6.1

Min cost flows in Pure networks
Katta G. Murty, IOE 612 Lecture slides 6

Directed G = (N, A, L, k,c). k> € > 0. ¢ = cost vector per
unit flows.

Several types of models. Each can be transformed into the
other. Problems discussed earlier are special cases of this general

problem.

1. Ship ¢ units from s to ¢ at min cost.

2. Min cost circulation problem: To find a min cost cir-
culation. Problem in 1. can be transformed into this by
introducing an artificial arc (¢, s) with lower bound, capacity

both = v & unit cost = 0.

211

3. Min cost flow with an exogenous flow vector: V =

(V;) exogenous flow. Node ¢ called:

Shipping node if B; =10
Receiving node if A; =1
Transshipment node if both A;, B; # 0.

If there is at least one transshipment node, problem called
Transshipment problem. E = node-arc incidence matrix.

Problem is:

min ¢ f
s.to Ef =V
t<f <k

Hence a nec. cond. for feasibility is = V; = 0.

212

4. Max. profit flow: Same as 1., but each unit reaching sink
can be sold there for a premium (= selling price at sink —
buying price at source) of A\. Flow value variable here, need

to find flow that maximizes total net profit.
Using Relative costs: In models 1, 2, 3 can replace ¢ by

¢ = (¢ =c¢j—(rj—m)) =c—nE for any node price

vector 7, without changing set of opt. flows.

213

Two sets of opt. conds.

[. The C. S. conds. (f,), a feasible flow vector, node

price vector pair is an opt. pair if V(i,7) € A

Ty —T; > Cj = kij finite and fij = kij

7T]'—7TZ'<C7;]' = fijzfij

Can be depicted by C. S. Diagram for arc (i, j).

214

II. Opt. conds. in terms of —ve cost resid-
ual C}/CleS: f feasible flow vector. C' a cycle with selected
orientation which is a residual cycle WRT f. Define, for the

selected orientation,
COST OF C' = 2 (i,jforward Cij — >(i.j)reverse Cij

Theorem: Feasible flow vector f min cost iff there exists no

—ve cost residual cycle WRT it.

215

Canceling a residual cycle : Given a residual cycle C' of

residual capacity «, this:

increases flow on forward arcs of C by a

decreases flow on reverse arcs of C by a

Cost of flow vector changes by — a(cost of residual cycle can-

celed).

216

Two main approaches for finding min cost
flow

(a): Cycle canceling approach: Several routines avail-
able to find —ve cost residual cycles. Start with a feasible flow,
and apply one such routine to find a —ve cost residual cycle, can-
cel it; and repeat until a feasible flow with no —ve cost residual

cycle is obtained.

(b): Augmenting path approach: Start with an opt.
flow of some value, and build it up optimally to desired value

maintaining optimality throughout.

217

Building up flow value optimally

Consider min cost flow in G(N,A,0,k > 0,¢,s,t,0). Let
6 = min{k;; : (4,5) € A}.

Clearly V 0 < o < 9, optimum sol. is to send a flow of value v
on each of the arcs of a shortest chain from s to ¢.

So, consider following approach:

1. Find shortest chain from s to t. If a —ve cost circuit found,
objective value unbounded below, TERMINATE.

Otherwise, send flow along this shortest chain until either flow
value reaches ¥ or an arc on chain is saturated.

2. If an arc saturated, no more flow can be sent on it, so delete
saturated arcs from further consideration.

Find shortest chain from s to ¢ in remaining network, continue
sending flow on this chain now.

Deleting saturated arcs from further consideration, continue

same way until flow value reaches v.

218

219

How to obtain a min cost flow of value > v

from one, f, of value v7

Augmentation along a min cost FAC is not guaranteed to pre-
serve optimality:.

To get min cost flow of value > v we may have to reroute flow
in f on some arcs.

AMAZINGLY, augmentation along a min cost FAP always pre-
serves optimality!

