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Integer Programming and Combinatorial Op-
timization

Katta G. Murty Lecture slides

Integer Programming deals with linear programs with addi-

tional constraints that some variables can only have values

• 0 or 1

• integer values

• or values in some specified discrete set

0−1 variables, also called binary or Bolean variables used
whenever we have to select one of two alternatives.

Example: Binary variables In automobile design, need

to decide whether to use cast iron or aluminium engine block.

Introduce a binary variable with definition:

y =


0 if cast iron block used

1 if al. block used
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In this model need to restrict y to 0−1 values only, because
other values for y have no meaning. Such 0−1 variables called
combinatorial choice variables.

Example: Integer Variables: Army decides to use combat

simulators to train soldiers. Each costs $ 5 million US. Let

y = no. of combat simulators purchased by Army.

Then y ≥ 0 is an integer variable.

Example: Discrete Variables: In designing water distrib-

ution system for a city, diameter of pipe to be used for a particular

link needs to be decided. Pipe available only in diameters 16”,

20”, 24”, 30”. So, if

y = diameter of pipe used on this link

y can only take a value from set {16, 20, 24, 30}. This is a
discrete valued variable.

Each discrete variable can be replaced by binary variables in

the model.
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Types of IP Models

If all variables in model are required to take integer values only,

model called a Pure IP Model. In addition, if they are all required

to be 0 or 1, model called a 0−1 Pure IP Model.
If some variables are required to be integer, and others can be

continuous, model called Mixed IP Model, or MIP. If all integer

decision variables are binary, model called 0−1 MIP.
Integer Feasibility Problem refers to a problem in which there

is no objective functions to be optimized, but aim is to find an

integer solution to a given system of linear constraints. In such a

model, if all variables binary, it is called 0−1 Feasibility Problem.

Examples: Subset sum problem with data {d1 to d10} =
{317, 89, 463, 572, 59, 311, 484, 786, 898, 944}, d0 = 2206.
Equal Partial sums problem with data a {26, 97, 84, 30, 78, 112,

9, 65, 54}, b = {39, 7, 8, 58, 27, 46, 73}.
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Many puzzles from recreational math. can be posed as 0−1
feasibility problems. Here is one, from Shakespeare’s Merchant

of Venice, which we solve by Total Enumeration.

The

portrait is in

this casket

The portrait

is not in this

casket

The portrait

is not in the

gold casket

1 = Gold 2 = Silver 3 = Lead

Figure 10.1

130



Combinatorial Optimization deals with the problem of

finding the best arrangement subject to specified constraints. Most

combinatorial optimization models involve following components.

Useful Models

Location Where to put

the plants?

p-median model, set cov-

ering model

Partition Divide a set

into subsets

Set partitioning, 0—1 IP,

Assignment

Allocation Allot jobs to

machines

Assignment, 0—1 IP

Routing Find optimal

routes

TSP, Nonbipartite perfect

matching

Sequencing Find op-

timal order for

jobs etc.

TSP, Permutation models

Scheduling Arrange events

over time

DP, Heuristics.
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Formulation Examples

The One Dimensional Knapsack Problem: is a single

constraint pure IP.

n types of objects are available. For i = 1 to n, ith type has

weight wi kg and value vi $.

Knapsack has weight capacity of w kg .

Objects cannot be broken. Only a nonnegative integer no. of

them can be loaded into knapsack.

Determine which subset of objects (and how many of each) to

load into knapsack to maximize total value loaded subject to its

weight capacity.

Two versions; nonnegative integer knapsack problem, 0—1

knapsack problem.

Simplest pure IP. Many applications. Appears as a subproblem

in algorithms for cutting stock problem.
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Example: n = 9. w = 35 kg.

Type Weight Value

1 3 21

2 4 24

3 3 12

4 21 168

5 15 135

6 13 26

7 16 192

8 20 200

9 40 800
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Application: Journal Subscription Problem: Project car-

ried out at UM-COE library in 1970’s. For sample problem, sub-

scription budget is $650.

