
Contents

7 Software Systems for Linear Algebra Problems 531
7.1 Difference Between Solving a Small Problem By Hand

and Scientific Computing Using a Computer 531
7.2 How to Enter Vectors and Matrices in MATLAB 533
7.3 Illustrative Numerical Examples 538
7.4 References . 552

i

ii

Chapter 7

Software Systems for Linear
Algebra Problems

This is Chapter 7 of “Sophomore Level Self-Teaching Web-
book for Computational and Algorithmic Linear Algebra and
n-Dimensional Geometry” by Katta G. Murty.

Nowadays there are several commercially available and highly pop-
ular software systems for solving the problems discussed in previous
chapters. Among them the best known are: MATLAB, EXCEL, MATH-
EMATICA, MAPLE, and MACAULAY. We will provide illustarative
numerical examples of how to solve these problems using MATLAB
(this name is derived from Matrix Laboratory) in this chapter. For
using the other software systems, see the references cited on them.

7.1 Difference Between Solving a Small

Problem By Hand and Scientific Com-

puting Using a Computer

When we solve small numerical problems by hand, we always use exact
arithmetic, so all the numbers in the various stages of the work are
exactly what they are supposed to be (for example, a fraction like “1/3”

531

532 Ch. 7. Software Systems

is maintained as it is). Hand computation is not feasible for large size
problems encountered in applications. Such large problems are usually
solved using a software package on a digital computer.

Digital computation uses finite precision arithmetic, not exact
arithmetic; for example a fraction like “1/3” is rounded to 0.3333 or
0.3 . . . 3 depending on the number of significant digits of precision
maintained, introducing a small rounding error. These rounding
errors abound in scientific computation, and they accumulate during
the course of computation. So results obtained in digital computation
usually contain some rounding errors, and may only be approximately
correct. These errors make it nontrivial to implement many of the
algorithms discussed in earlier chapters to get answers of reasonable
precision. That’s why detailed descriptions of numerical implementa-
tions of algorithms are very different and much more complicated than
their mathematical descriptions given in earlier chapters.

As an example consider the GJ pivotal method for solving a system
of linear equations discussed in Section 1.16. Under exact arithmetic,
we know that a redundant constraint in the system corresponds to a
“0 = 0” equation in the final tableau and vice versa. However, under
finite precision arithmetic some of the “0” entries in it may become
nonzero numbers of hopefully small absolute value. So, what is actu-
ally a “0 = 0” equation in the final tableau, may in reality become an
equation with nonzero entries of small absolute value, and it is very
difficult to decide whether it is a redundant equation or not. In com-
puter implementations, one difficult question faced at every stage is
whether a nonzero entry of small absolute value is actually a nonzero
entry, or a zero entry that has become nonzero due to rounding error
accumulation. A practical rule that is often used selects a small pos-
itive tolerance, and replaces any entry in the tableau whose absolute
value is less than this tolerance by zero. Under such a rule, we can only
conclude that a “0 = 0” equation in the final tableau is redundant to
working precision.

In the same way, when a square matrix has a determinant of very
small absolute value, using finite precision arithmetic it is very difficult
to decide whether it is actually nonsingular or singular, and software
systems will conclude that this matrix is singular to working precision.

7.2 Vectors and Matrices 533

Similarly while the definitions of linear independence or dependence
of a set of vectors and its rank defined in Chapter 4 are conceptually
precise and mathematically unambiguous under exact arithmetic, using
finite precision arithmetic they can only be determined correct to the
working precision.

Numerical analysts have developed a variety of techniques to reduce
the effects of rounding errors, some of these like partial pivoting or
complete pivoting for pivot element selection are discussed very briefly
in Chapter 1. As a detailed discussion of these techniques is beyond
the scope of this book, the interested reader should refer to books in
that area (for example, see Gill, Murray, Wright[4.1]).

We will see the effects of rounding errors in some of the illustrative
numerical examples given below.