Define, cost of an FAP = ;. iforward Cij — Z(i,j)reverse Cij

Theorem: f min cost flow in G = (N, A, 4, k,c,s,t). G(f)
residual network WRT f.

1. Each chain from s to ¢ in G(f) corresponds to an FAP from
s tot WRT f of same cost. So every shortest chain from s to ¢
in G(f) corresponds to a min cost FAP in G.

2. Let 0 be the capacity of a min cost FAP in G. Augmenting

A units along it gives a flow f(A) which is a min cost flow of value

14+AY 0< A<,

220

Method for finding min cost flows of increasing values, by suc-
cessively augmenting along cheapest FAPs, is called Shortest

augmenting path method.

221

Out of Kilter (OK) Algo. for min cost flows

By F & F. A cycle canceling type algo. with cycle to cancel
found by OK routine.

Highly popular by utilities to opt. natural gas shipments until
1970’s when tree label implementations of primal simplex were

shown to be faster.

General version: Can be initiated with (f,7) , arbitrary
flow vector, node price vector pair.
An infeasibility measure decreases on each arc monotonically.

Once f becomes feasible, it remains feasible in subsequent steps.

Feasible flow vector version: Discuss first. Initiate with
(f,) where f feasible. Feasibility maintained, & method tries to
reduce violation of C. S. property.

Alternates bet. two subroutines.

Flow change Subroutine: 7 held constant and only f
changed so that on each arc (¢, j) the point (f;;, m; — ;) moves

horizontally closer to C. S. curve.

222

Node price change routine: f held constant and only 7

changes ... moves vertically

223

Kilter Status of arcs: Discuss for feasible flow version now.
General version will have many more states related to infeasibility.

In pair (f, 7) with f feasible, arc (z,) said to be:
a-arc if m; —m; < ¢;; and fi; = ;5
p-arc if m; — m; = ¢;; (& ofcourse £;; < fi; < kjj by feasibility)
Lower bounded g if m; — m; = ¢;; & fij = 4;;
Interior B if mj — m = c¢i; & Ui < fi; < kij
Saturated (if m; — m = ¢;; & fij = kyj
v-arc if m; — m; > ¢;; & k;; finite, fi; = ky;
a-arc if m; —m; < ¢ & fij > Uy
b-arc if m; —m; > ¢ & fij < kij

a, (3, arcs satisfy C. S., so called In-Kilter arcs. a,b arcs

violate C. S. , so called out-of-kilter arcs.

224

Kilter nos.: kN (¢,7) is a measure of how far away arc
(¢,7) is from satisfying C. S. KN(i,j) = 0 whenever (7,) in-
kilter, > 0 when (¢, j) out-of-kilter.

Values of K N (4, 7) not used in algo., but in convergence proofs.
Common def. is:

0 (¢,7) € {a, 8,7}
KN, j) =9 fij =t (i,j) €a
kij — fi; (i,7) €D

> KN(i,j) is a measure of how far away (f,n) is from opt.

K N (i, 7) is monotonic decreasing on every arc (i, j) during algo.

until 1t becomes 0.

225

Permissible changes

Algo. permits only following changes in flows f;; and tensions

m; — T;, guaranteeing f remains feasible, and that K N(s,7) | 0
V(i j).

Status of (7, 7) Permissible changes in
J ij Ty — T
o) None | arbitrarily; 1 upto ¢;;
Interior 8 Freely within bounds None
LB ¢ 7 1 arbitrarily
Saturated 3 7 1 arbitrarily
ol None 1 arbitrarily, | upto ¢;;
a | upto ¢;; T upto c¢;;
b 1 upto kj; 1 upto ¢;;

226

Distinguished arc, FR Source and Sink

In each step, the OK algo. selects an out-of-kilter arc (called
Distinguished arc), (p.q) say, and tries to bring it into kilter
by flow changes first, and if this is not possible then by a node
price change.

If (p,q)isa [b]flowonit hastobe | [1]. To keep feasibility the
changed amount has to be routed from p to ¢ | ¢ to p | through
some other permissible path called FRP (Flow Rerouting
Path). So, for finding FRP, the rerouting source, sink are

as in figure.

