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Optimality Conditions for NLP
Katta G. Murty, IOE 611 Lecture slides

HISTORY: 1-dimensional unconstrained min., developed in

17th century as Newton was developing calculus. Soon, extended

to multidimensional unconstrained min.

Leibniz (a co-developer of calculus with Newton) was first to

distinguish between max and min, and Maclaurin (also did fun-

damental work on Taylor series) was first to give method to dis-

tinguish between local max and local min using 2nd and higher

order conditions, in his book published 1742.

Opt. conds. for equality constrained NLP are foundation on

NLP theory. Inspiration from problems in mechanics, these conds.

developed 18th, 19th centuries. First results by L. Euler, J. L.

Lagrange, first published in book by J. L. Lagrange 1788.

Opt. conds. for NLPs involving some inequality constraints

studied beginning with J. Fourier 1798; and later by A. Cournot,

M. Ostrogradsky, C. F. Gauss, J. Farkas, G. Hamel and several

others. Rigorous development completed in W. Karush’s M. S.

51



thesis (U. of Chicago) in 1939, and later in essentially same form

by Kuhn, Tucker in 1951.

Basic Principles For Deriving Opt. Conds.

1. If x̄ is a local min for an NLP, there cannot be any descent

feasible direction at x̄.

Is the converse true?

EXAMPLE (PEANO, 1884) : Consider the unconstrained

min of θ(x) = (x2−x2
1)(x2−2x2

1) in R2 and the point x̄ = 0.

2. If θ(x) is the objective function to be minimized in an NLP,

x̄ is a local min for the NLP, and y a feasible direction at

x̄ for this NLP, and α > 0 is such that x̄ + λy is feasible ∀

0 ≤ λ ≤ α, then for the following one dimensional problem,

λ = 0 must be a local min.

minimize f (λ) = θ(x̄ + λy) over 0 ≤ λ ≤ α

3. Let x̄ be a local min for an NLP in which θ(x) is being min-

imized. If x = g(λ) = (g1(λ), . . . , gm(λ))T defines a differen-

tiable curve satisfying: g(0) = x̄, and g(λ) lies in the feasible
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region for 0 ≤ λ ≤ α for some α > 0, then λ = 0 must be a

local min for the following one dimensional problem

minimize f (λ) = θ(g(λ)) over 0 ≤ λ ≤ α

Using these, we can derive necessary opt. conds. for higher

dimensional problems using the known conds. for one dimensional

problems.

How to represent curves in Rn?

Most popular is the parametric representation. All coordinates

of a general point on curve are expressed as functions of a sngle

parameter λ, as in x(λ) = (x1(λ), . . . , xn(λ))T .

Curve differentiable if
dxj(λ)

dλ exists ∀j

Curve twicw differentiable if
d2xj(λ)

dλ2 exists ∀j

If x(0) = x̄, tangent line to curve at x̄ is the line {x = x̄ +

δ dx(0)
dλ : δ real}
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Opt. Conds. for Unconstrained 1-Dimensional Prob-

lem

min f (λ), λ ∈ R1

The conditions for λ̄ to be a local min or max are:

1. 1st order nec. cond.: f ′(λ̄) = 0.

2. 2nd order nec. cond: f ′(λ̄) = 0, and if f ′′(λ̄) 6= 0, then

f ′′(λ̄) > 0 (for local min), or f ′′(λ̄) < 0 (for local max).

3. Higher order conds: If 1st and some of following deriva-

tives vanish at λ̄, then λ̄ is (or is not) a local opt if first

nonvanishing derivative at it is of even (odd) order. If it is of

even order, λ̄ is a local min (or local max) if this derivative

is positive (negative).

Proof: Use Taylor series expansion.
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Opt. Conds. for Unconstrained min in Rn

Consider min θ(x), x ∈ Rn.

Here are the conditions for x̄ to be a local min to this problem.

1. 1st Order Nec. Cond.: ∇θ(x̄) = 0

2. 2nd Order Nec. Conds.: ∇θ(x̄) = 0, and ∇2
xxθ(x̄) is

PSD.

3. Suff. Conds.: ∇θ(x̄) = 0, and ∇2
xxθ(x̄) is PD.

4. Nec. & Suff. cond. for global min when θ(x) is

convex: ∇θ(x̄) = 0.

Examples: 1. θ(x) = 2x2
1 + x2

2 + x2
3 + x1x2 + x1x3 + x2x3 −

9x1 − 9x2 − 8x3.

2. θ(x) = 2x2
1 +x2

3 +2x1x2 +2x1x3 +4x2x3 +4x1− 8x2 +2x3.

3. θ(x) = −2x2
1 − x2

2 + x1x2 − 10x1 + 6x2.

