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Introductory Lecture

NONLINEAR PROGRAMMING (NLP) deals with
optimization models with at least one nonlinear func-
tion.

NLP does not include everything other than linear.

NLP does not include IP or Discrete Opt. Needs special

Enumerative Techniques.

NLP, also called Continuous Optimization or Smooth

Optimization. Models of following form:

Minimize θ(x)

s. to hi(x) = 0, i = 1 to m

gp(x) >= 0, p = 1 to t

All functions θ(x), hi(x), gp(x) assumed Smooth Functions.

Smooth Function = one with all derivatives.
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Beyond 2nd derivatives, impractical particularly when many

variables. So, for us smooth means:

Continuously differentiable if using gradients only

Twice continuously differentiable if using Hessians

Inequality constraints include lower and upper bounds on de-

cision variables: `j
<= xj

<= uj.

∇f (x̄) denotes (∂f(x)
∂xj

) at x = x̄ written as row vector. Also

called the gradient of f (x) at x̄.

∇2
xxf (x̄) denotes (∂2f(x)

∂xi∂xj
), n × n Hessian matrix of f (x) at

x̄,

If g(x) = (g1(x), . . . , gm(x))T is vector of functions, then∇g(x) =

(∂gi(x)
∂xj

: i = 1 to m, j = 1 to n), the m × n Jacobian matrix

of g(x) at x̄. Each row vector in ∇g(x) is the gradient vector of

one function in g(x).
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QUADRATIC FUNCTIONS: Simplest nonlinear func-

tions

A Quadratic Form in x = (x1, . . . , xn)
T is of form f (x) =

∑n
i=1 qiix

2
i +

∑n
i=1

∑n
j=i+1 qijxixj.

Define Square symmetric matrix D = (dij) of order n

where

dii = qii for i = 1 to n

dij = dji = 1
2qij for i 6= j, j > i

Then f (x) = xTDx

Example: h(x) = 81x2
1 − 7x2

2 + 5x1x2 − 6x1x3 + 18x2x3.

A Quadratic Function is of form Q(x) = xTDx + cx + c0.

A square matrix M of order n, whether symmetric or not, is:

Positive semidefinite (PSD) if xTMx >= 0 for all x ∈ Rn

Positive definite (PD) if xTMx > 0 for all x 6= 0

Convex, Concave Functions:

A function f (x) defined over Rn, or some convex subset of

Rn, is Convex Function iff for all x1, x2 in that set, and all
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0 ≤ α ≤ 1,

f (αx1 + (1 − α)x2) ≤ αf (x1) + (1 − α)f (x2)

Inequality called Jensen’s Inequality after Danish mathe-

matician who defined it in 1905.

Geometric interpretation as function lying beneath

every chord

Function f (x) Concave if above inequality holds other way,

i.e., −f (x) is convex.
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Some Properties of Convex Functions

1. Nonnegative Combinations of convex functions convex.

2. If f (x) is convex defined on convex set Γ, then for all

x1, . . . , xr ∈ Γ and α1, . . . , αr ≥ 0 satisfying
∑r

i=1 αi = 1,

f (
r∑

i=1
αix

i) ≤
r∑

i=1
αif (xi)

3. f (x) convex iff its Epigraph is a convex set.

4. If f (x) convex, for all α, the set {x : f (x) ≤ α} is a convex

set. Converse not true.

5. Pointwise supremum function of convex functions convex.

6. Differentiable function defined on real line convex iff its

1st derivative is a monotonic increasing function, i.e., iff its 2nd

derivative is nonnegative function.

7. Quadratic function defined over Rn covex over Rn iff its

Hessian is PSD.

Quadratic function whose Hessian not PSD, may be convex
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over a subspace of Rn.

8. Twice continuously differentiable f (x) defined over Rn is

convex iff its Hessian PSD for all x.

9. Gradient Support Inequality: Differentiable function

f (x) defined over Rn is convex iff for all x̄

f (x) ≥ `(x) = f (x̄) + ∇f (x̄)(x − x̄), for all x

Lower bound property of LINEARIZATION: Func-

tion `(x) defined above called linearization of f (x) at x̄. For

convex functions, linearization at any point, lower bound for func-

tion at every point.

So approximating convex function by linearization, leads to

underestimating it at every point.
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How to check if a given function is convex?

One variable functions like x2
1, x

4
1, e

−x1, ex1,− log(x1) [over x1 >

0] are convex.

For many variables, checking convexity hard, as it involves

checking PSD of Hessian at every point !

Local Convexity: If Hessian of f (x) at x̄ is PD, in small

neighborhood of x̄, f (x) convex. In this case we say f (x) is

locally convex at x̄.
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Types of NLPs

Unconstrained Minimization: No constraints.

Real world problems have constraints. Unconstrained min.

very imp. because constrained problems can be transformed into

unconstrained ones by penalty function methods.

LP: If all functions affine.

QP: If objective function quadratic, all constraints affine.

Linearly constrained NLP: Objective function nonlinear,

all constraints affine.

Equality constrained NLP: All constraints equations, and

no bounds on variables.

Convex Programming Problem: Of form

Minimize θ(x)

s. to hi(x) = 0, i = 1 to m

gp(x) >= 0, p = 1 to t
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where θ(x) convex, all hi(x) affine, all gp(x) concave.

Nicest among NLPs. Useful necessary and sufficient optimality

conditions for global minimum are only known for convex pro-

gramming problems.

