
Example Problems Solved By AMPL

Feng-Tien Yu

June 14, 2000

Contents

1 Using AMPL at CAEN 2
1.1 Setting Up AMPL Environment at CAEN 2
1.2 Starting and Quitting AMPL . 2

2 A Product Mixture Problem 2
2.1 LP Formulation . 3
2.2 AMPL Model File: grain.mod . 3
2.3 AMPL Data File: grain.dat . 4
2.4 AMPL Solutions . 5
2.5 Redirect Outputs . 7
2.6 Batch Operations . 8

3 A Production Planning Problem 10
3.1 AMPL Model File: Nonferrous.model 10
3.2 AMPL Data File: Nonferrous.data 11
3.3 AMPL Solutions . 11

4 A Purchase Planning Problem 12
4.1 AMPL Model File: shirt.model 12
4.2 AMPL Data File: shirt.data . 13
4.3 AMPL Solutions . 13

5 A Multi-Period LP Problem 14
5.1 AMPL Model File: multi.mod . 15
5.2 AMPL Data File: multi.dat . 16
5.3 AMPL Solution . 16

1

1 Using AMPL at CAEN

1.1 Setting Up AMPL Environment at CAEN

Before you can start using AMPL, you need to create a symbolic link to AMPL
interactive solver by typing the following command line on any Sun workstation:

ln -s /afs/engin.umich.edu/group/engin/priv/ioe/
ampl/ampl_interactive ampl

Now you can run AMPL by simply typing ampl on any Sun work station.
Note that AMPL only serves as an interface between your programs and various
solvers. The default solver is CPLEX.

In most cases, you won’t need other solvers. However if for some reasons you
would like to use other solvers, you must create a symbolic link for the desired
solver before you can use it. Currently three additional solvers, OSL, MINOS
and ALPO, are available. These command lines would create symbolic links to
various solvers.

ln -s /afs/engin.umich.edu/group/engin/priv/
ioe/ampl/solvers_SunOS/osl osl

ln -s /afs/engin.umich.edu/group/engin/priv/
ioe/ampl/solvers_SunOS/minos minos

ln -s /afs/engin.umich.edu/group/engin/priv/
ioe/ampl/solvers_SunOS/alpo alpo

1.2 Starting and Quitting AMPL

To invoke AMPL, type ampl in the directory where you created the symbolic
link. Then type in AMPL statements in response to the ampl: prompt, until
you leave AMPL by typing quit. Use reset to erase the previous model and
read in another model.

2 A Product Mixture Problem

The nutritionist at a food research lab is trying to develop a new type of multi-
grain flour. The grains that can be included have the following composition and
price.

2

% of Nutrient
in Grain

1 2 3 4
Starch 30 20 40 25
Fiber 40 65 35 40

Protein 20 15 5 30
Gluten 10 0 20 5

Cost (cents/kg.) 70 40 60 80

Because of taste considerations, the percent of grain 2 in the mix cannot
exceed 20, the percent of grain 3 in the mix has to be at least 30, and the
percent of grain 1 in the mix has to be between 10 to 25.

The percent protein content in the flour must be at least 18, the percent
gluten content has to be between 8 to 13, and the percent fiber content at most
50.

Find the least costly way of blending the grains to make the flour, subject
to the constraints given.

2.1 LP Formulation

The decision variables are:

xj = Percent of grain j in the flour, j = 1 to 4

The model is:

Minimize cost = 70x1 + 40x2 + 60x3 + 80x4

s. to x1 + x2 + x3 + x4 = 100
x2 ≤ 20, x3 ≥ 30
10 ≤ x1 ≤ 25
0.20x1 + 0.15x2 + 0.05x3 + 0.30x4 ≥ 18
8 ≤ 0.10x1 + 0.20x3 + 0.05x4 ≤ 13
0.40x1 + 0.65x2 + 0.35x3 + 0.40x4 ≤ 50
xj ≥ 0 for all j = 1 to 4

2.2 AMPL Model File: grain.mod

set GRAIN; # set of grains
set NUTRIENT; # set of nutrients

param n_percent{GRAIN,NUTRIENT}>=0;
percentage of nutrients in grains
param cost{GRAIN}>=0;
cost of grains
param u_grain{GRAIN}>=0;

