4.1

Primal-Dual Algorithms
Katta G. Murty, IOE 612 Lecture slides 4

Here we discuss special min cost flow problems on bipartite
networks, the assignment and transportation problems.
Algorithms based on an approach called the Primal-Dual ap-

proach are discussed.

Strategy of P-D methods to solve an LP

1. Methods need an initial dual feasible solution to
start. Hence methods suitable to solve problems for which a
dual feasible sol. can be found easily (these include assign-
ment, transportation, matching & other network problems).

2. Always maintains:

e a (primal vector, dual feasible sol.) pair that together

satisfies C. S. opt. conds.

e dual feasibility and C.S. opt. conds.

131

Primal vector is primal infeasible till end. So when primal

feasibility attained, the pair becomes opt. & method terminates.
3. Two main steps carried out in this particular order:

Primal vector change step: Keeping dual sol. fixed, ob-
tain primal vector closest to primal feasibility among all primal
vectors satisfying C.S. conds. together with present dual feasible
sol.

So, a measure of primal infeasibility is minimized during

this step.

Dual solution change step: Do this only when primal
vector cannot be changed as above. Changes to a new dual feasible

solution satisfying:
a) C.S. conds with present primal vector.

b) Using it, it is possible to resume primal vector change & make

some progress in it.

132

The primal infeasibility measure is decreasing | during algo.

Method can terminate two ways:

1. With an optimum primal, dual pair of sols.

2. With primal infeasibility conclusion.

133

Assignment Problem

Input: n = order of problem; ¢ = (¢;;), square cost matrix

of order n.

Output needed: Solution z = (z;;) that solves:

i=1 =1
n

s. to Z~Tz’j_1 ’1,:1, ,
j=1
n
>y =1 g=1...,n
1=1

zi; € {0,1} Vi, j

Put up an n x n 2-D array, and associate variable x;; with
cell (i,7). Cell (¢,7) said to have an allocation in solution z
iff z;; = 1. Exactly one allocation in each row & col of array
in any sol. So, sol. z is a permutation matrix. Also called

assignment or integer doubly stochastic matrix.

Problem is Minimum cost perfect matching problem

in an n X n bipartite network. Each assignment is a perfect

134

matching in this network.

0100

0001
EXAMPLE: n = 4, one assignment is

1000

0010

Forbidden cells: Cells where allocations forbidden. So, x;;
must = 0 in all for bidden cells (7, 7). Problem called:

Assignment problem on complete network if no for-
bidden cells

Assignment problem on dense network if number of
forbidden cells small

Assignment problem on sparse network if number of

forbidden cells large.

We assume:

00 if (¢, j) forbidden
CZ']' =
cost of allocating in (7, j) otherwise

135

Partial assignment: A 0 — 1 matrix with at most one allo-
0010

o 0000
cation in any row or col. Example:

0100

0000

Each partial assignment is a matching that is not perfect in

the network.

Dual problem: max w(u,v) = S u; + £j_jv; s to
éz’j:Cij—ui—?}jZO VZ,]

¢;; called reduced or relative cost coeff. of cell (7, 7) WRT

dual vector (u,v). (u,v) dual feasible iff ¢;; > 0V, j.

WRT dual sol. (u,v), cell (7, j) called admissible or equal-
ity cell if ¢;; = 0; inadmissible cell otherwise.
The set of admissible cells constitutes admissible or equal-

ity subnetwork.

136

Strategy of the Hungarian method: Maintains (x, (u, v))

partial assignment, dual sol. pair always satisfying:
e Dual feasibility ¢;; > 0 V¢, j.

e C.S. conds. ¢;z;; = 0Vi, 7, 1ie., allocations occur only

in admissible cells.

Primal vector change step maximizes ¥ ¥ x;; subject to (1)
C. S. conds., and (2) at most one allocation in any row or col.
This problem is the maximum value flow (from row nodes to col.
nodes) problem in admissible subnetwork, can be solved by the
labeling algo. It finds maximum partial assignment satisfying C.
S. conds. with current dual feasible sol.

