2.1

Notation
Katta G. Murty, IOE 612 Lecture slides 2

1. Paths a path P from the origin node x1 to the desti-
nation node xj in G is a sequence of lines connecting x; to xy,

but not all these lines may be directed towards x;. Written as:
L1,€1,22,€2,...,Tk—-1,€k-1,Tk

where e, is either (z,, x,,1) or (.41, x,), or edge (x,; z,,1) with
some orientation selected for it, and will be treated as an arc with

that orientation.

1.1 Forward, reverse arcs on a path: On path P an arcis
forward (reverse) if its orientation coincides with (is opposite

to) direction of travel from origin to destination.

1.2 Simple path: If no point and no line is repeated on it.
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1.3 Underlying partial subnetwork of a path: Let:
N = set of distinct nodes appearing on path P.
A = set of distinct lines appearing on P.

Then (N, A) is called the underlying partial subnetwork of
path P.

1.4 Cycle: Path P called a cycle if:
(i) origin and destination node on P are same

(ii) and underlying partial subnetwork (N, A) of P is Eulerian.

1.5 Simple cycle: If no node is repeated on it (with exception

of origin = destination).
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1.6 Predecessor labels to represent simple paths: Con-
sider simple path P: x1,e1,x9,€9,...,Tp_1,€t_1, T}

Origin node ;1 has no predecessor, is labeled with ().

For 2 < r < k, z,_; is immediate predecessor of x, on
P, and is called its predecessor index.

e,_1 1s arc leading into z, from its immediate predecessor x, ;.

If e, forward [reverse] label x, with (z,_1,+) [(z,—1, —) |.

Entire path can be retrieved by a backwards trace of pre-

decessor labels beginning at destination node.
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2. Chains: Paths in which all arcs are forward

2.1 Simple chain: If no point and no line repeated on it.

Can be stored using predecessor indices without the 4, — labels.
2.2 Circuit: is a chain satisfying (i) and (ii) of 1.4.

2.3 Simple Circuit: is a circuit in which no nodes or arcs

are repeated (except origin = destination).
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3. Connectedness: Network G = (N, .A) connected
if there exists a path between every pair of nodes in it, discon-

nected otherwise.

3.1 Connected components: A disconnected network is

several connected components put together.

3.2 Strongly connected network: Directed network in

which there exists a chain from every node to every other node.

3.3 Strongly connected components: In a directed net-
work, each strongly connected component is a maximal partial

network that is strongly connected.
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4. Cuts in connected networks

4.1: Cut in a connected undirected network: is a subset
of edges, deletion of which makes network disconnected; i.e., it has
path blocking property. Used in study of electrical networks.

Consider G = (N, A), let X € N, X = M\ X, with both
X, X # (. This partition yields the cut

(X; X) = set of all edges in A with one node in X, and another

in X.

4.2: Cutset: A minimal cut. No proper subset of a cutset has
cut property. So, removal of a cutset disconnects GG into exactly

2 connected components.

In network below  ({1,2,3};{4,5,6}) = {es, eq,€5,€7} is a
cutset. ({1,6};{2,3,4,5}) = {e1,e9,€9,€10} is a cut but not a

cutset.
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4.3: Cuts in Connected Directed Networks: Let G =
(N, A, L, k) be connected directed network with £, k as arc lower
bound, capacity vectors.

Let X C N, X = N\X, with both X, X # (), be a partition
of N. This generates a Cut [X, X] in G, consisting of two sets

of arcs:

(X, X) = Set of forward arcs of the cut[X, X| = {(i,7) :
i€ X,j€ X, and (i,5) € A}.

(X, X) = Set of reverse arcs of the cut [X, X]| = {(i,7) :
i€ X,j€ X, and (i,5) € A}.

Set, of forward arcs of the cut by themselves have the Chain
breaking property, i.e., if they are all removed, there will be
no chain from any node in X to any node in X. If all reverse arcs
are also removed, there will be no path between any node in X

and any node in X.

4.4 : s —t Cuts, or Cuts separating source node s

and sink node ¢: In study of single commodity flow problems
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with single source node s and single sink node ¢, these special cuts
play a significant role. They are [X, X] with s € X, t € X.

In network below, [{1,2}, {3 to 8}] = {(2,3),(2,6)}U{(4,2)}

[{1,2,3,7,4,5},{6,8}] = {(2,6),(7,8)}

If all forward arcs in an s —t cut are removed, there remains no
chain from s to ¢, hence no flow is possible in remaining network

from s to t.

