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Chapter 5

Quadratic Forms, Positive,
Negative (Semi) Definiteness

This is Chapter 5 of “Sophomore Level Self-Teaching Web-
book for Computational and Algorithmic Linear Algebra and
n-Dimensional Geometry” by Katta G. Murty.

5.1 Expressing a Quadratic Function in n

Variables Using Matrix Notation

As defined in Section 1.7, a linear function of x = (x1, . . . , xn)T is a
function of the form c1x1 + . . . + cnxn where c1, . . . , cn are constants
called the coefficients of the variables in this function. For example,
when n = 4, f1(x) = −2x2 + 5x4 is a linear function of (x1, x2, x3, x4)

T

with the coefficient vector (0,−2, 0, 5).

An affine function of x = (x1, . . . , xn)T is a constant plus a linear
function, i.e., a function of the form f2(x) = c0 + c1x1 + . . .+ cnxn. So,
if f2(x) is an affine function, f2(x) − f2(0) is a linear function. As an
example, −10 − 2x2 + 5x4 is an affine function of (x1, x2, x3, x4)

T .

A quadratic form in the variables x = (x1, . . . , xn)T consists of the
second degree terms of a second degree polynomial in these variables,
i.e., it is a function of the form
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478 Ch. 5. Quadratic Forms

Q(x) =
n∑

i=1

qiix
2
i +

n∑
i=1

n∑
j=i+1

qijxixj

where the qij are the coefficients of the terms in the quadratic form.
Define a square matrix D = (dij) of order n where

dii = qii for i = 1 to n

and dij, dji are arbitrary real numbers satisfying

dij + dji = qij for j > i.

As an example, if q12 = −10, we could take (d12 = d21 = −5), or
(d12 = 100, d21 = −110), or (d12 = −4, d21 = −6), etc. Then

Dx =




d11x1 + d12x2 + . . . + d1nxn

d21x1 + d22x2 + . . . + d2nxn
...

dn1x1 + dn2x2 + . . . + dnnxn




So

xT Dx = x1(d11x1 + . . . + d1nxn) + . . . + xn(dn1x1 + . . . + dnnxn)

=
n∑

i=1

diix
2
i +

n∑
i=1

n∑
j=i+1

(dij + dji)xixj

=
n∑

i=1

qiix
2
i +

n∑
i=1

n∑
j=i+1

qijxixj

= Q(x)

So, for any matrix D = (dij) satisfying the conditions stated above,
we have xT Dx = Q(x). Now define D = (dij) by

dii = qii i = 1, . . . , n

dij = dji = (1/2)qij j > i
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then D is a symmetric matrix and Q(x) = xT Dx. D is known as
the symmetric coefficient matrix defining the quadratic form
Q(x).

Clearly for all D = (dij) satisfying the conditions stated above,

we have Q(x) = xT Dx = xT DT x = xT (D+DT

2
)x and D+DT

2
= D, the

symmetric coefficient matrix defining the quadratic form Q(x).

As an example consider

n = 3, x = (x1, x2, x3)
T , Q(x) = 81x2

1 − 7x2
2 + 5x1x2 − 6x1x3 + 18x2x3

Then the following square matrices satisfy the conditions stated
above for Q(x).

D1 =




81 −10 100
15 −7 10

−106 8 0


 , D2 =




81 200 −1006
−195 −7 218
1000 −200 0


 ,

D3 =


 81 2 −2

3 −7 15
−4 3 0


 , D =


 81 5/2 −3

5/2 −7 9
−3 9 0




It can be verified that xT D1x = xT D2x = xT D3x = xT Dx = Q(x),
and that

D =
D1 + DT

1

2
=

D2 + DT
2

2
=

D3 + DT
3

2

Hence a general quadratic form in n variables x = (x1, . . . , xn)T

can be represented in matrix notation as xT Mx where M = (mij) is
a square matrix of order n. If M is not symmetric, it can be replaced
in the above formula by (M + MT )/2 without changing the quadratic
form, and this (M +MT )/2 is known as the symmetric matrix defining
this quadratic form.