7.2 How to Enter Vectors and Matrices

in MATLAB

First you need to begin a MATLAB session. It should be noted that
there are many versions of MATLAB in the market, and input prompts,
and error and warning messages may vary from version to version. Also,
different computer systems may have different commands for initiating
a MATLAB session on their system.

After getting the MATLAB prompt, if you want to enter a row
vector, a = (1, 6, 7,−9) say, type

a = [1 6 7 −9] or a = [1, 6, 7, −9]

with a blank space or a comma (,) between entries, and MATLAB
responds with

a = 1 6 7 −9.

To enter the same vector as a column vector, type

a = [1, 6, 7, −9]’ or a = [1 6 7 −9]’ or a = [1; 6; 7; −9]

and MATLAB responds with

534 Ch. 7. Software Systems

a = 1
6
7

−9

To supress the system’s response, a semicolon (;) is placed as the
last character of the expression. For example, after typing a = [1, 6,
7, −9]; MATLAB responds with a new line awaiting a new command.

MATLAB also lets one place several expressions on one line, a line
being terminated by pressing the Enter button on the computer. In this
case, each expression is separated by either a comma (,) or a semicolon
(;). The comma results in the system echoing the output; the semicolon
supresses it. For example, by typing

a = [1, 2, 6, 9], c = [2, −3, 1, −4]

the system responds with

a = 1 2 6 9
c = 2 −3 1 −4.

Matrices are entered into MATLAB row by row, with rows sepa-
rated by either semicolons, or by pressing Enter button on the com-
puter. For example, to enter the matrix

A =

(
10 −2 4
0 8 −7

)

type A = [10, −2, 4; 0, 8, −7]

or type
A = [10 −2 4

0 8 −7]
using Enter to indicate the
end of 1st row

or type
A = [10 −2 4; . . .

0 8 −7]
the . . . called ellipses is
a continuation of a MAT-
LAB expression to next line.
Used to create more read-
able code.

7.2 Vectors and Matrices 535

MATLAB has very convenient ways to address the entries of a ma-
trix. For example, to display the (2, 3) entry in the above matrix A
type A(2, 3), to display 2nd column of A type A(:, 2), and to
display 2nd row of A type A(2, :).

Some of the commands used for special matrices are:

eye(n) identity matrix of order n
diag([a1 a2 . . . an]) diagonal matrix with diagonal entries

a1, . . . , an

zeros(m, n) zero matrix of order m × n
zero(n) zero matrix of order n × n

A′ transpose of matrix A

If B is a square matrix defined in MATLAB, diag(B) returns the
diagonal elements of B. To see the contents of a vector or matrix A
defined earlier, just type A and MATLAB responds by displaying
it.

The arithmetic operators to perform addition, subtraction, multi-
plication, division, and exponentiation are: +, −, *, /, ˆ respec-
tively. As an example, suppose the vectors x = (1, 0, 0), y = (0, 1, 0),
z = (0, 0, 1) have been defined earlier. If you type 2 ∗x+3 ∗ y − 6 ∗ z
MATLAB responds with

ans = 2 3 −6.

If you type w = 2 ∗ x + 3 ∗ y − 6 ∗ z MATLAB responds with

w = 2 3 −6.

If you type an arithmetical expression that is not defined, for ex-
ample x+y′ with x, y as defined above (i.e., the sum of a row vector
and a column vector), MATLAB yields the warning

???Error using =⇒ +
Matrix dimensions must agree.