Journal Subscription Readership

1 80 7840

2 95 6175

3 115 8510

4 165 15015

5 125 7375

6 78 1794

7 69 897

8 99 8316
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Multidimensional Knapsack Problem: You get this if

no. of constraints is > 1

Multiperiod Capital Budgeting Problem: Determine

which subset of projects to invest in to maximize total expected

amount obtained when projects sold at end of 4th year. Money

unit = US $10,000.
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Project Investment needed in year Expected selling price

in 4th year

1 2 3

1 20 30 10 70

2 40 20 0 75

3 50 30 10 110

4 25 25 35 105

5 15 25 30 85

6 7 22 23 65

7 23 23 23 82

8 13 28 15 70

Funds available 95 70 65

to invest

Set Partitioning, Set Covering, and Set Packing Prob-

lems

Let Am×n be a 0—1 matrix, e = (1, . . . , 1)T a column vector

of all 1’s in Rn; and c a general integer cost vector.

These 3 models are very important 0—1 pure IPs with many
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applications. They are:

Set Covering Problem: min z = cx subject to Ax ≥ e,
and x is 0—1.

Set Partitioning Problem: min z = cx subject to

Ax = e, and x is 0—1.

Set Packing Problem: min z = cx subject to Ax ≤ e,
and x is 0—1.

Example: US Senate Simplified Problem: Select smallest size

committee in which senators 1 to 10 are eligible to be included,

subject to constraint that each of following groups must have at

least one member on committee.
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Group Eligible senators

in this group

Southerners {1, 2, 3, 4, 5}
Northerners {6, 7, 8, 9, 10}
Liberals {2, 3, 8, 9, 10}
Conservatives {1, 5, 6, 7}
Democrats {3, 4, 5, 6, 7, 9}
Republicans {1, 2, 8, 10}

Facility Location Problem: Area divided into 8 zones. Av-

erage Driving time (minutes) between zones given below. Blank

entries indicate that time is too high. Need to set up facilities

(like fire stations, etc.) in a subset of zones. Constraint: every

zone must be within critical time (25 minutes) of a zone with a

facility. Find best locations for smallest no. of facilities.
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Average driving time

to j = 1 2 3 4 5 6 7 8

from i = 1 10 25 40 30

2 8 60 35 60 20

3 30 5 15 30 60 20

4 25 30 15 30 60 25

5 40 60 35 10 32 23

6 50 40 70 20 25

7 60 20 20 35 14 24

8 30 25 25 30 25 9

Fire Hydrant Location Problem: Street network with

traffic centers 1 to 6, and street segments (1, 2), (1, 5), (1, 7), (2,

3), (2, 5), (3, 4), (4, 5), (4, 6), (6, 7). Find locations for smallest

no. of fire hydrants so that there is one on every street segment.

Assignment Problem: n machines, m jobs, where

n ≥ m. cij = cost of doing job j on machine i.

Each machine can do at most one job.

Each job must be carried out on exactly one machine.
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Assign jobs to machines to minimize cost of completing all jobs.

By Integer Property of Transportation problems, this problem

can be solved as an LP, because optimum solution of LP relaxation

obtained by Simplex method will be integral.

The Traveling Salesman Problem (TSP) :

A salesperson’s trip begins and ends in city 1, and must visit

each of cities 2, . . . , n exactly once in some order.

c = (cij), the n× n cost matrix for traveling between pairs of
cities, is given.

If the cities visited in order are: 1, p2, . . . , pn; 1 this is called

a Tour, and its cost is: c1,p2 + cp2,p3 + . . . + cpn−1,pn + cpn,1.

Find a minimum cost tour.

Differences Between LP and IP Models:
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LP IP

1. Theoretically proven

nec. and suff. optimality

conditions exist. Useful to

check whether a given fea-

sible solution optimal

No known opt. conds.

to check whether a given

feasible sol. is opt.,

other than to compare

it with every other feasi-

ble solution implicitly or

explicitly.