When max value of ¥ z;; becomes n, primal feasibility at-

tained, and method terminates with final as an opt. assignment.

EXAMPLES:

137

] = 1 U;
1 =1

C11 = 10 9 10 3
2

22 5! 12| -1
3

9 20 51 5

Uj 4 §) 7

138

J = 1 Uj
1 =1

C11 =3 10| 10
2

4 19| 6
3

§ 8| 3

Uy 5) 4

139

J= 1 U;
1 =1

C11 =1 6 8 1
2

12 33 45 1 12
3

14 84 93|14

Uj 0 5) 7

140

Concept of Lower Bounding the Objective
value

THEOREM: If (u,v) dual feasible, dual obj. func. value
w(u,v) = T u;+% v; called Total reduction is alower bound

for the cost z(x) of any assignment .

141

Hungarian Method

Step 1: Finding initial dual feasible sol. by row &
col. reduction:

u; = min in row ¢ of original cost matrix, V.

Row reduction: For each ¢ subtract u; from each entry of
row ¢ of c.

v; = min in col. j after row reduction.

Col. reduction: For each j subtract v; from each entry in

col. j of row reduced matrix, leading to 1st reduced cost matrix.

Step 2: Finding initial allocations: Take any row or col.
without an allocation but with an uncrossed admissible cell. Put
an allocation in that cell, & cross out all other admissible cells in
its row & col. Repeat until all admissible cells crossed out.

If allocations in all rows, they define an optimum assignment,

terminate. Otherwise continue.

142

Step 3: Labeling routine to check max flow:

3.1: Initial labeling: For each ¢, if no allocation in row ¢,
label it (s, +). Put all labeled rows in list.

3.2: Delete a labeled row or col from list to scan:
Use FIFO. If list = () nonbreakthrough, go to Step 5.

Scanning labeled row : Label all unlabeled cols. j with
an admissible cell in row ¢ with (Row 4, +); & put these labeled
cols. in list. Return to Step 3.2.

Scanning labeled col. j: Look for an allocation in this col.
j. If none, col. 7 has breakthrough, go to Step 4.

If col. j has an allocation, suppose it is in row ¢. If this row 2
unlabeled, label it with (Col. j, —), and put this labeled row in

list. Return to Step 3.2.

Step 4: Allocation change: Use labels to trace the prede-
cessor path of col. in which breakthro’ occured to a row with label
(s,4). It will be an alternating path of unallocated, allocated
cells. Exchange allocated, unallocated cells on this path. Chop

down trees (i.e., erase labels on all rows, cols.).

143

If all rows allocated, they define an opt. assignment, terminate.

Otherwise go to Step 3.

Step 5: Dual sol. change: At this time verify that all cells
in the Labeled row-Unlabeled col. block are inadmissible. The
change is carried out to create at least one new admissible in this
block so more cols. can be labeled.

0 = min ¢; in Labeled row-Unlabeled col block.

If § = 00, no feasible assignment (i.e., one without an allocation
in a forbidden cell), terminate.

If ¢ finite, define new dual sol. to be:

present u; + 0 if row ¢ labeled
new u; =

present u; if row ¢ unlabeled

present v; — 0 if col j labeled
Nnew v; =

present v, if col 5 unlabeled

Compute new reduced costs, identify new admissible cells, make

list = set of all labeled rows, and go to Step 3.2.

144

Array 5.2

145

15 22 13 4
12 21 15 7
16 20 22 6
6 11 8 5

146

THEOREM: ¢ is > 0 in every dual sol. change step.

THEOREM: If 6 = oo in Step 5, present matching is a max-
imum cardinality matching in network & there is no feasible as-

signment.

THEOREM: Konig-Egervary Theorem Whenever non-
breakthrough occurs, we have:

no. of allocations = no. of unlabeled rows + no. of labeled
cols.

If lines are drawn through each unlabeled row & each labeled
col. these lines cover all admissible cells. This set of lines is a
smallest cardinality set of lines thro’ rows & cols. that cover all

admissible cells.

