
3.1

Single Commodity Maximum Flow Problem
Katta G. Murty, IOE 612 Lecture slides 3

Simple Transformations

1. To get a model with a single source: If many souce

nodes with specified availabilities, can introduce Supersource

And convert problem into one with a single source.

Original model

Source Availability

1 a1 units

2 a2

... ...

r ar

2. To get a model with a single sink: If many sink

nodes with specified requirements, can introduce Supersink and

convert problem into one with a single sink.

87

Original model

Sink Requirement

1 at least b1 units

2 exactly b2

... ...

r . . . ar

Another way to handle requirement of at least b1 at a node 1

is to make lower bound and capacity on arc (1, t) equal to 0, b1

respectively and look for a flow that saturates this arc.

3. Transforming node capacities into arc capacities:

If node i has transit capacity of ci split node i into a pair of ad-

jacent nodes (one,i1 say, that acts as receiving end of node i

handling incoming flow; the other, i2 say, that acts as ship-

ping end of node i handling outgoing flow) as below.

88

4. Combining parallel arcs into one:

89

Some results

Given G = (N ,A, �, k, s, t) with |N | = n, |A| = m problem

is to find (f, v) to:

max v

s. to f(i,N) − f(N , i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v if i = s

0 if i �= s or t

−v if i = t

� ≤ f ≤ k

DEFINITION: Net flow in f across a cut [X, X̄]: Let

f be a feasible flow vector in G and [X, X̄] a cut separating s

and t. Then the net flow in f across this cut is defined to be :

f(X, X̄) − f(X̄, X).

90

Results

1. For any feasible flow vector of value v, the net flow across

any cut separating s and t is v.

2. Flow value of any feasible flow vector is≤ capacity of any cut

separating s and t. So maximum flow value ≤ minimum

cut capacity.

3. If f̂ is a feasible flow of value v̂, and [Y, Ȳ] is a cut separating

s and t, and v̂ = k(Y, Ȳ)−�(Ȳ , Y) = capacity of cut [Y, Ȳ]; then

f̂ = a maximum flow vector, and [Y, Ȳ] = a minimum capacity

cut.

4. A feasible flow vector in G is of maximum value iff there

exists no FAP from s to t WRT it.

91

Tree groth routine to find X = set of all nodes i with

an FAP from s to i WRT f

Step 1: Plant a tree (often called the Label tree) with root

node at s, i.e., label s with ∅.

General tree growth step: Look for nodes i, j satisfying:

Either : (i). (i, j) ∈ A, i labeled, j unlabeled, and fij < kij

or : (ii). (j, i) ∈ A, j unlabeled, i labeled, and fji > �ji

If such a pair i, j is found, label j with (i, +) in case (i), or

(i,−) in case (ii). Then go to the next tree growth step.

If such a pair i, j don’t exist, terminate, X is the set of labeled

nodes at this stage.

For each i ∈ X , the FAP is the predecessor path of i in the

tree written in reverse order.

92

If sink is in the label tree (i.e., t ∈ X) (event called Break-

through) then there is an FAP from s to t WRT f .

If label tree stops growing without sink getting labeled (i.e.,

t �∈ X, this event called Nonbreakthrough), there is no FAP

from s to t WRT f , then f is a maximum flow.

5. The max flow min cut theorem: If a feasible flow

vector exists in G, Maximum flow value = minimum cut capacity.

93

Duality Interpretation

For simplicity assume � = 0. Dual of max flow problem is:

min z(π, u) =
∑

kijuij

s. to πj − πi + uij ≥ 0 ∀(i, j) ∈ A
πs − πt = 1

πt = 0

uij ≥ 0 ∀(i, j) ∈ A

“πt = 0” comes from eliminating the redundant flow conserva-

tion eq. of node t.

