IOE 611 Syllabus

Instructor: Professor Katta G. Murty, 232 IOE Bldg., 763-3513, katta_murty@umich.edu

Prerequisites: A course in linear programming, equivalent to IOE 510

Time & Room: Tu, Th 9 AM to 10:30 AM, 2717 IOE.

Course objectives: To expose the student to nonlinear models, their applications, how to construct them, and to use algorithms for solving them satisfactorily.

Transparencies: The course will be taught using overhead transparencies. Students can access copies of the transparencies on the WWW using the address:

http://www-personal.engin.umich.edu/~murty/611/index.html

Books:

- M.S. Bazaraa, H.D. Sherali, and C.M. Shetty, Nonlinear Programming Theory and Algorithms, Wiley, 1993, 2nd Edition.
- 2. K.G. Murty, Linear Complementarity, Linear and Nonlinear Programming, Helderman-Verlag, 1988. Can be seen on the web at:
 - http://ioe.engin.umich.edu/people/fac/books/murty/linear_complementarity_webbook/
- 3. R. Fletcher, Practical Methods of Optimization, Wiley-Interscience, 1987.

Contents:

- 1. Formulation of continuous optimization models, curve fitting, parameter estimation, L_1, L_2 and L_{∞} measures of deviation. Difference between linear and nonlinear model building. Examples.
- 2. Types of problems. State of the art. What can and cannot be done efficiently? Goals for algorithms.
- 3. Theorems of alternatives for linear systems.
- 4. Convex sets, separating hyperplanes, convex and concave functions.
- 5. Optimality conditions.
- 6. Quadratic programming and complementary pivot methods.
- 7. Newton's method and simplicial methods for nonlinear equations.
- 8. Line Search methods.
- 9. Unconstrained minimization algorithms.
- 10. Constrained minimization algorithms. Penalty and barrier methods, SQP and SLP methods.

Work in the course: Homeworks every week. One midterm (in the class on 19 Feb 2004) and final (1:30 PM to 3:30 PM, 23 April 2004). A computer project.

I would like each student to study one nonlinear programming paper from the literature carefully and give a 30 minute lecture on it to the whole class towards the end of the term.

The approximate contribution to the final grade will be: Homeworks (0.2), Midterm (0.25), Final (0.35), Computer project (0.1), lecture (0.1).