Amount to be rerouted is: 8 = f,, — Ly [kpg — fog | if (P, @) is
alb]

Algo. finds shortest (by no. of arcs) FRP by growing a BrFS
tree rooted at the FR source using first labeled first scanned la-

beling routine.

227

Theorem: Let (p, q) be distinguished arc and P an FRP. C
=P U(p, q) is a cycle, orient it from rerouting source to rerouting

sink. Then C'is a negative cost residual cycle WRT present flow.

What to do if there is no FRP?

Labeling routine terminates with a nonbreakthrough, a set
X of labeled nodes containing rerouting source, its complement,
X containing rerouting sink, and no further labeling possible.

So, not possible to lower kilter no. of distinguished arc by flow
changes. So, we try node price change. Situation as in following

figure.

228

Let

A = {(1,5): (4,5) € (X, X) N ({a} U{a})
A* = {(,5) : (1,5) € (X, X)n({d} U {r})

Al U A? # () as distinguished arc in it. on all arcs in A* [A? |

it is permissible to 1 [|] tension 7; — m;. So define:
= min{|7r]~ — T — CZ']'| . (Z,]) c Al U AQ}
and new dual solution 7’ by:
; if1e X
mi+0 ifi e X
Can verify this leads only to permissible tension changes, &

that at least one more arc (one attaining min for ¢§) joins label

tree when labeling is resumed.

229

Selection of initial node price vector 7

feasible f

, glven

If k finite, can select 7 arbitrarily.

So, assume that U = {(4,7) : k;; = oo} # (). Let N be set of
nodes on arcs in U.

If an uncapacitated arc (k;; = o00) is b, it cannot be brought
into kilter by any flow change. So algo. selects 7 to make sure

that no arc in U is b. So, 7¥ has to satisfy:

m—m <c; ¥V (i,j)eU

Ife>0 VYV (i,5) € U, clearly 7 = 0 is acceptable.

So, assume ¢;; < 0 for some (7,7) € U.

Assume (N, U) connected, otherwise you need to repeat the

230

following procedure in each connected component of (N, U) sep-
arately: Find a shortest chain tree 71" rooted at some node in
(N, U). If this discovers a —ve cost circuit in (IV,U), objective
function unbounded below in original problem, TERMINATE.
Otherwise, take 7 for nodes i € N to be the distance of 7 in this

SC tree from root.

0

After determining m; Vi € N by above procedure, you can

select 7! for i & N arbitrarily (say = 0) to complete the 7° vector.

231

The OK Algo.

Step 1: Initialization: Find feasible flow £V, & initial node
price vector m° as discussed above. In this process if you discover
infeasibility, or unboundedness (as evidenced by a negative
cost circuit consisting of solely uncapacitated arcs) TERMINATE.

Otherwise, let (f, 7°) be initial pair. If it satisfies C. S. conds.,

it is an opt. pair, TERMINATE; or go to Step 2.

Step 2: Select Distinguished arc: Select (p.q) € {a,b}

as distiguished arc, go to Step 3.

Step 3: Labeling to find FRP: Let 5,¢ be rerouting
source, sink. Label 5 with (), List = {5}. Go to Step 3.1

Step 3.1: Select node to scan: Iflist =) go to Step 5. Oth-

erwise, delete node 7 from top of list to scan. Go to Step 3.2.

Step 3.2: Scanning: Let (f, 7) be present pair, & 7 the node

to scan.

232

Forward labeling: Label each unlabeled node j €
{b, 8} & satistying fi; < ki; with (7,+) and include
it at bottom of list.

Reverse labeling: Label each unlabeled node 5 €
{a, B} & satisfying f;; > ¢;; with (i, —) and include

it at bottom of list.

If ¢ now labeled, breakthrough, FRP found, go to Step 4.
Otherwise, go to Step 3.1.