A quadratic function in variables x = (x1, . . . , xn)T is a function
which is the sum of a quadratic form in x and an affine function in x;
i.e., it is of the form xT Dx+ cx+ c0 for some square matrix D of order
n, row vector c ∈ Rn and constant term c0.
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Exercises

5.1.1: Express the following functions in matrix notation with a
symmetric coefficient matrix: (i): −6x2

1 +7x2
2 −14x2

4 −12x1x2 +20x1x3

+6x1x4 −7x2x3 + 8x3x4 −9x1 + 6x2 − 13x3 + 100 (ii): x2
1 − x2

2 + x2
3

−18x1x3 + 12x2x3 −7x1 + 18x2 (iii): 4x2
1 + 3x2

2 − 8x1x2 (iv):
6x1 + 8x2 − 11x3 + 6.

5.1.2: Express the quadratic form xT Dx+cx as a sum of individual
terms in it for the following data:

(i) : D =




3 −6 9 8
10 −2 0 12
13 −11 0 3
−4 −9 9 1


 , c =




1
−9

0
7


 .

(ii) : D =


 3 −4 8

−4 9 9
−8 −9 2


 , c =


 0

0
6


 .

(iii) : D =




1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1




, c = 0.

5.2 Convex, Concave Functions; Positive

(Negative) (Semi) Definiteness; Indef-

initeness

Consider the real valued function f(x) defined over x ∈ Rn, or over
some convex subset of Rn. It is said to be a convex function if for
every x, y for which it is defined, and 0 ≤ α ≤ 1, we have

f(αx + (1 − α)y) ≤ αf(x) + (1 − α)f(y)
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This inequality defining the convexity of the function f(x) is called
Jensen’s inequality after the Danish mathematician who first defined
it. This inequality is easy to visualize when n = 1. It says that if you
join two points on the graph of the function by a chord, then the
function itself lies underneath the chord on the interval joining these
points. See Figure 5.1.

x1
x

x2

.

.

.

.

..

f(x)

chord

αf(x1 + (1 - α)f(x2))

f(x1)

f(x2)

αx1+ (1 - α)x2

Figure 5.1: A convex function lies beneath any chord

The convex function f(x) is said to be a strictly convex function
if the above inequality holds as a strict inequality for every x �= y and
0 < α < 1.

A real valued function g(x) defined over Rn or a convex subset of
Rn is said to be a concave function if −g(x) is a convex function
as defined above, i.e., if for every x, y for which it is defined, and
0 ≤ α ≤ 1, we have

g(αx + (1 − α)y) ≥ αg(x) + (1 − α)g(y)
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x1
x

x2
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.
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..

g(x)

chord
αg(x1   + (1 - α)g(x2))

g(x1)

g(x2)

αx1+ (1 - α)x2

Figure 5.2: A concave function stays above any chord

The concave function g(x) is said to be a strictly concave func-
tion if −g(x) is a strictly convex function, i.e., if the above inequality
holds as a strict inequality for every x �= y and 0 < α < 1.

The properties of convex and concave functions are of great impor-
tance in optimization theory. From the definition it can be verified that
a function f(x1) of a single variable x1 is

Convex iff its slope is nondecreasing, i.e., iff its 2nd deriva-
tive is ≥ 0 when it is twice continuously differentiable

Concave iff its slope is nonincreasing, i.e., iff its 2nd deriva-
tive is ≤ 0 when it is twice continuously differentiable.

As examples, some convex functions of a single variable x1 are:

x2
1, x

4
1, e

−x1,− log(x1)(in the region x1 > 0).
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Among functions of several variables, linear and affine functions are
both convex and concave, but they are not strictly convex or strictly
concave. For classifying quadratic functions into the convex and con-
cave classes, we need the following definitions.

A square matrix M of order n, whether symmetric or not, is said
to be

Positive semidefinite (PSD) iff yTMy ≥ 0 for all y ∈ Rn

Positive definite (PD) iff yTMy > 0 for all y ∈ Rn,
y �= 0

Negative semidefinite (NSD) iff yTMy ≤ 0 for all y ∈ Rn

Negative definite (ND) iff yTMy < 0 for all y ∈ Rn,
y �= 0

Indefinite if it is neither PSD nor NSD,
i.e., iff there are points x, y ∈
Rn satisfying xT Mx > 0, and
yT My < 0.