Theorem: Every extreme pt. of the dual system corresponds

to a cut separating s and t through the following:

If (π̄, ū) is an extreme pt., then all π̄i, ūij are 0 − 1, and if

X̄ = {i : π̄ = 0}, X = {i : π̄ = 1}, then [X, X̄] is a cut

separating s and t, and:

ūij =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 iff (i, j) ∈ (X, X̄)

0 otherwise

94

and vice versa.

So the min cut problem is exactly the problem of finding an

extreme point optimum of the dual.

The difference between the Max cut and min cut

Problems

Assume k > 0. The problem of finding a maximum capac-

ity cut is not equivalent to the LP:

Max
∑

kijuij s. to constraints in the dual

because the maximum objective value in this LP is +∞.

The max capacity cut problem same as problem of finding

a max value extreme point sol. in this unbounded LP, an

NP-hard problem.

95

96

1. Single path Labeling methods for max

flow

To find max flow in G = (N ,A, �, k, s, t).

Phase I: Finds a feasible flow first. If � = 0, f = 0 will do.

Algorithms for Phase I when � �= 0 are based on applying Phase

II on a modified network.

Phase II: Find a max flow beginning with an initial feasible

flow f 0.

We discuss algorithms for Phase II first.

97

1.1 Initial Version: Needs an initial feasible flow vector.

Tree growth occurs one branch at a time.

Step 1: Rooted tree planting: Let f̄ be the current

feasible flow vector of value v̄. Label s with ∅.

Step 2: Tree growth: Look for nodes i, j satisfying one of

following.

(i) Forward labeling rule i labeled, j unlabeled, (i, j) ∈
A, and f̄ij < kij.

(i) Reverse labeling rule i labeled, j unlabeled, (j, i) ∈
A, and f̄ji > �ji.

If such pair found, label j with (i, +) [(i,−)] under rule (i) [

(ii)]. If j = t there is a breakthrough, go to Step 3. Otherwise

repeat Step 2.

If no such pair, nonbreakthrough, go to Step 4.

Step 3: Flow augmentation: Let P be predecessor path

of t written in reverse order beginning with s, an FAP. Let ε be

98

residual capacity of P , and new feasible flow vector f̂ij = (f̂ij),

where:

f̂ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f̄ij + ε if (i, j) forward P

f̄ij − ε if (i, j) reverse on P

f̄ij if (i, j) not on P
Chop down present tree (i.e., erase labels on all nodes)

and go back to Step 1.

Step 4: Termination: Present flow vector is a maximum

flow, terminate. X = set of labeled nodes, X̄ = complement of

X , then [X, X̄] is a min cut.

99

Analysis when bounds irrational F & F constructed ex-

ample to show algo. may not work. Let α = (−1 +
√

5)/2,

β =
∑∞

r=0 αr.

Not all arcs shown. Other arcs are: (xi, yj), (yi, yj), (yi, xj)

∀i �= j. All lower bounds = 0. All capacities β other than 4

shown in fig. Initial feasible flow f 0 of value 1 shown in fig. F &

F constructed a sequence of feasible flows {fr: r = 0, 1, . . .} s.

th. fr+1 obtained by augmenting fr ∀r, and values vr ↑ β, while

maximum flow value is 4β.

100

Analysis when bounds, f 0, integral: Each augmentation

step increases flow value by > 1. So algo. finds max flow either

finitely or thro’ an infinite sequence.

Let u = maximum arc capacity. Then capacity of cut [{s},N\{s}]

is ≤ nu, so max flow value ≤ nu. So no more than nu augmen-

tations.

Work between consecutive augmentations is at most O(m).

So overall complexity is O(nmu), a pseudopolynomial time

algorithm.

101

1.2 : Scanning version: Each labeled node is scanned to

label all unlabeled nodes that can be labeled from it. List = set

of labeled and unscanned nodes.

Step 1: Rooted tree planting: Let f̄ be the current

feasible flow vector of value v̄. Label s with ∅. List = {s}.

Step 2.1: Selecting a node from List to scan: If List

= ∅, go to Step 4. Otherwise, delete a node i from list to scan.