4.5: Capacity of a cut [ X, X]: in G = (N, A, £, k) is
defined to be:
kX, X) = UX,X) = ex.5) Fij — e b

Cuts play a role dual to that of path in network

algorithms.
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5: Forests and Trees
5.1: Forest: is a partial subnetwork that contains no cycles.

5.2: Tree: is a connected partial subnetwork that contains no
cycle.

Each connected component in a forest is a tree.

5.3: Spanning Tree: A tree that includes all the nodes in

the network, i.e., it is a subnetwork that is a tree.
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5.4: Trivial Tree: A single isolated node by itself.

5.5: Terminal node, End node, Pendant node, or
Leaf node: in a tree is a node that has only one line of the tree

incident at it.
5.0: Leaves: of a tree are its leaf nodes.

5.7: Leat arc, leaf edge: The arc or edge of a tree that is

incident to a leaf node.

5.8: In-tree arc or edge: Given a tree T in G, this is an

arc or edge in GG that isin T

5.9: Out-of-Tree arc or edge: Given a tree T in G, this is

an arc or edge in GG that is not in T

5.10: Cotree: Set of out-of-tree arcs corresponding to a span-

ning tree.

5.11: Rooted tree: A tree with one of its nodes identified
as its root.
We always think of a rooted tree as hanging down from its
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root. This defines a unique predecessor-successor (parent-

child) relationship among the nodes of the tree.

5.12: Fundamental cutsets: Let T be a spanning tree in
G = (N, A

Each in-tree line defines a unique cutset in G called the Fun-
damental cutset of that in-tree line.

After deleting the in-tree line if we add any line in its funda-

mental cutset, we again get another spanning tree.

5.13: Fundamental cycles: Let T be a spanning tree in
G = (N, A).

Each out-of-tree line defines a unique cycle in G called the
Fundamental cycle of that out-of-tree line.

After adding the out-of-tree line if we delete any line in its

fundamental cycle, we again get another spanning tree.
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Properties of nontrivial Trees

a) At least two leaf nodes.
b) If it has n nodes, it has n — 1 lines.

c¢) It has a unique simple path between any pair of nodes in it.
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5.14: Tree labels: Let T be a rooted spanning tree in G =
(N, A).

Then T can be stored by storing the Tree labels (Prede-
cessor indices, successor indices, younger and elder

brother indices, thread label.
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5.15: Predecessor path of a node in a rooted tree: is
the unique path from that node to the root. Can be traced using

only the predecessor indices beginning with that node.

5.16: Ancestors or predecessors of a node in a rooted

tree: Nodes on its predecessor path.

5.17: Descendents or successors of a node in a rooted

tree: All nodes for which this node is an ancestor.

I) How to find fundamental cycle of an out-of-tree arc using
tree labels?

IT) How to find fundamental cutset of an in-tree arc using tree

labels?

44



5.17 In-tree arc directed towards (away from) root
node: On each in-tree arc, one node is parent and the other its
child. in-tree Arc (4, j) is said to be directed towards (away from)

root node if  son(i, j) =i (Son(i,7) = 7).
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5.18: Thread Labels: A 1—1 correspondence N' — N
denoted ¢(z) for 1 € N ie., {t(1),...,t(n)} = N; satisfying

property:

PROPERTY: If node ¢ has NS(7) descendents, then its set of

descendents is: {t(i), 2(i),...,tNO@)}.

Commonly used thread label is:

| eldest son of 7 if S(i) # ()
Y B(i) if S@) = 0 but Y B(i) # 0

if YB(i) = S(i) =0, it’'s YB(j), j st ancestor of i
with a YB

root node, otherwise.
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5.19: Tree Growth subroutines in Network Algo-

rithms

Many network algorithms have subroutines to Grow Trees.
In these subroutines nodes in network will be in two classes called
Labeled, unlabeled. Usually these subroutines consist of following

steps.

TREE PLANTING STEP: Plant a tree at a suitable node,
i.e., select a suitable (this is defined by the algorithm) node as the
root node of a tree, and label it with (). The root is now labeled,

all other nodes are unlabeled.

GENERAL TREE GROWTH OR BRANCHING STEP: Se-
lect a suitable out-of-tree line joining a labeled node (i say), to an
unlabeled node (j say). Label j with ¢ as its predecessor index.
This makes the line joining these two nodes an in-tree line (it is

called the line used to label j) and j an in-tree node.

The subroutine repeats the branching step as often as possible.

At any stage:
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Set of all in-tree nodes = set of labeled nodes.

