
3.1

IP’s Solvable directly thro’ LP Relaxation

This includes IPs in which the coeff. matrix is TU. So when

RHS vector is integral, all BFSs of LP relaxation are also integral.

So, IP can be solved directly by solving for an extreme pt. sol. of

LP relaxation.

This includes assignment problem, transportation problems,

and min cost network flow problems.

As an example we now discuss the Hungarian method for the

assignment problem, a primal-dual algorithm.

58



Primal-Dual Algorithms

Here we discuss special min cost flow problems on bipartite

networks, the assignment and transportation problems.

Algorithms based on an approach called the Primal-Dual ap-

proach are discussed.

Strategy of P-D methods to solve an LP

1. Methods need an initial dual feasible solution to

start. Hence methods suitable to solve problems for which a

dual feasible sol. can be found easily (these include assign-

ment, transportation, matching & other network problems).

2. Always maintains:

• a (primal vector, dual feasible sol.) pair that together

satisfies C. S. opt. conds.

• dual feasibility and C.S. opt. conds.

Primal vector is primal infeasible till end. So when primal

feasibility attained, the pair becomes opt. & method terminates.

59



3. Two main steps carried out in this particular order:

Primal vector change step: Keeping dual sol. fixed, ob-

tain primal vector closest to primal feasibility among all primal

vectors satisfying C.S. conds. together with present dual feasible

sol.

So, a measure of primal infeasibility is minimized during

this step.

Dual solution change step: Do this only when primal

vector cannot be changed as above. Changes to a new dual feasible

solution satisfying:

a) C.S. conds with present primal vector.

b) Using it, it is possible to resume primal vector change & make

some progress in it.

60



The primal infeasibility measure is decreasing ↓ during algo.

Method can terminate two ways:

1. With an optimum primal, dual pair of sols.

2. With primal infeasibility conclusion.

61



Assignment Problem

Input: n = order of problem; c = (cij), square cost matrix

of order n.

Output needed: Solution x = (xij) that solves:

min z(x) =
n∑

i=1

n∑

j=1
cijxij

s. to
n∑

j=1
xij = 1 i = 1, . . . , n

n∑

i=1
xij = 1 j = 1, . . . , n

xij ∈ {0, 1} ∀i, j

Put up an n × n 2-D array, and associate variable xij with

cell (i, j). Cell (i, j) said to have an allocation in solution x

iff xij = 1. Exactly one allocation in each row & col of array

in any sol. So, sol. x is a permutation matrix. Also called

assignment or integer doubly stochastic matrix.

Problem is Minimum cost perfect matching problem

in an n × n bipartite network. Each assignment is a perfect

62



matching in this network.

EXAMPLE: n = 4, one assignment is




0 1 0 0

0 0 0 1

1 0 0 0

0 0 1 0




Forbidden cells: Cells where allocations forbidden. So, xij

must = 0 in all for bidden cells (i, j). Problem called:

Assignment problem on complete network if no for-

bidden cells

Assignment problem on dense network if number of

forbidden cells small

Assignment problem on sparse network if number of

forbidden cells large.

We assume:

cij =




∞ if (i, j) forbidden

cost of allocating in (i, j) otherwise

63



Partial assignment: A 0− 1 matrix with at most one allo-

cation in any row or col. Example:




0 0 1 0

0 0 0 0

0 1 0 0

0 0 0 0




Each partial assignment is a matching that is not perfect in

the network.

Dual problem: max w(u, v) =
∑n

i=1 ui +
∑n

j=1 vj s. to

c̄ij = cij − ui − vj ≥ 0 ∀i, j.

c̄ij called reduced or relative cost coeff. of cell (i, j) WRT

dual vector (u, v). (u, v) dual feasible iff c̄ij ≥ 0∀i, j.

WRT dual sol. (u, v), cell (i, j) called admissible or equal-

ity cell if c̄ij = 0; inadmissible cell otherwise.

The set of admissible cells constitutes admissible or equal-

ity subnetwork.

64



Strategy of the Hungarian method: Maintains (x, (u, v))

partial assignment, dual sol. pair always satisfying:

• Dual feasibility c̄ij ≥ 0 ∀i, j.

• C.S. conds. c̄ijxij = 0 ∀i, j, i.e., allocations occur only

in admissible cells.

Primal vector change step maximizes
∑ ∑

xij subject to (1)

C. S. conds., and (2) at most one allocation in any row or col.

This problem is the maximum value flow (from row nodes to col.

nodes) problem in admissible subnetwork, can be solved by the

labeling algo. It finds maximum partial assignment satisfying C.

S. conds. with current dual feasible sol.

When max value of
∑ ∑

xij becomes n, primal feasibility at-

tained, and method terminates with final x as an opt. assignment.