3

upper bound for the percentage
of each grain in flour
param l_grain{GRAIN}>=0;
lower bound for the percentage
of each grain in flour
param u_nutrient{NUTRIENT} >=0;
upper bound for the percentage
of each nutrient in flour
param l_nutrient{NUTRIENT} >=0;
lower bound for the percentage
of each nutrient in flour

var G_percent{GRAIN}>=0;
percentage of each grain in flour

minimize Total_cost:
sum{i in GRAIN} cost[i]*G_percent[i];

subject to Flour:
sum{i in GRAIN} G_percent[i] = 100;

total percentage should be 100%
subject to Grain_u{i in GRAIN}:

G_percent[i] <= u_grain[i];
grain percentage <= upper bound
subject to Grain_l{i in GRAIN}:

G_percent[i] >= l_grain[i];
grain percentage >= lower bound
subject to Nutri_u{j in NUTRIENT}:

sum {i in GRAIN} G_percent[i] *
n_percent[i,j] / 100 <= u_nutrient[j];

nutrient percentage <= upper bound
subject to Nutri_l{j in NUTRIENT}:

sum {i in GRAIN} G_percent[i] *
n_percent[i,j] /100 >= l_nutrient[j];

nutrient percentage >= lower bound

2.3 AMPL Data File: grain.dat

set GRAIN := G1 G2 G3 G4 ;
set NUTRIENT :=
Starch Fiber Protein Gluten;
param n_percent :
Starch Fiber Protein Gluten :=
G1 30 40 20 10
G2 20 65 15 0
G3 40 35 5 20
G4 25 40 30 5 ;

4

param cost :=
G1 70 G2 40 G3 60 G4 80 ;
param u_grain :=
G1 25 G2 20 G3 100 G4 100 ;
param l_grain :=
G1 10 G2 0 G3 30 G4 0 ;
param u_nutrient :=
Starch 100 Fiber 50
Protein 100 Gluten 13 ;
param l_nutrient :=
Starch 0 Fiber 0
Protein 18 Gluten 8 ;

2.4 AMPL Solutions

draw% ampl
ampl: model grain.mod;
ampl: data grain.dat;
ampl: solve;
CPLEX 6.0: optimal solution; objective 6450
3 iterations (0 in phase I)
ampl: display G_percent;
G_percent [*] :=
G1 15
G2 20
G3 30
G4 35
;

ampl: display G_percent.dual;
G_percent.dual [*] :=
G1 0
G2 0
G3 0
G4 0
;

ampl: display G_percent.lb, G_percent.ub, G_percent.slack;
: G_percent.lb G_percent.ub G_percent.slack :=
G1 10 25 5
G2 0 20 0
G3 30 100 0
G4 0 100 35
;

ampl: display Flour;

5

Flour = 50

ampl: display Grain_u, Grain_l;
: Grain_u Grain_l :=
G1 0 0
G2 -25 0
G3 0 5
G4 0 0
;

ampl: display Nutri_u, Nutri_l;
: Nutri_u Nutri_l :=
Fiber 0 0
Gluten 0 0
Protein 0 100
Starch 0 0
;

ampl: display Grain_u.lb, Grain_u.body, Grain_u.ub;
: Grain_u.lb Grain_u.body Grain_u.ub :=
G1 -Infinity 15 25
G2 -Infinity 20 20
G3 -Infinity 30 100
G4 -Infinity 35 100
;

ampl: display Grain_l.lb, Grain_l.body, Grain_l.ub;
: Grain_l.lb Grain_l.body Grain_l.ub :=
G1 10 15 Infinity
G2 0 20 Infinity
G3 30 30 Infinity
G4 0 35 Infinity
;

ampl: display Nutri_u.lb, Nutri_u.body, Nutri_u.ub;
: Nutri_u.lb Nutri_u.body Nutri_u.ub :=
Fiber -Infinity 43.5 50
Gluten -Infinity 9.25 13
Protein -Infinity 18 100
Starch -Infinity 29.25 100
;

ampl: display Nutri_l.lb, Nutri_l.body, Nutri_l.ub;
: Nutri_l.lb Nutri_l.body Nutri_l.ub :=
Fiber 0 43.5 Infinity
Gluten 8 9.25 Infinity

6

Protein 18 18 Infinity
Starch 0 29.25 Infinity
;

ampl: quit;
draw%

2.5 Redirect Outputs

To direct the output to a file rather than the screen, add a > and the name of
the file. To open a file and append output to whatever is already there (rather
than overwriting), use >> instead of >. Once a file is open, subsequent use of
> and >> have the same effect.

