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Integer Programming and Combinatorial Op-
timization

Katta G. Murty Lecture slides

Integer Programming (IP) deals with LPs with additional con-

straints that some variables can only have values

• 0 or 1

• integer values

• or values in some specified discrete set

0−1 variables, also called binary or Boolean variables used to

select one of two alternatives.
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Example: Binary variables In automobile design, need

to decide whether to use cast iron or aluminium engine block.

Introduce a binary variable with definition:

y =




0 if cast iron block used

1 if al. block used

In this model need to restrict y to 0−1 values only, because

other values for y have no meaning. Such 0−1 variables called

combinatorial choice variables.

Example: Integer Variables: Army decides to use combat

simulators to train soldiers. Each costs $ 5 million US. Let

y = no. of combat simulators purchased by Army.

Then y ≥ 0 is an integer variable.
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Example: Discrete Variables: In designing water distrib-

ution system for a city, diameter of pipe to be used for a particular

link needs to be decided. Pipe available only in diameters 16”,

20”, 24”, 30”. So, if

y = diameter of pipe used on this link

y can only take a value from set {16, 20, 24, 30}. A discrete

valued variable.

Each discrete variable can be replaced by binary variables in

the model.
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Types of IP Models

If all variables required to take integer values only, model called

a Pure IP Model. In addition, if they are all required to be 0 or

1, model called a 0−1 Pure IP Model.

If some variables are required to be integer, and others can be

continuous, model called Mixed IP Model, or MIP. If all integer

decision variables are binary, model called 0−1 MIP.

Integer Feasibility Problem refers to one with no obj. func. to

optimize, but aim is to find an integer solution to a given system

of linear constraints. In such model, if all variables binary, it is

called 0−1 Feasibility Problem.

Examples: Subset sum problem, Equal Partial sums problem.
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Many puzzles from recreational math. can be posed as 0−1

feasibility problems. Here is one, from Shakespeare’s Merchant

of Venice, which we solve by Total Enumeration.

The

portrait is in

this casket

The portrait

is not in this

casket

The portrait

is not in the

gold casket

1 = Gold 2 = Silver 3 = Lead

Figure 9.1
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Combinatorial Optimization (CO) deals with finding best

arrangement s. to specified constraints. Most CO models involve

following components.

Useful Models

Location Where to put

the plants?

p-median model, set cov-

ering model

Partition Divide a set

into subsets

Set partitioning, 0–1 IP,

Assignment

Allocation Allot jobs to

machines

Assignment, 0–1 IP

Routing Find optimal

routes

TSP, Nonbipartite perfect

matching

Sequencing Find op-

timal order for

jobs etc.

TSP, Permutation models

Scheduling Arrange events

over time

DP, Heuristics.
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Formulation Examples

The One Dimensional Knapsack Problem: is a single

constraint pure IP.

n types of objects are available. For i = 1 to n, ith type has

weight wi kg and value vi $.

Knapsack has weight capacity of w kg .

Objects cannot be broken. Only a nonnegative integer no. of

them can be loaded into knapsack.

Determine which subset of objects (and how many of each) to

load into knapsack to maximize total value loaded subject to its

weight capacity.

Two versions; nonnegative integer knapsack problem, 0–1

knapsack problem.

Simplest pure IP. Many applications. Appears as a subproblem

in algorithms for cutting stock problem.
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Example: n = 9. w = 35 kg.

Type Weight Value

1 3 21

2 4 24

3 3 12

4 21 168

5 15 135

6 13 26

7 16 192

8 20 200

9 40 800
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Application: Journal Subscription Problem: Project car-

ried out at UM-COE library in 1970’s. For sample problem, sub-

scription budget is $650.

Journal Subscription Readership

1 80 7840

2 95 6175

3 115 8510

4 165 15015

5 125 7375

6 78 1794

7 69 897

8 99 8316
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Capital Budgeting Problem: Available budget is $ 23 million.

Project Cost ($mil.) Annual return ($104units)

1 3 12

2 4 12

3 3 9

4 3 15

5 15 90

6 13 26

7 16 112
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Multidimensional Knapsack Problem: You get this if

no. of constraints is > 1

Multiperiod Capital Budgeting Problem: Determine

which subset of projects to invest in to maximize total expected

amount obtained when projects sold at end of 4th year. Money

unit = US $10,000.
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Project Investment needed in year Expected selling price

in 4th year

1 2 3

1 20 30 10 70

2 40 20 0 75

3 50 30 10 110

4 25 25 35 105

5 15 25 30 85

6 7 22 23 65

7 23 23 23 82

8 13 28 15 70

Funds available 95 70 65

to invest
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0 − 1 Knapsack with Multiple choice constraints

Consider 0 − 1 multidimensional knapsack in n articles. ∀j =

1 to n: xj = 1 if article j selected, 0 otherwise.