Other arithmetical operations on matrices and vectors can be de-
fined in MATLAB in the same way. Here are some MATLAB com-
mands that we will use, and the outputs they produce. For a more
complete list of MATLAB commands, see the MATLAB references

536 Ch. 7. Software Systems

given at the end of this chapter. Let A, B be two matrices, and x, y be
two vectors.

length(x) or size(x) the number of the elements in the vector x
size(A) m n where m × n is the order of A

dot(x, y) dot product of x and y (whether each is either
a row or a column) provided they have same no.
of elements. This can also be obtained by typing
x ∗ y provided x is a row vector & y is a col.
vector

norm(x) the Eucledean norm ||x|| of the vector x
det(A) determinant of A, if it is a square matrix
rank(A) rank of the matrix A
inv(A) inverse of matrix A, if A is an invertible square

matrix
A ∗ B matrix product AB if it is defined.
A\b solves the system of linear equations with A as

the coefficient matrix, and b as the RHS constants
vector

null(A) outputs 0-vector if system Ax = 0 has no
nonzero solution, or an orthonormal basis for the
subspace which is the set of all solutions of Ax =
0 obtained by a method called singular value
decomposition not discussed in the book if Ax =
0 has nonzero solutions.

rref(A) outputs the reduced row echelon form of matrix
A.

rrefmovie(A) shows all the operations that MATLAB performs
to obtain the RREF of the matrix A.

null(A,′ r′) same as null(A) except that in the 2nd case it
produces the basis for the set of solutions of Ax =
0 obtained by the GJ or the G elimination method
as discussed in Section 1.23.

eig(A) produces the eigen values of the square matrix A.

7.2 Vectors and Matrices 537

[V, D] = eig(A) produces D = diagonal matrix of eigen values of
A, and V = matrix whose column vectors are cor-
responding eigen vectors.

all(eig(A + A′) > 0) for a square matrix A, this checks whether all
eigenvalues of (A + A′) are strictly positive. The
output is 1 if the answer is yes, in this case A is a
positive definite matrix; or 0 if the answer is no.
In the latter case, using the command described
above, one can generate all the eigenvalues and
associated eigen vectors of (A + A′). The eigen
vector x associated with a nonpositive eigen value
of (A + A′) satisfies xT Ax ≤ 0.

all(eig(A + A′) >= 0) for a square matrix A, this checks whether all
eigenvalues of (A+A′) are nonnegative. The out-
put is 1 if the answer is yes, in this case A is a
positive semidefinite matrix; or 0 if the answer is
no and A is not PSD.

chol(A) for a symmetric square matrix A, this command
outputs the Cholesky factor of A (Cholesky fac-
torization is not discussed in this book) if A is PD.
If A is not PD, it outputs an error message that
Matrix must be positive definite to use chol. So,
this command can also be used to check if a given
square symmetric matrix is PD.

When a system of linear equations Ax = b has more than one
solution, there are two ways of obtaining an expression of the general
solution of the system using MATLAB. One is to get the RREF (a
canonical tableau WRT a basic vector) of the system using the rref-
movie command (see Examples 2, 3 given below), and then construct
an expression of the general solution of the system using it as explained
in Section 1.8. The other is to get one solution, x̄ say, using the A\b
command; and then a basis for the null space of the coefficient ma-
trix A using the null(A) command. If this basis is {x1, . . . , xs}, then
the general solution of the system is x̄ + α1x

1 + . . . + αsx
s where

α1, . . . , αs are parameters that take real values.

538 Ch. 7. Software Systems

7.3 Illustrative Numerical Examples

1. Solving a Square System of Linear Equations:
Suppose we want to find a solution for the following system and check
whether it is unique. We provide the MATLAB session for doing this.
The coefficient matrix is called A, and the RHS constants vector is
called b, and the solution vector is called x.

2x1 + x2 − 3x3 − x4 = 1

−x1 − 2x2 + 4x3 + 5x4 = 6

7x1 − 6x4 = 7

−3x1 − 8x2 − 9x3 + 3x4 = 9

Type A = [2, 1, −3, −1; −1, −2, 4, 5; 7, 0, 0, −6; −3, −8, −9,
3]

Response A =

2 1 −3 −1
−1 −2 4 5

7 0 0 −6
−3 −8 −9 3

Type b = [1, 6, 7, 9]’

Response b = 1
6
7
9

Type x = A\b
Response x = 1.7843

−1.5062
0.0491
0.9151

The solution vector x is provided by MATLAB, this indicates that
this is the unique solution, and that the coefficient matrix A is nonsin-
gular.

