5.1

Shortest chain Algorithms
Katta G. Murty, IOE 612 Lecture slides 5

Directed G = (N, A, ¢). Find shortest chains in G. A special

min cost flow problem of fundamental importance.

e Provides basic data for planning decisions transportation,
routing & communication applications. Provides data for the
design, capacity planning, & expansion of transportation and

communication networks.
e [s the basis for CPM for planning decisions in project mgt.
e Has many applications in equipment replacement.

e Used to obtain travel time & distance charts between pairs
of cities provided by AAAs, and the routes between pairs of

locations provided on the web by web-servers.

e Appears as a subproblem in many other optimization algo-

rithms.

170

Unboundedness of obj. func.: We consider Uncon-
strained shortest chain Problem. All chains from origin
to destination feasible. The obj. func. (chain cost) is unbounded
below if a chain exists in G from origin to destination, and there

1s a negative cost circuit.

Difficult cases: If G has a chain from origin to destination,
and a negative cost circuit; and you want to find a shortest
simple chain from origin to destination (this is a constrained
shortest chain problem, because chains that are not simple
are not feasible for this) it is a hard problem. Special case of

finding the best extreme point sol. in an unbounded LP.

Transformations: 1. If G has an edge: If G has an edge

(¢;) with cost ¢;; > 0, replace it by a pair of arcs with same cost.

If ¢;; < 0, this transformation does not work, as it immediately

creates a negative cost simple circuit, making it hard to find short-

171

est simple chains. In this case if there is no negative cost simple
circuit in G, shortest simple chains can still be found efficiently
in G using matching algos. (due to Roger Tobin, but technique
of limited applicability).

So, we assume network directed.

2. If there are parallel arcs: Keep only cheapest among

them & eliminate all others.

Assumption: G has no negative cost circuit: Algo-
rithms contain procedures to check if assumption holds. Under
assumption, cost of all circuits > 0. So cost of any chain will
never increase if any circuits in it are deleted. Hence if a chain
exists from origin to destination, there will be a shortest chain
which is simple.

All algorithms find shortest chains which are simple.

172

Fundamental property of shortest chains

If P is a shortest chain from 1 to n, and p, g are two nodes that
appear on P in that order ; then the portion of P from p to ¢ is

a shortest chain from p to q.

Data structures for storing Shortest chains

Origin, destination specified: Can be stored as a se-

quence of nodes or arcs.

From an origin to all nodes in the network: Origin 1.
When you put shortest chains from 1 to ¢, and that from 1 to j,

suppose there is a cycle.

173

Can replace the portion from 1 to 4 in the chain from 1 to 7, by
that in chain from 1 to ¢. This leads to following union of shortest

chains from 1 to ¢, and from 1 to j, no cycles.

Same way, can put together shortest chains from 1 to all other
nodes, and eliminate all cycles in union. Union becomes a span-
ning tree with 1 as root, in which path from 1 to any other node
is a shortest chain; tree is an outtree rooted at 1 called a Short-
est chain tree rooted at node 1. Shortest chains stored by

storing this tree using predecessor labels.

174

All shortest chains: Shortest chains between every pair
of nodes. Stored by storing two n X n square matrices called
distance and label matrices.

Distance matrix D = (d;;), Label matrix L = (¢;;)

d;j = cost of shortest chain from 7 to j.
¢;; = previous node to j in a shortest chain from ¢ to j.
Entire shortest chain between any pair of nodes can be retrieved

by looking up label matrix repeatedly.

Label matrix

1 2345

Iy. 1512
5 6 2

S Ot = W
= W =S W Ww
= = =

= ol =

DS =

175

Distance matrix

1 2 3 4 D 6

S Ot s W

0 6.1 137 52 93 124
15.7 0 76 156 3.2 6.3
8.1 14.2 0 104 193 1.1
o0 00 00 0 oo o0
123 184 4.4 124 0 3.1

oo oo oo 93 oo 0

176

LP formulations of unconstrained shortest
chain problems

G = (N, A, c,1 =origin, n = destination). < sending one
unit material from 1 to n across G at min cost, with ¢ = 0,

k = oo, and ¢ = cost vector. So, LP formulation is:

min Y ¢;; fij
—1 if 2 = 1 origin

s. to. — f,N)+ fWN,i) = S0 ifi#lorn

1 if ¢ = n, destination

fij =0V (i,j) € A

fi; = no. of times chain traverses (2,7).

