
2.1

Integer Programming and Combinatorial Op-
timization
Slide set 2: Computational Complexity

Katta G. Murty Lecture slides

Aim: To study efficiency of various algo. for solving prob-

lems, and to classify algos. as good abd bad. Also, to classify

problems into easy and hard.

Origin of subject: Goes back to 1960’s.

Size of a problem instance: Bigger instances take

more effort to solve in general. Need to develop a measure of how

large an instance is.

Consider 2 instances of a system of 2 eqs. in 2 unknowns.

x1 + x2 = 2 2937560086x1 − 97635004389x2 = 1132003058

−2x1 + x2 = −1 8790204137x1 − 713255436859x2 = 950786341

48

Right instance has lerger nos. than left, hence takes more work.

So, should consider right instance to be larger than the left.

All problems involve data (we assume integral), stored in binary

form in computer. Commonly used measure of largeness, Size =

amount of memory space to store data; i.e., total no. binary

digits in data ≈ ∑
(1 + log2(1 + |a|) : over data elements a).

Running time of algo. proportional to computational

effort (measured in terms of additions, multiplications, divisons

& comparisons). This expected to ↑ with size, but problems with

same size take different times because of differences in data. How

to develop a measure of running time as a function of size? 3

approaches.

Empirical analysis: Solve large no. of representative

instances of various sizes, & fit a function for running time in

terms of size.

Used very much in practice, but measure depends on program-

ming skill, & patterns of data in examples solved. Not suitable

for developing a mathematical theory.

49

Avarage case analysis: Assumes a probability distri-

bution for data, & derives asymptotic expected running time in

terms of size by statistical arguments.

Analysis highly complicated even under simple distributions.

Also, not clear which distributions are representative.

Worst case analysis: Determines an upper bound on

running time in terms of size, for all possible data. So, gives

guaranteed max. running time.

Basis for computational complexity theory. Drawback: de-

pends on pathological instances which may be very rare.

Worst case complexity of an algo. is O(nβ) where n = size ⇒
running time ≤ αnβ where α, β are constants. In this case algo.

said to be polynomially bounded.

50

Decision problems: Those for which answer is yes or

no. NP-completeness theory deals with these.

Each opt. problem has a decision problem version (also

called recognition version, or feasibility version).

TSP Decision problem: Given n, integer cost matrix Cn×n,

integer α; is there a tour with cost ≤ α?.

An opt. problem, & its decision problem version are equivalent

in terms of being poly. bounded.

51

Problem reductions & Problem transforma-

tions

Problem X1 polynomially reducible to problem X2 if ∃
an algo. for X1 using as a subroutine an algo. for X2, calling it a

polynomial no. of times (poly. in size of X1). S. Cook (1971)

introduced it.

X1 polynomially transforms to X2 (a special type of poly.

reduction) if X1 can be transformed with at most a poly. blow-up

in size into X2.

If X1 poly. reducible (transforms) to X2 & X2 poly. bounded,

so is X1 (X2 is at least as hard as X1 in terms of polynomial

solvability).

52

Example: Set packing: Given Am×n = (aij), e =

(1, . . . , 1)T ∈ Rn, integer c ∈ Rn and α ∃x ∈ Rn feasible to:

Ax ≤ e cx ≥ α xj binary ∀j.

Node packing: Same as above, but each row of A has

exactly 2 nonzero entries of 1.

Theorem: Set packing polynomially transforms to node pack-

ing.

53

P,NP,NP−complete, NP−hard classes

P = class of all problems solvable by a poly. bounded algo.

Criterion of poly. time as characterization of a good algo.

proposed by J. Edmonds, A. Cobham in early 1960’s. Examples:

LP, linear constraints, etc.

Certificate for a decision problem: For a decision prob-

lem with yes-answer, it is info. that can be used (by a certificate

checking algo.) to verify that “yes” is correct answer in poly. time.

For TSP-decision problem, a tour with cost ≤ α is a certificate.

NP: class of decision problems whose “yes-instances” have a

certificate & a certificate checking algo. Examples: all problems

in P , 0-1 IP, pure & MIP, TSP, etc.

Certificate of optimality or good characterization:

Information that can be used to check optimality in poly. time.

Example: LP, a certificate is a primal & dual pair of opt. sols.

NP-hard: Class of problems (not necessarily in NP) s. th.

54

every problem in NP polynomially rduces to it.

NP-complete: NP ∩ NP−hard.

S. Cook (1971) introduced concepts of NP, NP-complete, NP-

hard & poly. reducibility by proving: Theorem: Satisfiability

problem is NP-complete.

0-1 IP version of satisfiability: Data: N = {1, . . . , n}.
Given m pairs of subsets of N , (S+

i , S−
i), i = 1 to m. Is there a

feasible sol. to:
∑

j∈S+
i

xj +
∑

j∈S−
i
(1 − xj) ≥ 1, for i = 1 to

m; xj binary ∀j.

How to show a problem X2 is NP-complete: If X2 ∈
NP and a known NP-complete problem X1 polynomially reduces

(or transforms) to X2, then X2 is NP-complete.

55

Example: Consider Subset sum: Data: positive integers

d0; d1, . . . , dn. Is there a sol. to:
∑n

j=1 djxj = d0 all xj binary

?

Set partitioning feasibility: Data: Am×n = (aij), e =

(1, . . . , 1)T ∈ Rn. Is there a sol. to: Ax = e, x binary?

Theorem: Given that set partitioning feasibility is NP-complete,

so is subset sum.

Reference: M R Garey & D S Johnson, Computers and

Intractability: A Guide to the Theory of NP-Completeness,

Freeman, 1979.

Differences Between LP and IP Models:

56

LP IP

1. Theoretically proven

nec. and suff. optimality

conditions exist. Useful to

check whether a given fea-

sible solution optimal

No known opt. conds.

to check whether a given

feasible sol. is opt.,

other than to compare

it with every other feasi-

ble solution implicitly or

explicitly.

2. Algos. are alge-

briac methods based on

opt. conds.

All existing

methods are enumerative

methods based on partial

enumeration.

3. Excellent software

packages available. Very

large models can be solved

within reasonable times

using them.

Performance of algorithms

is very highly dependent

on problem data. For

most models, only mod-

erate sized problems can

be solved within reason-

able times.

57