Articles partitioned into p disjoint sets: A1 = {1, . . . , n1},
. . . , Ap = {np−1 + 1, . . . , n}.

Can select exactly 1 article from each Ar. System of constraints

representing this type constraint in 0−1 variables called System

of Multiple choice constraints.

Example: In previous example, projects 1, 2 (fertilizer mfg.);

projects 3, 4 (tractor leasing); projects 5, 6, 7, 8 (miscellaneous).

Select exactly 1 fertilizer mfg., exactly 1 tractor leasing; & at least

one miscellaneous projects.
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Set Partitioning, Set Covering, and Set Packing Prob-

lems

Let Am×n be a 0–1 matrix, e = (1, . . . , 1)T a column vector

of all 1’s in Rn; and c a general integer cost vector.

These 3 models are very important 0–1 pure IPs with many

applications. They are:

Set Covering Problem: min z = cx subject to Ax ≥ e,

and x is 0–1.

Set Partitioning Problem: min z = cx subject to

Ax = e, and x is 0–1.

Set Packing Problem: min z = cx subject to Ax ≤ e,

and x is 0–1.

14



Example: US Senate Simplified Problem: Select smallest size

committee in which senators 1 to 10 are eligible to be included,

subject to constraint that each of following groups must have at

least one member on committee.

Group Eligible senators

in this group

Southerners {1, 2, 3, 4, 5}
Northerners {6, 7, 8, 9, 10}
Liberals {2, 3, 8, 9, 10}
Conservatives {1, 5, 6, 7}
Democrats {3, 4, 5, 6, 7, 9}
Republicans {1, 2, 8, 10}

15



Facility Location Problem: Area divided into 8 zones. Av-

erage Driving time (minutes) between zones given below. Blank

entries indicate that time is too high. Need to set up facilities

(like fire stations, etc.) in a subset of zones. Constraint: every

zone must be within critical time (25 minutes) of a zone with a

facility. Find best locations for smallest no. of facilities.

Average driving time

to j = 1 2 3 4 5 6 7 8

from i = 1 10 25 40 30

2 8 60 35 60 20

3 30 5 15 30 60 20

4 25 30 15 30 60 25

5 40 60 35 10 32 23

6 50 40 70 20 25

7 60 20 20 35 14 24

8 30 25 25 30 25 9
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Fire Hydrant Location Problem: Street network with

traffic centers 1 to 6, and street segments (1, 2), (1, 5), (1, 7), (2,

3), (2, 5), (3, 4), (4, 5), (4, 6), (6, 7). Find locations for smallest

no. of fire hydrants so that there is one on every street segment.

Node covering problem.

Delivery problems:
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A Delivery Problem Depot, 0, to make deliveries to

locations 1 to 8. 9 good routes for delivery vehicles given. Cost

is expected driving time (hours). Determine which of these 9

routes should be implemented to minimize total driving time of

all vehicles.

Route no. Route Cost

R1 0-3-8-0 6

R2 0-1-3-7-0 8

R3 0-2-4-1-5-0 9

R4 0-4-6-8-0 10

R5 0-5-7-6-0 7

R6 0-8-2-7-0 11

R7 0-1-8-6-0 8

R8 0-8-4-2-0 7

R9 0-3-5-0 7
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Airline Crew Scheduling: Very important large scale ap-

plication for set covering. Basic elements are flight legs, a flight

between two cities, departing at one city at a specified time and

landing next at the second city at a specified time, in an airline’s

timetable. Duty period for a crew is a continuous block of time

during which the crew is on duty, consisting of a sequence of flight

legs each one following the other in chronological order. Pairing

for a crew is a sequence of duty periods that begins and ends at

the same domicile.
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Forming Sales Districts: Region consists of sales areas 1,

..., m. These may be towns, villages, etc. To group them into

Sales districts, each to be managed by one director.