177

Why is capacity oo & not 17

This model has a redundant constraint. We take it to be that

corresponding to origin node 1. The dual problem is:

min m, — m
s.to m—m < ¢; Vi,j)eA
m = 0
1. Every basic vector for the flow formulation consists of flow

variables associated with arcs in a spanning tree of G.

2. A basic vector is feasible iff the unique path in the corre-

sponding tree T' from 1 to n is a chain.

The BFS associated with s feasible spanning tree T'is f =

(fij) where (draw 7" as a rooted tree with 1 as rootnode):

/ 0 if (4, 7) not on predecessor path of n
1 if (¢, 7) on the predecessor path of n

3. So each BF'S for the flow formulation corresponds to a simple

chain from 1 to n and vice versa.

178

4. If there is a negative cost circuit in GG, the dual is infeasible.
If there is a chain from 1 to n, and G contains a negative cost
circuit, unconstrained shortest chain algos. will detect one

such circuit & terminate with unboundedness conclusion.

179

To find Shortest simple chain for 1 to n in
(7 - Solvable & hard cases

1. G has no negative cost circuit. Solvable in O(n?) or O(m)
or O(nm) time.

2. (G may have —ve cost circuit, but for every node ¢ on a —ve
cost circuit, either there is no chain from ¢ to n, or there is no
chain from 1 to .

Let Y = set of all nodes j s. th. there is a chain from 1 to 7,
and a chain from 7 to n. In this case a shortest simple chain from
1 to n can be found efficiently by applying shortest chain algos.
on the subnetwork induced by the set of nodes Y.

3. There is a node ¢ in G that is both on a —ve cost circuit,
and a chain from 1 to n. Finding shortest simple chain is hard in

this case.

180

Won'’t putting a capacity of 1 on all arcs
work in Case 37

Unboundedness in presence of —ve cost circuits occurs due to
traversal around such a circuit an oo times. So, won’t putting a

capacity of 1 on all arcs take care of this problem?

181

Bellman-Ford Eqs. for shortest chains from
1 to all other nodes

Ist consider destination node n. Let f = (fi;), # = () be

primal & dual opt. sols. for LP formulation. Opt. Conds. are:
Dual feasibility: 7; — 1, <c¢; V(i,j) € A
Primal feasibility: The set {(i,5) : fi; = 1} forms a chain
from 1 to n
C.S. Conds.: fij =1= 71; — 7 = ¢;;
Equality of objectives: Opt. dual obj. value = 7, = opt.

primal obj. value = ¢ f = cost of shortest chain from 1 to n.

So, if @ = (7;) satisfies dual feasibility, and if there exists a
chain from 1 to n among set of arcs {(i,7) € A: 7; — T = ¢}
then that chain is a shortest chain from 1 to n of cost 7, — 7y (or

7, if 1 = 0), and 7 is dual opt.

182

Conversely define 7 by

(

0 ife=1
T, =4 oo if no chain from 1 to ¢

cost of shortest chain from 1 to?z otherwise

\

1. V(i,5) € A, we get a chain of cost 7; + ¢;; from 1 to j by
putting arc (7, j) at end of shortest path from 1 to ¢; this length
> m; = cost of shortest chain from 1 to j; i.e., 7 satisfies dual

feasibility conds. mentioned above.

2. If C is any chain from 1 to p in the set of arcs {(i,j) € A :

T; — ; = ¢;;}, then its cost is sum ¢;; = 7; — 7; over arcs (i, j)

in it = 7,; hence C is a shortest chain from 1 to p.
Hence 7 satisfies the Bellman - Ford egs.

m =0

Nec. conds. for 7@ to be vector of shortest chain

costs from 1 to other nodes.

