
6.1

Simplex Method for LP
Katta G. Murty Lecture slides

First: Put problem in Standard Form which is:

Min z = cx subject to Ax = b and x ≥ 0.

All variables nonnegative variables. Only equality constraints.

Every LP can be put in standard form by following simple

steps.

1. Convert obj. to min. form.

2. Convert ineq. constraints involving 2 or more variables into

eqs. with appropriate slacks (slack vars. are always nonnegative

vars.).

−2x1−x4+x7 ≤ −13 becomes −2x1−x4+x7+s1 = −13,

s1 ≥ 0.

x1 − 2x5 ≥ −8 becomes x1 − 2x5 − s2 = −8, s2 ≥ 0.

3. A variable with only one bound (lower or upper). Convert

into eq. with slack. Use eq. to eliminate variable.
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x1 ≤ 6 becomes x1 + s3 = 6 or x1 = 6 − s3 where

s3 ≥ 0.

x2 ≥ 4 becomes x2 − s4 = 4 or x2 = 4 + s4 where

s4 ≥ 0.

4. A Variable with both lower & upper bound restrictions.

If lower bound 0, leave it as nonegativity restriction; & treat

upper bound converted into an eq. as a constraint.

If lower bound �= 0, say 6 ≤ x3 ≤ 10, make x3 = 6 + s5

where 0 ≤ s5 ≤ 4. Now treat bounds on s5 as above.

5. Put all equality constraints in detached coeff. tableau form.

If there are any unrestricted variables, eliminate them by pivoting.

Example: max z′ = x1 − 2x2 + x3 − x4

subject to x1 + x2 + x3 + x4 ≥ 6

x1 − x2 − x3 − x4 ≤ −7

−2x1 + x2 − x3 = 12

2 ≤ x1 ≤ 10, x2 ≥ 5, x3 ≥ 0, x4 unrestricted.

Second: Transform all RHS constants in constraint rows
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into nonnegative numbers.

Example: min z = −3x4 + 2x2 − 2x1 − x3 + 2

s. to x4 − 2x − 2 + x1 − x3 = −12

−x2 + 2x3 + x5 − 2x4 + x1 = −2

3x5 − 2x1 + x4 − 2x3 = 6

and xj ≥ 0 ∀ j.

The resulting tableau, calledOriginal Tableau is of following

form:

x1 . . . xj . . . xn −z

Original a11 . . . a1j . . . a1n 0 b1 ≥ 0

constraint ... ... ... ... ...

rows am1 . . . amj . . . amn 0 bm ≥ 0

Original c1 . . . cj . . . cn 1 −z0

obj. row

Third: Look for variables whose col. vecs. (among con-

straint rows only, ignoring obj. row) are unit vecs.

1. If all unit vectors found, for i = 1 to m, select a variable
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associated with ith unit vec. as ith basic variable or basic

variable in ith row. Leads to a feasible basic vector.

Price out all basic columns: For i = 1 to m, convert cost

coeff. of ith basic var. to 0, by subtracting suitable multiple of

ith row from obj. row.

Now select −z as basic variable in obj. row. The matrix con-

sisting of basic cols. in proper order in present tableau is unit ma-

trix, so present tableau is canonical tableau WRT present

basic vector. Go to Phase II: Simplex algo. to solve original

LP with it.

2. If one or more unit vectors are missing in original tableau,

we don’t have fesible basic vector to start simplex algo.

Now we construct a Phase I problem to find feasible basic vector

for original problem first. For i = 1 to m, if

if original tableau has ith unit vector, select a variable

associated with it as ith basic variable;

if original tableau does not have ith unit vector, introduce

an artificial variable associated with ith unit vector
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& 0 cost coeff. in original obj. row, and select it as ith

basic var. All artificials are required to be ≥ 0.

Define:

w = sum of artificials introduced.

w called infeasibility measure or Phase I obj. func. mea-

sures how far away present Phase I sol. is from feasibility to

original problem.

w ≥ 0 always, and if w becomes 0, all artificials must be 0, so

sol. feasible to original prob.

Introduce: (sum of artificials) −w = 0 as Phase I obj.

row at bottom of tableau. Now original obj. row called Phase

II obj. row.

Price out all basic cols. in both obj. rows.

Select −z,−w as basic vars. in Phase II, I obj. rows. Now we

have Phase I canonical tableau WRT present basic vec. Go

to Phase I.