Step 4: Flow rerouting: Find FRP P by a backward trace
of labels from 7. Orient C' = P U {(p, q)} so that forward
arcs on P remain forward, and cancel it, leading to new flow

vector f . Erase labels on all nodes.
If all arcs in-kilter in (f,), it is opt., TERMINATE.

If (p, q) in-kilter now, but other out-of-kilter arcs exist go to
Step 2.

If (p, q) still out-of-kilter, leave it distinguished & go to Step
3.

Step 5: Node price change: Let X, X be sets of labeled,

233

unlabeled nodes. Obtain new node price vector 7 as discussed

above.
If all arcs in-kilter in (f, 7), it is opt., TERMINATE.

If (p, q) in-kilter now, but other out-of-kilter arcs exist, erase

all node labels, go to Step 2.

If (p, q) still out-of-kilter, leave it distinguished, make list =
X & go to Step 3.1.

234

Example

Theorem: This version of OK algo. is finite.
Case 1: £, k, f° integral
Case 2: ¢, m° integral

Case 3: All data real.

235

OK algo. for Parametric value min cost
flows

Theorem: Let (f,7) be opt. pair of value ©. So all arcs are
a, 3, or v in this pair. Any FAP from s to t WRT f consisting of

(3 arcs only, has net cost of 7, — 7, and is a min cost FAP among

all FAPs WRT f.

The Parametric value algo. Start with an opt. pair
of any value. So all arcs are in-kilter, and they will remain in-
kilter throughout this algo. Apply OK algo. using only 3 arcs
as permissible for flow change. If 6 becomes oo in a node price
change step, it implies present flow is of maximum value (if trying
to increase value); or minimum value (if trying to decrease value).

This parametric algo. is a Shortest augmenting path
method for min cost flow implemented using OK method.

g(v) = cost of min cost flow of value v, is PL. Convex.

236

Parametric maximum profit flow

G=(N,A 0,k c>0,s,t,\). Here A\ = premium/unit ma-
terial reaching ¢ from s. It is a parameter varying from 0 to oo.
The flow value v itself is a variable in this model. Need to find a

feasible flow which maximizes net profit = Av — cf.

Opt. conds.: Pair (f,) opt. for A if:
m — T, =A and
Ty —T; > Cj = kij finite and fij = kij

T =T < Cj = fl-]-:O

Algorithm: Start with (f =0, 7=0, v=0, A=0) opt.
for A = 0. Apply the OK based parametric value min cost flow

algo.; updating the A at each node price change by adding ¢ to it.

At some stage if present sols. are (f,7,,), & an FAP from
s tot WRT f of capacity oo is found in the 3-subnetwork; this
FAP has cost A and oo residual capacity. So, in this case, YA >),

the maximum profit will be +o0.

237

General version of OK algo. initiated with
arbitrary flow vector

Of theoretical interest, needed for developing a polynomially
bounded version of OK algo. based on Scaling of lower bounds
and capacities on arcs.

When initiating OK with (f, 7) where f is infeasible (here we
assume that flow conservation holds at all nodes, but that the
bounds may be violated), we have to define several new out-of-
kilter states. For example, if f;; < ¢;; and m; — m; < ¢, arc
(¢,7) is called an ay arc, and the permissible flow change on it is
to increase the flow upto ¢;;. Etc.

The algorithm is similar, and finiteness proofs continue to hold.

238

Polynomially bounded Scaling implementa-
tion of OK algo.

Of theoretical interest. Assume £, k are integer vectors. p is the
maximum no. of binary digits among the entries in these vectors.

The complexity of this implementation is O(pmn?).

239

Primal Network Simplex

G=(N,A Lk, c V). Assume G connected. Specialization of
the Bounded variable Primal Simplex Method to solve
this problem. Each BFS corresponds to a partition of set of arcs
into (T, L, U) where:

T = spanning tree consisting of basic arcs

L = nonbasic arcs in which f;; = ¢;; in the basic solution

U = nonbasics with £;; finite & f;; = k;; in basic solution.