Can check These conds. efficiently. Notice gap between the

2nd order nec. and suff. cond. when θ(x) is nonconvex. When in

gap, not able to conclude that either x̄ is, or is not, a local min .
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Opt. Conds. In Terms of Feasible Directions

Consider min θ(x) s. to constraints. Let Γ be set of feasible

solutions.

Opt. conds. for x̄ ∈ Γ to be local minimum are:

1. 1st order noc. conds.: ∇θ(x̄)y ≥ 0 ∀ feasible directions

y at x̄.

2. 2nd order noc. conds.: ∇θ(x̄)y ≥ 0 ∀ feasible directions

y at x̄; and yT∇2
xxθ(x̄)y ≥ 0 ∀ feasible directions y at x̄

satisfying ∇θ(x̄)y = 0.

When Γ convex, set of feasible directions at x̄ is {x − x̄ : x ∈

Γ, x 6= x̄}.

These 1st order nec. conds. when Γ convex, lead to Varia-

tional Inequality Problem: VI(K, f ): INPUT: A vector

function f (x) = (f1(x), . . . , fn(x))T defined over Rn, and a sub-

set K ⊂ Rn.

OUTPUT DESIRED: Find an x∗ ∈ K satisfying (x −

x∗)Tf (x∗) ≥ 0 ∀x ∈ K.
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Tangent Planes

Let Γ be the feasible region to an NLP, and x̄ ∈ Γ. The

Tangent Plane at x̄ to Γ is defined to be the set of all directions

of tangent lines at x̄ to differentiable curves through x̄ lying in Γ,

i.e.,

{[dx(λ)
dλ ]λ=0 : x(λ) is a differentiable curve lying in Γ for a posi-

tive length around λ = 0, x(0) = x̄}.

Tangent planes play major role in deriving opt. conds. For

general sets determining tangent planes hard. However for set of

feasible solutions of following system,

h(x) = (h1(x), . . . , hm(x))T = 0

tangent plane at a feasible solution x̄ has a simple characterization

if x̄ satisfies a condition called a CQ ( constraint qualifica-

tion).

Regularity Condition: The feasible sol. x̄ of above system

satisfies this CQ (and hence called a regular feasible solu-

tion or regular point) if {∇hi(x̄) : i = 1 to m} is linearly
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independent, i.e., if Jacobian ∇h(x̄) has full row rank.

THEOREM: If x̄ is a regular feasible sol. of above system,

the tangent plane at x̄ to the set of feasible solutions is {y :

∇h(x̄)y = 0, y 6= 0}.

IMPLICIT FUNCTION THEOREM: Let x̄ ∈ Rn be

a feasible sol. of system of eqs. fi(x) = 0, i = 1 to m s.

th. (∂fi(x̄)
∂xj

: i = 1 to m, j = 1 to m) is nonsingular. Then there

exists an open nbhd. D of χ̄ = (x̄m+1, . . . , x̄n)
T in Rn−m in

which the variables x1, . . . , xm can be expressed as differentiable

functions of χ = (xm+1, . . . , xn)
T on the set of feasible sols. of

the original system of eqs. Further, the partial derivatives at x̄

of these functions, ∂xi(χ̄)
∂xj

for i = 1 to m, j = m + 1 to n, are

obtained by solving the system of eqs.

m∑

r=1

∂fi(x̄)

∂xr

∂xr(χ̄)

∂xj
+

∂fi(x̄)

∂xj
= 0, j = m + 1 to n, i = 1 to m
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Example for Implicit Func. Theorem: n = 5, m = 2,

system is

f1(x) = x1 + x2 + x3 + x4 − x5 − 12 = 0

f2(x) = −x1 + x2 − 2x3 − x4 + 4x5 − 2 = 0

and solution is x̄ = (5, 7, 0, 0, 0)T .

Examples for T. Planes:

(i) x = (x1, x2)
T , h1(x) = x1 = 0

(ii) x = (x1, x2)
T , h1(x) = x3

1 = 0
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Opt. Conds. for Equality Constrained NLP

Consider min θ(x) s. to hi(x) = 0, i = 1 to m.

The Lagrangian for this problem is defined to be L(x, µ) =

θ(x) − ∑m
i=1 µihi(x) where µ = (µ1, . . . , µm) is known as the

vector of Lagrange Multipliers.

The opt. conds. for this problem are:

1. 1st order nec. opt. conds.: If x̄ is a a local min.

and either all constraints are linear, or the regularity cond.

holds at x̄, there must exist Lagrange multiplier vector µ̄ =

(µ̄1, . . . , µ̄m) s. th.

∇θ(x̄) −
m∑

i=1
µ̄i∇hi(x̄) = 0

i.e., ∇xL(x̄, µ̄) = 0.

