Fundamental Concepts Katta G. Murty, IOE 611 Lecture slides

Active or Tight ; inactive constraints at a feasible solution:

Let \bar{x} be feasible solution to system of constraints. An inequality constraint $g_p(x) \geq 0$ is:

Active or tight at \bar{x} if $g_p(\bar{x}) = 0$, i.e., if satisfied as equation

Inactive at \bar{x} if $g_p(\bar{x}) > 0$, i.e., if satisfied as strict inequality

An equality constraint in system, $h_i(x) = 0$, is always an active constraint at \bar{x} .

Direction of Movement, Step Length: Given $\bar{x} \in R^n$, and $0 \neq y \in R^n$, the point obtained by moving from \bar{x} in the direction y a step length of $\alpha(>0)$ is: $\bar{x} + \alpha y$.

Feasible Direction at a feasible point:

Given $K \subset \mathbb{R}^n$, $\bar{x} \in K$, $0 \neq y \in \mathbb{R}^n$ is said to be a **feasible** direction at \bar{x} for K if there is a positive α s. th. $\bar{x} + \lambda y \in K$ for all $0 \leq \lambda \leq \alpha$.

Examples: A ball, a circle, a flat (set of feasible solutions of a ststem of linear equations), a convex polyhedron (defined by a system of linear eqs. and inequalities).

Descent Direction: $0 \neq y \in R^n$ is a descent direction for objective function $\theta(x)$ at $\bar{x} \in R^n$ if there is a positive α s. th., $\theta(\bar{x} + \lambda y) < \theta(\bar{x})$ for all $0 < \lambda < \alpha$.

THEOREM: If $\theta(x)$ is differentiable at \bar{x} , y is a descent direction for $\theta(x)$ at \bar{x} iff $\nabla \theta(\bar{x})y < 0$.

Descent Direction in an NLP: In minimization problem, descent direction (or descent feasible direction) at a feasible solution \bar{x} is a feasible direction at \bar{x} that is a descent direction for the objective function being minimized.

Steepest Descent direction at a point for an Unconstrained minimization problem: Consider:

minimize
$$\theta(x)$$

Given \bar{x} and a $y \neq 0$, the directional derivative of $\theta(x)$ at \bar{x} in the direction y is $\theta'(\bar{x};y) = \lim_{\lambda \to 0^+} \frac{\theta(\bar{x}+\lambda y) - \theta(\bar{x})}{\lambda}$ if this limit exists.

If $\theta(x)$ differentiable at \bar{x} , $\theta'(\bar{x};y) = \nabla \theta(\bar{x})y$.

 $\theta'(\bar{x};y)$ measures the rate of change in $\theta(x)$ at \bar{x} in the direction y. y is a descent direction for $\theta(x)$ at \bar{x} if $\theta'(\bar{x};y) < 0$.

If descent directions exist for $\theta(x)$ at \bar{x} , the **steepest descent** direction for $\theta(x)$ at \bar{x} is optimum solution of

minimize
$$\theta'(\bar{x}; y)$$

s. to $Norm(y) = 1$

where Norm(y) = distance between 0 and y. For Euclidean distance $\text{Norm}(y) = \sqrt{y^T y}$.

Commonly Norm(y) defined to be $\sqrt{y^TDy}$ where D is some PD matrix.

If min in above is ≥ 0 , no descent direction for $\theta(x)$ at \bar{x} , so no steepest descent direction.

Different norms may give different steepest descent directions.

Steepest Descent direction at a point for a constrained minimization problem: Consider: minimize $\theta(x)$ subject to some constraints.

If descent feasible directions exist for this problem at a feasible point \bar{x} , the steepest descent direction for this problem at \bar{x} is optimum solution of

minimize
$$\theta'(\bar{x};y)$$

s. to
$$Norm(y) = 1$$

and: y is a descent feasible direction at \bar{x} to this problem.