We have the following results.

Result 5.2.1: Conditions for a quadratic function to be
(strictly) convex: The quadratic function f(x) = xT Dx + cx + c0

defined over Rn is a convex function over Rn iff the matrix D is PSD;
and a strictly convex function iff the matrix D is PD.

To see this, take any two points x, y ∈ Rn, and a 0 < α < 1. It can
be verified that

αf(x) + (1 − α)f(y) − f(αx + (1 − α)y) = α(1 − α)(x − y)TD(x − y)

by expanding the terms on both sides. So Jensen’s inequality for the
convexity of f(x) holds iff

(x − y)TD(x − y) ≥ 0 for all x, y ∈ Rn
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i.e., iff z  
T Dz ≥ 0 for all z ∈ R  

n, i.e., iff D is PSD. Likewise for strict
convexity of f(x) we need

(x − y)TD(x − y) > 0 for all x �= y ∈ R 
n

i.e., iff z 
T Dz > 0 for all z ∈ R  

n, z �= 0, i.e., iff D is PD.

Result 5.2.2: Conditions for a quadratic function to be
(strictly) concave: The quadratic function f(x) = xT Dx + cx + c0

defined over R 
n is a concave function over R 

n iff the matrix D is NSD;
and a strictly concave function iff the matrix D is ND.

This follows by applying Result 5.2.1 to −f(x).

Checking whether a given quadratic function is strictly convex, or
convex, is a task of great importance in optimization, statistics, and
many other sciences. From Result 5.2.1, this task is equivalent to
checking whether a given square matrix is PD, PSD. We discuss efficient
algorithms for PD, PSD checking based on Gaussian pivot steps in the
next section.

5.3 Algorithm to Check Positive (Semi)

Definiteness Using G Pivot Steps

Submatrices of a Matrix

Let A be a matrix of order m × n. Let S ⊂ {1, . . . , m} and T ⊂
{1, . . . , n}. If we delete all the rows of A not in S, and all the columns
not in T , what remains is a smaller matrix denoted by AS×T known as
the submatrix of A corresponding to the subset of rows S and
columns T . As an example, consider the following matrix

A =




6 0 −7 8 0 −9
−25 −1 2 14 −15 −4

0 3 −2 −7 0 10
11 16 17 −5 4 0


 .
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Let S1 = {1, 4}, S2 = {2, 3}, T1 = {1, 3, 4, 6}, T2 = {2, 5, 6}. Then
the submatrices AS1×T1 , AS2×T2 are

AS1×T1 =

(
6 −7 8 −9

11 17 −5 0

)
, AS2×T2 =

( −1 −15 −4
3 0 10

)
.

Principal Submatrices of a Square Matrix

Square matrices have special submatrices called principal subma-
trices. Let M be a square matrix of order n, and S ⊂ {1, . . . , n} with
r elements in it. Then the submatrix MS×S obtained by deleting from
M all rows and all columns not in the set S is known as the principal
submatrix of the square matrix M corresponding to the sub-
set S, it is a square matrix of order r. The determinant of the principal
submatrix of M corresponding to the subset S is called the principal
minor of M corresponding to the subset S. As an example, let

M =




4 2 3 5
1 22 12 −1

−4 −2 −5 6
0 −3 16 −7


 .

Let S = {2, 4}. Then the principal submatrix of M corresponding
to S is

MS×S =

(
22 −1
−3 −7

)
.

and the principal minor of M corresponding to S is determinant(MS×S)
which is −157.

In this same example, consider the singleton subset S1 = {3}. Then
the principal submatrix of M corresponding to S1 is (−5) of order 1,
i.e., the third diagonal element of M . In the same way, all diagonal
elements of a square matrix are its principal submatrices of order 1.
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Some Results on PSD, PD, NSD, ND Matrices

Result 5.3.1: Properties shared by all principal submatri-
ces: If M is a square matrix of order n which has any of the properties
PSD, PD, NSD, ND; then all principal submatrices of M have the same
property.