Opt. Conds.: Primal feasible partition (T, L, U) associated

with pair (f, 7) optimal if it is dual feasible, i.e., if

240

How to compute dual basic sol. for given (7, L,U)?

Select a node, say node n as root node & fix m, = 0 (Rea-
son: We treat the flow conservation eq. corresponding to n as

redundant & eliminate it.)

\V/<Z,]) c T, we have T — T = Cjj.
This system can be solved by backsubstitution beginning at

root node n, and going down the tree level by level.

Theorem: 7; = cost of predecessor path of 7 treated as a path
from root to 1.
¢;; = net cost of funda. cycle of nonbasic arc (¢,7) WRT T,

oriented so that (¢, j) is forward on it.

241

How to compute the primal basic sol. for given

(T, L,U)?

Backsubstitution. Start at nonroot terminal node, find flow on

basic arc incident at it, and repeat.

242

Updating sols. & tree labels in a pivot step

Simplex algo. begins with a feasible partition & checks it for
opt. If violated, it selects one violating arc as entering arc,
leading to a pivot step. In it, entering arc may replace an in-
tree arc, this is called dropping arc.

Let e be entering arc with its relative cost ¢,.

Pivot cycle = funda. cycle of entering arc.

Ifee Licc<0 [eeUc >0 flowon e needs to be
increased [decreased] so orient pivot cycle (' so that e is a
forward arc [reverse arc|.

With this orientation C' is a negative cost cycle.

Min. ratio, dropping arc: Add +6 [—6] to the flow on
each forward [reverse| arc on C

Min ratio in this pivot step = Max 6 > 0 that keeps all flows
on (' within bounds

D = set of arcs on (' which tie for min ratio

If min ratio = oo, pivot cycle is an uncapacitated —ve cost

243

circuit, obj. func. unbounded below, TERMINATE.
If min ratio = 0, pivot step is degenerate, nondegenerate
if min ratio > 0. If min ratio finite and > 0, pivot cycle is a —ve

cost residual cycle. Make # = min ratio to get new flow vector.

244

If e € D, no change in T'; e moves from L or U where it is
currently, into the other set. No change in dual sol. Go to next
step in simplex algo. with new partition.

If e & D select one of the arcs in D as the dropping (in-tree) arc
to be replaced by e. In this case we will get a new tree, partition,

and dual sol. with which the simplex algo. moves to next step.

Predecessor indices: Change only for nodes on pivot stem.
New P'(j1) = =iy, P'(ju) = —Sign(P(ju-1)ju—1 for u = 2 to
t+1.

Successor indices: change only for nodes on entering arc,
pivot stem, & dropping arc.

Brother indices: change only for nodes S(¢1), Y B(j.), EB(J)
and nodes in the set H(j.) = j. and all descendents of j, in present
tree.

Thread index: changes only for nodes on pivot stem and
their eldest and youngest children.

m it & H(j)

T+ ac. ifi € H(j)
where « = 4+ 1 [—1] if entering arc is (i1,71) [(J1,71)]-

Node prices: New 7} =

245

Pivot choice (entering arc selection) rule: Most suc-
cessful one is outward node - most violated rule: Examine
nodes, looking for eligible arcs in forward star of each examined
node. At 1st such node, select the outward arc with most violation

as entering arc.

246

Phase I: Select a spanning tree Tj, and then generate an initial
partition (Ty, Lo, Up). Let f° be the basic sol. corresponding to
it. Let

K1:{<7’7]) zg'<£ij} K2:{<7’7]) z%>kij}

If Ki UK, =0, f°feasible, go to Phase II with it.

If KUKy #0, V(i,j) € Ky [Ks] change lower bound
to fij [kij] and capacity to £;; [fi)], and define ¢f; to be -1
[-+1]. Define ¢j; to be 0 V(i,7) € K1 U K>

(To, Lo, Uyp) feasible to modified problem. Phase [is to min ¢* f
on modified network beginning with (Tj, Ly, Uy). During Phase

I, whenever flow vector changes, if:

For (i,j) € K;: flowincreases but still < ¢;;, change lower bound
on this arc to the new flow amount.