183

Conversely if 7 satisfies BF eqgs. & there is a chain from 1 to ¢
of cost 7; then it is a shortest chain from 1 to ¢ & all arcs (u, v)

184

Methods fOf speciﬁed Ofigiﬂ: Two classes of meth-

ods:

Label Setting methods: SC tree grown one arc per
step. At each stage, for each in-tree node, its predecessor path in
reverse is a shortest chain from origin to it. Terminates when no

more nodes can be included in tree.

Label COH’GCtiDg methods: Always maintains a span-
ning outtree rooted at origin. Changes it by one arc typically per

step. Changes continue until tree becomes a SC tree.

185

LS Methods — Dijkstra’s method
To find shortest chains in G = (N, A, ¢, 1 = origin node).
Assumption: ¢ > 0.

Main theorem: G = (N, A,c¢ > 0,1 = origin). T SC tree,
not spanning. X = set of in-tree nodes. For ¢ € X, m; = cost of

chain from 1 to 7 in T. (p, q) € Cut (X, X) satisfies:

Ty + ¢pg = min{m + ¢;; : (4, 5) € (X, X)}

Add arc (p,q) to T and define 7, = m, + ¢,,. This gives SC

tree 7" spanning nodes X U {q}.

Notes: Theorem used repeatedly until tree becomes spanning
in (n — 1) steps. When |X| = r, effort to find next arc to add
is O(r(n —7)). So, if implemented directly, overall complexity of

method will be £"_; O(r(n — r)) = O(n?).

Dijkstra reduced complexity to O(n?) by replacing cut exam-
ination with setting and updating node labels called Tempo-

rary labels for out-of-tree nodes. Method examines each

186

arc precisely once.

Nodes in 3 states: permanently labeled (in-tree nodes);
temporarily labeled (out-of-tree nodes one arc away from

tree); unlabeled (other out-of-tree nodes).

Label on node i of form (P(%), d;) where:

P (i) = predecessor index of node ¢ for in-tree nodes, for labeled
out-of-tree nodes it is the previous node to ¢ on a shortest chain
from 1 to ¢ using only in-tree nodes as intermediate nodes.

d; = for in-tree nodes it is the cost of shortest chain from 1 to
1, for labeled out-of-tree nodes it is cost of shortest chain from 1

to ¢ using only in-tree nodes as intermediate nodes.

Once node becomes permanently labeled, it is in-tree, and its
label will never change. Each step permanently labels one more
node, so method takes < n steps. Denote:

X = set of permanently labeled node

Y = set of temporarily labeled nodes

N = set of unlabeled

187

Labels on nodes in Y updated in each step. One node moves

from Y to X in each step, the one with smallest distance index

nyY.

188

Dijkstra’s method

Root Tree at origin: Permanently label 1 with (), 0). Tem-
porarily label each j € A(1) with (1,¢y5). X = {1}, Y = A(1),
N =N\(XUY).

Tree growth step: If Y = () go to termination step.
If Y # (), make label on 7 permanent. Move i from Y to X. If
label on ¢ is (P(i), m;), (P(i),1) is new arc included in SC tree in

this step.

Vj € Y let d; be its distance index. If (7,5) € A and

d; > m; + ¢;; change temp. label on j to (¢, m; + ¢;j).

Temp. label each 5 € N N A(:) with (¢, m; + ¢;;) and

move all such 5 from N to Y.
If X # N repeat this tree growth step.

Termination step: We have SC tree. If X # N, no chain

from 1 to any node in NV in G. Terminate.

189

Example

What if ¢ ¥ 07

190

Theorem: If ¢ > 0 method gives SC tree with complexity
O(n?).

BrFS method is special case of this method for ¢;; = 1V(3, j) €
A.

If shortest chains to only a subset of nodes are needed, method

terminates when all those nodes are permanently labeled.

191

LC Methods for a specified origin

Work for general ¢, so no need to assume ¢ > 0.

These are variants of primal simplex on LP formulation. Every
basis is a spanning tree, and a pivot step exchanges an out-of-tree
arc with an in-tree arc in its funda. cycle. Maintain a spanning
outtree rooted at origin. Each iteration, labels on one or more

nodes change.