Set of in-tree lines = set of lines, each joining a labeled node to

its PIL.

Structure being grown is always a tree because

e Connectivity is always maintained

e Always, no. of lines = no. of nodes — 1.
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5.20: Methods for selecting a spanning Tree in G

Primarily based on above tree growth subroutine. Two partic-
ular implementations called BrFS (Breadth First Search),
DFS (Depth First Search) are important. Here nodes un-
dergo two processes, the first is labeling as in the above algorithm,

and each labeled node then undergoes a scanning operation.

BrFS: Nodes can be in 3 states, unlabeled, labeled and un-
scanned, labeled and scanned. At any stage LIST = set of
labeled and unscanned nodes, maintained as a Queue, i.e., newly
labeled nodes are added at the top of the list, and labeled nodes
to scan are taken from the bottom of the list, i.e. using the FIFO

queue discipline.
TREE PLANTING STEP: Same as in 5.19 above.

GENERAL STEP: a) If no unlabeled nodes, tree is a spanning
tree, terminate.
b) If there are some unlabeled nodes, but list = (), G not con-

nected. Present tree is spanning in connected component contain-
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ing root node, terminate.
c) If list = (), delete a node from its bottom, say ¢ to scan.
SCANNING NODE +: Find all unlabeled nodes j joined to
¢ by a line. Label each of these nodes 7 with ¢ as their PI, and

include them at the top of the list. Go to next step.
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THEOREM: In the BrFS spanning tree, for each i € N, the
predecessor path of ¢ is the shortest path between node ¢ and the

root node, in terms of the number of lines.
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6: Bipartite networks

G = (N, A) is said to be bipartite if there exists a partition
on N as (N1, N3) (called a bipartition for G) s. th. every line

in A joins a point in Nj to a point in M.

THEOREM: A network G = (N, A) is bipartite iff it contains

no odd cycles.
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7. Acyclic networks:

A directed network that contains no circuits (it may contain

cycles).

THEOREM: A directed network G = (N, A) is acyclic iff its
nodes can be numbered s. th. for each e € A

number of tail(e) < number of head(e).

Such a numbering is called acyclic numbering or topolog-

ical ordering.
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8: Node-Arc Incidence Matrices:

Defined for directed networks with no self-loops. G = (N, A)
with |[N| = n, |A| = m.

E,«m with each row corresponding to a node, and each col.
corresponding to an arc in G. Entry in row of node ¢ and col. of
arc e 1s:

1 if 2 is tail of e
—1 if ¢ is head of e

0 otherwise

o4



8.1: Triangular matrices: Concept defined only for square

matrices. D, x, = (d;;) is said to be:

Upper triangular if D nonsingular, and d;; =0 Vi > j

Lower triangular if D nonsingular, and d;; =0 Vi < j

Triangular if nonsingular and can be made lower tri-

angular by permuting its cols./rows.
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Algo. to Check triangularity: To check if a square matrix

is triangular:

An element of a matrix is said to be a single nonzero entry
if it is nonzero, and it is the only nonzero entry either in its row

or in its col. or both.

1. Matrix must have a single nonzero entry.
2. Submatrix obtained from matrix by striking off the row and
column of a single nonzero entry must again satisfy 1. Same

process continues unitl all rows and columns of matrix are struck

off.

110000 110001
001110 001100
00000O01 000011
A: 7B:
001001 100010
1000O00O0 001000
000100 010100
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THEOREM: FE is the node-arc incidence matrix of a directed

network (G. Then every nonsingular square submatrix of E is

triangular.

COROLLARY: Determinant of every square submatrix of E is
0,or +1,ie., E'is TU (Totally Unimodular).

THEOREM: If G connected, rank of £ is n — 1. Any row of

E' can be struck off to make remaining matrix of full row rank.

THEOREM: Let E be the (n — 1) x m matrix obtained by
striking off a row (say that of node n) from FE.

a) Let B be a basis for F. Then cols. of B correspond to arcs
in a spanning tree of G and vice versa.

b) For any RHS vectors d, ¢, the equations By = d, TB =
¢ can both be solved by backsubstitution, and the solutions
are of form:  (y;), (m;) where  y; = S audy, ™ = 277! Biey
in which all oy, 3; are 0, £1.

Hence if d, c are integer vectors, the solutions y, 7w are also

integer vectors.
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8.2: Integer Property: Let A,,, and let K(b) be set of
feasible sols. of Az <b, x >0.