2. Algos. are alge-

briac methods based on

opt. conds.

All existing

methods are enumerative

methods based on partial

enumeration.

3. Excellent software

packages available. Very

large models can be solved

within reasonable times

using them.

Performance of algorithms

is very highly dependent

on problem data. For

most models, only mod-

erate sized problems can

be solved within reason-

able times.
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The Branch and Bound Approach:

Assume original problem minimization problem. Let K0 = its

set of feasible solutions.

During B&B K0 is partitioned into many simpler subsets, each

subset is set of feasible sols. of a problem called a Candidate

Problem or CP.

Each CP is the original problem, augmented with additional

constraints called Branching Constraints.

Branching constraints are simple constraints generated by an

operation called Branching.

Whenever a new CP is generated, an

LB = Lower Bound for min. obj. value in it

is computed by a procedure called Lower bounding strat-

egy.
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For some CPs, the LB strategy may actually produce a mini-

mum cost feasible sol. in it. In this case, that CP is said to be

Fathomed, it need not be processed any further, so is taken out

from further consideration.

Among the optimum solutions of fathomed CPs, the best is

called the incumbent at this stage, and it is stored and updated.

So, the objective value of incumbent is an Upper Bound for the

min obj. value in original problem.

The incumbent and upper bound change whenever a new and

better feasible sol. appears in method due to fathoming.

In each stage, method selects one CP to examine, called Cur-

rent CP.

• If LB for current CP ≥ current Upper Bound, this CP is

Pruned, i.e., discarded. The Partial enumeration prop-

erty of method comes from this.

• Otherwise, set of feasible solutions of this CP is partitioned
into 2 or more subsets by applying branching strategy on it.
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Main Steps in B&B

Bounding: B&B uses both :

Upper Bound for min objective value in original

problem: Changes whenever incumbent does, and decreases

when it changes.

Lower Bound for min obj. value in each CP: Calu-

culated by applying LB strategy on it.

Pruning: Deleting some CPs from further consideration. A

CP is pruned

• if its LB ≥ Current UB

• if it is fathomed

• if it is found infeasible

Branching: This operation on a CP (Called Parent Node,

generates two or more new CPs (called its Children).
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The various steps:

The LB strategy: Most commonly used LB strategy is based

on solving a relaxed problem.

To find LB for a CP, this strategy relaxes (i.e., ignores) difficult

constraints in it until remaining problem can be solved by an

efficient algo. Opt. sol. of relaxed problem called Relaxed

Optimum. Objective value of relaxed opt. is a LB for the CP.

Fathoming Criterion: If relaxed opt. satisfies the relaxed

constraints,it is in fact an opt. sol. for that CP.

Examples: TSP

0—1 Knapsack

Pure 0—1 IP

MIP.
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The Braching Strategy:

Usually carried out by selecting a Branching Variable, one

that is likely to make LBs for children as high as possible.

If branching variable is a 0—1 variable x1, branching constraints

are:

If branching variable is an integer variable x1 whose value in

present relaxed optimum is the nonintegral x̄1, branching con-

straints are:

1 Union of sets of feasible solutions of child problems is always

the set of feasible solutions of parent.

2 Every child always inherits all branching constraints in its

parent. So always, LB for child ≥ LB for parent.
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The Search Strategy:

List refers to the set of all unexplored CPs in the present stage,

i.e., set of all Live nodes, those not yet branched, fathomed or

pruned.

One strategy picks current CP to branch to be the one in list

with least lower bound.

Another is a backtrack search strategy based on depth first

search.