THEOREM: In Step 5, dual feasibility and C. S. property with

current primal vector are always maintained.

THEOREM: After Step 5 is carried out & labeling resumed, at

least one new col. can be labeled.

THEOREM: In this algo. the no. of consecutive occurences of

147

nonbreakthro’ before a breakthro’ occurs is at most n.

THEOREM: If implemented directly, the complexity of the
algo. is O(n*).

148

Data structures to reduce complexity to O(n?)

Need to avoid computing all n? relative cost coeffs. after every
dual sol. change.

Amagzingly, this is possible by introducing an index for each
unlabeled col. !

So, good Data structures very imp. in implementing opt.
algos.

Divide the algo. into stages. A new stage begins after every
allocation change step. By above results, dual sol. change step can
occur at most n times in a stage. But the efficient implementation
computes the reduced cost coeffs. in all cells only once in a stage,
at the beginning.

At the 1st nonbreakthrough in a stage, it defines an index
t;, pj] for each unlabeled col. where:

p; = min current reduced cost coeff. in this col. among labeled
TOWS

t; = no. of a labeled row in which above min occurs (in case

of tie, select any one).

149

Index only defined for unlabeled cols., and it is erased when the
col gets labeled. Indices of all unlabeled cols. updated whenever
a new row is labeled, or dual sol changed, so p; in unlabeled cols.

is always true to its definition.

150

O(n?) Version of Hungarian Method

Step 1: Finding initial dual feasible sol. by row &
col. reduction:

w; = min in row ¢ of original cost matrix, V.

Row reduction: For each ¢ subtract u; from each entry of
row ¢ of c.

v; = min in col. j after row reduction.

Col. reduction: For each j subtract v; from each entry in

col. 7 of row reduced matrix, leading to 1st reduced cost matrix.

Step 2: Finding initial allocations: Take any row or col.
without an allocation but with an uncrossed admissible cell. Put
an allocation in that cell, & cross out all other admissible cells in
its row & col. Repeat until all admissible cells crossed out.

If allocations in all rows, they define an optimum assignment,

terminate. Otherwise set Stage number k£ = 1.

Step 3: Begin Stage k. Compute and store Vi, 7 the relative

cost coeff. ¢; = ¢;; — u; — v; where (u;), (v;) is the present dual

151

solution. Identify present admisssible cells as those with ¢;; = 0.

Step 4: Labeling routine to check max flow:

4.1: Initial labeling: For each ¢, if no allocation in row ¢,
label it (s, +). Put all labeled rows in list.

4.2: Delete a labeled row or col from list to scan:
Use FIFO. If list = () nonbreakthrough, go to Step 4.3 if this
is the first nonbreakthrough in this Stage k, otherwise go to Step
6.

Scanning labeled row ¢: Label all unlabeled cols. j with
an admissible cell in row ¢ with (Row ¢, +), and erase the indices
on these cols. if they have any; & put these labeled cols. in list.
Return to Step 4.2.

Scanning labeled col. j: Look for an allocation in this col.
j. If none, col. 7 has breakthrough, go to Step 5.

If col. 5 has an allocation, suppose it is in row ¢. If this row 2
unlabeled, label it with (Col. j, —), and put this labeled row in
list and go to Step 4.4.

4.3: Defining indices for unlabeled cols.: For each

unlabeled col. ¢ at this time, define its index to be [t,, p,| where:

152

p, = min {¢;, : ¢ a labeled row at this time}, ¢, = an ¢ that
ties for the min in the definition of p, selected arbitrarily among
those tied. Go to Step 6.

4.4: Updating indices on unlabeled cols. when a
new row : is labeled: For each unlabeled col A at this time

with index [t;,, pp],if:

e the stored reduced cost coeff. ¢;, = 0, label col h with (Row
i,+), erase the index on col h and put col h in the list. Go
to Step 4.2.

® p;, > ¢ > 0, change index on col h to [i, ¢;;] and go to Step

4.2.

e p;, < ¢ > 0, leave index on col. h unchanged, go to Step

4.2.

