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Unconstrained Minimization in Rn

Katta G. Murty, IOE 611 Lecture slides

Consider: min θ(x) over x ∈ Rn

We consider Descent Methods first. Each iteration in these

methods consists of 2 steps:

1. Find a search direction (a descent direction) ȳ at current

point x̄.

2. Use a line search method to find the step length λ̄. x̄+ λ̄ȳ is

the new point, terminate with that as the best point if practical

termination conds. are met. Otherwise go to the next iteration

with the new pt. as current pt.

Steepest Descent Method: Cauchy (1847). A gradient

method.

Search direction is steepest descent direction with I as the met-

ric matrix, it is −(∇θ(x))T at x.

Method globally convergent even with inexact line searches.

Far from optimum the method works well, but in the nbhd. of a
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stationary pt. method very slow, taking small nearly orthogonal

steps (zigzagging).

If Hessian at opt. is PD and its condition no. =

its largest eigen value
its smallest eigen value = α; rate of convergence of method be-

comes increasingly slower as α → ∞ depending on initial sol. x0.

Convergence linear with rate bounded above by (α−1)2

(α+1)2 .
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Newton’s Method for Unconstrained Minimization

When x̄ is current point, method approximates θ(x) around x̄

by quadratic function θ(x̄) + ∇θ(x̄)(x − x̄)

+1
2(x − x̄)T∇2

xxθ(x̄)(x − x̄).

1st order nec. conds. for minimum of quad. appro. is that

y = x − x̄ satisfy ∇2
xxθ(x̄)y = −(∇θ(x̄))T . This gives the

iteration:

xr+1 = xr + yr

where ∇2
xxθ(xr)yr = −(∇θ(xr))T .

If Hessian is PD, yr is unique and method well defined. The di-

rection yr called Newton direction for θ(x) at xr. Traditional

Newton step length is always 1.

Variable metric property.

Theorem: Suppose H(x) = ∇2
xxθ(x) = (hij(x)) is PD and

each hij(x) is Lipschitz cont. with constant γ. Let x̄ satisfy

∇θ(x̄) = 0. If x0 is close to x̄, {xr} converges to x̄ at 2nd order

rate.
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Levenberg-Marquardt Modified Newton Method

Problems with Newton’s method:

1. H(x) may not be PD (then Newton direction may not be

descent direction), may be singular (then Newton direction

not defined).

2. Step length of 1 may not give desceny in θ(x). Fixed by

choosing step length by a line search routine.

3. Not globally convergent.

To avoid 1, 3, use as search direction −(εI + H(x))−1∇θ(x)

where ε > 0 choosen so that εI + H(x) is PD.

If ε too small, εI + H(x) may be near singular. If ε too large,

εI + H(x) becomes diagonally dominant & method behaves like

steepest descent with linear convergence rate.

To choose ε start with some ε > 0 & ascertain PD of εI +

H(x) by attempting to construct its Cholesky factorization. If

unsuccessful, multiply ε by 4 and repeat until such a factorization

is available.
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Model-Trust Region Methods

Another group ensuring global convergence while ensuring fast

local convergence.

The N. & L. M. M. N. methods used a quad. model of function

to determine search direction, and then a line search technique to

determine step length in that direction. The line search technique

does not use the Hessian or the full dimensional quad. model of

the function. 2nd difficulty with these methods is that region of

trust within which quad. approx. at current pt. is sufficiently

reliable may not include next pt. xr+1.

T. R. methods circumvent these problems by 1st choosing a

trial step length ∆r (within which quad. approx. is considered

good), and then uses the quad. model to select the best step of

at most length ∆r by solving:

min Q(x) = θ(xr) + ∇θ(xr)s +
1

2
sTHs

s. to ||s|| ≤ ∆r

where H = ∇2
xxθ(xr) is the Hessian and s = x − xr. ∆r is an
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estimate of how far we can trust quad. model, so it is called trust

radius.

Case 1: If H PD and ||H−1(∇(θ(xr))T || ≤ ∆r, s
r = H−1(∇(θ(xr))T

is unique sol.