Step 2.2: Scanning node i:

(i) Forward labeling Label all j unlabeled s. th., (i, j) ∈
A, and f̄ij < kij with (i, +) and put all such j in List.

(i) Reverse labeling rule Label all j unlabeled, s. th.

(j, i) ∈ A, and f̄ji > �ji with (i,−) and put all such j in List.

If t now labeled go to Step 3. Otherwise go to Step 2.1.

Steps 3, 4: Same as in initial version.

102

Sometimes better than initial version, but worst case behavior

same as that of initial version.

103

1.3: Shortest Augmenting Path method

Main idea: At each stage select FAP to be a shortest (in

terms of no. of arcs).

Algorithm: Only change needed from scanning version is to

maintain List as a Q , i.e., select nodes from List to scan using

FIFO discipline.

Theorem: For all data, beginning with any feasible flow vec-

tor, this method solves max flow problem after ≤ mn/2 augmen-

tation steps with an overall complexity of O(nm2). Strongly

polynomial algo.

104

2. Multipath Labeling methods for Phase

II

In each step these methods augment along all shortest paths

simultaneously. Each FAP converted into a chain by reversing

orientation of reverse arcs. All these chains put together yield an

acyclic network called an Auxiliary network WRT present

flow f , AN(f) = (N(f), A(f)), a partial subnetwork of residual

network G(f).

All lower bounds in AN(f) are 0, and upper bounds are resid-

ual capacities. Also A(f) = A+(f) ∪ A−(f) where:

(i, j) ∈ A+(f) ⇒ (i, j) ∈ A, fij < kij, and κij = capacity in

AN(f) = kij − fij.

(i, j) ∈ A−(f) ⇒ (j, i) ∈ A, fji > �ji, and κij = capacity in

AN(f) = fji − �ji.

These methods find a maximal or blocking flow in AN(f)

and augment f in G using it.

We denote flow vectors in AN(f) by g = (gij).

105

General multipath labeling method for max-

imum flow

Step 1: Initiate the method with a feasible flow vector f 0 in

G.

Step 2: Let f be the current feasible flow vector in G.

Construct auxiliary network AN(f). Two possible outcomes.

• Construction stops without t joining auxiliary network. Then

f is a maximum flow in G. If X = set of all nodes in aux-

iliary network, and X̄ its complement; [X, X̄] is a min cut

separating s and t. Terminate.

• t joins the auxiliary network at some stage. Stop construction

and go to Step 3.

Step 3: Find a maximal or blocking flow g = (gij) in the aux-

iliary network. Different multipath methods use different methods

for this.

Step 4: Augmentation: Compute new vector f̂ = (f̂ij) in

106

G by

f̂ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fij if (i, j) �∈ A(f)

fij + gij if (i, j) ∈ A+(f)

fij − gij if (i, j) ∈ A−(f)

Value of f̂ in G = (Value of f in G) + (Value of g in AN(f).

Go back to Step 2 with f̂ .

107

2.1 Dinic’s method: The auxiliary network used is

called Layered Network L(f) = (N(f), A(f)). Nodes N(f)

in it are partitioned into nonempty subsets N0 = {s},N1, . . . ,Nr

called Layers. If f is not a maximum flow in G the last layer

will contain t.

Arcs in layered network always go from one layer to next.

Definition: Length of L(f) = −1 + number of layers.

108

Layered network construction

Step 1: Initialization: N0 = {s}.

General step to construct next layer: Let Nr be last

layer constructed. For each i ∈ Nr do:

for each j s. th. (i, j) ∈ A and fij < kij; put j in Nr+1, and

(i, j) in A+
r+1(f) with κij = kij − fij.

for each j s. th. (j, i) ∈ A and fji > �ji; put j in Nr+1, and

(i, j) in A−
r+1(f) with κij = fji − �ji.

