
11.1

Dynamic Programming (DP)

Katta G. Murty Lecture slides

DP deals with sequence of decisions, one after the other. DP

deals with Sequetial Decision Processes.

Considers system that can be in one of a Finite number of

states each point of time. State Space = set of all possible

states of system.

In each state, One of a finite no. of actions or decisions,

has to be taken. Set of actions for each state is different.

For each action, either an Immediate cost has to be paid

(in minimization problems), or an Immediate Profit or Re-

ward obtained (in maximization problems), and system moves

to another state. Whole process stops when system reaches a

Specified Final State.

Markovian Property: Immediate cost incurred, & next

state system moves to, always depend only on present state &

decision taken there, and not on past states through which sys-

154

tem arrived at current state, i.e., given present state, future

is independent of the past.

Additivity of Objective Func.: Objective func. is either

Total cost or the Total reward.

Representation using a Network

A Network is set of Nodes & set of Directed arcs, each

arc directed from one node (called Tail node of arc) to another

(called Head node of arc). Arc directed from node i to node j

is denoted by (i, j).

For sequential decision process, we represent each state by a

node.

At a node i suppose there are 3 different decisions possible, and

taking these decisions leads to states j1, j2, j3. Then we include 3

arcs (i, j1), (i, j2), (i, j3) incident out of node i.

Thus each arc represents a possible decision at tail node of arc.

Length of each arc = immediate cost (or reward) of corre-

sponding decision.

155

Sequence of states visited by system called a Realization. It

depends on initial state & decisions made at various states along

sequence.

Each realization corresponds to a path in network from initial

node to terminal node. Total cost of realization is sum of lengths

of arcs on path.

Policies, Optimal Policy

A policy is a rule that specifies the decision to take in each

possible state of system.

An optimum policy is one that minimizes total cost (or maxi-

mizes total reward).

Multi-Stage Problems

A multi-stage problem is a sequential decision problem with

state space partitioned into subsets called Stages. Each stage

has ≥ 1 states. Stages themselves arranged in some order, and

numbered 1, . . . , n. System always moves from one stage to next

until terminal stage reached. So every decision taken in stage r

156

leads to stage r + 1.

Multistage models arise in situations where decisions are taken

on a periodic basis, say every time period.

Some sequetial decision processes are staged; others have no

stages at all.

Example: Driving home from work in Shortest Time

States are various street intersections between home and work.

Network is street network with street intersections as nodes, and

various street segments as arcs.

157

An example without stages: Solving Nonnegative In-

teger Knapsack Problem by DP

Type j Weight wj Value vj

1 3 600

2 4 700

3 5 500

4 2 180

5 20 2000

6 30 6000

Knapsack weight capacity w = 12

An example of staged DP: Solving 0—1 knapsack

problem by DP

Only one copy of each object is available for loading into knap-

sack.

Here, remaining knapsack’s weight capacity does not completely

characterize state of system, we also need to know which object

types are already loaded, and which are still available for loading

into it.

158

So, a staged representation is convenient here. Process has

n stages. In rth stage we consider loading object type r only.

In each stage we have states representing the remining weight

capacity of knapsack.

The Optimum Value Function (OVF)

Let S = State space.For each s ∈ S define

f (s) = Minimum total cost incurred (or maxi-

mum total reward obtained) by pursuing

an optimal policy beginning with s as ini-

tial state.

f(s) is called the OVF

Boundary Conditions

Terminal states are specified, process terminates whenever sys-

tem reaches one of terminal states. So future cost (or reward) in

each terminal state is 0, i.e.,

f(s) = 0 if s is a terminal state.

159

These are called Boundary conditions that the OVF must

satisfy.

The Principle of Optimality

If ir is a node on the shortest path from a node i0 to a node

ik, then the portion of this path between nodes ir to ik must be

a shortest path from ir to ik.

This simple observation is basis for principle of Optimality

used to develop Recursive Method for DPs. Here is one version

of this principle:

VERSION 1: If s is a state encountered in an optimum realiza-

tion beginning in state s0 and following an optimal policy, then

the portion of this realization from s to the end is an optimum

realization if process begins in state s.