Generate various subsets of sales areas, LIST = {S1, . . . , Sn}
each forming a good district. Use some heuristic, or manually

using a screen display. Select a subset of LIST s. th. it forms a

partition of set of areas.
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Example: Consider following LIST generated:

Subset Cost Subset Cost

S1 = {1, 2, 3, 4, 5} 39 S8 = {3, 5, 9, 11} 48

S2 = {2, 7, 8, 9, 10, 11} 83 S9 = {4, 7, 11} 32

S3 = {3, 4, 6, 7, 10} 64 S10 = {1, 2, 3, 7} 39

S4 = {1, 2, 5, 9, 10, 11} 85 S11 = {3, 4, 10, 11} 56

S5 = {2, 4, 5, 6, 10} 93 S12 = {2, 4, 8, 11} 62

S6 = {3, 4, 7, 9} 50 S13 = {3, 5, 7, 10} 84

S7 = {1, 5, 7, 10} 77
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Meeting Scheduling Problem: A = (aij) an k × n 0 − 1

matrix, where:

n Meetings to be scheduled

k administrators, each to attend a subset of

meetings

T Hour time slots available

aij 1 if administrator j has to attend meeting

i; 0 otherwise

Problem 1: Find maximum no. meetings that can be sched-

uled without conflicts. A Set Packing problem.

: Find min no. time slots needed to schedule all meetings

without conflicts. A Graph coloring problem.

Example: 11 administrators, 13 meetings. A given below.

Blank entries are 0.
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1 2 3 4 5 6 7 8 9 10 11

1 1 1 1 1

2 1 1

3 1 1 1

4 1 1 1

5 1 1 1

6 1 1 1

7 1 1 1

8 1 1 1 1

9 1 1

10 1 1

11 1 1 1 1

12 1 1 1

13 1 1 1
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Uncapacitated Plant Location

n sites in a region need a product. For i = 1 to n:

di = demand at site i over plannig horizon

(could be life of the plants), in units.

m = max. no. plants that can be set up.

fi + siα = cost of setting up a plant of prod. capacity

α (over planning horizon) at site i.

cij = unit cost of shipping product from site i

to site j.

In practice m << n. Assumplion implies that at any site,

plant of any prod. capacity.
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Capacitated Plant Location

Previous model made unrealistic assumption that at any site,

any size plant can be set up. Assume:

ki = Prod. capacity (over planning horizon) of

a plant set up at site i.

fi = Cost of setting up a plant (of above capac-

ity) at site i.

Other data same as in uncapacitated problem.
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Disjunctive Constraints

Disjunctive refers to system of 2 constraints of which ≥ 1

must hold (or in general, ≥ k constraints out of a given set of m

must hold).

To model using 0−1 variables, we need an upper bound , α > 0

say, for all constraint functions in the feasible region.

Batch Size Variables: In a LP model suppose we have a

variable xj which is required to be:

either 0 (i.e., xj = 0)

or ≥ `j

where `j is some specified positive lower bound if xj is positive.

i.e., here we want one of the two constraints xj = 0 xj ≥ `j

to hold. This situation arises if xj represents material purchased

from a supplier who will supply only in lot sizes ≥ `j.

Can be formulated using one combinatorial choice variable.
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Example Either x1 = 0, or x1 ≥ 10

Either x2 = 0, or x2 ≥ 15

Suppose α = 100 is an upper bound for both x1, x2 in feasible

region.

Example: 1 out of 2 disjunctive constraints:

Feasible region defined by: x1, x2 ≥ 0, x1, x2 ≤ 10; and either

x1 ≤ 5 or x2 ≤ 5.

Use α = 10 as an upper bound for both x1, x2 in feasible region;

and represent it by a mixed 0 − 1 system.
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Representing Union of Two Convex Polytopes

Pt = {x : Atx ≤ bt, x ≥ 0} ; t = 1, 2.

Let β > 0 be such that b1 +β(1, 1, ...)T [b2 +β(1, 1, ...)T ] is an

upper bound for A1x [A2x] over P2 [P1].
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Assignment Problem: n machines, m jobs, where

n ≥ m. cij = cost of doing job j on machine i.

Each machine can do at most one job.

Each job must be carried out on exactly one machine.

Assign jobs to machines to minimize cost of completing all jobs.

By Integer Property of Transportation problems, this problem

can be solved as an LP, because optimum solution of LP relaxation

obtained by Simplex method will be integral; since every extreme

point of LP relaxation is integral by Total Unimodularity

(TU) of coeff. matrix.

TU and U properties

Let Am×n = (aij) be of rank r. A is said to be TU iff the

determinant of every square submatrix of A is ∈ {0, +1,−1}.
A is said to be U iff the determinant of every square submatrix

of A of order r is ∈ {0, +1,−1}.