7.3 Examples 539

In MATLAB the final canonical tableau is called RREF (reduced
row echelon form). The command: rref(A, b), outputs the RREF for

the augmented matrix (A
...b) of the system. Here is the session to obtain

that for this example.

Type d =rref([Ab])

Response d =
1.0000 0 0 0 1.7843

0 1.0000 0 0 −1.5063
0 0 1.0000 0 0.0491
0 0 0 1.0000 0.9151

2. Another Square System of Linear Equations:
The ststem is given below. We call the coefficient matrix A, the RHS
constants vector b, and the solution vector x.

2x1 + x2 − 3x3 + x4 = 4

−x1 − 2x2 + 4x3 + 5x4 = −3

2x1 − 2x2 + 2x3 + 12x4 = 6

x1 − x2 + x3 + 6x4 = 3

The MATLAB session is carried out exactly as above, but this time
MATLAB gives the following final response.

Warning: Matrix is singular to working precision

x = Inf
Inf
Inf
Inf

This indicates that the coefficient matrix A is singular, and that
the syatem has no solution.

In MATLAB the final canonical tableau is called RREF (reduced
row echelon form). The command: rref(A, b), outputs the RREF for

the augmented matrix (A
...b) of the system. When rank(A

...b) = 1 +

540 Ch. 7. Software Systems

rank(A), as in this case, MATLAB performs also a final pivot step in
the column vector B, which we do not want. In this case the command:

rrefmovie(A
...b)

helps you to observe all the operations that MATLAB performs to

obtain the RREF of the augmented matrix (A
...b). The matrix before

the final pivot step in the column of b is the RREF to our system. For
this example, here is that output (here we did all the computations in
fractional form).

1 0 −2/3 7/3 7/3
0 1 −5/3 −11/3 −2/3
0 0 0 0 −2
0 0 0 0 0

The rows in this final tableau do not directly correspond to rows
(constraints) in the original problem, because of row interchanges per-
formed during the algorithm. To find out which original constraint each
row in the final tableau corresponds to, you can use the row interchange
information that is displayed in the rrefmovie output.

3. A Rectangular System of Linear Equations:
The system is given below. The symbols A, b, x refer to the coefficient
matrix, RHS constants vector, solution vector respectively.

x1 x2 x3 x4 x5 x6 x7 b
2 1 0 0 −1 −3 4 3
0 −2 1 2 0 4 3 −2
4 0 1 2 −2 −2 11 4

−1 2 3 1 −2 0 0 5
5 1 5 5 −5 −1 18 10

The session is carried out exactly as above, and MATLAB produced
the following final response.

Warning: Rank deficient, rank = 3 tol = 3.3697e-014.

7.3 Examples 541

x = 0.7647
1.4706
0.9412

0
0
0
0

Here since the system has a solution, the final canonical tableau,
RREF can be produced with the command: rref(A, b). Here it is:

1 0 0 0.2941 −0.3529 −0.7059 2.4118 0.7647
0 1 0 −0.5882 0.2941 −1.5882 −0.8235 1.4706
0 0 1 0.8235 −0.5882 0.8235 1.3529 0.9412
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

As in the above example, to trace the correspondence of rows in
the RREF to the constraints in the original statement of the prob-
lem, one has to take into account the row interchanges performed by
MATLAB in the process of getting this RREF by using the command:
rrefmovie(A, b).

4. Another Rectangular System of Linear Equa-
tions: The system is given below. The symbols A, b, x refer to the
coefficient matrix, RHS constants vector, solution vector respectively.

x1 x2 x3 x4 x5 x6 x7 b
1 0 −1 1 −2 1 −3 −4
0 −1 2 3 1 −1 2 2
1 −2 3 7 0 −1 1 −2

−3 1 2 −1 0 0 2 3
−2 0 3 3 −1 0 1 3

The canonical tableau for this system, RREF, produced using the
command: rrefmovie(A, b) is given below.