• If Nr+1 = ∅, let X = ∪r
u=0Nu and X̄ its complement. f is

a maximum flow in G, and [X, X̄] is a min cut, terminate

Dinics algo.

• If t ∈ Nr+1, let N(f) = ∪r
u=0Nu, A(f) = ∪r+1

u=1(A
+
u (f) ∪

A−
u (f)), L(f) = (N(f), A(f)) stop construction.

• Otherwise go to next step in construction.

109

110

Dinic’s Procedure for finding Maximal (Block-

ing) flow in L = (N,A, 0, κ, s, t)

Begins with g0 = 0 and augments flows along FACs detected

by DFS.

F denotes current set of eligible arcs to include in FAC. Up-

dated by deleting saturated arcs etc.

Step 1: Initialization: g0 = 0 is current flow in L, F = A.

Step 2: Initiate DFS: Initiate DFS by labeling s with ∅
and making it current node .

Step 3: DFS: Let i ∈ Nr be current node.

• If F has no arc incident out of i, go to Step 6 if i = s or Step

5 if i �= s.

• If F has some arcs incident out of i, select one, say (i, j).

Label j with PI i.

– If j = t, predecessor path of t in reverse order is FAC, go

to Step 4.

111

– If j �= t, make j the new current node and repeat this

step.

Step 4: Augmentation: Augment flow using FAC, delete

all saturated arcs from F , erase labels on all nodes, and go to

Step 2.

Step 5: Updating F : No FAC through current node i. Let

p = PI of i. Delete all arcs incident into i from F , make p next

current node, go back to Step 3.

Step 6: Stop: Present flow vector g is maximal, terminate.

112

113

Theorem: In Dinic’s method, each successive layered network

is strictly longer than the previous.

Theorem: At most n − 1 layered networks need to be con-

structed in Dinic’s method.

114

2.2: Dinic-MKM (Malhotra−Kumar− Ma-

heswari) method

Auxiliary network used is Referent, a partial subnetwork of

L.

Procedure for finding blocking flow not based on FACs, but

uses new operations called Flow pushing, flow pulling.

Backward pass routine to find Referent R from L:

Layered network L may have nodes other than t in last layer

NL. Flows on arcs incident into them will be 0 in every blocking

flow. This removes such 0-flow arcs.

• Delete all nodes other than t from last layer NL and all arcs

incident at such nodes from L.

• Delete all nodes which have no arcs incident out of them, and

all arcs incident into those nodes.

Repeat this step until no further deletions are possible.

Remaining part of layered network called referent. It is a

union of simple chains from s to t.

115

F denotes set of eligible arcs of R at current stage, and Y

denotes the set of nodes on arcs in F .

Let g be a feasible flow vector in R, and Y, F the current sets.

For each i ∈ Y , WRT g, Y, F we define:

α(i) = In-potential of i =
∑

(j,i)∈F (κji − gji)

β(i) = Out-potential of i =
∑

(i,j)∈F (κij − gij)

ρ(i) = flow-potential of i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β(i) if i = s

α(i) if i = t

min{α(i), β(i)} if i �= s, t

116

MKM procedure for finding blocking flow in

R

Step 1: Initialization: Start with g0 = 0 in R = (N, A, 0, κ, s, t).

F = A, Y = N . Compute ρ(i) ∀i ∈ N WRT g0, F, Y . All these

initial ρ(i) will be > 0.

Step 2: Reference node selection: Reference poten-

tial = ρ = min{ρ(i) : i ∈ Y }, and p a node that attains this

min. p called reference node.

Step 3.1: Flow Pushing: Push excess flow of ρ out of p

(increase flow on arcs of F in forward star of p 1-by-1 saturating

them until total increase reaches ρ). In this process at most one

outgoing arc has flow increase but remains unsaturated.

This has pushed flow from p to nodes in next layer. For each of

those nodes, push the excess flow reaching there, out of that node

exactly same way. Repeat for nodes in next layer & continue until

all excess flow of ρ units reaches t.