If flow becomes = ¢;;, restore original LB, capacities on this

*

arc; take it out of K and make ¢j; = 0. You need to recom-

pute Phase I node price vector.

For (i,j) € Ky: flow decreases but still > k;;, change capacity

247

on this arc to the new flow amount.

If low becomes = £k;;, restore original LB, capacities on this
arc; take it out of Ky and make ¢;; = 0. You need to recom-

pute Phase I node price vector.

Move to Phase II when K; U K5 becomes ().
If Phase I terminates without K7 U K5 becoming (), original

problem infeasible.

248

Cycling & its resolution: (7, L, U) associated with BFS
f. Arc (i, 7)

Interior if 0 < fij < ki

Lower boundary if ﬁ;j =l

Saturated if fi; = ki

(T, L,U) and f primal nondegenerate if all in-tree arcs

are interior, primal degenerate otherwise.

If f feasible, it is BF'S iff set of interior arcs in it form a forest;

nondegenerate BE'S iff they form a spanning tree.

249

Under degeneracy primal algo. can cycle. Example by L. John-
son, paper written by his Secretary B. Gassner. After 12 degen-
erate pivot steps it returns to starting partition completing the

cycle.

Conditions for Strong feasibility: Feasible (T, L,U)
with a root node selected for T' is Strongly feasible (SF)
if:

in-tree arc lower boundary — directed away from root

in-tree arc saturated — directed towards root.

Examples: 1. Assignment example with C; as root, 2.

Same example with R4 as root.

250

How to retain SF in a pivot step: THEOREM: Start-
ing from an SF partition, if you choose dropping arc from D in
each pivot step to be the first arc in D encountered while traveling
the pivot cycle in the direction of its orientation discussed earlier,

from apex back to the apex, SF will be preserved.

THEOREM: Resolution of cycling: Starting with an
SE partition, if you use above dropping arc choice rule in every
pivot step; then in each degenerate pivot step each m; either stays
the same or decreases, and X m; strictly decreases. So, cycling

can’t occur.

How to obtain an initial SF partition: Phase I can be
set up so that initial partition is SF.

Or from any feasible partition with (8 in-tree arcs wrongly ori-
ented for SF, an SF partition can be obtained by carrying out at

most 3(n — 1) degenerate pivot steps.

251

Stalling: A finite but exponentially long sequence of degen-
erate pivot steps in simplex algo.

Even when cycling is resolved, stalling can occur.

Stalling can be prevented in SEF' Network simplex method by
selecting entering arc using rules such as LRC, or any rule which
examines each arc periodically (at least once in ym steps for some

7v) and enters it if it is eligible.

Polynomially bounded Network simplex method:
Recently J. Orlin (MPB Vol. 78, no. 2, 1 Aug. 1997) devel-
oped a version of network simplex method with special entering

and dropping arc choice rules, and proved that it is polynomially

bounded.

252

Shortest aug. path method

G=(N,A0k,c>0,s,t 0). Given (f,) where f is feasible
of value v, the pair is opt. for that value if:

0< fij <ky = ¢j=cj—(mj—m)=0

cij <0 = Jij = kij < o0

Eij>0 = fl-]-:O

If opt. conds. hold, the cost vector & in residual network
G(f,m) =N, A(f),0,k,) is > 0, so shortest chains in it can

be found by Dijkstra’s method. This method uses this fact.

253

Shortest aug. path method

Initialization: Start with (f° = 0,7° = 0). Optimal for

value 0 because ¢ > 0.

General step: Let (f",7") be present opt. pair of value
v < 0.

Find SC tree rooted at s in G(f", 7") using Dijkstra, terminate
as soon as t permanently labeled.

If Dijkstra terminates before ¢ permanently labeled, no FAP
from s to ¢t WRT f"; so v" is max flow value in G, so original
problem infeasible, TERMINATE.