To see this, consider the subset S ⊂ {1, 2} as an example, and the
principal submatrix MS×S of order 2. Let ȳ = (y1, y2, 0, . . . , 0)T ∈ Rn

with yi = 0 for all i �∈ S. Since y3 to yn are all 0 in ȳ, we verify that
ȳTMȳ = (y1, y2)MS×S(y1, y2)

T . So, for all y1, y2, if

ȳTMȳ ≥ 0 so is (y1, y2)MS×S(y1, y2)
T

ȳTMȳ > 0 for all (y1, y2) �= 0, so is (y1, y2)MS×S(y1, y2)
T

ȳTMȳ ≤ 0 so is (y1, y2)MS×S(y1, y2)
T

ȳTMȳ < 0 for all (y1, y2) �= 0 so is (y1, y2)MS×S(y1, y2)
T .

Hence, if M is PSD, PD, NSD, ND, MS×S has the same property.
A similar argumant applies to all principal submatrices of M .

Result 5.3.2: Conditions for a 1 × 1 matrix: A 1 × 1 matrix
(a) is

PSD iff a ≥ 0

PD iff a > 0

NSD iff a ≤ 0

ND iff a < 0.

The quadratic form defined by (a) is ax2
1; and it is ≥ 0 for all x1 iff

a ≥ 0; it is > 0 for all x1 �= 0 iff a > 0; etc. Hence this result follows
from the definitions.

Result 5.3.3: Conditions satisfied by diagonal entries: Let
M = (mij) be a square matrix. If M is a
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PSD matrix, all its diagonal entries must be ≥ 0

PD matrix, all its diagonal entries must be > 0

NSD matrix, all its diagonal entries must be ≤ 0

ND matrix, all its diagonal entries must be < 0.

Since all diagonal entries of a square matrix are its 1 × 1 principal
submatrices, this result follows from Results 5.3.1 and 5.3.2.

Result 5.3.4: Conditions satisfied by the row and column
of a 0-diagonal entry in a PSD matrix: Let M = (mij) be a square
PSD matrix. If one of its diagonal entries, say mpp = 0, then for all j
we must have mpj + mjp = 0.

Suppose m11 = 0, and m12 + m21 = α �= 0. Let the principal
submatrix of M corresponding to the subset {1, 2} be

M̄ =

(
m11 m12

m21 m22

)
=

(
0 m12

m21 m22

)

The quadratic form defined by M̄ is (y1, y2)M̄(y1, y2)
T = m22y

2
2 +

αy1y2. By fixing

y1 =
−1 − m22

α
, y2 = 1

we see that this quadratic form has value −1, so M̄ is not PSD, and
by Result 5.3.1 M cannot be PSD, a contradiction. Hence α must be
0 in this case. The result follows from the same argument.

Result 5.3.5: Conditions satisfied by the row and column of
a 0-diagonal entry in a symmetric PSD matrix: Let M = (mij)
be a square matrix. Symmetrize M , i.e., let D = (dij) = (M + MT )/2.
M is PSD iff D is, because the quadratic forms defined by M and D
are the same. Also, since D is symmetric, we have dij = dji for all i, j.
Hence, if D is PSD, and a diagonal entry in D, say dii = 0, then all
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the entries in the ith row and the ith column of D must be zero, i.e.,
Di. = 0 and D.i = 0.

This follows from Result 5.3.4.

Example 1: Consider the following matrices.

M1 =




10 3 1
−2 0 0

1 0 4


 , M2 =




100 0 2
0 10 3
2 3 −1




M3 =




10 3 −3
3 10 6
3 −6 0


 , M4 =




2 0 −7
0 0 0

10 0 6




The matrix M1 is not symmetric, and in it m22 = 0 but m12+m21 =
3− 2 = 1 �= 0, hence this matrix violates the condition in Result 5.3.4,
and is not PSD.

In the matrix M2, the third diagonal entry is −1, hence by Result
5.3.3 this matrix is not PSD.