ampl: model grain.mod;
ampl: data grain.dat;
ampl: solve;
CPLEX 6.0: optimal solution; objective 6450
3 iterations (0 in phase I)
ampl: print ’OBJECTIVES:’ > ampl.out;
ampl: display Total_cost >> ampl.out;
ampl: print ’VARIABLES:’ >> ampl.out;
ampl: display G_percent >> ampl.out;
ampl: print ’CONSTRAINTS (Dual Values):’ >> ampl.out;
ampl: show constraints;

constraints: Flour Grain_l Grain_u Nutri_l Nutri_u
ampl: display Flour >> ampl.out;
ampl: display Grain_l >> ampl.out;
ampl: display Grain_u >> ampl.out;
ampl: display Nutri_l >> ampl.out;
ampl: display Nutri_u >> ampl.out;
ampl: close ampl.out;
ampl: quit;

The following is the output file ampl.out.

OBJECTIVES:
Total_cost = 6450

VARIABLES:
G_percent [*] :=
G1 15
G2 20
G3 30

7

G4 35
;

CONSTRAINTS (Dual Values):
Flour = 50

Grain_l [*] :=
G1 0
G2 0
G3 5
G4 0
;

Grain_u [*] :=
G1 0
G2 -25
G3 0
G4 0
;

Nutri_l [*] :=
Fiber 0

Gluten 0
Protein 100
Starch 0
;

Nutri_u [*] :=
Fiber 0

Gluten 0
Protein 0
Starch 0
;

2.6 Batch Operations

After a model has been under development for a while, you may find that you
are typing the same series of commands again and again. To speed things
up, you may put the commands into a file, and run them all automatically by
typing include and the filena me. The following is an example batch file called
grain.run.

model grain.mod;
data grain.dat;
solve;

8

print ’OBJECTIVES:’ > ampl.out;
display Total_cost >> ampl.out;
print ’VARIABLES:’ >> ampl.out;
display G_percent >> ampl.out;
print ’CONSTRAINTS (Dual Values):’ >> ampl.out;
display Flour >> ampl.out;
display Grain_l >> ampl.out;
display Grain_u >> ampl.out;
display Nutri_l >> ampl.out;
display Nutri_u >> ampl.out;
close ampl.out;

Type include grain.run; in AMPL to run this batch file. The outputs would
be redirected to the file ampl.out.

putt% ampl
ampl: include grain.run;
CPLEX 6.0: optimal solution; objective 6450
3 iterations (0 in phase I)
ampl: quit;
putt%

The following is the output file ampl.out:

OBJECTIVES:
Total_cost = 6450

VARIABLES:
G_percent [*] :=
G1 15
G2 20
G3 30
G4 35
;

CONSTRAINTS (Dual Values):
Flour = 50

Grain_l [*] :=
G1 0
G2 0
G3 5
G4 0
;

9

Grain_u [*] :=
G1 0
G2 -25
G3 0
G4 0
;

Nutri_l [*] :=
Fiber 0

Gluten 0
Protein 100
Starch 0
;

Nutri_u [*] :=
Fiber 0

Gluten 0
Protein 0
Starch 0
;

3 A Production Planning Problem

A nonferrous metals company makes four different alloys from two metals. The
requirements are given below. Find the optimal product mix that maximizes
gross revenue.

proportion of metal in alloy Availability
Metal 1 2 3 4 per day

1 0.5 0.6 0.3 0.1 25 tons
2 0.5 0.4 0.7 0.9 40 tons

Alloy price
($/ton) 750 650 1200 2200

3.1 AMPL Model File: Nonferrous.model

set METAL;
set ALLOY;
param avail {METAL} >= 0;
param portion {METAL,ALLOY} >= 0;

10

param price {ALLOY} >= 0;
var Prod {ALLOY} >= 0;
maximize revenue: sum {j in ALLOY} Prod[j] * price[j];
subject to metal_avail {i in METAL}:
sum {j in ALLOY} portion[i,j] * Prod[j] <= avail[i];

3.2 AMPL Data File: Nonferrous.data

set METAL := M1 M2 ;
set ALLOY := A1 A2 A3 A4 ;
param avail := M1 25 M2 40;
param portion : A1 A2 A3 A4 :=
M1 0.5 0.6 0.3 0.1
M2 0.5 0.4 0.7 0.9 ;
param price :=
A1 750 A2 650 A3 1200 A4 2200 ;

3.3 AMPL Solutions

We now solve this problrm by using AMPL (draw% is the prompt on the work-
station on which this problem is solved).