Otherwise, let u! = length of shortest chain from s to ¢ in
G(f",n") if i is permanently labeled; = pj otherwise. Find
FAP corresponding to shortest chain from s to ¢ and augment it
by 7, = min{e, = its residual capacity, v — v"} leading to new
flow vector f! of value v"*t = v" + ,. Define 7/t = 7/ + pu!
Vie N.

If o™ = o, (f"* 7"t opt. pair, TERMINATE.

Otherwise go to next step with new pair (f"*!, 7" *1).

254

Classical P-D method for min cost circula-
tion

G = WN,A Ll k). €<k < oo Pair (f,m) said to be
admissible if:

(1) f is bound feasible (i.e., ¢ < f < k) but may not satisfy
conservation egs. at nodes.

(2) all arcs are v, 3, or 7y as in the OK algo.

Define the Deficit at node i in f to be d; = f(N,i)— f(i, N).
It could be + or —, and ©d; = 0.

Method maintains admissibility throughout, & tries to make all
deficits to 0 monotonically by flow change & node price change

steps.

255

P-D algo.
Initialization: Start with an admissible pair.

Flow change step: Let (f,) be current pair with deficit
vector (d;) = d.

Ifd=0, (f,n) opt., TERMINATE.

Otherwise select a +ve deficit node 7, root a tree at it and put

it in list. Go to scanning step.

Scanning: If list = (), go to node price change step. Otherwise

delete a node p from list for scanning.

Forward labeling: V unlabeled nodes j satistying:
(p.j) € A, (p,j) € B, and f,; < kyj; label j with
(p,+) and put it in list.

Reverse labeling: V unlabeled nodes j satisfying:
(j.p) € A, (j,p) € B, and fj, > €;,; label j with

(p, —) and put it in list.

Breakthrough: If a node ¢ with —ve deficit now labeled, a

256

Flow altering path (FAIP) has been found, and we have
a breakthro. Trace it using labels. Its capacity is € =
min{d;,, —d,, kij — fi; for forward arcs, fi; — ¢;; for reverse
arcs}. Augment flow by e along FAIP, chop down tree and

start another flow change step.
If no breakthrough, continue scanning until either list = @) or

breakthro’ occurs.

Node price change step: Let X, X be sets of labeled, unla-
beled nodes. Let A1 = {a arcs in (X, X)}, Ay = {7 arcs in
(X, X)}.

If Ay U Ay =0, no feasible circulation in G, TERMINATE.
If AyUAy # 0, let 6 = min{|e;;—(m;—m)| : (i, 7) € A UAL}.
Define new dual sol. 7’ by:

w40 forie X

T fori e X

Put all labeled nodes in list and resume tree growth by going

to the scanning step.

257

Strongly polynomial algos.

Consider min cost circulation in G = (N, A, ¢, k,c). No. of
data elements is 5m + 2n. An algo. is said to be strongly poly-
nomial if:

(1) no. of arithmetic operations bounded above by a poly-
nomial in no. of data elements even if data real, assuming exact
arithmetic

(2) when applied on instances with rational data, size of all
intermediate numbers bounded above by a polynomial in size of

original instance.

Several strongly polynomial algos. for pure min cost flows.

Most based on :

Theorem: Let (f, 7) be a feasible circulation, node price vec-
tor pair satisfying:
Cij = o= fij = L, Cij < —a = fi; = ki

for some a > 0.

If 0 < a < 1/n and c an integer vector then f is a min cost

258

circulation.
If « > 0and (p,q) € A satisfies |¢,,| > na then in every min

cost feasible circulation, the flow on (p, ¢) must be f,.

One algo.: Initiate with a feasible circulation. Find a mini-
mum mean cycle. If its cost > 0 circulation opt., TERMINATE.

If its cost < 0, cancel that cycle and repeat.

Needs at most O(nm?logn) cancellations. So overall complex-

ity at most O(n*m?>logn).

259