Initial Spanning outtree selection: Vj # 1if (1,j) € A
introduce artificial arc (1, 7) with cost ¢;; = a large +ve no., say
= 1+ n(max{|c,,| : (p,q) € A}).

Then set T = spanning outtree determined by arcs {(1,7) :

J# 1}

Node Labels maintained by algos.: Of form (P(i),d;)
where:

P (i) = predecessor index of node 7 in current tree

d; = distance index of ¢ (will equal 7m; = cost of present chain

from 1 to ¢ if step Correcting distance index of descendents

192

carried out in each iteration; d; > m; otherwise).

E ={(P(i),7) : i # 1} (will equal set of arcs in present span-
ning outtree until algo. detects a —ve cost circuit; from that time
the node labels and E will not represent a spanning outtree, in-
stead they will represent some trees (not spanning) 4 one or more

—ve cost circuits).

Algos. can terminate two ways: (1) with SC Tree (happens
when distance indices satisfy dual feasibility); (2) with a —ve

cost circuit.

In all these algos. artificial arcs eliminated once they become

out-of-tree.

193

Classical primal method for specified origin
Main source of all LC methods. Labels are actually (P(z), m;).

Initialization: Start with 7j. Label 1 with (),0), and all

1 7& 1 with (1, Cli)-
General iteration: Let (P(7), ;) be present node labels.

1 : Select incoming arc: Select (7,j) € A violating dual
feasibility, i.e., satisfying m; > m; + ¢;;.
If no such arc, TERMINATE, PRESENT OUTTREE IS AN
SC TREE.

If such arc selected, let § = 7; — m; — ¢;; > 0; and D; = set
of descendents of j in present tree.

2 . Ancestor checking: Check whether j is an ancestor of
0.
If it is, arc (7,) together with the portion of predecessor

path of ¢ between ¢ and j is a —ve cost circuit of cost —9,

TERMINATE.

194

3 : Label correction: Change label on j to (i, + ¢ — ij).
It replaces in-tree arc (P(j), 7) with (i, 7), and reduces cost

of chain to 7 by 9.

4 : Correcting distance index of descendents: Change
mp,tom, — 90 Vp e D;.

Go to next iteration.

Examples:

195

Finiteness proof:

Complexity: Depends on rule used to select incoming arc.

Can vary from polynomial time to exponential time.

Rules for selecting incoming arc: Takes O(m) effort if
carried out by examining all arcs.

Efficient implementations use Branching out of node
(examining arcs in forward star of ¢ for dual feasibility) for ¢ in a

List (set of candidate nodes for branching out, maintained).

Ancestor checking: Adds O(n) effort per iteration.
Eliminated if known that no —ve cost circuits exist. Even when
not known, some implementations eliminate it. If (¢, j) entered

& 7 ancestor of ¢, I/ has —ve cost circuit thro’ 5 from then on.

Correcting distance index of descendents: To get D;
efficiently, PIs not adequate, need other tree labels. So, some
implementations do not carry this step. Distance labels will get

corrected before termination.

196

Bellman-Ford-Moore (BFM) LC Algo.

Can be interpreted as a recursive (DP) or successive ap-
proximation approach to solve BF eqs. In r + 1th iteration,

obtains 7 + 1th order approx. 7'+ from rth.

DEFINITION: 77 = distance index of j at end of rth iteration

= cost of a shortest chain from 1 to j with < r arcs.

Iteration 1: Tj is initial outtree. Label 1 with (@,0) and

7 74 1 with (1, Cu). 7T]1- = C15 VJ

Iteration r+1: Let (P(i), 7)) be label on 7 at end of iteration

r. Vi € N compute:

7r;?+1 = min{7}, 7} +c;; over i € B(j)}
and let:
P(j) if minimum above is 77

an ¢ € B(j) attaining min above otherwise

If 7*! = «7 Vj € N Stability attained, present labels

define an SC tree, TERMINATE.

197

Otherwise, Vj € {i : mj™" < «]} change label to (uj, 7/ ™),

and go to next iteration if r+1 < n —1. In this case if r+1 = n,

a —ve cost circuit exists among present £, TERMINATE.

e if no —ve cost circuits, stability will be attained before (n —

1)th iteration.

o if stability not attained after n iterations, £ must contain a

—ve cost circuit.
e overall complexity O(nm).

e what if some artificial arcs (1,¢) remain in final SC tree?