Examples:
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x1 x2 x3 x4 x5 x6 −z

1 1 −1 0 1 0 0 10

−1 0 3 0 0 1 0 1

1 0 −2 1 0 0 0 2

−10 2 20 −2 −1 3 1 0

x1 x2 x3 x4 x5 x6 x7 −z

1 −1 1 1 1 0 0 0 1

1 1 0 −3 −1 1 0 0 2

1 1 0 −2 −1 0 1 0 0

2 −3 −1 1 −5 −2 3 1 0

x1 x2 x3 x4 x5 x6 −z

1 1 −1 0 0 1 0 0

1 −1 1 1 1 0 0 4

1 1 1 0 1 1 0 6

−2 −1 −3 −1 1 2 1 0
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Phase II: Simplex algorithm to solve original problem

Begins with canonical tableau WRT feasible basic vector, of

following form:

Canonical formWRT feasible basic vec. xB = (x1, . . . , xm,−z)

BV x1 . . . xm xm+1 . . . xn −z

x1 1 . . . 0 ā1,m+1 . . . ā1n 0 b̄1 ≥ 0

... ... . . . ... ... ... ... ...

xm 0 . . . 1 ām,m+1 . . . āmn 0 b̄m ≥ 0

−z 0 . . . 0 c̄m+1 . . . c̄n 1 z̄

xj ≥ 0∀j, min z

Present BFS is:



x1

...

xm

xm+1

...

xn




=




b̄1

...

b̄m

0

...

0




z = z̄
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The updated entries in obj. row, c̄j are called relative or

reduced cost coefficients.

Result: Optimality criterion in simplex algorithm:

If relative cost coeffs. of all nonbasic variables are ≥ 0, present

BFS is optimal. Remember relative cost coeffs. of basic variables

are always 0.

Example:

BV x1 x2 x3 x4 x5 x6 −z

x1 1 0 0 −1 3 2 0 3

x2 0 1 0 −2 −1 1 0 4

x3 0 0 1 3 1 −1 0 0

−z 0 0 0 4 6 7 1 −10

xj ≥ 0 ∀ j, min z.

Equation given by obj. row is:

or z =

Present BFS is:
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


x1

x2

x3

x4

x5

x6




z =
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How to get a better sol. if opt. criterion

not satisfied?

Consider following example.

BV x1 x2 x3 x4 x5 x6 −z

x1 1 0 0 1 −1 2 0 3

x2 0 1 0 2 −1 1 0 10

x3 0 0 1 −1 2 2 0 6

−z 0 0 0 −6 −8 2 1 −100

xj ≥ 0 ∀ j, min z.

From obj. row we get: z = 100 − 6x4 − 8x5 + 2x6.

The present BFS & obj. value are:



x1

x2

x3

x4

x5

x6




z =
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Obj. value will decrease if nonbasics x4 or x5 with relative

cost c̄j < 0 are increased from present values of 0. That’s why

nonbasics with c̄j < 0 are called eligible nonbasic variables

to enter basic vector.

A step in Simplex Algo. Selects one eligible var. & tries to

increase its value from 0 to λ say. This variable called entering

variable in this step. All nonbasics other than entering var.

remain fixed at 0. Updated col. of entering var. in present

canonical tableau called pivot column in this step.

Suppose x4 selected as entering var. When value of x4 changed

from 0 to λ, from tableau new sol. as function of λ is:



x1

x2

x3

x4

x5

x6




=




3 − λ

10 − 2λ

6 + λ

λ

0

0




z = 100 − 6λ
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As λ ↑ z ↓. So, should give λ max. possible value. But

basic variables in rows 1, 2 (in which pivot col. has positive entry)

keep ↓ as λ ↑.

x1, 1st basic var. becomes 0 when λ reaches 3, and will

be < 0 if λ > 3.

x2, 2nd basic var. becomes 0 when λ reaches 5 = 10/2,

and will be < 0 if λ > 5.

Hence max value for λ is 3 = min{3/1, 10/2}, called mini-

mum ratio in this step, denoted by θ.

New sol. obtained by fixing λ = θ = 3 in above formula. In

it, 1st basic var. x1 becomes 0, and is replaced from basic vec.

by entering var. x4. Hence x1 called dropping basic var.

in this step. Canonical tableau WRT new basic vec. obtained

by performing GJ pivot step, with pivot col. & row 1 (row of

dropping basic var. x1) as pivot row. This pivot step transforms

RHS vec. into vector of basic values in next sol.

Here is computation of min ratio, & pivot step.
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BV x1 x2 x3 x4 x5 x6 −z RHS Ratio∗

x1 1 0 0 1 −1 2 0 3 3/1 = min, PR

x2 0 1 0 2 −1 1 0 10 10/2

x3 0 0 1 −1 2 2 0 6

−z 0 0 0 −6 −8 2 1 −100 min = θ = 3.

PC

∗ (RHS)/(PC entry), only in rows with (PC entry) > 0.
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General step in Simplex algo.

Eligible var. = any nonbasic var. with relative cost c̄j < 0

in present tableau.

Entering var. = an eligible var. selected to enter basic vec.,

xs say.