Step 5: Allocation change: Use labels to trace the pre-
decessor path of col. in which breakthro’ occured to a row with
label (s,+). It will be an alternating path of unallocated, al-

located cells. Exchange allocated, unallocated cells on this path.

153

Chop down trees (i.e., erase labels on all rows, cols., and erase
any indices on cols.).
If all rows allocated, they define an opt. assignment, terminate.

Otherwise increment k& by 1 and go to Step 3.

Step 6: Dual sol. change:

6 = min {p; : over unlabeled cols. j at this time}.

If § = 00, no feasible assignment (i.e., one without an allocation
in a forbidden cell), terminate.

If ¢ finite, define new dual sol. to be:

present u; + 0 if row 7 labeled
new u; =

present u; if row ¢ unlabeled

present v; — 0 if col j labeled
Nnew v; =

present v, if col 5 unlabeled

Subtract 0 from the p; index of each unlabeled col. j. For
each unlabeled col. j in which p; became 0 as a result of this
subtraction, record (¢;,7) as a new admissible cell, label col. j

with (Row ¢;, +), erase the index on it, and put col. j in the list.

154

Put all labeled rows in the list. Go to Step 4.2.

THEOREM: In this version, the p; index on an unlabeled col.
j is always the min reduced cost coefft WRT present dual sol. in
cells among labeled rows in this col. The value of ¢ found out in
every dual sol. change step is always > 0 and correct as defined

in original algo. The complexity of this version is O(n?).

155

156

157

158

Bottleneck Assignment Problem

5 salesmen to be assigned to 5 zones on a 1-1 basis. Here is the
matrix of daily commute ¢ = (c¢;;) where ¢;; = daily commute of

salesman ¢ if assigned to zone j.

3 9 1520 5
1316 7 8 9

o
I

19 12 13 14 15
7 17 8 9 13

9 15 16 12 11

What is the model to find the best assignhment of salesmen to

zones?

159

To find assignment = = (x;;) that minimizes:

z(x) = Max{c;; : over (¢,j) s. th. x;; = 1}.
Threshold Algo.

Step 1: Select a threshold = lower bound for opt.
obj. value: One is a = max{uy,...,u,;vy,...,v,} where u;

= min entry in ¢th row of ¢; v; = min entry in jth col. of c.

Step 2: Let o = present threshold. Cell (¢, j) admissible if
¢;j < a, inadmissible otherwise.
Find a maximum partial assignment among admissible cells. If

it is full assignment, it is opt., terminate. Otherwise go to Step 3.

Step 3: Let § = min{c;; : (4,j) inadmissible at this time}.
Increase a to 3 and go back to Step 2 (labeling can be resumed

from where it was left off).

160

Classical P-D Method for uncapacitated bal-
anced transportation.

p n
Minimize z(z) = Y Y ¢z

n
Subject to > z;; = a;, t=1top
j=1

p
sz’j = bj, jzlton
1=1

x;; > 0, foralle,j

ri; = 0, (i,j) €F

where, balance = ¥ a; = X b;; and

F = set of forbidden cells.

Make ¢;; = 00 < (i,j) € F. m = pn — |F| = no. of arcs on
which flow allowed.

Dual constraints, C. S. conds. same as under assignment prob-
lem.

The P-D approach maintains (z, (u,v)) where (u,v) always
dual feasible, C. S. conds. always hold; and x is a primal vector

always feasible to following relaxed primal system:

161

n
> ry; < a, t=1top
j=1
p .
Z$ij S bj,]zlton
i=1

zi; > 0, forallz,j

The primal vector change step tries to maximize total
flow ¥ ¥ z;; in the admissible (equality) subnetwork, by augment-
ing along FAPs from a source with material to ship to a sink with

unfulfilled demand in this subnetwork.

Algo. same as Hungarian method with exception that alloca-

tion change step is replaced by flow augmentation step.