2. 2nd order nec. opt. conds.: If x̄ is a a local min.

and either all constraints are linear, or the regularity cond.

holds at x̄, there must exist Lagrange multiplier vector µ̄ =

(µ̄1, . . . , µ̄m) s. th.
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∇xL(x̄, µ̄) = ∇θ(x̄) −
m∑

i=1
µ̄i∇hi(x̄) = 0

yT∇2
xx(L(x̄, µ̄))y ≥ 0 ∀y ∈ T = {y : ∇h(x̄)y = 0}

3. Suff. Cond. for a strong local min: If x̄ is feasible, and

there exists a Lagrange Multiplier vector µ̄ s. th.

∇xL(x̄, µ̄) = ∇θ(x̄) −
m∑

i=1
µ̄i∇hi(x̄) = 0

yT∇2
xx(L(x̄, µ̄))y > 0 ∀y 6= 0 ∈ T = {y : ∇h(x̄)y = 0}

then x̄ is a strong local min for the NLP.

Given x̄ all of the above conditions can be checked efficiently.

Notice that here also, there is a small gap between the nec. and

suff. conds. for a local min.

Examples

1. min θ(x) = x1x2 s. to x1 + x2 = 2.

2. min −x1 − x2 s. to x2
1 + x2

2 − 8 = 0
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3. min θ(x) = 2x3
1 + 1

2
x2

2 + x1x2 + 1
24

x1 s. to x1 + x2 = 2.

4. [ A solution of NLP may not be an unconstrained minimizer

of the Lagrangian]: min x3
1 s. to x1 + 1 = 0.

The Lagrange Multiplier Technique: Technique for solv-

ing equality constrained NLP by solving the 1st order nec. conds.

as a system of nonlinear eqs.
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Opt. Conds. for Linearly Constrained NLP

When there are inequality constraints, the 1st order nec. conds.

are called KKT Conditions.

For linearlyconstrained problems, no CQ are required to derive

the necessary optimality conds.

Consider: min θ(x) s. to Ai.x





= bi, i = 1 to m

≥ bi, i = m + 1 to m + p

Let x̄ be a feasible sol. Let P (x̄) = {i : m + 1 ≤ i ≤ m + p

and Ai.x̄ = bi}, i.e., the index set of active inequality constraints

at x̄.

Then T. plane at x̄ is T (x̄) = {y : Ai.y





= 0, i = 1 to m

≥ 0, i ∈ P (x̄)
}

The Lagrangian is L(x, π) = θ(x) − ∑m+p
i=1 πi(Ai.x − bi) where

π = (π1, . . . , πm+p) is the Lagrange Multiplier vector. The opt.

conds. for the feasible sol. x̄ to be a local min are:

1. 1st order nec. opt. conds.: There must exist a Lagrange

multiplier vector π̄ s. th.
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∇xL(x̄, π̄) = ∇θ(x̄) − π̄A = 0

πi ≥ 0, ∀i ∈ {m + 1, . . . , m + p}

π̄i(Ai.x̄ − bi) = 0, ∀i ∈ {m + 1, . . . , m + p}

The 3rd condition in the above is known as the Comple-

mentary Slackness Condition.

2. 2nd order nec. opt. conds.: There must exist a Lagrange

multiplier vector π̄ s. th.

∇xL(x̄, π̄) = ∇θ(x̄) − π̄A = 0

πi ≥ 0, ∀i ∈ {m + 1, . . . , m + p}

π̄i(Ai.x̄ − bi) = 0, ∀i ∈ {m + 1, . . . , m + p}

and yT∇2
xx(L(x̄, π̄))y ≥ 0, ∀y ∈ T (x̄)

Given x̄, the 1st order conds. can be checked efficiently. How-

ever, if θ(x) is nonconvex, checking the last cond. among the 2nd

order conds. is hard (see Murty, Kabadi [1987]).

Opt. Conds. for General Constrained NLP
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Consider: min θ(x) s. to gi(x)





= 0, i = 1 to m

≥ 0 i = m + 1 to m + p
.

The Lagrangian is L(x, π) = θ(x) − ∑m+p
i=1 πigi(x) where π =

(π1, . . . , πm+p) is the Lagrange Multiplier vector.

Let x̄ be a feasible sol. Let P (x̄) = {i : m + 1 ≤ i ≤ m + p

and gi(x̄) = 0}, i.e., the index set of active inequality constraints

at x̄.

Nec. conds. derived under a CQ. There are several CQ, some

weaker than the others. The principal ones are:

Regularity condition: The feasible solution x̄ satisfies this

(and hence called a regular point) if {∇xgi(x̄) : i ∈ {1, . . . , m}∪

P (x̄)} is linearly independent. It is possible to check whether this

condition holds at x̄ efficiently.