542 Ch. 7. Software Systems

x1 x2 x3 x4 x5 x6 x7 b
1 0 0 6 −7 3 −8 −12
0 1 0 7 −11 5 −12 −17
0 0 1 5 −5 2 −5 −8
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 3

The last two rows in the canonical tableau represent inconsistent
equations, “0 = α” for some α �= 0; so this system has no solution.
To trace the correspondence of rows in the RREF to the constraints
in the original statement of the problem, one has to take into account
the row interchanges performed by MATLAB in the process of getting
this RREF.

5. A Homogeneous System of Linear Equations:
Calling the coefficient matrix, RHS constants vector, solution vector as
A, b, x respectively, here is the session.

Type A = [1,1,0; 0,1,1; 1, 0, 1; 2, 2, 2]

Response A =

1 1 0
0 1 1
1 0 1
2 2 2

Type b = zeros(4, 1) (Note: this command generates a 0-matrix
of order 4 × 1)

Response b = 0
0
0
0

Type x = A\b
Response x = 0

0
0

7.3 Examples 543

Type rank(A)

Response 3

Since rank of the coefficient mstrix is 3, from the results in Sections
4.5 and 1.22, we conclude that this system has no nonzero solution.

6. Another Homogeneous System of Linear Equa-
tions: Calling the coefficient matrix, RHS constants vector, solution
vector as A, b, x respectively, here is the session.

Type A = [1,−1,0, 2, 3, −2, 1; 0,1, −2, 1, −1, 3, −2; 1, 0, −2, 3,
2, 1, −1; −1, 2, 1, −2, 1, 3, 2]

Response A =

1 −1 0 2 3 −2 1
0 1 −2 1 -1 3 −2
1 0 −2 3 2 1 −1

−1 2 1 −2 1 3 2

Type b = zeros(4, 1) (Note: this command generates a 0-matrix
of order 4 × 1)

Response b = 0
0
0
0

Type d =rref([Ab])

Response d =

1 0 0 7/3 16/3 −1/3 7/3 0
0 1 0 1/3 7/3 5/3 4/3 0
0 0 1 −1/3 5/3 −2/3 5/3 0
0 0 0 0 0 0 0 0

From the RREF we can see that this homogeneous system has
nonzero solutions. From the RREF a basic set of nonzero solutions
for the system can be constructed as discussed in Section 1.23.

7. Checking Linear Independence: The most convenient

544 Ch. 7. Software Systems

way to check linear independence of a given set of vectors (either all row
vectors or all column vectors) using MATLAB is to write each of these
vectors as a column vector of a matrix, A say. Then check whether the
homogeneous system of equations Ax = 0 has a nonzero solution.
If this system has no nonzero solution, the set is linearly independent.
If x̄ is a nonzero solution of the system, the set is linearly dependent;
and x̄ is the vector of coefficients in a linear dependence relation for it
in the order in which the vectors are entered as column vectors in the
matrix A.

As an example, consider the set of 4 column vectors, {A.1.A.2, A.3, A.4}
of the matrix A in Example 1. Here is the session for checking its linear
independence; we suppress the display of the matrix in this session.

Type A = [2, 1, −3, −1; −1, −2, 4, 5; 7, 0,0, −6; −3, −8, −9, 3];

null(A)

Response ans = Empty matrix: 4-by-0.

This indicates that the system Ax = 0 has no nonzero solution,
i.e., the set of column vectors of A is linearly independent.

8. Checking Linear Independence, Another Ex-
ample: Consider the set of 4 column vectors, {A. 1.A. 2, A. 3, A. 4 } of
the matrix A in Example 2. Here is the session for checking its linear
independence; we suppress the display of the matrix in this session.