Theorem: Coeff. matrix in min cost pure network flow prob-

lems are TU; and all BFS in these problems are integral if the
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RHS constants vector is integral.

Theorem: (Heller and Tompkins) A = (aij) with all

aij ∈ {0, +1,−1}, and every col. of A has at most 2 nonzero

entries. A is TU iff rows of A can be partitioned into two sets s.

th.

(a) if the two nonzero entries in a col. have same [different]

signs, their rows are in different [same] sets.

Theorem: (Hoffman and Kruskal) Consider Ax ≤
b, x ≥ 0 where A integral. Following are equivalent. (a) A is

TU (b) for all b integral, all BFSs of above system are integral

(c) every nonsingular square submatrix of A has integer inverse.

Theorem: Consider Ax = b, x ≥ 0 where A integral.

Following are equivalent. (a) A is U (b) for all b integral,

all BFSs of above system are integral (c) every basis for above

system has integer inverse.
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Matching and Edge Covering Problems in Undirected

Networks

Let G = (N ,A, c) be an undirected network with c as vector

of edge weights, or costs. E ⊂ A is said to be a

matching if E contains ≤ 1 edge inci-

dent at each node

perfect

matching

if E contains exactly one edge

incident at each node

edge cover if E contains ≥ 1 edge inci-

dent at each node.

Also, let (N≤ ∪ N= ∪ N≥ ∪ N 0) be a partition of N . THen

E is said to be a 1-M/EC (1-Matching/Edge Covering)

WRT this partition of N if it has

≤ 1 edge incident at all nodes i ∈ N≤

exactly 1 edge incident at all

nodes

i ∈ N=

≥ 1 edge incident at all nodes i ∈ N≥
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Finding min cost matchings, perfect matchings, edge covers,

1-M/ECs all have efficient algorithms.

Since node-edge incidence matrices of bipartite networks are

TU, all these problems can be solved efficiently by LP techniques

in bipartite networks.

In nonbipartite networks, all these problems are nontrivial IPs,

but have efficient blossom algorithms pioneered by J. Ed-

monds. These algorithms initiated the subject of Polyhedral

Combinatorics of IPs.

Assignment Problem interpreted as a bipartite match-

ing problem

Let cost matrix be:



3 7 9

11 5 14

6 8 10




A bipartite min cost perfect matching problem.
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The Chinese Postman Problem (CPP)

Street network of a postman’s beat is an undirected network.

Find a min distance route starting at post-office-node, going thro’

each edge ≥ once, & returning to post office at end.

Posed by Guan Mei Go (1962). Can be posed as a min cost

perfect matching problem in a nonbipartite network.

Approach for the CPP

1. Identify J = Set of odd nodes in network. If J = ∅, network

has Euler route which is optiman postman route.

2. If J 6= ∅, find Pij = a shortest path between i and j for

each i 6= j ∈ J , and let dij be its length. Let H = (J, {(i; j) :

i 6= j ∈ J}, (dij)). Find a min cost perfect matching M in H.

3. In original network duplicate all edges on Pij ∀(i; j) ∈ M .

Opt. postman route is Euler route in resulting network.
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Min cost perfect matching problem

G = (N ,A, c). Define xij = 1 if (i; j) included as matching

edge; 0 otherwiase.

min
∑

cijxij

∑
(xij : over j s. th. (i; j) ∈ A) = 1 ∀i ∈ N

xij = 0 or 1 ∀(i; j) ∈ A

Example:

The LP relaxation is below. Its opt. BFS is x̄ = (1/2, 1/2, 1/2)T ,

nonintegral. IP infeasible.:

min −x12 −x23 −x31

s. to x12 +x23 = 1

x23 x31 = 1

x12 x31 = 1

x12 x23 x31 ≥ 0
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Strategy Developed by J. Edmonds TO SOLVE PROB-

LEM:

Add additional constraints to LP rexation to remove all non-

integral extreme points, while at same time not creating any new

extreme points, or deleting integer extreme points.

Resulting problem can be solved by LP approaches to yield

integer optimum. First nontrivial IP for which an efficient algo.

developed based on this approach. Now called Polyhedral ap-

proach to IP.