160

The Functional Equations Satisfied by OVF

Consider cost minimization problem. Let

s0 = Current state

k = no. possible decisions in state s0 with

immediate costs c1, . . . , ck and state

transitions s1, . . . , sk

f(st) = Min. cost incurred by pursuing opti-

mum policy beginning with st as initial

state, for t = 1 to k

ct + f(st) = Total cost from now till end, if we take

decision t in current state s0 but fol-

low an optimum policy from next state

onwards.

Hence optimum decision in current state s0 is the one which

minimizes ct + f(st), i.e.,

f(s0) = min{ct + f(st) : t = 1 to k}

And optimum decision in state s0 is t that minimizes RHS.

161

Above eq. known as Functional eq. or Optimality Eq.

satisfied by OVF f(s). If we know the values of f (s1), . . . , f(sk),

we can use it to find f(s0).

We know f(s) = 0 for all terminal states. Using this and

functional eqs. we can compute OVF at all states by moving

backwards from terminal states one state at a time.

This method of evaluating OVF called Recursive Technique

or Backwards Recursion.

Final output from this consists of OVF and optimum decision

to take in each possible state of system.

162

To find Shortest paths from every node to a destina-

tion node in acyclic staged network

163

Finding Shortest paths from every node to a desti-

nation node in an acyclic network that is not staged,

by DP

A directed network said to be Acyclic if it has no circuits (i.e.,

directed cycles). The nodes in such a network can be numbered

in such a way that on every arc the

number of tail < the number of head.

Such numbering called Acyclic numbering of nodes.

How to find acyclic numbering of nodes?

1 Look for un-numbered nodes which are not “head” of any

remaining arc.

if none, network not acyclic, terminate.

Otherwise number all such nodes serially in any order begin-

ning with next unused integer. Then go to 2.

2 If all nodes numbered, you have acyclic numbering, terminate.

Otherwise, consider all newly numbered nodes and arcs in-

cident at them as deleted, and go back to 1 with remaining

164

network.

Examples:

165

DP Algorithm to find Shortest Paths to a destination

node in an acyclic network

Find acyclic numbering of nodes. Suppose there are n nodes,

and node n is destination node. Define OVF

f(i) = Length of shortest path from i to node n.

Boundary condition is f(n) = 0. The functional eq. is:

f(i) = min{cij + f(j) : j such that (i, j) is an arc}

The j that attains the minimum above is the next node to go

to when at node i.

Beginning with f(n) = 0 use backwards recursion to find f(i)

in order n− 1, n− 2, . . . , 1.

166

Finding Shortest Paths from an Orign node to all

other nodes in an acyclic network by DP

1 Find acyclic numbering of nodes. Let node 1 be origin.

2 Set up OVF and boundary conditions:

f(i) = Length of shortest path from node 1 to node i

Boundary condition f(1) = 0.

3 Write functional equations.

f(i) = min{cji + f(j) : j such that (j, i) is an arc}.

The j that attains the minimum here is the node from which

you come to node i.

4 Beginning with f(1) = 0, use this recursion to find f(i) in

the order i = 1, 2, . . . , n− 1, n.

167

Solving Nonnegative Integer Knapsack Problems by

DP

Object i Weight wi Value vi

1 3 12

2 4 12

3 3 9

4 3 15

5 7 42

6 9 18

Knapsack weight capacity w0 = 12

The state of the system is characterized by the remaining knap-

sack weight capacity, which can take integer values between 0 to

12 in this problem.

The OVF in state w is:

f(w) = Max possible value that can be loaded into

knapsack if weight capacity is w.

The functional equations are:

f(w) = max{vi + f(w − wi) : i = 1 to n s. th. wi ≤ w}
and the boundary conditions are: f(0) = f(1) = f (2) = 0.

168

Solving 0—1 Knapsack problem by DP

Object i Weight wi Value vi

1 3 12

2 4 12

3 3 15

4 7 42

5 9 18

Knapsack weight capacity w0 = 12

Only one copy of each object available

For k = 1 to 5, decision whether to include object k or not, will

be made only in stage k. So, states in the system are: (k, w) : k

= 1 to 5, w = 0 to 12. The OVF is:

f(k, w) = Max possible value that can be loaded into

knapsack if weight capacity is w, and only

objects {k, k+1, . . . , n} are available (i.e.,
beginning in stage k in state (k,w) and

going upto stage n).

169

Only two possible actions available in stage k, they are:

1 Not to include object k. If this action taken in state (k, w)

transition will occur to state (k+1, w) with immediate reward

of 0.