Type A = [2, 1, −3, 1; −1, −2, 4, 5; 2, −2, 2, 12; 1, −1, 1, 6];

null(A)

Response ans =

−0.7818 −0.3411
−0.2469 0.9111
−0.5436 0.1382

0.1797 0.1857

Each of the column vectors in the output above is a nonzero solution
of Ax = 0 and these two vectors together form an orthonormal basis
for the subspace which is the set of all solutions of this homogeneous
system, obtained by using a method called singular value decompo-
sition, which is not discussed in the book. If you do not require an

7.3 Examples 545

orthonormal basis, but want the basis obtained by the GJ or G elim-
ination methods as discussed in Section 1.22, change the command
null(A) to null(A,′ r′), then the output is (each column vector is a
nonzero solution, together they form a basis for the subspace which is
the set of all solutions of Ax = 0):

Response ans =

0.6667 −2.3333
1.6667 3.6667
1.0000 0

0 1.0000.

Each of the column vectors in these outputs is the vector of coeffi-
cients in a linear dependence relation for the set of column vectors of
the matrix A in this example. For instance the first column vector in
the output under the command null(A) yields the linear dependence
relation

−0.7818A. 1 − 0.2469A. 2 − 0.5436A. 3 + 0.1797A. 4 = 0.

9. Matrix Inversion: Calling the matrix A, here is the ses-
sion.

Type A = [1,2,1, −1; −1, 1, 1, 2; 0, −1, 2, 1; 2, 2, −1, 0]

Response A =

1 2 1 −1
−1 1 1 2

0 −1 2 1
2 2 −1 0

Type inv(A)

Response ans = −0.1071 −0.2500 0.3929 0.4286
0.2500 0.2500 −0.2500 0.0000
0.2857 0.0000 0.2857 −0.1429

−0.3214 0.2500 0.1786 0.2857

10. Another Matrix Inversion: Calling the matrix A,
here is the session.

Type A = [0, 1, 1, 2; 1, 0, 2, 1; 2, 1, 0, 1; 3, 2, 3, 4]

546 Ch. 7. Software Systems

Response A =

0 1 1 2
1 0 2 1
2 1 0 1
3 2 3 4

Type inv(A)

Response Warning: Matrix is close to singular or badly scaled.
Results may be inaccurate. RCOND = 4.336809e − 018.

ans = 1.0e + 016∗
0.1801 0.1801 0.1801 −0.1801

−1.2610 −1.2610 −1.2610 1.2610
−0.5404 −0.5404 −0.5404 0.5404

0.9007 0.9007 0.9007 -0.9007

According to the warning the input matrix A in this example ap-
pears to be singular, but reaching this exact conclusion is made difficult
due to rounding errors. Of course a singular matrix does not have an
inverse, but an inverse is obtained because rounding errors have al-
tered the outcome of singularity. The warning message indicates that
the outputted inverse is probably not accurate due to the singularity
of the original matrix. Most likely, an inverse is still computed due
to roundoff error introduced into the computation by computer arith-
metic.

11. Nearest Point to x̄ On a Given Straight Line:
Find the nearest point, x∗, (in terms of the Euclidean distance), to the
given point x̄, on the straight line L given in parametric form: L =
{x : x = a + λc, where a = (2, 1, 3, 3)T , c = (0, 1,−1, 2)T , and λ is the
real valued parameter}.

We denote the point x̄ by x1 to avoid confusion, and we call the
nearest point xn. Here is the session.

Type a = [2, 1, 3, 3];

c = [0, 1,−1, 2]′;
x1 = [1,−1, 2, 0]′;
lambda = c′ ∗ (x1 − a)/[c(1, 1)2 + c(2, 1)2 + c(3, 1)2 + c(4, 1)2]

Response lambda = −1.1667

7.3 Examples 547

Type xn = 1 + lambda ∗ c

Response xn =

2.0000
−0.1667

4.1667
0.6667

Type dist = [[(x1(1, 1) − xn(1, 1)]2 + [(x1(2, 1) − xn(2, 1)]2+
[(x1(3, 1) − xn(3, 1)]2 + [(x1(4, 1) − xn(4, 1)]2](1/2)

Response dist = 2.6141
“dist” is the Euclidean distance between x1 and the nearest point

to x1 on the given straight line. All these formulae are from Section
3.16.