Subnetwork formed by an odd subset of nodes Yσ. Any perfect

matching can have at most (|Yσ| − 1)/2 edges from this subnet-

work. So, every perfect matching satisfies:

∑
(xij : over i, j ∈ Yσ and (i, ; j) ∈ A) ≤ (|Yσ| − 1)/2

called Valid inequality for IP. This one known as blossom
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ineq. corresponding to odd subset Yσ. Edmonds showed that by

adding blossom ineq. of all odd subsets, we get linear constraint

representation of convex hull of all perfect matching incidence

vectors.
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Fixed charge problems

If cost of performing Activity j at level xj is: 0 if xj = 0;

fj + cjxj if xj > 0 we have a Fixed charge problem.

fj = setup cost, or fixed charge in-

curred to make xj > 0.

cj = variable cost of activity j. Per

unit cost of increasing xj from

0, once fixed charge is paid.

Common in transportation, mfg. applications. Model of form:

min
∑n

j=1 cjxj +
∑

j s. th.xj>0
fj s. to Ax = b, x ≥ 0.

Define: yj = 1 if xj > 0; = 0 if xj = 0.

And let α > 0 be a practical upper bound for all xj. Can be

modeled as an MIP using these.

The Traveling Salesman Problem (TSP) :

A salesperson’s trip begins and ends in city 1, and must visit

each of cities 2, . . . , n exactly once in some order.

c = (cij), the n × n cost matrix for traveling between pairs of
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cities, is given.

If the cities visited in order are: 1, p2, . . . , pn; 1 this is called

a Tour or Hamiltonian cycle or Node covering cycle, and

its cost is: c1,p2 + cp2,p3 + . . . + cpn−1,pn + cpn,1.

Find a minimum cost tour.

No. of tours in an n city problem is (n − 1)!.

Let N = {1, . . . , n}, set of all cities in problem. Let N1 ⊂ N ,

N1 6= N . A tour covering cities in N1 only, without touching any

city in N\N1 is called a subtour spanning the subset of cities

N1.
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Define: xij = 1 if salesman goes from i to j, 0 otherwise.

Then x = (xij) is a 0 − 1 matrix satisfying the constraints in

the assignment problem; & also xii = 0∀i. So, every tour is an

assignment with 0-diagonal.

An assignment is called tour assignment if it has 0-diagonal

& represents a tour. Make cii = ∞ ∀i. So, TSP is:

min z(x) =
∑ ∑

cijxij

s. to
∑

j
xij = 1, ∀i

∑

i
xij = 1, ∀j

xij ∈ {0, 1} ∀i, j

& x is a tour assignment
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Tucker’s MIP formulation of TSP

Uses new continuous variables u = (u2, . . . , un)
T .

min z(x) =
∑ ∑

cijxij

s. to
∑

j
xij = 1, ∀i

∑

i
xij = 1, ∀j

ui − uj + nxij ≤ n − 1 ∀i 6= j ∈ {2, . . . , n}
xij ∈ {0, 1} ∀i, j

The constraints make it impossible to have a subtour not con-

taining node 1.

Other ways of imposing subtour elimination using the 0−1 xij

variables only are:

Either
∑

(xij : i ∈ S, j 6∈ S) ≥ 1 ∀S ⊂ {1, . . . , n} with

2 ≤ |S| ≤ n − 2

or
∑

(xij : i ∈ S, j ∈ S) ≤ |S| − 1 ∀S ⊂ {1, . . . , n} with

2 ≤ |S| ≤ n − 2
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Production, Lot-Sizing Problem

To min sum of set-up, production, storage costs to meet known

demands in T periods. For t = 1 to T :

ft = set-up cost to produce in t

ct = unit production cost in t

dt = demand (to meet) in t

st = unit storage cost from t to t + 1.

Formulation 1: Let ω =
∑T

t=1 dt, an upper bound for pro-

duction in any period. Define decision variables:

xt = production in t

It = units stored from t to t + 1

yt = 1 if xt > 0; 0 otherwise.
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min
T∑

t=1
{ftyt + ctxt + stIt}

s. to x1 = d1 + I1

It−1 + xt = dt + It, 2 ≤ t ≤ T

xt ≤ ωyt, 1 ≤ t ≤ T

It = 0

It, xt ≥ 0, ∀t

yt ∈ {0, 1} ∀t

Formulation 2: Define decision variables:

qit = Units produced in i to meet demand in t ≥ i

min
T∑

t=1
ftyt +

T∑

t=1

t∑

i=1
(ci + si + si+1 + . . . + st−1)qit

s. to
t∑

i=1
qit = dt 1 ≤ t ≤ T

qit ≤ dtyt 1 ≤ t ≤ T, 1 ≤ i ≤ t

qit ≥ 0 1 ≤ i ≤ T, i ≤ t ≤ T

yt ∈ {0, 1} ∀t

Which formulation is better?
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Importance of good formulation