Case 2: Otherwise, sol. sr satisfies ||sr|| = ∆r and (H +

µrI)sr = −(∇θ(xr))T where µr ≥ 0 is s. th. H + µrI is at least

PSD.

In this case if H is PD, sol. given by sr = −(H+µrI)−1(∇θ(xr))T

where µr > 0 is s. th. ||sr|| = ∆r.

If H indefinite, let λ1 = its smallest eigen value and let v1 ∈ Rn

denote its corresponding eigen vector. Then:

Either H + µrI is PD and sr = −(H + µrI)−1(∇θ(xr))T for

the unique µr > max{0,−λ1} for which ||sr|| = ∆r,

Or µr = −λ1 and sr = −(H + µrI)+(∇θ(xr))T + ωv1, where

ω ∈ R1 is choosen so that ||sr|| = ∆r, and (H + µrI)+ is the

Moore-Penrose pseudoinverse.

In practice, µr calculated approx. by an iterative process with

each iteration requiring the Cholesky factorization of a matrix of
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form (H + µI) as described above.

Approx. sol. given by following dog-leg step. CP = Cauchy

pt., NP = Newton pt., xr+1 is intersection of line segment joining

CP and NP with sphere if intersection exists, or take xr+1 as NP

itself.

Procedure for Selecting ∆r

After xr+1 obtained with trial value of ∆r, compute

Rr =
θ(xr) − θ(xr+1)

Q(xr) − Q(xr+1)

If :

0 < Rr < 0.25, make ∆r+1
∆r
4

Rr > 0.75 and ||xr+1 − xr|| = ∆r, make ∆r+1 = 2∆r.

Rr ≤ 0, i.e., θ(x) did not improve in this iteration, reject xr+1,

keep xr as new pt. and repeat this step with ∆r+1 = ∆r
4

.

Otherwise keep ∆r+1 = ∆r and continue with xr+1 as new pt.
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Quasi-Newton Methods

Methods based on building up the Hessian through the com-

puted values of ∇θ(x) & θ(x). Also called Secant Methods.

Br = approximation to Hessian at rth step

Methods usually begin with B0 = I , and many of these meth-

ods maintain Br symmetric and PD.

If xr is current pt. & Br the current approx., then the search

direction at xr is sr = −B−1
r (∇θ(xr))T ; and a line search is

performed to get the next point.

Variable metric property.

Quasi-Newton Condition: From Taylor series expansion

we have (∇θ(xr+1))T ≈ (∇θ(xr))T +∇2
xxθ(xr)(xr+1 − xr). The

condition requires that Br+1 satisfy

(∇θ(xr+1) −∇θ(xr))T = Br+1(x
r+1 − xr)

Updating formulae generally also have hereditary symme-

try, hereditary PD properties.

Most successful of these methods is the BFGS method, which

uses the updating formula:
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Br+1 = Br +
yr(yr)T

(yr)Tsr
−

Brs
r(sr)TBr

(sr)TBrsr

where sr = xr+1 − xr, yr = (∇θ(xr+1) −∇θ(xr))T .

In implementing this method, instead of updating Br, the

Cholesky factor of Br is directly updated.

Method also called PD Secant method.

Method usually reset after n iterations.
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Conjugate Direction (Gradient) Methods

Introduced by Hestenes & Stiefel (1952), originally for solving

Ax = b , square nonsingular system, through min (Ax −

b)T (Ax − b).

These methods use only 1st order derivatives, and do not need

storing or updating a square matrix.

First consider min f (x) = cx + 1
2
xTAx where A is PD Sym-

metric. These methods developed originally to solve this problem

using at most n line searches.

Conjugacy wrt A (PD Symmetric): Set of nonzero vec-

tors {p.1, . . . , p.n} is said to be conjugate wrt A iff p.iAp.j =

0 ∀i 6= j.

Let Pn×n be s. th. its set of col vectors is conjugate wrt A.