12. Nearest Point to x̄ On a Given Hyperplane:
Find the nearest point, x∗, (in terms of the Euclidean distance), to
the given point x̄, on the hyperplane H = {x : ax = a0 where a =
(1,−2, 3,−4), a0 = −13}.

Again we denote x̄ by x1, and the nearest point x∗ by xn to avoid
confusion. Here is the session.

Type a = [1,−2, 3,−4]; a0 = −13; x1 = [1,−1, 2, 0]′;
xn = x1+a′∗ [−(a∗x1−a0)/(a(1, 1)2+a(1, 2)2+a(1, 3)2+a(1, 4)2)]

Response xn =

0.2667
0.4667

−0.2000
2.9333

Type dist = [[(x1(1, 1) − xn(1, 1)]2 + [(x1(2, 1) − xn(2, 1)]2+
[(x1(3, 1) − xn(3, 1)]2 + [(x1(4, 1) − xn(4, 1)]2](1/2)

Response dist = 4.0166
“dist” is the Euclidean distance between x1 and the nearest point

to x1 on the given hyperplane. All these formulae are from Section
3.16.

548 Ch. 7. Software Systems

13. Nearest Point to x̄ In a Given Affine Space:
Find the nearest point, x∗, (in terms of the Euclidean distance), to the
given point x̄ = (1, 1, 0)T , in the affine space F = {x : Ax = b where
A, b are given below}.

A =

(
1 1 −1
2 1 1

)
, b =

(
2
9

)
.

Here is the portion of the session after reading in A, b, x1 where we
are calling the given point x̄ as x1. The nearest point to x1 in the given
affine space will be denoted by xn.

Type xn = x1 − A′ ∗ inv(A ∗ A′) ∗ (A ∗ x1 − b)

Response xn =

2.7143
1.4286
2.1429

The Euclidean distance between x1 and xn using the same com-
mand as in the above examples is 2.7775.

14. Checking PD, PSD: Check whether the following ma-
trices A, B, C are PD, PSD, or neither.

A =




3 1 2 2
−1 2 0 2

0 4 4 5/3
0 2 −13/3 6


 , B =




8 2 1 0
4 7 −1 1
2 1 1 2
2 −2 1 1




C =




0 −2 −3 −4 5
2 3 3 0 0
3 3 3 0 0
4 0 0 8 4

−5 0 0 4 2




Here are the sessions after reading in the matrices.

7.3 Examples 549

Type all(eig(A + A′) > 0

Response ans = 0. This means that A is not PD.

We show how the same thing is done using the chol cammand.

Type chol(A + A’)

Response ??? Error using =⇒ chol. Matrix must be positive
definite.

We check that B is not PD using same procedures. Now to check
whether B is PSD, we do the following.

Type all(eig(B + B′) >= 0)

Response 1. This means that B is PSD.

Since C has a 0 diagonal element, it is clearly not PD. To check
whether it is PSD, we use the command [V, D] = eig(Cs) command
where Cs = C + C ′. We get

D =

0 0 0 0 0
0 12 0 0 0
0 0 0 0 0
0 0 0 20 0
0 0 0 0 0

Since all the eigenvalues are nonnegative C is PSD.