First order CQ: The feasible solution x̄ satisfies this CQ

if for each y ∈ {y : ∇xgi(x̄)y = 0, i = 1 to m;∇xgi(x̄)y ≥

0, i ∈ P (x̄)}, y is the tangent direction to a differentiable curve

emanating from x̄ and lying in the feasible region. This condition
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is hard to check.

Second order CQ: The feasible solution x̄ satisfies this CQ

if for each y ∈ {y : ∇xgi(x̄)y = 0, i ∈ {1, . . . , m} ∪ P (x̄)}, there

exists a twice differentiable curve emanating from x̄ and lying in

the region {x : gi(x) = 0, i ∈ {1, . . . , m} ∪ P (x̄)}, for which y is

the tangent direction at x̄. This condition is hard to check.

Mangasarian-Fromovitz CQ: The feasible solution x̄ sat-

isfies this CQ if the set {d : ∇xgi(x̄)d = 0, i = 1 to m} ∩ {d :

∇xgi(x̄)d > 0, i ∈ P (x̄)} 6= ∅, and {∇xgi(x̄) : i = 1 to m} is

linearly independent. This condition can be checked efficiently.

The opt. conds. for the feasible sol. x̄ to be a local min are:

1st order nec. conds. : If x̄ is a local minimum , and

either all the constraints are linear constraints, or x̄ satisfies the

regularity or the 1st order or the Mangasarian-Fromovitz CQs,

then there exists a Lagrange multiplier vector π̄ = (π̄1, . . . , π̄m+p)

such that

∇xθ(x̄) =
m+p∑

i=1
π̄i∇xgi(x̄)
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π̄i ≥ 0 for i ∈ {m + 1, . . . , m + p}

π̄gi(x̄) = 0 for i ∈ {m + 1, . . . , m + p}

These conds. are known as the KKT (Karush-Kuhn-

Tucker) conditions. Given x̄, checking these conds. , can

be posed as an LP.

2nd order conds. : If x̄ is a local min, and either all

the constraints are linear constraints, or x̄ satisfies the regularity

or the 2nd order or the Mangasarian-Fromovitz CQs, then there

exists a Lagrange multiplier vector π̄ = (π̄1, . . . , π̄m+p) such that

∇xθ(x̄) =
m+p∑

i=1
π̄i∇xgi(x̄)

π̄i ≥ 0 for i ∈ {m + 1, . . . , m + p}

π̄gi(x̄) = 0 for i ∈ {m + 1, . . . , m + p}

and yT (∇2
xxL(x̄, π̄))y ≥ 0 for all y ∈ T1

where T1 = {y : ∇xgi(x̄)y = 0 i ∈ {1, . . . , m} ∪ P (x̄)}.

Given x̄, these conds. can be checked efficiently.

67



Suff. conds. for strict local min: If the feasible so-

lution x̄ is such that there exists a Lagrange multiplier vector

π̄ = (π̄1, . . . , π̄m+p) which together with x̄ satisfies

∇xθ(x̄) =
m+p∑

i=1
π̄i∇xgi(x̄)

π̄i ≥ 0 for i ∈ {m + 1, . . . , m + p}

π̄gi(x̄) = 0 for i ∈ {m + 1, . . . , m + p}

and yT (∇2
xxL(x̄, π̄))y > 0 for all y ∈ T2

where T2 = {y : ∇xgi(x̄)y = 0 for all i ∈ {1, . . . , m}∪ ({i : π̄i >

0} ∩ P (x̄)}; and ∇xgi(x̄)y ≥ 0 for all i ∈ {i : π̄i = 0} ∩ P (x̄)}.

If (3) is a nonconvex program, verifying whether the last con-

dition among the sufficient optimality conditions holds is hard

(Murty and Kabadi [1987] ).

A weaker sufficient condition for x̄ to be a strict local minimum

for (3) is obtained by replacing T2 in the above condition by the

set T3 = {y : ∇xgi(x̄)y = 0 for all i ∈ {1, . . . , m} ∪ ({i :

π̄i > 0}∩P (x̄)}. This weaker sufficient condition can be checked

efficiently.
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Nec. and suff. conds. for x̄ to be a global minimum

if problem is a convex program: The 1st order nec. conds.

are nec. and suff. for a global min.
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Example: Determining Electricity Flows In above

electrical network, current flows in direction of arrow on each

arc. Flow variables entered on arc need to be determined. No. on

arc j is its resistence rj. Current flows occur to min. power loss

=
∑

rjx
2
j . Solve using an active set strategy and 1st order

conds.
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