2 To include object k. This action available in state (k, w) only

if w ≥ wk, and in this case transition will take place to state
(k + 1, w − wk) with immediate reward of vk.

The recursive eqs. are:

f(k, w) =


f(k + 1, w) if w < wk

max{f(k + 1, w), vk + f(k + 1, w − wk)} if w ≥ wk
And the boundary conditions are:

f(n,w) =


0 if w < wn

vn if w ≥ wn

170

Resource Allocation Problems Solved by DP

• Consider single resource with ≤ k units availab.

• Resource can be allocated to n different activities, but only
in integer quantities.

• For i = 1 to n, y = 0 to k, ri(y) = reward (profit) obtained
by allocating y units of resource to activity i , is data given.

• The objective is to find optimum allocation of available re-

source among activities to maximize total reward.

Examples of Applications

1 How many inspectors to allocate to each river (or region) to

monitor pollution?

2 How many patrol cars to allocate to different highway seg-

ments to catch speeding drivers?

3 How many campaign volunteers should a politician allocate

to each district to get maximum total votes?

171

4 How many machines to allocate to different products?

5 How many $ million to allocate to different regions to maxi-

mize benefit?

etc.

For i = 1 to n let xi = number of units of resource allocated

to i th activity.

Aim: find optimum (x1, . . . , xn) that maximizes total reward.

Can solve using staged DP. n stages. In stage i we decide

only xi, the number of units (integer) of resource allocated to ith

activity only.

So state in this system is of form (i, !) where i = stage, and !

= total resource units available. i = 1 to n, ! = 0 to k.

The OVF is:

f(i, !) = Maximum total reward that can be ob-

tained from activities i to n only with

! units of resource available to allocate

among them.

The boundary conditions are:

172

f(n, !) = max{ri(t) : 0 ≤ t ≤ !}

If t̄ attains the maximum in above, opt. decision in state (n, !)

is to allot t̄ units of resource to activity n.

The recurrence eqs. are:

f((i, !)) = max{ri(xi) + f((i + 1, !− xi)) : 0 ≤ xi ≤ !}

If x̄i attains max. in above, optimum decision in state (i, !) is

to allot x̄i units of resource to activity i and continue as in state

(i + 1, !− x̄i).

Example:

EPA wants to max. no. tests of dioxin contamination of Michi-

gan rivers. State divided into 3 regions. Table gives data on the

no. tests that can be conducted in each region by allotting some

inspectors.

EPA willing to appoint total 5 inspectors. Determine howmany

to allot to each region to max. total number tests conducted over

whole state per month.

173

No. of tests/month if

r inspectors allotted

Region r = 1 2 3 4 5

1 25 50 80 117 125

2 20 70 130 150 160

3 10 20 35 40 45

Homeworks:
1. US govt. plans to spend money in an economically depressed region to increase employment,

over a period of 3 years. Funds can only be spent in integer no. of units of $1 mil. in any year. Here is
estimated returns.

New jobs created if $r mil. are spent in year
Year r = 0 1 2 3 4 5 6 7 8
1 0 5 15 40 80 90 95 98 100
2 0 5 15 40 60 70 73 74 75
3 0 4 26 40 45 50 51 52 53

Find an optimum policy for spending the funds over the planning horizon, which maximizes the
total number of additional jobs created, using DP.

2. There are 4 types of investments. Each accepts investment only in integer multiples of certificates.
We have 30 units of money to invest (1 unit = $1000). Following table provides data on rewards obtained
from investments in the different types.

Investment Cost Reward for buying r certificates
type (units/certificate) r = 1 2 3 4 5

1 3 2 3 8 16 23
2 2 1 2 4 7 12
3 4 4 8 15 24 30
4 6 4 9 23 36 42

At least one certificate of each type must be purchased. Use DP to determine the optimum number
of certificates of each type to buy to maximize total reward.

3. There are 4 objects available for loading into a knapsack of unlimited weight capacity. Data on
the objects is given below.

174

Object i 1 2 3 4
Value vi 7 16 19 15
Weight wi 3 6 7 5

An unlimited number of copies of each object are available for loading into the knapsack. Define

g(t) = the minimum total weight of items needed in order to achieve
a total value of at least t in the knapsack.

Find g(t) and the associated (complete) optimal policy for t = 25.

175