In the matrix M3, m33 = 0, and m13 + m31 = m23 + m32 = 0, hence
this matrix satisfies the condition in Result 5.3.4.

The matrix M4 is symmetric, its second diagonal entry is 0, and
its 2nd row and 2nd column are both zero vectors. Hence this matrix
satisfies the condition in Result 5.3.5.

Result 5.3.6: Conditions satisfied by a principal submatrix
obtained after a G pivot step: Let D = (dij) be a symmetric
matrix of order n with its first diagonal entry d11 �= 0. Perform a
Gaussian pivot step on D with d11 as the pivot element, and let D̄ be
the resulting matrix; i.e. transform

D =




d11 . . . d1n

d21 . . . d2n
...

...
dn1 . . . dnn


 into D̄ =




d11 d12 . . . d1n

0 d̄22 . . . d̄2n
...

...
...

0 d̄n2 . . . d̄nn



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Let D1 be the matrix of order (n− 1)× (n− 1) obtained by deleting
row 1 and column 1 from D̄. Then D1 is symmetric too, and D is PD
(PSD) iff d11 > 0 and D1 is PD (PSD).

Since the original matrix D is symmetric, we have dij = dji for all
i, j. Using this and the formula coming from the Gaussian pivot step,
that for i, j = 2 to n, d̄ij = dij − di1(d1j/d11) it can be verified that
d̄ij = d̄ji, hence D1 is symmetric.

The other part of this result can be seen from the following.

xT Dx = d11[x
2
1 + 2(d12/d11)x1x2 + . . . + 2(d1n/d11)x1xn

+(1/d11)
n∑

i=2

n∑
j=2

dijxixj ]

Let

θ = (d12/d11)x2 + . . . + (d1n/d11)xn

δ = (1/d11)
n∑

i=2

n∑
j=2

dijxixj

Then xT Dx = d11[x
2
1 +2x1θ + δ] = d11[(x1 + θ)2 +(δ− θ2)], because

x2
1 + 2x1θ = (x1 + θ)2 − θ2. In mathematical literature this argument

is called completing the square argument.
After rearranging the terms it can be verified that

δ − θ2 = (x2, . . . , xn)D1(x2, . . . , xn)T . So,

xT Dx = d11(x1 + θ)2 + (x2, . . . , xn)D1(x2, . . . , xn)T

From this it is clear that D is is PD (PSD) iff d11 > 0 and D1 is
PD (PSD).

Based on these results, we now describe algorithms to check whether
a given square matrix is PD, PSD. To check if a square matrix is ND,
NSD, apply the following algorithms to check if its negative is PD,
PSD.
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Algorithm to Check if a Given Square Matrix M
of Order n is PD

BEGIN

Step 1: First symmetrize M , i.e., compute D = (M +M 
T )/2. The

algorithm works on D.
If any of the diagonal entries in D are ≤ 0, D and M are not PD

by Result 5.3.3, terminate.

Step 2: Start performing Gaussian pivot steps on D using the
diagonal elements as the pivot elements in the order 1 to n. At any
stage of this process, if the current matrix has an entry ≤ 0 in its main
diagonal, terminate with the conclusion that D, M are not PD. If all
the pivot steps are completed and all the diagonal entries are > 0,
terminate with the conclusion that D, M are PD.

END

Example 2: Check whether the following matrix M is PD.

M =




3 1 2 2
−1 2 0 2

0 4 4 5/3
0 −2 −13/3 6




Symmetrizing, we get

D =




3 0 1 1
0 2 2 0
1 2 4 −4/3
1 0 −4/3 6




All the entries in the principal diagonal of D are > 0. So, we apply
the algorithm, and obtain the following results. The pivot elements are
boxed in the following. PR, PC indicate pivot row, pivot column for
each G pivot step.