Pivot col. (PC) = col. of entering var. in present tableau.

Pivot row (PR) = row in which min ratio attained (see

below). Break ties arbitrarily.

Dropping var. = present basic var. in pivot row, which will

be replaced by entering var.

PC RHS Ratio b̄i/āis

xs computed only if āis > 0

ā1s b̄1

ā2s b̄2

... ...

āms b̄m

c̄s −z̄ Min ratio = θ.
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Unboundedness of Obj. func. Consider

BV x1 x2 x3 x4 x5 x6 −z RHS

x1 1 0 0 1 −3 2 0 6

x2 0 1 0 1 −7 1 0 7

x3 0 0 1 1 0 1 0 8

−z 0 0 0 −2 −5 −10 1 −10

xj ≥ 0 ∀ j, min z.

Eligible vars. are:

Select x5 as entering var. Making x5 = λ, leaving x4, x6 at 0

leads to: 


x1

x2

x3

x4

x5

x6




=

z = 100 − 6λ

As λ ↑, all vars. remain ≥ 0, & z ↓, → −∞ as λ → +∞.

Why? Because PC has no positive entry.
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So, in this case z unbounded below on feasible region, above

formula gives a half-line in feasible region along which z → −∞.

Summary of Simplex Algorithm:

1: Initiate: with a canonical tableau WRT a feasible basic vec-

tor.

2:Opt. crit.: If rel. costs are all ≥ 0, present BFS opt., termi-

nate.

3:If opt. violated: Identify nonbasics eligible to enter basic

vec., select one as entering var. Its col. in present tableau

is PC.

4:Check unboundedness: If PC ≤ 0, obj. unbounded below,

terminate.

5:Pivot step: If unboundedness not satisfied, perform min ra-

tio test, determine PR, perform pivot step and get canonical

tableau WRT new basic vector. Go back to 2.
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Phase I: Application of Simplex algo. to

Phase I problem to find a feasible basic vec.

for original problem

Consider original problem discussed earlier:

x1 x2 x3 x4 x5 x6 −z

1 1 −1 0 0 1 0 0

1 −1 1 1 1 0 0 4

1 1 1 0 1 1 0 6

−2 −1 −3 −1 1 2 1 0

Introducing artificials t1, t3, the Phase I original tableau

is:

95



x1 x2 x3 x4 x5 x6 t1 t3 −z −w

1 1 −1 0 0 1 1 0 0 0 0

1 −1 1 1 1 0 0 0 0 0 4

1 1 1 0 1 1 0 1 0 0 6

−2 −1 −3 −1 1 2 0 0 1 0 0

0 0 0 0 0 0 1 1 0 1 0

All vars. ≥ 0, min w

Selecting (t1, x4, t3,−z,−w) as the initial basic vec-

tor, we get following canonical tableau after pricing out

the cols. of t1, x4, t3 in both obj. rows.

BV x1 x2 x3 x4 x5 x6 t1 t3 −z −w

t1 1 1 −1 0 0 1 1 0 0 0 0

x4 1 −1 1 1 1 0 0 0 0 0 4

t3 1 1 1 0 1 1 0 1 0 0 6

−z −1 −2 −2 0 2 2 0 0 1 0 4

−w −2 −2 0 0 −1 −2 0 0 0 1 −6
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Starting with this, apply simplex algo. to min w,

ignoring original obj. z for moment.

During Phase I, use Phase I rel. costs (those in Phase

I obj. row) denoted by d̄j.

Phase I termination cond. All Phase I rel. costs

d̄j ≥ 0.

Eligible vars. in Phase I: Original vars. xj with

d̄j < 0.

Other things to remember in Phase I: Any ar-

tificial is erased from tableau if it drops from basic

vec., because it is no longer needed.

Conclusion at Phase I termination: If w̄ = min

value of w > 0, original problem infeasible, ter-

minate.

If w̄ = 0, sol. from final Phase I tableau is BFS of

original. Go to Phase II.
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How to begin Phase II at end of Phase I if

w̄ = 0

Case 1: All artificials dropped from basic vector:

So, no artificial in final Phase I tableau. Erase −w col.

and bottom row (Phase I obj. row) from it & begin

Phase II.

Case 2: Some artificials still in basic vector: Their

values in sol. must be 0.

Identifying Original vars. which are 0 in

every feasible sol. of original problem: Iden-

tify original variables xj for which d̄j > 0 in the final

Phase I tableau. Each of those variables must be =

0 in every feasible sol. of original problem (because

making such a variable > 0 makes w > w̄ = 0, i.e.,

introduces infeasibility). Fix all such variables at 0, &

erase their cols. from final tableau.
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Now erase −w col., and last row (Phase I obj. row)

from final tableau & begin Phase II. Any artificial still

in basic vector will remain = 0, so can be left there

during Phase II steps until it leaves basic vector some

time.