Step 3.1: Flow Pulling: Pull excess flow of ρ into p (in-

117

crease flow on arcs of F in reverse star of p 1-by-1 saturating

them until total increase reaches ρ). In this process at most one

incoming arc has flow increase but remains unsaturated.

This has pulled flow into p from nodes in previous layer. For

each of those nodes, pull the excess flow going out of it, into that

node exactly same way. Repeat for nodes in previous layer &

continue until all excess flow of ρ units is pulled out of s.

After Steps 3.1, 3.2 are completed, we again have a feasible flow

vector.

Step 4: Updating F, Y, ρ(i)s: 4.1: Delete all saturated

arcs from F .

4.2: If all arcs into (or all arcs out of) a node q are deleted from

F , delete q from Y , and all arcs incident at q from F . Repeat

until no further deletions are possible.

4.3: Update in, out, and flow potentials of nodes in Y WRT

present flow and sets Y, F .

• If ρ(i) = 0 for some i ∈ Y , go to Step 5 if ρ(s) or ρ(t) is

0; otherwise if ρ(s), ρ(t) are both > 0 delete all nodes i with

118

ρ(i) = 0 from Y and all arcs incident at them from F . Now

apply 4.2, after which go to 4.3 again.

• If ρ(i) > 0 ∀i ∈ Y go to Step 2.

Step 5: Stop: Present flow vector is blocking, stop proce-

dure.

Theorem: The overall complexity of Dinic-MKM algorithm

for maximum flow is O(n3).

119

120

3. Preflow-Push methods for Phase II

Newer algorithms. First consider lower bound vector � = 0.

A preflow is a flow vector (not necessarily feasible) g = (gij)

satisfying:

• 0 ≤ g ≤ k, i.e., bounds hold on all arcs.

• ∀i �= s, t net flow into node i = e(i) = g(N , i) −
g(i,N) ≥ 0.

Preflows first introduced by Karzanov.

Active node: Node i said to be an active node in preflow g

iff e(i) > 0.

121

These methods work by pushing excess from active nodes to

t, or to s if t is not reachable from them. Terminate when no

active nodes left, i.e., when flow vector becomes feasible, it will

be a maximum flow.

These methods due to Goldberg, Tarzan, use a node dis-

tance vector (d(i)). d(i) is an estimate of the distance in

terms of arcs, from node i to t in the residual network G(g) =

(N ,A(g), 0, k). It satisfies following Validity conditions:

• d(i) ≥ 0 and integer ∀i.

• d(t) = 0, d(s) = n.

• If (i, j) ∈ A(g) then di ≤ dj + 1.

So, if d(i) < n it is a lower bound on actual distance from i to

t in G(g). And if d(i) ≥ n, d(i) − n is a lower bound on actual

distance from s to i in G(g).

Arc (i, j) ∈ G(g) is said to be admissible arc WRT d if:

i is an active node and d(j) = d(i) − 1.

122

General Preflow push algorithm

Initialization: Define initial g0 by

gij =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

kij if i = s

0 otherwise

Define initial d0 by one of the following two choices: Simplest

choice is to take d0(i) = n if i = s, 0 otherwise. The better choice

is to take d0(i) to be the distance labels obtained in a backwards

BrFS of G(g0) starting at node t.

General Step: Let (g, d) be present preflow, distance label

pair.

If no active nodes, g is a maximum feasible flow, terminate.

If active nodes exist, perform one of following two operations.

Push: Select an active node i and an admissible arc (i, j)

incident out of it in G(g).

If (i, j) has a + label [− label] in G(g) increase gij [decrease

gji] by ε = min{e(i), κij}.

This push operation is saturating if ε = κij, nonsaturating

123

otherwise. It decreases e(i) by ε, and increases e(j) by ε if j �= t.

Relabel: Select an active node i with no admissible arcs inci-

dent out of it in G(g). So, j s. th. (i, j) ∈ A(g) ⇒ d(i) ≤ d(j).