draw% ampl
ampl: model Nonferrous.model;
ampl: data Nonferrous.data;
ampl: solve;
CPLEX 6.0: optimal solution; objective 97777.77778
1 iterations (0 in phase I)

ampl: display Prod;
Prod [*] :=
A1 0
A2 0
A3 0
A4 44.4444
;

ampl: display metal_avail;
metal_avail [*] :=
M1 0
M2 2444.44
;

ampl: quit;
draw%

11

4 A Purchase Planning Problem

An American textiles marketing firm buys shirts from manufacturers and sells
them to clothing retailers. For the next season they are considering four styles
with the total orders to be filled as given in the following table (the unit K = kilo,
i.e., one thousand shirts). They are considering 3 manufacturers, M1, M2, M3

who can make these styles in quantities and prices ($/shirt) as given below.

Style Orders M1 M2 M3

Capacity Price Capacity Price Capacity Price
1 200K 100K $8 80K $6.75 120K $9
2 150K 80K 10 60K 10.25 100K 10.50
3 90K 75K 11 50K 11 75K 10.75
4 70K 60K 13 40K 14 50K 12.75

Capacity for all 275K 150K 220K
styles together

The manufacturing facilities of M3 are located within US territories, so there
are no limits on how many shirts can be ordered from M3. But manufacturers
M1 and M2 are both located in the same foreign country, and there is a limit
(quota) of 350K shirts that can be imported from both of them put together.
Find the cheapest way to meet the demand, ignoring the integer requirements
on the number of shirts of any style purchased from any manufacturer.

4.1 AMPL Model File: shirt.model

set MANUFACTURER;
set STYLE;
set FOREIGN within MANUFACTURER;
param capacity {STYLE,MANUFACTURER} >= 0;
param capacity_total {MANUFACTURER} >= 0;
param price {STYLE,MANUFACTURER} >= 0;
param order {STYLE} >= 0;
param quota >= 0;
var Buy {STYLE, MANUFACTURER} >= 0;
minimize cost: sum {i in STYLE, j in MANUFACTURER}

Buy[i,j] * price[i,j];
subject to
max_order {j in MANUFACTURER}:
sum {i in STYLE} Buy[i,j] <= capacity_total[j];

12

subject to
max_import :
sum {i in STYLE, j in FOREIGN} Buy[i,j] <= quota;
subject to
max_order_style {i in STYLE, j in MANUFACTURER}:
Buy[i,j] <= capacity[i,j];
subject to demand {i in STYLE}:
sum {j in MANUFACTURER} Buy[i,j] >= order[i];

4.2 AMPL Data File: shirt.data

set MANUFACTURER := M1 M2 M3;
set STYLE := S1 S2 S3 S4 ;
set FOREIGN := M1 M2;
param capacity : M1 M2 M3 :=
S1 100 80 120
S2 80 60 100
S3 75 50 75
S4 60 40 50 ;
param capacity_total := M1 275 M2 150 M3 220;
param price : M1 M2 M3 :=
S1 8 6.75 9
S2 10 10.25 10.50
S3 11 11 10.75
S4 13 14 12.75 ;
param order := S1 200 S2 150 S3 90 S4 70;
param quota:= 350;

4.3 AMPL Solutions

draw% ampl
ampl: model shirt.model;
ampl: data shirt.data;
ampl: solve;
CPLEX 6.0: optimal solution; objective 4910
16 iterations (9 in phase I)

ampl: display Buy;
Buy :=
S1 M1 100
S1 M2 80
S1 M3 20
S2 M1 80

13

S2 M2 55
S2 M3 15
S3 M1 0
S3 M2 15
S3 M3 75
S4 M1 20
S4 M2 0
S4 M3 50
;

ampl: display max_import;
max_import = -0.25

ampl: display max_order_style;
max_order_style :=
S1 M1 -0.75
S1 M2 -2
S1 M3 0
S2 M1 -0.25
S2 M2 0
S2 M3 0
S3 M1 0
S3 M2 0
S3 M3 -0.5
S4 M1 0
S4 M2 0
S4 M3 -0.5
;

ampl: display demand;
demand [*] :=
S1 9
S2 10.5
S3 11.25
S4 13.25
;

ampl: quit;
draw%

5 A Multi-Period LP Problem

Important applications in production planning for planning production, storage,
marketing of product over a planning horizon.

14

Production capacity, demand, selling price, production cost, may all vary
from period to period.

