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Linear constrained NLP algorithms
Katta G. Murty, IOE 611 Lecture slides

The Frank-Wolfe Method (1956)

One of the first algos. developed for constrained NLP. Consider:

min θ(x)

s. to Ai.x





= bi, i = 1 to m

≥ bi, i = m + 1 to m + p

Let K denote set of feasible sols.

Assumptions: We assume that K has at least one extreme

point. Also, for each x̄ ∈ K, assume that ∇θ(x̄)x is bounded

below over K.

The Method: Initiate with any x0 ∈ K.

When xr is current pt.:

Step 1: Solve the LP: min ∇θ(xr)x over x ∈ K.

If xr is optimal to this LP, then xr is optimal to original
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NLP if θ(x) is convex, and it is a KKT pt. to original

NLP whether θ(x) is convex or not. Terminate.

Otherwise, let zr be an opt. extreme pt. sol. for this LP.

Go to Step 2.

Step 2: So, yr = zr − xr is a feasible descent direction at xr.

Do a line search to find min θ(xr + λyr) over 0 ≤ λ ≤ 1.

If λr is the step length, xr+1 = xr +λry
r is next pt., go to next

iteration with it.

Theorem: If method does not terminate finitely, it generates

a descent sequence s. th. every limit pt. of this sequence is a

KKT pt.

Theorem: If θ(x) is convex, and when xr is current pt.

∇θ(xr)(xr − zr) ≤ ε, then xr is ε-opt. to original NLP.

Work in each step is an LP and a line search. Too much. Also

method has slow convergence. Practical only if LP in each step

can be solved by a highly efficient special method.
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Traffic Assignment Application: Input: G = (N ,A),

city’s street network, directed.

(su, tu) an O-D pair with estimated volume V u vehicles/unit

time, u = 1 to g.

Arc travel time functions: For each arc (i, j), cij(fij) = travel

time for travelling arc (i, j) if fij is traffic flow on this arc/unit

time. cij(fij) is ↑ +∞ with fij.

Desired Output: How will traffic distribute itself? i.e., find

flows fu = (fu
ij) : u = 1 to g which minimizes total travel time of

all vehicles.

Can be formulated as a multicommodity flow to min
∑ ∑

cij(f
u
ij).

FW is suitable to solve this because LPs in each iteration be-

come shortest chain problems for which there are very efficient

special algos.
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The Gradient Projection Method:

J B Rosen (1960).

Theorem: Consider: min θ(x) s. to Dx = d where Dm×n

has rank m.

Let (x̄, π̄) be an opt. pair for this problem, and suppose i is s.

that π̄i < 0. Then there exists a descent feasible direction for the

problem:

min θ(x)

s. to Dt.x





= bt, t = 1 to m, t 6= i

≥ bi, for t = i

at x̄ which moves off the constraint Ai.x = bi.

The G. P. method generates a descent sequence {xr} of feasible

points beginning with an initial feasible sol. x0.

In each step, instead of solving an LP to get a descent feasble

direction at current pt., it obtains it by projecting the negative

gradient direction on the subspace of active constraints at current

pt.
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When xr is current pt., let B(xr) denote the index set of active

inequality constraints at it.

If there are no active constraints at xr, choose yr = −(∇θ(xr))T .

If there are active constraints at xr, let Ar denote the matrix

with rows Ai., i ∈ {1, . . . , m} ∪ B(xr).

Assume that Ar is of full row rank, otherwise delete some de-

pendent row vectors from Ar until it becomes of full row rank

.

Projection matrix corresponding to active subspace is Pr =

I − AT
r (ArA

T
r )−1Ar

Projection of −(∇θ(xr))T is ηr = −Pr(∇θ(xr))T . ηr is a pos-

itive multiple of opt. sol. of: min ∇θ(xr)y s. to Ary = 0

and yty ≤ 1.

If ηr 6= 0, it is a descent direction at xr, find λ̄, the maximum

step length in this direction in the feasible region. Then solve the

line search problem: min θ(xr + ληr) , 0 ≤ λ ≤ λ̄, and if λr is

the opt. step length for it, take xr+1 = xr + λrη
r and go to the

next step.
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If ηr = 0, let βr = (ArA
T
r )−1Ar(∇θ(xr))T . Augment (βr)T

into a row vector of order m + p by inserting in it 0’s for all

i ∈ {m + 1, . . . , m + p}\B(xr), and call it πr.

Then ∇θ(xr) = πrA. So, if πr
i ≥ 0∀i ∈ {m + 1, . . . , m + p},

xr, πr together satisfy the KKT conds, terminate.

If πr
i < 0 for some i ∈ {m + 1, . . . , m + p}, identify the most

negative among πr
m+1, . . . , π

r
m+p, and if it is πr

t , delete the row

At. from the active constraint matrix Ar and repeat the whole

process with the new matrix.

How to update the projection matrix?

To delete a row from Ar

Suppose row At. is the sth row in Ar. To delete it from Ar, let

Â denote the resulting matrix.

In (ArA
T
r )−1 interchange the last row and sth row, and then

the last col. and sth col. After these interchanges, suppose this

inverse is




E u

uT δ



.
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Then (ÂÂT )−1 = E − uuT

δ .