Then the linear transformation x = Pz diagonalizes f (x)

into F (z) = cPz + 1
2
P TAPz. P TAP is diagonal because of the

conjugacy condition. Hence F (z) is separable in the z variables,

i.e., F (z) =
∑n

j=1 Fj(zj), so minimizing F (z) can be carried out

through n line searches by the alternating variable method. So,
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in the x-space, f (x) can be minimized through n line searches,

once in each of the directions {P.1, . . . , P.n} in any order.

The C. G. methods generate the C. directions one after the

other, so that each is a descent direction at current pt. at the

time that direction is generated.

General C. G. Method: Step 1: Initiate with any pt.

x0. Search direction in this step is the steepest descent direction

y0 = −(∇f (x0))T . Do a line search.

General Step: Let xr be current pt. Search direction is yr =

−(∇f (xr))T + βry
r−1. Do a line search. to get next pt. xr+1. If

r + 1 = n, this pt. is optimal, terminate. Otherwise go to the

next step.

Different C. G. methods use different formula for βr. These

are:

βr =





||∇f(xr)||2
||∇f(xr−1)||2 Fletcher & Reeves method

(∇f(xr)−∇f(xr−1))(∇f(xr))T

||∇f(xr−1)||2 Polak, Ribiere, Polyak method

−||∇f(xr)||2
(∇f(xr−1))yr C. descent method

Each direction is descent direction at current pt. if all line

searches are carried exactly. For quad. function f (x) all above
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formulae give same value to βr if all line searches carried exactly.

To min general nonlinear function θ(x) apply same method.

Won’t guarantee min in exactly n steps. Method usually reset

after every n steps, or whenever generated direction not descent

at current pt. When n large, 2nd method seems better.

Practical Termination Conds.

Terminate in Step r, when some or all of these quantities are

small:

|θ(xr) − θ(xr−1)|, ||∇θ(xr)||, ||xr − xr−1||.
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The Simplex Direct Search Method for NLP

Nelder & Mead (1965). A pattern search technique useful for

problems of low dimension. Not good when dimension is high.

Aim is to obtain a small simplex containing a minimum. In the

end either the best vertex is taken as the best pt., or the best pt.

obtained by some interpolation in final simplex.

Four types of moves. Each iteration begins with a simplex

< x1, . . . , xn+1 > with its vertices sorted so that θ(xi) ≤ θ(xi+1)

∀i.

1. Method tries to replace worst vertex xn+1 by a better pt.

Best facet of current simplex is < x1, . . . , xn > (it excludes worst

vertex), its centroid is x̄ = 1
n

∑n
i=1 xi. Reflexion xr of xn+1 through

x̄ in this facet is xr = 2x̄ − xn+1.

1.1. If θ(xr) < θ(x1), very successful. Now try expanding

simplex in same direction. Let xe = 2xr − xn+1.

Expansion successful if θ(xe) < θ(x1). In this case, the

new simplex is < xe, x1, . . . , xn >, go to next iteration.

108



If expansion unsuccessful (i.e., θ(xe) ≥ θ(x1)), new sim-

plex is < xr, x1, . . . , xn >, go to next iteration.

1.2. If θ(x1) ≤ θ(xr) ≤ θ(xn), new simplex is < x1, . . . , xn, xr >,

sort its vertices & go to next iteration.

1.3. If θ(xr) ≥ θ(xn+1), try to contract simplex internally

along reflection direction. Let xc = 1
2
(x̄ + xn+1).

Contraction successful if θ(xc) < θ(xn+1), new simplex is

< x1, . . . , xn, xc >, sort vertices & go to next iteration.

Contraction failed if θ(xc) ≥ θ(xn+1), now shrink simplex

(we tacitly assume that we are close enough to minimizer

to need smaller moves for improvement). New simplex

is < x1, x1+x2

2 , . . . , x1+xn+1

2 >, sort vertices & go to next

iteration.

1.4. If θ(xn) ≤ θ(xr) ≤ θ(xn+1), define the shadow contrac-

tion pt. xsc = 1
2(x

r + xn+1), carry out Step 1.3 with xsc replacing

xc there.
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