Change d(i) to min{1 + d(j) : j s. th. (i, j) ∈ A(g)}.

This relabel operation resets d(i) to highest value allowed by

validity conds. It creates at least one admissible arc at active node

i on which a push operation can be carried out next.

Complexity of this algo. ≤ O(n2m), & can be improved to

O(n3) by rules for selecting active nodes, admissible arcs, & order

in which push, relabel are applied.

124

How to find max flow by preflow push when

� �= 0?

Needs two phases. Phase I (next section) finds a feasible flow

vector by applying the max flow algorithm on a modified network

in which all lower bounds are 0, so this can be solved by the above

preflow push algo.

Phase II : Let f̄ be the feasible flow vector obtained in Phase

I. Apply the above preflow push algo. to find a max flow in G(f̄)

= (N ,A(f̄), 0, κ, s, t), let it be h = (hij). Then a maximum flow

in G is f̂ = (f̂ij) where:

f̂ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f̄ij + hij if (i, j) ∈ A(f̄) with + label & hij > 0

f̄ij − hji if (j, i) ∈ A(f̄) with − label & hji > 0

f̄ij otherwise

125

Phase I for problems with � �= 0

Assume 0 ≤ � ≤ k. Purpose to find a feasible flow vector or

establish infeasibility. In G compute �(i,N), �(N , i) ∀i ∈ N ,

and �(N ,N).

A Feasible circulation is a flow vector satisfying bounds

on all arcs, in which flow conservation holds at every node (flow

in = flow out at every node).

Modify G by adding an artificial arc (t, s) with �ts = 0, kts =

∞, and call modified network G1.

If f is a feasible flow vector of value v in G, (f, fts = v) is a

feasible circulation in G1 & vice versa. So, Phase I problem can

be solved by finding a feasible circulation in G1.

In G1 since we want to find a feasible circulation, there are no

source and sink, and s, t are like any other nodes.

Now we transform the problem of finding a feasible circulation

in G1 into a max flow problem on another modified network G∗

in which all arc lower bounds are zero. G∗ is obtained from G1

126

by making following changes:

• Add artificial source, sink nodes s∗, t∗ to G1.

• ∀i s. th. �(i,N) �= 0, add the artificial arc (i, t∗) with lower

bound 0, capacity = �(i,N).

• ∀i s. th. �(N , i) �= 0, add the artificial arc (s∗, i) with lower

bound 0, capacity = �(N , i).

• ∀(i, j) ∈ A with �ij �= 0, change its lower bound to 0, and

capacity to kij − �ij. Resulting network is G∗.

Phase I Algorithm: Find maximum flow in G∗ from s∗

to t∗. Since all arc lower bounds in G∗ are 0, this can be found

by any algo. discussed earlier beginning with 0-flow in G∗. Let

maximum flow be f∗ with value v∗.

• If v∗ < �(N ,N), there exists no feasible circulation in G1,

and hence no feasible flow in G.

• If v∗ = �(N ,N), let f̂ = (f̂ij = f∗
ij + �ij : (i, j) ∈ A). Then

(f̂ , f∗
ts) is a feasible circulation in G1, and f̂ is a feasible flow

vector in G of value f∗
ts.

127

128

Existence conditions for a feasible circula-

tion

Theorem: Given G = (N ,A, �, k) with 0 ≤ � ≤ k, a feasible

circulation exists in G iff:

k(X, X̄) ≥ �(X̄, X) ∀X ⊂ N , X̄ = N\X

129

Critical capacities

Consider the max flow problem in G = (N .A, 0, k, s, t). For a

particular arc (i, j) define:

v(kij) = maximum flow value in G as a function of capacity kij

as it varies from 0 to ∞, while capacities of all other arcs remain

fixed.

Critical capacity of arc (i, j) = k∗
ij = v(∞) − v(0).

130