162

ci1=95]| 3 71 3 8 5

bi| 3 [3|6]2]1]2

THEOREM: Under the FIFO rule for deleting nodes from list
to scan, the classical P-D method for transportation is a finite
algo for real data. Its complexity is O(y(n + p)?) where v = ¥ a;,

if all a;, b; integer.

163

Capacity scaling technique to make this P-
D algo. Polynomial time

Assume a;, b; are all integral. ¢ = maximum no. of binary
digits in any of {a;, b;}. So, ¢ is the smallest positive integer s.
th. 29 > a;,b;Vi, j.

Let I =47 : (4,)) € F},Q;={i:(i,)) &€ F}fori=1top,

7 =1ton.

Minimize Z Cij Tij
(i,)¢F

S.to Y wxy; <a,t=1top
JEL;
> xj <bj,j=1ton
iEQj
Y. Xy =
(i,5)¢F

zij 2 0,9(i,7) € F
If A=~ = %a;, opt. sol. of modified problem also opt. to
original.

Scaling implementation solves a sequence of ¢+ 1 subproblems.

164

The rth subproblem is:

Minimize . ¢ @i

(i) ¢F
a/.
Sto Y zy <d=|=——],i=1top
jET; 2077
r b .
> oz <g;=| L], j=1ton

iEQj A
> xyy = A, =min{Xd;, Y g;}
(1,J)¢F ! J
rij > 0,V(i,7) ¢ F

165

Procedure:

r = 0: Solve Oth subproblem by P-D algo. beginning with z =
0, until total flow reaches A or terminates earlier with infeasibility

criterion. Let (z°, (u",v")) denote pair at termination.

General subproblem r + 1: Let (2, (u",v")) be final pair
for previous subproblem.

Solve (r+1)th subproblem beginning with (22", (u", v")) as ini-
tial pair, & continue until either total flow reaches A, 1 or termi-
nates earlier with infeasibility conclusion. Let ("1, (u"*1 v"+1))
be final pair, and "' = =z 2]

If v+ < A,;1—(n+p), original problem infeasible, terminate.

Ifr+1=gq, and vt = A,;; = A, the present pair optimal
to original problem, terminate.

Otherwise, go to next subproblem.

166

THEOREM: 0 < Ay < max{p,n}; 0 < A1 —2A, <

max{p,n} Vr.

THEOREM: If original problem feasible, ~" > A, — (n+ p)
Vr.

THEOREM: There will be at most A, 11 —2A, +2(n+p) flow

augmentations while solving (r + 1)th subproblem.

THEOREM: Overall complexity is O(L(n + p)2) max{n, p}

where L = sum of no. of binary digits in all of a;, ;.

167

i | oa [d|d'|d®|d®|d*|d®| d°
1 | 38]0|1]2|4/9/19] 38
2 |41 |0|1|2]5/]10|20] 41
3 [23]0|0|1]2]5(11]23
4 [15/0[0|0]1]3]7]15

51 2 3 4 |Total|117|0 |2 |5 |12]27|57|117

b 25 29 30 33| 117

¢ 0 0 0 0] O A, =0,15122757,117

gt 0 0 0 1 1 respectively for r = 0 to 6.

¢ 1 1 1 2| 5

¢ 3 3 3 4| 13

g* 6 7 7 8| 28

¢> 12 14 15 16| 57

g® 25 29 30 33| 117

168

1st Polynomial time algo. for min cost flows
In pure networks

G = (N,A0,k, c s,t,0). G directed, not necessarily bipar-
tite. To ship o units from s to ¢ at min cost.
Can be transformed into a sparse uncapacitated balanced trans-

portation problem on a bipartite network H with bipartition I, N
where |I| = | A|, and H has 2|A| arcs.

ki, N) — 5 ifi=s
bi={ k(,N)+v ifi=t
k(i, N if i £sort

EQUIVALENCE: If z is a feasible sol. in H define f = (fzj)

n G by fij = LZ'Z']',]'.

If f = (fi) is a feasible flow vector in G , define = in H by:

Tiji = kij — fij, Tij; = fij-

169