EXAMPLES:

65



j = 1 2 3 ui

i = 1

c11 = 10 9 10 3

2

22 5 12 −1

3

9 20 15 5

vj 4 6 7

66



j = 1 2 3 ui

i = 1

c11 = 3 9 10 10

2

4 5 19 6

3

6 8 8 3

vj 5 8 4

67



j = 1 2 3 ui

i = 1

c11 = 1 6 8 1

2

12 33 45 12

3

14 84 93 14

vj 0 5 7

68



Concept of Lower Bounding the Objective

value

THEOREM: If (u, v) dual feasible, dual obj. func. value

w(u, v) =
∑

ui+
∑

vj called Total reduction is a lower bound

for the cost z(x) of any assignment x.

69



Hungarian Method

Step 1: Finding initial dual feasible sol. by row &

col. reduction:

ui = min in row i of original cost matrix, ∀i.

Row reduction: For each i subtract ui from each entry of

row i of c.

vj = min in col. j after row reduction.

Col. reduction: For each j subtract vj from each entry in

col. j of row reduced matrix, leading to 1st reduced cost matrix.

Step 2: Finding initial allocations: Take any row or col.

without an allocation but with an uncrossed admissible cell. Put

an allocation in that cell, & cross out all other admissible cells in

its row & col. Repeat until all admissible cells crossed out.

If allocations in all rows, they define an optimum assignment,

terminate. Otherwise continue.

70



Step 3: Labeling routine to check max flow:

3.1: Initial labeling: For each i, if no allocation in row i,

label it (s, +). Put all labeled rows in list.

3.2: Delete a labeled row or col from list to scan:

Use FIFO. If list = ∅ nonbreakthrough, go to Step 5.

Scanning labeled row i: Label all unlabeled cols. j with

an admissible cell in row i with (Row i, +); & put these labeled

cols. in list. Return to Step 3.2.

Scanning labeled col. j: Look for an allocation in this col.

j. If none, col. j has breakthrough, go to Step 4.

If col. j has an allocation, suppose it is in row i. If this row i

unlabeled, label it with (Col. j,−), and put this labeled row in

list. Return to Step 3.2.

Step 4: Allocation change: Use labels to trace the prede-

cessor path of col. in which breakthro’ occured to a row with label

(s, +). It will be an alternating path of unallocated, allocated

cells. Exchange allocated, unallocated cells on this path. Chop

down trees (i.e., erase labels on all rows, cols.).

71



If all rows allocated, they define an opt. assignment, terminate.

Otherwise go to Step 3.

Step 5: Dual sol. change: At this time verify that all cells

in the Labeled row-Unlabeled col. block are inadmissible. The

change is carried out to create at least one new admissible in this

block so more cols. can be labeled.

δ = min c̄ij in Labeled row-Unlabeled col block.

If δ = ∞, no feasible assignment (i.e., one without an allocation

in a forbidden cell), terminate.

If δ finite, define new dual sol. to be:

new ui =




present ui + δ if row i labeled

present ui if row i unlabeled

new vj =




present vj − δ if col j labeled

present vj if col j unlabeled

Compute new reduced costs, identify new admissible cells, make

list = set of all labeled rows, and go to Step 3.2.

72



Array 5.2

j = 1 2 3 4 5 6

i = 1 0

2

2 0

2

3 0 0

2

4 0 0

5 0 0

6 0 0 0

2

73



c =




15 22 13 4

12 21 15 7

16 20 22 6

6 11 8 5




74



THEOREM: δ is > 0 in every dual sol. change step.

THEOREM: If δ = ∞ in Step 5, present matching is a max-

imum cardinality matching in network & there is no feasible as-

signment.

THEOREM: Konig-Egervary Theorem Whenever non-

breakthrough occurs, we have:

no. of allocations = no. of unlabeled rows + no. of labeled

cols.

If lines are drawn through each unlabeled row & each labeled

col. these lines cover all admissible cells. This set of lines is a

smallest cardinality set of lines thro’ rows & cols. that cover all

admissible cells.

THEOREM: In Step 5, dual feasibility and C. S. property with

current primal vector are always maintained.

THEOREM: After Step 5 is carried out & labeling resumed, at

least one new col. can be labeled.

THEOREM: In this algo. the no. of consecutive occurences of

75



nonbreakthro’ before a breakthro’ occurs is at most n.

THEOREM: If implemented directly, the complexity of the

algo. is O(n4).

76



Data structures to reduce complexity to O(n3)

Need to avoid computing all n2 relative cost coeffs. after every

dual sol. change.

Amazingly, this is possible by introducing an index for each

unlabeled col. !

So, good Data structures very imp. in implementing opt.

algos.

