Equation (4). In the latter, the probabilities qt are exogenous and independent of the indices

of the nodes. By contrast, the probabilities qjt in Equation (12) are endogenous to the process and

index-dependent. This makes it significantly harder to analyze. In particular, the model resembles a

Markov jump system where the probabilities in the jump matrix Pij at time t depend on the future

jump probabilities. This makes it difficult to prove an analog of Lemma 4, which is the key lemma

that helps us bound the increase in flow in every time step in order to prove the main theorems in the

paper. Nevertheless, based on the simulations in Figure 1, we conjecture that the properties we prove

in the paper continue to hold in this case.
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