To add a row to Ar

Let Pr be the projection matrix corresponding to Ar. Suppose

we want to incude the new row vector At. in Ar. It will be included

as last row, let resulting matrix be Ã.

Let γ = At.Pr(At.)
T . If γ = 0, At. is linearly dependent on

rows in Ar, and hence cannot be included in Ar, i.e., continue

method with same Ar as active constraint row matrix.

If γ 6= 0, then (ÃÃT )−1 =




F u

uT 1/γ




where w = (ArA
T
r )−1Ar(At.)

T , u = −(w/γ),

F = (ArA
T
r )−1 + wwT

γ .

Show that the Simplex algo. for LP can be viewed as a G. P.

method.
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Primal Active Set Methods

They handle inequalities using techniques for solving linear

equality constrained problems iteratively. They guess the active

inequalities at Optimum and apply equality constrained methods

treating these inequalities as eqs. Modifications to this active set

are made using the Lagrange multiplier vectors, based on theorem

discussed earlier.

Since objective function nonlinear, no. of active constraints

may be m1 (0 ≤ m1 ≤ n) (in simplex algo. for LP it is n).

A = index set of working active set. {1, . . . , m} ⊂ A always,

and {Ai. : i ∈ A} is held l.i. Method adjusts A to identify correct

active constraints at optimum.

Initially A = active constraints at x0, or a maximal l.i. subset

of them.

When current pt. is xr and working active set is A, degen-

eracy occurs if a constraint not in A is active at xr. In this

case, step lenghts choosen later may be 0, and algo. can cycle by

returning to a previous active set in sequence.
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Step 1: Find descent direction at xr for EP (equality problem

treating all constraints in A as eqs. and ignoring others)

If xr satisfies term. conds. for this EP, let βr be the

Lagrange multiplier vector for it . If βr ≥ 0, ∀i ∈ A ∩

{m + 1, . . . , m + p}, augment βr into πr by inserting 0’s

∀i 6∈ A. Then xr, πr is a KKT pair for original problem,

terminate.

If βr
i < 0 for some i ∈ A ∩ {m + 1, . . . , m + p},

let βr
t be the most negative among them, delete t

from A, get the new EP and repeat.

If xr does not satisfy term. conds. for EP, let ηr be the

search direction at xr for the EP. Fine λ̄, the max. step

length that keeps xr + ληr feasible to original problem.

Do a line search to: min θ(xr + ληr), 0 ≤ λ ≤ λ̄. Let λr

be opt. step length for this problem.

If λr < λ̄, leave A as it is, and with xr+1 =

xr + λrη
r, go to next iteration.
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If λr = λ̄, a new constraint becomes active. It

is the i which attains the min in definition of λ̄,

include it in A, and with xr+1 = xr + λrη
r, go to

next iteration.
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The Reduced gradient Method

P. Wolfe (1963). Consider problem in form: min θ(x) s.

to Ax = b, ` ≤ x ≤ u; where Am×n has rank m.

Let x̄ be current feasible sol. and B a basis for A (usually the

one corresponding to the largest components in x̄), with (B...D)

the basic, nonbasic partition of A. x̄ = (x̄B, x̄D). So, x̄B =

B−1(b − Dx̄D).

Problem can be transformed into one in space of independent

variables xD only. The reduced gradient at x̄ in this space is:

c̄D = (∇xD
θ(x̄) − (∇xB

θ(x̄))B−1D

Define the direction ȳD = (ȳj) in the space of independent

variables to be:

ȳj =





−c̄j if either c̄j < 0 & x̄j < uj; or c̄j > 0 & x̄j > `j

0 if above conds. not met

If ȳD = 0, x̄ is a KKT pt., terminate.

If ȳD 6= 0, c̄DȳD < 0, so ȳD is a descent direction at x̄D in the

space of independent variables, it is the negative reduced gradient
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direction. Define ȳB = −B−1DȳD and let ȳ = (ȳB, ȳD). ȳ is the

search direction at x̄. Aȳ = 0, so equality conds. continue to hold

when we move in this direction at x̄.

Find λ̄ = max step length that you can move in this direction

at x̄ while continuing to satisfy the bounds on vars.

If λ̄ > 0, do a line search to: min θ(x̄ + λȳ), 0 ≤ λ ≤ λ̄. Let

λ1 be opt. step length for this problem. Repeat with x̄ + λ1ȳ as

new current pt.

If λ̄ = 0 (this happens due to degeneracy), ȳ is a descent but

not feasible direction at x̄. Identify active constraints at x̄, and

carry out a G. P. step. Let ȳp be the orthogonal projection of ȳ

in the subspace of active constraints at x̄. Now carry out a line

search step in the direction ȳp instead of ȳ, and go to next step.

In actual implementations, they normally partition the nonba-

sic variables into superbasic, and other variables. The superbasic

are the most attractive nonbasic variables at this stage to change,

based on their reduced gradient coeffs. In defining ȳD, ȳj is fixed

at 0 for other nonbasic variables, and defined as above only for
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superbasic variables, and the rest of the step is carried out ex-

actly as above. By proper selection of superbasic variables, this

strategy was observed to improve the performance of the algo.
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