sthekdi
BEGIN
Step 1: First symmetrize M, i.e., compute D = (M+MT )/2. The
algorithm works on D.
If any of the diagonal entries in D are ≤ 0, D and M are not PD
by Result 5.3.3, terminate.
Step 2: Start performing Gaussian pivot steps on D using the
diagonal elements as the pivot elements in the order 1 to n. At any
stage of this process, if the current matrix has an entry ≤ 0 in its main
diagonal, terminate with the conclusion that D,M are not PD. If all
the pivot steps are completed and all the diagonal entries are > 0,
terminate with the conclusion that D,M are PD.
END
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PC↓
PR 3 0 1 1

0 2 2 0
1 2 4 −4/3
1 0 −4/3 6

PC↓
3 0 1 1

PR 0 2 2 0
0 2 11/3 −5/3
0 0 −5/3 17/3

PC↓
3 0 1 1
0 2 2 0

PR 0 0 5/3 −5/3

0 0 −5/3 17/3
3 0 1 1
0 2 2 0
0 0 5/3 −5/3
0 0 0 4

The algorithm terminates now. Since all the diagonal entries in all
the tableaus are > 0, D and hence M are PD.

Example 3: Check whether the following matrix M is PD.

M =




1 0 2 0
0 2 4 0
2 4 4 5
0 0 5 3




The matrix M is already symmetric and its diagonal entries are
> 0. So, we apply the algorithm on it, and obtain the following results.
The pivot elements are boxed in the following. PR, PC indicate pivot
row, pivot column for each G pivot step.
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PC↓
PR 1 0 2 0

0 2 4 0
2 4 4 5
0 0 5 3
1 0 2 0
0 2 4 0
0 4 0 5
0 0 5 3

Since the third diagonal entry in this tableau is 0, we terminate
with the conclusion that this matrix M is not PD.

A square matrix which is not PD, could be PSD. We discuss the
algorithm based on G pivot steps, for checking whether a given square
matrix is PSD, next.

Algorithm to Check if a Given Square Matrix M
of Order n is PSD

BEGIN

Initial step: First symmetrize M , i.e., compute D = (M +MT )/2.
The algorithm works on D. Apply the following General step on the
matrix D.

General Step: If any of the diagonal entries in the matrix are
< 0, terminate with the conclusion that the original matrix is not PSD
(Results 5.3.3, 5.3.6). Otherwise continue.

Check if the matrix has any 0-diagonal entries. For each 0-diagonal
entry check whether its row and column in the matrix are both com-
pletely 0-vectors, if not the original matrix is not PSD (Results 5.3.5,
5.3.6), terminate. If this condition is satisfied, delete the 0-row vector
and the 0-column vector of each 0-diagonal entry in the matrix.

If the remaining matrix is of order 1 × 1, its entry will be > 0,
terminate with the conclusion that the original matrix is PSD.—

sthekdi
BEGIN
Initial step: First symmetrize M, i.e., compute D = (M+MT )/2.
The algorithm works on D. Apply the following General step on the
matrix D.
General Step: If any of the diagonal entries in the matrix are
< 0, terminate with the conclusion that the original matrix is not PSD
(Results 5.3.3, 5.3.6). Otherwise continue.
Check if the matrix has any 0-diagonal entries. For each 0-diagonal
entry check whether its row and column in the matrix are both completely
0-vectors, if not the original matrix is not PSD (Results 5.3.5,
5.3.6), terminate. If this condition is satisﬁed, delete the 0-row vector
and the 0-column vector of each 0-diagonal entry in the matrix.
If the remaining matrix is of order 1 × 1, its entry will be > 0,
terminate with the conclusion that the original matrix is PSD.
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If the remaining matrix is of order ≥ 2, its first diagonal entry
will be positive, perform a G pivot step on the matrix with this first
diagonal element as the pivot element. After this pivot step, delete row
1, column 1 of the resulting matrix.

Now apply the same general step on the remining matrix, and repeat
the same way.

END

Example 4: Check whether the following matrix M is PSD.

M =




0 −2 −3 −4 5
2 3 3 0 0
3 3 3 0 0
4 0 0 8 4

−5 0 0 4 2




Symmetrizing, we get

D =




0 0 0 0 0
0 3 3 0 0
0 3 3 0 0
0 0 0 8 4
0 0 0 4 2




The first diagonal entry in D is 0, and in fact D1., D.1 are both
0, so we eliminate them and apply the general step on the remaining
matrix. Since there is a 0-diagonal entry in D, the original matrix M
is not PD, but it may possibly be PSD.