Examples:

Min z = x1 + 2x2 + 3x3

s. to 2x1 + 3x2 + x3 − x4 = 9

x1 + 2x2 − x3 + x5 = 5

x1 + x2 + 2x3 = 4

xj ≥ 0 ∀ j.
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min z = x1 − 2x5 − 2x6 + 5x7 + 100

s. to x1 − x4 + x7 = 2

x1 + x2 + x5 + 2x7 = 3

x3 + x6 + x7 = 5

x4 − x7 = 0

xj ≥ 0 ∀ j.

Homework problems: Put these in standard form
7.1. max 2x2 + x3 + x4

subject to 2x1 − x2 − x3 + x4 ≤ −8
2x2 + x3 − x4 ≥ 4
x1 − x2 + x4 = 13
−3 ≤ x1 ≤ 4, x2 ≥ 2, x3 unrestricted, x4 ≤ 0.

7.2. min 3x1 − x2 + x3 − 2x4

s. to x1 + x2 + 2x3 + x4 = 12
x2 − x3 + x4 ≥ 6
2x1 + x3 − x4 ≤ 10
1 ≤ x1 ≤ 5, x2 ≤ 10, x3 ≥ 0, x4 unrestricted.
Homeworks: Solve these LPs:
7.3 (O, II) (a): min z = −x1 − 8x2, s. to −x1 + x2 ≤ 2
x1 + x2 ≤ 1, 2x1 + x2 ≤ 5, x1, x2 ≥ 0.
(b) Min z = −2x1 + x2 − 2x3 + x4, s. to x1 − x2 + x4 ≤ 2
x2 + x3 + 2x4 ≤ 3, x1 + 2x2 + 4x3 − 2x4 ≤ 12, xj ≥ 0.
(c) Solve using Dantzig’s rule (most negative c̄j) for selecting the entering variable in each pivot

step.
min z = 3x1 − 8x2 + 2x3 − 7x4 − 5x5 + 8x6, s. to −x2 + x3 + x4 + x6 = 3
x1 + x2 − x4 + x6 = 6, x2 + x4 + x5 − x6 = 0, xj ≥ 0 ∀ j.
(d) min z = −8x1 + 8x2 + 14x3 + 4x4 + 6x5 − 3x6 + 3x7

s. to x1 − x6 + x7 = 3, −2x1 − 3x3 + x4 + 3x6 = 2, 4x3 + x5 − x6 = 1
x2 − x6 = 4, xj ≥ 0 ∀ j.

7.4: (U, II) (a) min z = −3x1 + 4x2 + x3, s. to x1 − 2x2 + 2x3 ≤ 3
x1 − x2 − 3x3 ≤ 5, −x1 + x2 − x3 ≤ 7, xj ≥ 0 ∀ j.
(b) : min z = −2x1 − x2, s. to −x1 + x2 ≤ 2
x1 − 2x2 ≥ −5, x1 − 3x2 ≤ 2, x1, x2 ≥ 0.
(c) : min z = −2x1 + 2x2 + x3, s. to x1 − x2 − 2x3 ≤ 3
x1 − x2 − x3 ≤ 4, x1 − 2x2 ≤ 0, x1, x2, x3 ≥ 0.
(d): min z = −3x1 + 2x2 − 2x3, s. to x1 − 2x2 + 2x3 ≤ 0
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x1 − x2 − 2x3 ≤ 10, −x1 + 3x2 − 4x3 ≤ 2, −x1 + 2x2 − 2x3 ≤ 3
xj ≥ 0 ∀ j.

7.5: (U, I) (a): min z = −x1 − 2x2, s. to x1 + x2 ≥ 1, x1 − x2 ≤ 2
−x1 + x2 ≤ 2, x1, x2 ≥ 0.
(b):
Minimize −2x1 +2x2 +x3

subject to x2 +x3 −x4 +x5 +2x6 ≤ 6
x1 +x3 −x4 +x5 = 5

−x1 +x2 −x3 +x4 +x6 = 3
xj ≥ 0 for all j

(c):
Minimize −2x1 +2x2 +x3

subject to x2 +x3 −x4 +x5 +2x6 ≤ 6
x1 +x3 −x4 +x5 = 5

−x1 +x2 −x3 +x4 +x6 = −3
xj ≥ 0 for all j

If possible, determine a feasible solution where the objective function has value = −200.

7.6: (O, I, transition)
(a) : (O, I, transition) In solving this problem, if there is a tie for the min ratio, always

select the bottommost among the rows tied as the pivot row.
min z = −2x3 − 10x4, s. to x1 + x3 + 2x4 ≥ 2
x2 + x3 + x4 ≥ 4, x1 + x