Then following 3 conds. are equivalent.

i) Ais TU

ii) V integral b, all extreme pts. of K(b) are integral.

iii) Every nonsingular square submatrix of A has an integer

inverse.
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8.3: Fundamental cycle—Arc incidence matrices, In-

tree arc—Fundamental cycle incidence matrices

Let T" be a spanning tree in G with in-tree arcs ey, ..., e, 1.
Out-of-tree arcs are: e, ..., e,. Orient fundamental cycle of each
out-of-tree arc s. th. the out-of-tree arc is a forward arc in it.

Fort =1 tom, p = n to m define:

0 if e; € funda. cycle of e,
Aip =1 +1 if e; reverse on this cycle

—1 if e; forward on this cycle

\

For p = n to m,

Incidence vector of funda. cycle of e, = (Ayp, ..., App)-
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Funda. cycle-arc incidence matrix of G WRT T is:

Aln - Amn
A1,n+1 v /\m,n+1
Lim—ni+1)xm =
A oo Am

The in-tree arc—Funda. cycle incidence matrix for G WRT T
is:
Mn  vor Alm

A(n=1)x (m—n+1) =

An—l,n <. )\n—l,m
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Fort =1tom, E,, E, are the col. vectors of E, E correspond-

ing to arc e;.

RESULT: For p = n to m

n—1
E.p — tgl AtpE.t

n—1 _
E.p — tgl AtpE.t

So, (A1p, ..., An—1p) is the vector of coefficients in the repre-
sentation of node-arc incidence col. of e,, as a linear comb. of

node-arc incidence cols. of in-tree arcs.

RESULT:
_ in-tree  out-of-tree
E pr—
B D
Then B(,_1)x(n—1) 18 a basis for E. When we multiply £ on
left by B! weget BT'E = (I : B'D)=(I : )\).

This result is named Dantzig Property.
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8.4: Vertex-Edge incidence matrix of an undirected

network

G = (N, A) umdirected with |[N| = n, |A] = m. The
Vertex-Edge incidence matrix of G is the n X m matrix
with: a;; = entry in this matrix in row of node ¢ and column of

edge e; given by

1 if 7 on e
At =
0 otherwise

Write the node-edge incidence matrix of the network for Konigs-
berg bridges.
Verify that the determinant of the node-edge incidence matrix

of any odd simple cycle is —2.

THEOREM: The node-edge incidence matrix of an undirected

network is T'U iff network is bipartite.
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9: Single commodity flow models

G = (N, ALk, s,t) Directed. Two ways of representing flows
in G.

9.1: Node-Arc flow models: One variable associated with

each arc in the network.

fij = amount shipped across (7, j) from tail node ¢

to head node j.

So, in this model, we treat flow as it takes place one arc at a
time. f = (fi;) called node-arc flow vector has to satisfy

following conditions for feasibility.

Flow conservation: 1. At every transit node i , f(N, i) =
Zjen() Jfji = total flow coming to 7 thro” arcs in its reverse star =
f(i,N) = Sjeau [ij = total flow going out of 7 thro’ arcs in its

forward star.
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2. Value of flow vector f = net flow going out of source
node = net flow reaching sink node, denoted by v.

Bounds: f;; honors the lower bound and capacity for flow of

arc (i, ).

So, these cods. are:

f(SvN)_f(st) = v
f,N)— fN,i) = 0, i+#s,t
f(tvN)_f(Nvt) = —V
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This model looks strange for physical shipping, because trucks
usually loaded at source, and never unload until they reach sink.

2nd type of model called Arc-Chain flow model gives much
more realistic portrayal of physical shipping.

But in many network models, each arc (7, j) represents a chan-
nel for transporting intermediate product at some stage repre-
sented by node 7 to next processing operation represented by node
J (e.g., chair-making example). In these cases, material actually
unloaded after traveling thro’ each arc (4, j), processed, then sent
along another arc, and continues same manner on its way to be-
coming finished product. Node-arc flow model directly applicable
to these situations. As most network applications are of this type,
we will concentrate on node-arc flow model.