Search terminates when list becomes ∅. Incumbent then is an
optimum solution.
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B&B for MIP Based on LP Relaxation:

Example: Consider following MIP.

y1 y2 x1 x2 x3 x4 −z b

1 0 0 1 −2 1 0 3/2

0 1 0 2 1 −1 0 5/2

0 0 1 −1 1 1 0 4

0 0 0 3 4 5 1 −20
y1, y2 ≥ 0, and integer; x1 to x4 ≥ 0; z to be minimized
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B & B for 0−1 knapsack problem
Object Wt. wj Value vj Density vj/wj

1 3 21

2 4 24

3 3 12

4 21 168

5 15 135

6 13 26

7 16 192

8 20 200

9 40 800

Wt. capacity = 35

The formulation of the problem is:
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Simplified method to solve LP relaxation of 0−1
knapsack

Load knapsack with available objects in decreasing order of

density. In end, if a full object won’t fit, load it at fractional value

that will fit.
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HWs. 1. Given set of integers {80, 66, 23, 17, 19, 9, 21, 32}, need to find a subset of them s. th.
their sum is as close to 142 as possible, without exceeding it. Formulate.

2. Object of weight w = 3437, a balance, and multiple copies of stones with weights 1, 5, 15, 25,
57, 117, are available.

Put object in right pan of balance. Determine how many stones of each wt. to put in left and/or
right pans to balance, using smallest no. of stones. Formulate.

3. Company considering opening plants to make a product. 4 sites (S1 to S4) available, with
following data. Demand for product in markets M1,M2,M3 has to be met. In following table:

1 Fixed cost is cost that must be paid to keep plant at site open/day.
2 Capacity is the production capacity (tons/day) of plant at site, if it is kept open on that day.
3 Cost/ton including production and shipping costs, from site to the market.

Site Fixed cost1 Capacity2 Cost/unit to ship to3

M1 M2 M3

S1 $400 120 $25 37 48
S2 600 80 38 15 29
S3 350 130 32 37 21
S4 500 110 20 42 38

Daily demand 80 70 40

At most two plants can be left open daily. Plant at S1 can be left open only if plant at S2 is also
opened. Plants at either S2 or S3 or both must be left open daily. Formulate to decide which plants to
open, and the shipping pattern, to minimize total cost. Do not solve numerically.

4. Letter A is worth 1 point, B is worth 2 points, etc. Consider following words (these words may
have no meaning in English): DBA, DEG, CFG, AID, FFD, IGB, AGC, BDF, EAE.

You need to select exactly 4 words among these to: maximize sum of their third letter values,
subject to constraint that sum of their 1st letter values is ≥ sum of their second letter values + 5.
Formulate, do not solve numerically.

5. 5 projects being considered. Table gives data on AR = expected annual return, FI = investment
needed in first year, WC = working capital expenses, and SE = expected safety and accident expenses,
on each project in money units.

Project AR FI WC SE
1 49.3 150 105 1.09
2 39.5 120 83 1.64
3 52.6 90 92 0.95
4 35.7 20 47 0.37
5 38.2 80 54 0.44

Constraint ≥ 100 ≤ 250 ≤ 300 ≤ 3.8
on total

To determine which projects to approve to max expected annual return from approved projects, s.
to constraints. Formulate.

6. Solve MIP by B & B: max 4y1 + 5x1 + x2 subject to
3y1 + 2x1 ≤ 10
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y1 + 4x1 ≤ 11
3y1 + 3x1 + x2 ≤ 13
y1, x1, x2 ≥ 0, x1, x2 integer.
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7. Solve MIP by B & B: max 4y1 + 3x1 + x2 s. to
3y1 + 2x1 + x2 ≤ 7
2y1 + x1 + 2x2 ≤ 11
y1, x1, x2 ≥ 0, x1, x2 integer.

8. Solve 0−1 knapsack problem with following data using B & B: Knapsacks weight capacity = 15.

Weight 6 8 5 4
Value 17 23 13 9

9. Solve 0−1 knapsack problem with following data using B & B: Knapsacks weight capacity = 40.

Weight 19 15 20 8 5 7 3 2 4
Value 380 225 320 96 70 126 30 22 68
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