AIM: To determine how much to produce, store, sell in each period; to max.
net profit over entire planning horizon.

YOU NEED Variables that represent how much material is in storage at end
of each period, and a material balance constraint for each period.

Planning Horizon = 6 periods.
Storage warehouse capacity: 3000 tons.
Storage cost: $2/ton from one period to next.
Initial stock: 500 tons. Desired final stock: 500 tons.
Demand of each period must be fulfilled in that same period.

Period Prod. Prod. Demand Sell
cost capacity (tons) price

1 20 $/ton 1500 1100 tons 180 $/ton
2 25 2000 1500 180
3 30 2200 1800 250
4 40 3000 1600 270
5 50 2700 2300 300
6 60 2500 2500 320

5.1 AMPL Model File: multi.mod

set PERIOD ordered;

param sales_period;
param production_cost {PERIOD};
param production_capacity {PERIOD};
param demand {PERIOD};
param sale_price {PERIOD};
param storage_capacity;
param holding_cost;
param initial_stock;
param final_stock;

var Production {PERIOD} >= 0;
var Storage {PERIOD} >= 0;

maximize Profit:
sum {i in PERIOD} demand[i] * sale_price[i]
- sum {i in PERIOD} Production[i] * production_cost[i]
- sum {i in PERIOD: ord(i) < sales_period} Storage[i] * holding_cost;

subject to Storage_Capacity{i in PERIOD}:
Storage[i] <= storage_capacity;

15

subject to Production_Capacity{i in PERIOD}:
Production[i] <= production_capacity[i];

subject to Balance{i in PERIOD: ord(i)> 1 }:
Production[i] + Storage[prev(i)] - demand[i] - Storage[i] = 0;

subject to Initial_Balance:
Production[first(PERIOD)]+ initial_stock-demand[first(PERIOD)]
- Storage[first(PERIOD)] = 0;

subject to Final_Balance:
Storage[last(PERIOD)] = final_stock;

5.2 AMPL Data File: multi.dat

set PERIOD := P1 P2 P3 P4 P5 P6;

param sales_period:= 6;
param : production_cost production_capacity demand sale_price :=
P1 20 1500 1100 180
P2 25 2000 1500 180
P3 30 2200 1800 250
P4 40 3000 1600 270
P5 50 2700 2300 300
P6 60 2500 2500 320;

param storage_capacity := 3000;

param holding_cost := 2;

param initial_stock := 500;

param final_stock := 500;

5.3 AMPL Solution

draw% ampl
ampl: model multi.mod;
ampl: data multi.dat;
ampl: solve;
CPLEX 6.0: optimal solution; objective 2446800

16

7 iterations (3 in phase I)
ampl: display Production;
Production [*] :=
P1 1500
P2 2000
P3 2200
P4 2800
P5 2300
P6 0
;

ampl: display Storage;
Storage [*] :=
P1 900
P2 1400
P3 1800
P4 3000
P5 3000
P6 500
;

ampl: display Storage_Capacity;
Storage_Capacity [*] :=
P1 0
P2 0
P3 0
P4 8
P5 8
P6 0
;

ampl: display Production_Capacity;
Production_Capacity [*] :=
P1 14
P2 11
P3 8
P4 0
P5 0
P6 0
;

ampl: display Storage_Capacity.body, Storage_Capacity.ub;
: Storage_Capacity.body Storage_Capacity.ub :=
P1 900 3000
P2 1400 3000
P3 1800 3000

17

P4 3000 3000
P5 3000 3000
P6 500 3000
;

ampl: display Production_Capacity.body, Production_Capacity.ub;
: Production_Capacity.body Production_Capacity.ub :=
P1 1500 1500
P2 2000 2000
P3 2200 2200
P4 2800 3000
P5 2300 2700
P6 0 2500
;

ampl: display Storage.rc, Production.rc;
: Storage.rc Production.rc :=
P1 0 0
P2 0 0
P3 0 0
P4 0 0
P5 0 0
P6 0 0
;

ampl: display Profit;
Profit = 2446800

ampl: quit;
draw%

Note that a solver reports only one optimal dual price or reduced cost to
AMPL, however, which may be the rate in either direction. Therefore, a dual
price or reduced cost can give you only one slope on the piecewise-linear curve
of objective values. Hence these quantities should be used as only an initial
quide to the objective’s sensitivity to certain variable or constraint bounds. If
the sensitivity is very important to your application, you can make a series of
runs with different bound settings.

18