Also, any solution of node-arc flow type, can be converted into
the arc-chain flow type. Hence, we will see that node-arc flow

model is convenient to study physical shipping problems too.
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9.2: Min cost flow problems with exogenous flows

Let E be node-arc incidence matrix of directed G = (N, A, 4, k, ¢, V)
with ¢ = cost vector for arc flows, V' = (V;) = vector of exogenous

flow amounts at the nodes. The model is:

min c f
s.to Ef =V
(< f <k

Since sum of row vectors of E is 0, we have a

Necessary cond. for existence of a feasible flow vector

> V=0
ieEN
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9.3: The Arc-Chain flow model

Consider shipping maximum possible amount from s to ¢ in
directed flow network G = (N, A,0, k, s, ).
Make a list of different chains from s to ¢ in G. Suppose these

are:

Cn, h = 1 to p. Let x5 denote amount shipped from s to ¢

along the chain Cj,.

r = (xp) = (x1,...,1,) is called the Arc-Chain flow vec-
tor. Its Value = amount reaching ¢ from s in it = =5 _, ;.
So, arc-chain formulation of maximum flow problem is:

max XhTh
s. to S(zp:over hos.th. (4,7) € Ch) < k;; V(i,j) € A
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HOW TO GET A NODE-ARC FLOW VECTOR CORRE-
SPONDING TO A GIVEN ARC-CHAIN FLOW VECTOR?

Let x = (x3) be an arc-chain flow vwctor of value v. Define:

fzy(x) = Xh s.th. (1,5)€Cy, Lh \V/(ZL]) €A

Let f(z) = (fij(x)). Verify f(z) is a feasible node-arc flow
vector of same value as x, it is called the node-arc flow vector

corresponding to the arc-chain flow vector x.
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HOW TO GET AN ARC-CHAIN FLOW VECTOR CORRE-
SPONDING TO A GIVEN NODE-ARC FLOW VECTOR?

THEOREM: Let f = (/fi;) be a feasible node-arc flow vector

of value v in G. If v > 0, there exists a chain from s to ¢t such

that f;; > 0 on all arcs (7,5) on that chain.
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10: Flow Augmenting Paths (FAP)

Let f be a feasible flow vector in directed single commodity
flow vector G = (N, A, £, k, s,t).
A path P from s to ¢t in GG is said to be a low augmenting

path (FAP) WRT f if it satisfies:
< k;; for (i,7) forward on P

ij
> {;; for (i,7) reverse on P

The Residual capacity € > 0 of this FAP is defined to be:

min{k;;— fi; : (¢,7) forward on P}U{f;;—¢i; : (i,) reverse on P}
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Given an FAP WRT f with residual capacity €, the flow

augmentation step using it generates the new flow vector
f = (fij) where:

Jij if (¢,7) € P
fij =9 fij + € if (i,5) forward on P

fij — € if (¢, 5) reverse on P

f is feasible and its value is € + value of f.

Verify that P is not an FAP WRT f.

Augmenting Path Methods: Those based on FAPs for

solving network flow problems.
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10.1: Flow Augmenting Chain (FAC) from s to ¢
WRT f: is an FAP from s to t WRT f in which all arcs are

forward arcs.

Maximal or Blocking flow in G is a feasible flow vector

WRT which no FAC from s to t exists.

Maximum flow in (G is a feasible flow vector in G associ-

ated with the maximum possible value.
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10.2: Saturated arc: In a flow vector f = (f;;) in G, an arc

(¢,7) is said to be saturated if f;; = k;;.

10.3: An approach for finding a maximum flow in

G=(N,A0k,s,t)
1. Begin with f = 0.

2. Let f be current flow vector. Delete all saturated arcs from
G from further consideration. Let G' denote remaining network.

Find a chain from s to t in G. If none, terminate with f as the
answer to the problem.

If a chain C from s to t in G is found, augment f using it as

an FAC. Repeat this Step 2 with the new flow vector.
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11: Reduced Cost Coefficients

Consider min cost flow problem in directed single commodity
flow network G = (N, A, £, k,c, V) with IN| = n,|A| = m, and

E as the node-arc incidence matrix. The problem is:

min c f
s.to Ef =V
(< f <k

Dual problem has variables m;, i € N, called Node poten-
tials or prices. Given node price vector m = (7;), the relative

or reduced cost coefficient of arc (i,j) WRT 7 is:

Cij = cij — (mj — ™)

THEOREM: Minimizing cf or ¢f in above problem leads to

the same set of optimal flows. So, can replace ¢ by ¢ in above min

cost flow problem.
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THEOREM: Let P be a path from p to ¢ in G; and C any
oriented cycle. Define: cost of P or C' tobe = (sum of cost
coeffs. of forward arcs) — (sum of cost coeffs. of reverse arcs).
Then:

Cost of P WRT ¢ = (Cost of P WRT ¢) + (—m, + 7).