PC↓
PR 3 3 0 0

3 3 0 0
0 0 8 4
0 0 4 2
3 3 0 0
0 0 0 0
0 0 8 4
0 0 4 2

sthekdi
If the remaining matrix is of order ≥ 2, its ﬁrst diagonal entry
will be positive, perform a G pivot step on the matrix with this ﬁrst
diagonal element as the pivot element. After this pivot step, delete row
1, column 1 of the resulting matrix.
Now apply the same general step on the remining matrix, and repeat
the same way.
END
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Eliminating row 1 and column 1 in the matrix resulting after the
first G step leads to the matrix




0 0 0
0 8 4
0 4 2




The diagonal entries in this matrix are all ≥ 0, and the first diagonal
entry is 0. Correspondingly, row 1 and column 1 are both 0-vectors, so
we delete them, and apply the general step on the remaining matrix.

PC↓
PR 8 4

4 2
8 4
0 0

.

Eliminating row 1 and column 1 in the matrix resulting after this
G pivot step leads to the 1× 1 matrix (0). Since the entry in it is ≥ 0,
we terminate with the conclusion that the original matrix M is PSD
but not PD.

Example 5: Check whether the following matrix M is PSD.

M =




1 0 1 0
0 2 4 0
1 4 1 5
0 0 5 3




The matrix M is already symmetric, and its diagonal entries are all
> 0. So, we apply the general step on it.
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PC↓
PR 1 0 1 0

0 2 4 0
1 4 1 5
0 0 5 3
1 0 1 0
0 2 4 0
0 4 0 5
0 0 5 3

Eliminating row 1 and column 1 in the matrix resulting after the
first G step leads to the matrix




2 4 0
4 0 5
0 5 3




The 2nd diagonal entry in this matrix is 0, but its 2nd row and 2nd
column are not 0-vectors. So, we terminate with the conclusion that
the original matrix M is not PSD.

Exercises

5.3.1: Find all the conditions that p, q > 0 have to satisfy for the
following matrix to be PD.


 1−p2

2p
1−pq
p+q

1−pq
p+q

1−q2

2q


 .

5.3.2: Show that the following matrices are PD.




3 1 2 2
−1 2 0 2

0 4 4 5/3
0 −2 −13/3 6


 ,




2 −11 3 4
9 2 −39 10

−1 41 5 12
−2 −10 −12 2


 ,
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
 2 −1 1

−1 2 −1
1 −1 2


 ,


 2 0 0

0 3 0
0 0 6


 .

5.3.3: Show that the following matrices are not PD.




1 0 2 0
0 2 4 0
2 4 4 5
0 0 5 3


 ,




1 −1 −1 −1
−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1


 ,




10 −2 −1
−2 0 1
−1 1 5


 ,




2 0 3
0 2 1
3 1 −1


 ,




2 4 5
0 2 6
0 0 2


 .

5.3.4: Show that the following matrices are PSD.


0 −2 −3 −4 5
2 3 3 0 0
3 3 3 0 0
4 0 0 8 4

−5 0 0 4 2




,


 2 2 2

2 2 2
2 2 2


 ,


 2 −2 1

−2 4 2
1 2 6


 .

5.3.3: Show that the following matrices are not PSD.




1 0 2 0
0 2 4 0
2 4 4 5
0 0 5 3


 ,




0 1 1
1 2 1
1 1 4


 .

5.3.5: Let A be a square matrix of order n. Show that xT Ax is a
convex function in x iff its minimum value over Rn is 0.

5.3.6: Consider the square matrix of order n with all its diagonal
entries = p, and all its off-diagonal entries = q. Determine all the values
of p, q for which this matrix is PD.
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5.3.7: A square matrix A = (aij) of order n is said to be skew-
symmetric if A + AT = 0. Show that the quadratic form xT Ax is 0 for
all x ∈ Rn iff A is skew-symmetric.