198

FIFO LC Algo.

Primal algo. with branching out operation. List maintained as
a Q with FIFO discipline. Ancestor checking, correcting distance

index on descendents, not carried out. Complexity O(nm).
Iteration 1: Begin with labels for Tj. List = {1}.

General iteration: Select the node for branching out from
top of list, and continue until list becomes ().

During iteration arrange all nodes whose labels have changed
in another Q called Next list according to one of following

disciplines:
FIFO/NO MOVE: If j not in next list, insert it at bot-
tom. If 5 already in next list, leave it in current position.

FIFO/MOVE: If j not in next list, insert it at bottom.

If 5 already in next list, move it to bottom position.

When list becomes 0, if next list = (), present labels define an
SC tree, TERMINATE. Otherwise if next list # (); look for a —ve

cost circute in E if iteration count n, or if iteration count < n

199

make next list the new list and go to next iteration.

200

Dynamic Breadth First Search (DBFS) LC
Algo.

Define a; = Label Depth of node j = no. of arcs in present
chain from 1 to j.

a; = label depth index of i < a; Vi always.

Labels of form (P(i),d;,al). Correction on descendents not
carried out, so a, < a;, but will be correct at termination if an
SC tree is obtained.

a; can only increase during algo. Like BrFS; this method in
iteration r branches out only those nodes whose LDI is 7.

For each h let n(h) = no. of nodes j for which a’; = h.

201

Iteration 0: Start with labels for Ty. a; = 0,0’ =1 Vj # 1.
List = M\{1}, Next list = 0. n(0) =1, n(l)=n—-1, n(h)=
0 Vh>1

Iteration r: 1. Select a node from list to branch
out: If list = () go to 3. If list # () delete a node ¢ from list to
branch out. Let label on i be (P(i),d;,al). If a. = r go to 2.

Otherwise repeat this step.
2. Branching out of i: Vj € A(i) do:

Let label on j be (P(j),d;,a}). If d; < d; + c;

continue. If d; > d;+¢;; change PI and DI of j to

i, d; + c;; respectively; and if a"i = r + 1 subtract
/

1 from n(aj).

[f n(aj}) is now 0, a —ve cost circuit identified, find

it by tracing predecessor path of j until a node
repeats, TERMINATE. Otherwise change a; to

r+ 1, add 1 to n(r + 1), include j in next list.
Return to 1.

202

3. Set up for next iteration: If next list = (), present
labels define a SC Tree, TERMINATE. Otherwise, if r = n look
for a —ve cost circuit in £ and TERMINATE, or if » < n make

list = next list, next list = (), go to next iteration.

Notes: Consider no —ve cost circuits. Let 7 denote length
of shortest chain from 1 to j, and b; the smallest no. of arcs in a
shortest chain from 1 to j. Let L(r) ={j : b; =r}.

At start of iteration r list only consists of nodes with a} = r.
Also, node i is branched out in iteration r only if a} remains = r
when algo. tries to select it.

At start of iteration r, L(r) C list. And d; = 7 Vi € L(r).
Also, in this iteration all nodes in L(r) are branched out.

So, in this case algo. terminates with SC tree after < (n—2) it-

erations. Each iteration needs O(m) effort. So overall complexity

O(nm).

On networks with n = 5000, m= 60,000, method takes 4 sec-

onds on a SUN 3 workstation.

203

Acyclic Shortest chain Algo.

G = (N, A, c=(cj),1 = specified origin), acyclic with acyclic
numbering of nodes.

If origin is ¢ # 1, no chain from 7 to j V j < i. So all nodes
j < 1 & arcs incident at them can be deleted. In remaining
network nodes can be renumbered beginning with 1 for node .
So WLOG assume 1 is origin.

(7 has no circuits, so no question of —ve cost circuits. Following
recursive (DP) algo of complexity O(m) finds SC tree rooted at
1. Nodes are labeled in specific order 1, ..., n. All labels assigned

are permanent.