15. Eigen Values and Eigen Vectors: Calling the matrix
A, here is the session.

Type A = [−3, 1, −3; 20, 3, 10; 2, −2, 4]

Response A =
−3 1 −3
20 3 10
2 −2 4

Type eig(A)

550 Ch. 7. Software Systems

Response ans =
−2.0000

3.0000
3.0000

[V, D] = eig(A)

Response V =
0.4082 −0.4472 0.4472

−0.8165 0.0000 0.0000
−0.4082 0.8944 −0.8944

Response D =
−2.0000 0 0

0 3.0000 0
0 0 3.0000

16. Matrix Diagonalization: Diagonalize the following
matrices A, B.

A =


 1 3 3

−3 −5 −3
3 3 1


 , B =


 2 4 3

−4 −6 −3
3 3 1


 .

The command [V, D] = eig(A) gives the following output.

V =
0.5774 0 −0.7459

−0.5774 −0.7071 0.0853
0.5774 0.7071 0.6606

D =
1 0 0
0 −2 0
0 0 −2

−2 is an eigenvalue of A with algebraic multiplicity 2. Also, since
two eigenvectors (which are not scalar multiples of each other) are
associated with this eigenvalue, its geometric multiplicity is also 2. So,
A has a complete set of eigenvectors which is linearly independent. So,
A can be diagonalized. In fact by the results discussed in Chapter 6,
the matrix V whose column vectors are the distinct eigenvectors of A
diagonalizes A, i.e., V −1AV = D.

7.3 Examples 551

The command [V, D] = eig(B) gives the following output.

V =
−0.5774 0.7071 0.7071

0.5774 −0.7071 −0.7071
−0.5774 0.0000 0.0000

D =
1 0 0
0 −2 0
0 0 −2

Since the two eigenvectors associated with the eigenvalue −2 are
the same, it indicates that the geometric multiplicity of the eigenvalue
−2 is 1, while its algebraic multiplicity is 2. So, B does not have a
complete set of eigenvectors, and hence it is not diagonalizable.

17. Orthogonal Diagonalization: Orthogonally diago-
nalize the following matrix A.

A =




5 2 9 −6
2 5 −6 9
9 −6 5 2

−6 9 2 5


 .

Since A is symmetric, it is possible to orthogonally diagonalize A
by the results in Chapter 6. The command [V, D] = eig(A) produced
the following output:

V =

0.5 0.5 −0.5 0.5
0.5 0.5 0.5 −0.5
0.5 −0.5 −0.5 −0.5
0.5 −0.5 0.5 0.5

D =

10 0 0 0
0 4 0 0
0 0 18 0
0 0 0 −12

552 Ch. 7. Software Systems

By the results in Chapter 6, the matrix V whose column vectors
form a complete set of eigenvectors for A orthogonally diagonalize A,
i.e., V T AV = D.

7.4 References

References on MATLAB

[7.1] M. Golubitsky and M. Dellnitz, Linear Algebra and Differential
Equations Using MATLAB, Brooks/Cole Publishing Co., NY, 1999.
[7.2] E. B. Magrab and others, An Engineer’s Guide to MATLAB,
Prentice Hall, Upper Saddle River, NJ, 2000.
7.3] C. F. Van Loan, Introduction to Scientific Computing, MATLAB
Curriculum Series, Prentice Hall, Upper Saddle River, NJ, 1997.
[7.4] The Student Edition of MATLAB, Users Guide, The MathWorks
Inc., Natick, MA.

References on Other Software Systems

[7.5] B. W. Char, et. al. First Leaves: A Tutorial Introduction to
Maple V, Springer Verlag, NY, 1992.
[7.6] J. H. Davenport, Computer Algebra: Systems and Algorithms for
Algebraic Computation, Academic Press, San diago, 1993.
[7.7] D. Eugene, Schaum’s Outline of Theory and Problems of Mathe-
matica, McGraw-Hill, NY, 2001.
[7.8] M. B. Monagan, et. al., Maple V Programming Guide, Springer,
NY, 1998.
[7.9] Microsoft Corp., Microsoft Excel User’s Guide, Version 5.0, Red-
mond, WA, 1993.
[7.10] S. Wolfram, The Mathematica Book, 3rd ed., Wolfram Media,
Cambridge University Press, 1996.