Divide the algo. into stages. A new stage begins after every

allocation change step. By above results, dual sol. change step can

occur at most n times in a stage. But the efficient implementation

computes the reduced cost coeffs. in all cells only once in a stage,

at the beginning.

At the 1st nonbreakthrough in a stage, it defines an index

[tj, pj] for each unlabeled col. where:

pj = min current reduced cost coeff. in this col. among labeled

rows

tj = no. of a labeled row in which above min occurs (in case

of tie, select any one).

77



Index only defined for unlabeled cols., and it is erased when the

col gets labeled. Indices of all unlabeled cols. updated whenever

a new row is labeled, or dual sol changed, so pj in unlabeled cols.

is always true to its definition.

78



O(n3) Version of Hungarian Method

Step 1: Finding initial dual feasible sol. by row &

col. reduction:

ui = min in row i of original cost matrix, ∀i.

Row reduction: For each i subtract ui from each entry of

row i of c.

vj = min in col. j after row reduction.

Col. reduction: For each j subtract vj from each entry in

col. j of row reduced matrix, leading to 1st reduced cost matrix.

Step 2: Finding initial allocations: Take any row or col.

without an allocation but with an uncrossed admissible cell. Put

an allocation in that cell, & cross out all other admissible cells in

its row & col. Repeat until all admissible cells crossed out.

If allocations in all rows, they define an optimum assignment,

terminate. Otherwise set Stage number k = 1.

Step 3: Begin Stage k. Compute and store ∀i, j the relative

cost coeff. c̄ij = cij − ui − vj where (ui), (vj) is the present dual

79



solution. Identify present admisssible cells as those with c̄ij = 0.

Step 4: Labeling routine to check max flow:

4.1: Initial labeling: For each i, if no allocation in row i,

label it (s, +). Put all labeled rows in list.

4.2: Delete a labeled row or col from list to scan:

Use FIFO. If list = ∅ nonbreakthrough, go to Step 4.3 if this

is the first nonbreakthrough in this Stage k, otherwise go to Step

6.

Scanning labeled row i: Label all unlabeled cols. j with

an admissible cell in row i with (Row i, +), and erase the indices

on these cols. if they have any; & put these labeled cols. in list.

Return to Step 4.2.

Scanning labeled col. j: Look for an allocation in this col.

j. If none, col. j has breakthrough, go to Step 5.

If col. j has an allocation, suppose it is in row i. If this row i

unlabeled, label it with (Col. j,−), and put this labeled row in

list and go to Step 4.4.

4.3: Defining indices for unlabeled cols.: For each

unlabeled col. q at this time, define its index to be [tq, pq] where:

80



pq = min {c̄iq : i a labeled row at this time}, tq = an i that

ties for the min in the definition of pq selected arbitrarily among

those tied. Go to Step 6.

4.4: Updating indices on unlabeled cols. when a

new row i is labeled: For each unlabeled col h at this time

with index [th, ph],if:

• the stored reduced cost coeff. c̄ih = 0, label col h with (Row

i, +), erase the index on col h and put col h in the list. Go

to Step 4.2.

• ph > c̄ih > 0, change index on col h to [i, c̄ih] and go to Step

4.2.

• ph ≤ c̄ih > 0, leave index on col. h unchanged, go to Step

4.2.

Step 5: Allocation change: Use labels to trace the pre-

decessor path of col. in which breakthro’ occured to a row with

label (s, +). It will be an alternating path of unallocated, al-

located cells. Exchange allocated, unallocated cells on this path.

81



Chop down trees (i.e., erase labels on all rows, cols., and erase

any indices on cols.).

If all rows allocated, they define an opt. assignment, terminate.

Otherwise increment k by 1 and go to Step 3.

Step 6: Dual sol. change:

δ = min {pj : over unlabeled cols. j at this time}.
If δ = ∞, no feasible assignment (i.e., one without an allocation

in a forbidden cell), terminate.

If δ finite, define new dual sol. to be:

new ui =




present ui + δ if row i labeled

present ui if row i unlabeled

new vj =




present vj − δ if col j labeled

present vj if col j unlabeled

Subtract δ from the pj index of each unlabeled col. j. For

each unlabeled col. j in which pj became 0 as a result of this

subtraction, record (tj, j) as a new admissible cell, label col. j

with (Row tj, +), erase the index on it, and put col. j in the list.

82



Put all labeled rows in the list. Go to Step 4.2.

THEOREM: In this version, the pj index on an unlabeled col.

j is always the min reduced cost coeff WRT present dual sol. in

cells among labeled rows in this col. The value of δ found out in

every dual sol. change step is always > 0 and correct as defined

in original algo. The complexity of this version is O(n3).

83