To solve large IP or CO good formulation very critical. In min

problems, algorithms use a Lower bounding strategy which

computes a LB (lower bound) for min obj. value. A formulation

that leads to highest LB is the best.
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A Combinatorial optimization problem: The

line haul problem in trucking

A trucking company that operates in the midwest region of

USA has 15 terminals. During the day each terminal accepts

packages for shipment until 6 PM. At 6 PM the office in the ter-

minal closes and no more packages are accepted until next business

day. During the night, each package is shipped to the terminal

which is closest to its destination, and should arrive there before

6 AM next morning. From that terminal, the package is delivered

to its destination address during next day by a separate division

of the company. The line haul problem is concerned with the

overnight transfer of each package from its origin-terminal to its

destination-terminal, in the most efficient way possible. Line haul

is carried out by trucks all of which can be assumed to be of the

same size.

Each truck can travel upto 540 miles during a night, and can

make any no. of intermediate stops for loading-unloading. The

loading-unloading time can be ignored for solving the line haul
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problem. To keep problem simple, assume that each terminal has

an unlimited supply of trucks to use. A route for a truck may

consist of several cycles (i.e., a roundtrip from its home-terminal

to a subset of terminals, returning back to its home terminal at

end) and/or a chain to another terminal with break of journey

and stay there next day; and the length of this route has to be

≤ 540 miles.

Following is data for one night. The first table gives the amount

of material (in truck load units) to ship that night between every

pair of terminals. The 2nd table gives the accepted driving dis-

tance between pairs of terminals.
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Truckloads to ship between terminals

To 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

from 1 0 1 1 2 4 1 1 3 1.2 1 .5 1 1 1 1

2 1.4 0 2.5 .8 2.25 .12 .37 .67 .04 .08 .04 .12 .33 .5 .25

3 .62 1 0 .6 2 .2 1.75 1.6 .6 1 .25 1.25 .66 .75 .75

4 1.33 1.5 1.5 0 .58 .16 .54 .5 .12 0 .43 0 .43 .92 1.4

5 2.5 2 2 1.33 0 2 5 2 4 2 1.5 6 3 2 1

6 .12 .12 .04 .08 1 0 .04 .87 0 .04 .08 .66 .54 .5 .04

7 .75 0 .25 .04 4 .85 0 2 .15 .12 1.9 .5 1.6 .5 .2

8 5 .78 .92 .24 1.4 .52 .4 0 .92 .2 .16 1.96 1.82 .86 .16

9 .4 .1 0 .88 2 .35 1 .25 0 .72 .43 .43 .62 .58 .04

10 1.1 .1 1 .12 1.5 0 .6 .3 .2 0 .7 .3 .5 .25 .12

11 .4 .1 0 .4 3.5 0 .5 0 .25 .25 0 1.75 .08 1.16 .04

12 1 .25 1.25 .25 3 .5 .58 .25 .08 .08 .5 0 .75 1.25 .33

13 1.42 0.37 .33 .37 1.54 .29 1.08 1.79 0 .33 .54 .92 0 .25 .04

14 1.2 .25 .25 .12 1.92 .33 1.25 .79 .12 .46 .58 1.04 .33 0 0

15 .16 .58 .2 .75 .54 .16 0 .08 .16 0 .29 .12 .16 .29 0
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Distance (miles) between terminals

To 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

From 1 0 302 360 329 277 167 185 190 223 156 298 311 97 263 387

2 0 232 111 252 187 347 118 261 293 405 362 248 205 156

3 0 127 165 214 300 304 193 268 391 253 263 121 124

4 0 196 167 328 178 228 266 491 276 246 148 67

5 0 158 154 285 63 121 238 110 195 48 247

6 0 168 133 108 116 276 215 93 114 234

7 0 261 108 54 121 126 109 192 391

8 0 237 245 382 345 154 241 243

9 0 67 200 123 141 73 273

10 0 172 156 74 150 330

11 0 128 224 270 470

12 0 230 142 326

13 0 168 317

14 0 200

15 0

Assuming that a truck can be loaded with material to be shipped

to any number of terminals; and that each load can be split be-

tween any number of trucks, find routes for the trucks to complete

the shipments that minimizes the total truck mileage.
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