Cost of C' WRT ¢ = Cost of C' WRT <.
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12: Residual cycles

Let f = (fij) be a (not necessarily feasible) flow vector satis-
fying the bound conds. on all the arcs in G = (N, A, (, k, ¢, V).
An oriented cycle ('in G is said to be a Residual cycle WRT

fif:
fij < kij on all forward arcs of C

fi; > ¢;; on all reverse arcs of C

The capacity of residual cycle (' is defined to be:

min{k;;— f;; : (¢,7) forward on C YU{ fij—Li; - (i,7) reverse on C'
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13: Residual arcs; Residual Networks G(f),
G(f, )

Let f = (fi;) be a flow vector (not necessarily feasible) satisfy-
ing the bound constraints in G = (N, A, £, k,c, V).

(¢,7) € A called a residual arc WRT f if f;; < k;;.
If (i,5) € A, and f;; > {;;, then we say that the arc (j,1) (it

may not exist in \A4) is a residual arc WRT f.

The residual network G(f) of G WRT f is an anciliary
network (N, A(f),0, k, ¢’) where A(f) consists of the arcs defined

by following rules 1 and 2, with &, ¢ defined there.

1. Y(i,j) € Awith f;; < k;j, include arc (7, j) in A(f) with a
+ label, lower bound 0, capacity x;; = k;; — fi;, and cost coeff.

l — ..

2. V(i,j) € Awith f;; > {;;, include an arc (j,i) in A(f)
with a — label, lower bound 0, capacity x;; = fi; — ¢;;, and cost

l — . .
coeff. ¢, = —cj.
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G(f) very useful to determine new flow vectors to which we
can move from f maintaining bound feasibility. Every FAP from
s to t WRT f corresponds to a chain from s to ¢t in G(f) and
vice versa.

(p,q) € A(f) corresponds to (p.q) [(¢,p)] in A if its label is +

it

The residual network G(f, ) same as G(f) with exception
that cost coeffs. are determined based on reduced cost coeffs. ¢

rather than original cost coeffs. c.
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14: Outtree, Intree

Outtree [Intree| are rooted tree in which every arc is directed

away from [towards] the root node.
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15: Matchings, perfect matchings

Usually defined in undirected networks. A matching or 1-
factor is a set of edges that contains at most one edge incident

at any node. In figure set of wavy edges is a matching.

A perfect matching is a set of edges that contains exactly
one edge incident at each node. Set of red edges in figure is a

perfect matching.
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16: Assignments

Let G be a bipartite network with bipartition ({ Ry, ..., R,},
{C4,...,C,}). A perfect matching in G is called an assign-

ment.

We will represent this bipartite network by the n X n array
with cell (7, j) in the array corresponding to edge (R;, C;). So, an

assignment is a n X n 0 — 1 matrix satisfying:
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ZZCZ']':L 1=1ton

injzl, jIltO’n (1)
i=1

ri; > 0, Vi,j

ri; € {0,1} Vi, j (2)

A feasible solution z to (1) is called a doubly stochastic
matrix.
An assignment is a 0 — 1 doubly stochastic matrix. The cells

with “1” entries in an assignment are called its allocated cells.
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17: Transportation problem

Bipartite min cost flow problem. Every node is either a source

or a sink. Bipartition is (sources, sinks).

Figure 1.36 Bipartite network representation of the trans-
portation problem. Data on each arc is its lower bound, capacity,
and cost per unit flow. Exogenous flow amounts are entered by

the side of the nodes.
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18: Assignment problem

A transportation problem in which

number of sources = number of sinks

all sources have 1 unit supply, and all sink demands are 1 unit.

EXAMPLE: Corporation introducing new product. 4 market-
ing zones, each needs marketing director. 4 candidates selected.
Company estimates of sales generated given in table, depending
on which candidate is appointed in each zone. Assign candidates
to zones to maximize total annual sales. This is a special bipartite
minimum cost flow problem, or problem of finding a min cost

perfect matching in a bipartite network.

Expected annual sales in zone,

if candidate assigned to zone.

Zone — 1 2 3 4
Candidate 1 90 8 139 73
2 60 130 200 112

3 60 130 200 112

41 111 88 128 94
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19: Transhipment problem

A min cost flow in a non-bipartite directed network. May have
transit nodes, arcs joining pairs of source nodes, or pairs of sink

nodes.

Figure 1.37 Numbers on nodes corresponding to plants and
packing units are node capacities per day; and those on sales
nodes are requirements per day.

Node corresponding to plant 2 is a source , but it can also

receive flow from other source nodes like plant 1. That’s why
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problems like this are called transshipment problems.
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