Nonconvex Programming Problems: Violates some of

the conditions for convex programming.
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Types of Solutions For NLP

Feasible solution x̄ is

Local Minimum For ε > 0, θ(x) ≥ θ(x̄) for all

feasible x satisfying ||x −

x̄|| < ε.

Strong local min if θ(x) > θ(x̄) for all feasible

x 6= x̄ satisfying ||x−x̄|| < ε.

Weak local min If not strong.

Global min If θ(x) ≥ θ(x̄) for all feasible x.

Stationary Point If it satisfies necessary condition

for local minimum.

Local (strong, weak) maxima, and global maxima similar.

10



Differences In Constructing LP Models & NLP Mod-

els

Variety of functional forms: In LP all affine. In NLP

unlimited variety of functional forms.

Data: LP involving m constraints in n variables has (m +

1)(n + 1) − 1 coefficients as data elements.

Large scale LP refers to one with m > 1000s, and n >

10,000s. Such models solved to global optimality, in reasonable

time.

To construct an NLP model need to determine functional forms

for objective, constraint functions. Usually involves Curve Fit-

ting and Parameter estimation. Usually by Least Squares

Method using special unconstrained min algos. So even con-

structing NLP model, needs NLP algos.

So, even 200 variable NLP model considered large scale.

Expectation on solution: LP we don’t even talk about

local min, because we get global min.
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In NLP, if model nonconvex, no efficient algos can guarantee

finding global min. So, one compromises on type of solution ex-

pected.

Convex Programs Are Nicest NLPs !

Theorem: For convex program every local min is global min.

For convex program, any method finding local min will find

global min. Also, every stationary point is global min in convex

programs.
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Properties of PSD, PD matrices, Algos to check.

Preserved under symmetrization: M PD, PSD,

iff D = 1
2(M + MT ) is.

Signs of diagonal elements: M = (mij). If PD, all

mii > 0. If PSD all mii ≥ 0.

Skew-symmetry on a 0 diagonal element: If

M = (mij) PSD and mii = 0, then for all j, mij + mji = 0.

So in symmetric PSD matrix if diagonal element is 0, its row

and col must be 0.

Preservation in Principal submatrix after

Gaussian Pivot step: Let D = (dij) be symmetric n×n,

and suppose d11 6= 0.

Perform Gaussian pivot step with d11 as pivot element. After

pivot step eliminate row 1 and column 1, resulting in matrix D1

of order (n − 1) × (n − 1).

D is PD iff d11 > 0 and D1 is PD.

D is PSD iff d11 > 0 and D1 is PSD.
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Superdiagonalization Algorithm for checking if M

PD: Symmetrize: Let D = 1
2
(M + MT ).

Perform Gaussian Pivot Steps: Let D0 = D

Do for i = 1 to n − 1.

Let Di−1 be matrix from previous operation.

If any diagonal entries in Di−1 ≤ 0, terminate. Conclude

M not PD.

Otherwise, carry out Gaussian pivot step on Di−1 with

its ith diagonal element as pivot element, resulting in

matrix Di.

If all Gaussian pivot steps carried out and all diagonal elements

of final matrix Dn−1 are > 0, M PD, terminate.

Examples



3 1 2 2

−1 2 0 2

0 4 4 5
3

0 −2 −13
3

6




,




1 0 2 0

0 2 4 0

2 4 4 5

0 0 5 3



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Superdiagonalization Algo for checking M PSD

Symmetrize: Let D = 1
2
(M + MT ).

Perform Gaussian Pivot Steps: Let E0 = D

Do for i = 1 to n − 1.

Let Ei−1 be current matrix after previous operation.

If any diagonal entries in Ei−1 are < 0, terminate. Con-

clude M not PSD.

If top diagonal entry in Ei−1 is = 0

If top row or 1st col of Ei−1 are nonzero, termi-

nate. Conclude M not PSD.

Otherwise strike off the zero top row and 1st col

of Ei−1 and let remaining matrix be new current

matrix Ei.

If top diagonal entry in Ei−1 is > 0

Perform Gaussian pivot step on Ei−1 with the top

diagonal element as pivot element.
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After this pivot step, erase top row and 1st col of

resulting matrix, and let remaining matrix be the

new current matrix Ei.

If no termination in above steps, M PSD, terminate.

Examples



0 −2 −3 −4 5

2 3 3 0 0

3 3 3 0 0

4 0 0 8 4

−5 0 0 4 2




,




1 0 2 0

0 2 4 0

2 4 4 5

0 0 5 3



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Other Properties of PSD, PD Matrices

Property preserved for Principal subma-

trices: If M PD (PSD) so are all the principal submatrices of

M

Sign of determinants: If M is PD (PSD), whether

symmetric or not, all its principal subdeterminants are > 0 (≥ 0).

A square symmetric matrix PD iff all its principal subdetermi-

nants are > 0

A square symmetric matrix of order n PD iff all its n staircase

or leading principal subdeterminants are > 0.

P -matrix: A square matrix, whether symmetric or not, is

P -matrix, iff all its principal subdeterminants are > 0.

A symmetric P -matrix is PD. An assymetric P -matrix may

not be PD, it may be PSD, or even indefinite.

Linear Dependence Relation at Optimum:

If M is PSD, and x̄ minimizes xTMx, then (M + MT )x̄ = 0.
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