Step 1: Label 1 with (), 0) rooting the tree at 1.
General step 7: When we come here, we would have already
labeled 4, say with (P(¢), ;) Vi = 1 to r — 1. Find
7, = min{m; + ¢;; 1 i € B(r)}

If B(r) = 0, we define 7, = 0o, and there is no chain from 1

to r. Otherwise, let P(r) be an ¢ that attains min above, label r

204

with (P(r), m,).
If r = n, labels define an SC tree rooted at 1, spanning all the
nodes that can be reached from 1 by a chain, TERMINATE. If

r < mn, go to next step.

EXAMPLE:

205

Matrix methods for all shortest chains

To find shortest chains between every pair of nodes in G =
(N, A, c). Forany i # jif (i,7) € A, introduce artificial arc
(¢,7) with large positive cost. These methods terminate with

either a —ve cost circuit, or all shortest chains.

Inductive Algo.

Due to Dantzig. Takes n steps. In rth step, we have all shortest
chains in partial network induced by {1,...,7}. Step r+1 brings

node r + 1 into set of included nodes.

Step 1: Begin with partial network of node 1.

General step r + 1: Let L" = (L;-"j i, =1tor), d =
(d; - 4,7 = 1tor) be label & distance matrices at end of Step 7.

For bringing node r + 1 do computations for updating the two

206

matrices in following order:

Tol 2 ... r|r+1

from 1

r+1 2 3

70_'_1 . . . r
ir+1 min{ ¢ 41; dij + i1 J=1tor, j#i}

Z}L}rl = ¢ if above min is ¢; ,41; or a j that attains min above.

r+1 _ . (O . .
dr—i—l,i = mln{CrJrl,i; Cr+1,j T djz' . j=1tor, j#i}

LI, =4 if above min is ¢, or a j that attains min above.

r+1 o . r _ . S
d, i1 =minf0; diyyj+cpac j=1tor]

LIt =7+ 1if above min is 0.

If above min < 0, let p be a j attaining the min above. Then
by combining the shortest chain from r + 1 to p obtained above,

with the shortest chain from p to r + 1 obtained above, we get a

—ve cost circuit, TERMINATE.

207

If df],,1 =0, ford,j=1tor find:
dz,;'rl - mln{d@j; d;n,j“_}-l + d;i%,j}

Lit = Lj; if above min is dj;, LjT] ; otherwise.

L' = (L), d'*' = (dj;™") are new label and distance ma-

trices.
If any diagonal entries in d"*' are < 0, say dj/", then circuit

containing j identified using labels in L™ is a —ve cost circuit,
TERMINATE.

Otherwise, if r + 1 = n, the label & distance matrices give
shortest chains & their costs, TERMINATE. If r + 1 < n go to

next step.

EX. Prove that distance matrix satisfies triangle ineq.

EX. Prove algo. valid, & derive its complexity.

208

Floyd - Warshall Algo.

= (N, A, c), nodes 1, ..., m.
Definition: on any simple chain, nodes other than origin,
destination called Intermediate nodes.
Only simple chains not containing intermediate nodes are those
with only one arc.
n steps. L",d" are label, distance matrices at end of Step r,

representing:

d;; = cost of shortest chain from ¢ to j s. to constraint that
all intermediate nodes on it are from {1,...,r} (¢, 7 may not be

from this set).

Triangle (or Triple) Operation : For any pair of nodes
7,7 and fixed node r + 1,

r+1
dij " = min{d;, d; ..y +d; ;)

Lr+1 Lr if dr+1 dr .

iis Lyy1j otherwise.

209

F'W Algo.
Step 0: L', d" defined by L?j =1, d?j = Cjj

General Step r + 1: Let L",d" be the matrices at end of
Step r. Perform triple operations V 7,7 € N and r + 1. Let
L™ d"*! be resulting matrices.

If any d;*! < 0, the circuit obtained by putting together
present chains from ¢ to r + 1 & r 4+ 1 to ¢ is a —ve cost cir-

cuit, TERMINATE.

Ifdil =0VieN,&r+1=n, present chains are shortest,

TERMINATE. If r + 1 < n go to next step.

210