Also, if A is a skew symmetric matrix of order n, and B is any
matrix of order n, show that xT (A + B)x = xT Bx for all x.

5.3.8: Let A be a square matrix of order n and f(x) = xT Ax. For
x, y ∈ Rn show that f(x+ y)− f(x)− f(y) is a bilinear function of x, y
as defined in Section 1.7.

5.3.9: Find the range of values of α for which the quadratic form
x2

1 + 4x1x2 + 6x1x3 + αx2
2 + αx2

3 is a strictly convex function.

5.3.10: Find the range of values of α for which the following matrix
is PD.




1 4 2
0 5 − α 8 − 4α
0 0 8 − α


 .

5.4 Diagonalization of Quadratic Forms

and Square Matrices

Optimization deals with problems of the form: find a y = (y1, . . . , yn)T ∈
Rn that minimizes a given real valued function g(y) of y. This problem
becomes easier to solve if g(y) is separable, i.e., if it is the sum of n
functions each involving one variable only, as in

g(y) = g1(y1) + . . . + gn(yn).

In this case, minimizing g(y) can be achieved by minimizing each
gj(yj) separately for j = 1 to n; and the problem of minimizing a
function is much easier if it involves only one variable.

Consider the problem of minimizing a quadratic function

f(x) = cx + (1/2)xT Mx
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where M = (mij) is an n × n symmetric PD matrix. If some mij �= 0
for i �= j, the function involves the product term xixj with a nonzero
coefficient, and it is not separable. To make this function separable,
we need to convert the matrix M into a diagonal matrix. For this we
can try to apply a linear transformation of the variables x with the aim
of achieving separability in the space of new variables. Consider the
transformation

x = Py

where P is an n × n nonsingular matrix, and the new variables are
y = (y1, . . . , yn)

T . Then, in terms of the new variables y, the function
is

F (y) = f(x = Py) = cPy + (1/2)yTP T MPy.

F (y) is separable if P TMP is a diagonal matrix. If P T MP =
diag(d11, . . . , dnn), then let cP = c̄ = (c̄1, . . . , c̄n). In this case F (y) =∑n

j=1(c̄jyj + djjy
2
j ). The point minimizing F (y) is ȳ = (ȳ1, . . . , ȳn)

T

where ȳj is the minimizer of c̄jyj+djjy
2
j . Once ȳ is found, the minimizer

of the original function f(x) is x̄ = P ȳ.
The condition

P TMP =




d11 0 . . . 0
0 d22 . . . 0
...

...
. . .

...
0 0 . . . dnn




requires

(P.i)
TMP.j = 0 for all i �= j.

WhenM is a PD symmetric matrix, the set of column vectors
{P.1, . . . , P.n} of a matrix P satisfying the above condition is said to be
a conjugate set of vectors WRT M . Optimization methods called
conjugate direction methods or conjugate gradient methods
are based on using this type of transformations of variables.

Given a symmetric matrix M , this problem of finding a nonsingular
matrix P satisfying P T MP is a diagonal matrix is called the problem
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of diagonalizing a quadratic form. Conjugate direction methods
in nonlinear optimization have very efficient special routines for finding
such a matrix P , but a discussion of these methods is outside the scope
of this book.

In mathematics they often discuss other matrix diagonalization
problems, which we now explain.

The orthogonal diagonalization problem is the same as the
above, with the additional requirement that the matrix P must be
an orthogonal matrix; i.e., it should also satisfy P T = P−1. Hence
the orthogonal diagonalization problem is: given a square symmetric
matrix M of order n, find an orthogonal matrix P of order n satisfying:

P−1MP is a diagonal matrix D (this is also written some-
times as MP = PD).

The general matrix diagonalization problem discussed in math-
ematics is: given a square matrix M of order n, find a nonsingular
square matrix P of order n such that P−1MP is a diagonal matrix.

Solving either the orthogonal diagonalization problem, or the ma-
trix diagonalization problem involves finding the eigenvalues and eigen-
vectors of a square matrix, which are discussed in the next chapter.
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