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LINEAR COMPLEMENTARITY
PROBLEM� ITS GEOMETRY�

AND APPLICATIONS

��� THE LINEAR COMPLEMENTARITY

PROBLEM AND ITS GEOMETRY

The Linear Complementarity Problem �abbreviated as LCP� is a general problem

which uni�es linear and quadratic programs and bimatrix games� The study of LCP

has led to many far reaching bene�ts� For example� an algorithm known as the com�

plementary pivot algorithm �rst developed for solving LCPs� has been generalized

in a direct manner to yield e�cient algorithms for computing Brouwer and Kakutani

�xed points� for computing economic equilibria� and for solving systems of nonlinear

equations and nonlinear programming problems� Also� iterative methods developed for

solving LCPs hold great promise for handling very large scale linear programs which

cannot be tackled with the well known simplex method because of their large size and

the consequent numerical di�culties� For these reasons the study of LCP o�ers rich

rewards for people learning or doing research in optimization or engaged in practical

applications of optimization� In this book we discuss the LCP in all its depth�

Let M be a given square matrix of order n and q a column vector in Rn� Through	

out this book we will use the symbols w�� � � � � wn
 z�� � � � � zn to denote the variables in

the problem� In an LCP there is no objective function to be optimized� The

problem is� �nd w � �w�� � � � � wn�
T � z � �z�� � � � � zn�

T satisfying

w �Mz � q

w �
� 
� z �� 
 and wizi � 
 for all i

�����
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The only data in the problem is the column vector q and the square matrix M � So we

will denote the LCP of �nding w � Rn� z � Rn satisfying ����� by the symbol �q�M��

It is said to be an LCP of order n� In an LCP of order n there are �n variables� As

a speci�c example� let n � �� M �

��� � �
� �

���� q �

�����
��
���� This leads to the LCP

w� � �z�� z� � ��
w� � z���z� � ���

w�� w�� z�� z� �� 
 and w�z� � w�z� � 
�
�����

The problem ����� can be expressed in the form of a vector equation as

w�

��� �



���� w�

��� 

�

���� z�

�����
��
���� z�

�����
��
��� �

�����
��
��� �����

w�� w�� z�� z� �� 
 and w�z� � w�z� � 
 �����

In any solution satisfying ������ at least one of the variables in each pair �wj � zj��

has to equal zero� One approach for solving this problem is to pick one variable from

each of the pairs �w�� z��� �w�� z�� and to �x them at zero value in ������ The remaining

variables in the system may be called usable variables� After eliminating the zero

variables from ������ if the remaining system has a solution in which the usable variables

are nonnegative� that would provide a solution to ����� and ������

Pick w�� w� as the zero	valued variables� After setting w�� w� equal to 
 in ������

the remaining system is

z�

�����
��
���� z�

�����
��
��� �

�����
��
��� �

��� q�
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��� � q

z� �� 
� z� �� 
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Figure ��� A Complementary Cone

Equation ����� has a solution i� the vector q can be expressed as a nonnegative

linear combination of the vectors �������T and �������T � The set of all nonnegative
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linear combinations of �������T and �������T is a cone in the q�� q�	space as in

Figure ���� Only if the given vector q � �������T lies in this cone� does the LCP

����� have a solution in which the usable variables are z�� z�� We verify that the point

�������T does lie in the cone� that the solution of ����� is �z�� z�� � ����� ���� and�

hence� a solution for ����� is �w�� w�
 z�� z�� � �
� 

 ���� ����� The cone in Figure ���

is known as a complementary cone associated with the LCP ������ Complementary

cones are generalizations of the well	known class of quadrants or orthants�

����� Notation

The symbol I usually denotes the unit matrix� If we want to emphasize its order� we

denote the unit matrix of order n by the symbol In�

We will use the abbreviation LP for �Linear Program� and BFS for �Basic Feasible

Solution�� See ������ ������ LCP is the abbreviation for �Linear Complementarity

Problem� and NLP is the abbreviation for �Nonlinear Program��

Column and Row Vectors of a Matrix

If A � �aij� is a matrix of order m � n say� we will denote its jth column vector

�a�j� � � � � amj�
T by the symbol A�j � and its ith row vector �ai�� � � � � ain� by Ai��

Nonnegative� Semipositive� Positive Vectors

Let x � �x�� � � � � xn�
T � Rn� x �

� 
� that is nonnegative� if xj �� 
 for all j� Clearly�


 �� 
� x is said to be semipositive� denoted by x � 
� if xj �� 
 for all j and at least

one xj � 
� Notice the distinction in the symbols for denoting nonnegative ��� with

two lines under the �� and semipositive �� with only a single line under the ��� 
 �� 
�

the zero vector is the only nonnegative vector which is not semipositive� Also� if x � 
�Pn
j�� xj � 
� The vector x � 
� strictly positive� if xj � 
 for all j� Given two vectors

x� y � Rn
 we write x �� y� if x� y �� 
� x � y if x� y � 
� and x � y if x� y � 
�

Pos Cones

If fx�� � � � � xrg � Rn� the cone fx � x � ��x
� � � � �� �rx

r� ��� � � � � �r �� 
g is denoted

by Posfx�� � � � � xrg� Given the matrix A of order m � n� Pos�A� denotes the cone

PosfA��� � � � � A�ng � fx � x � A� for � � ���� � � � � �n�
T �
� 
g�

Directions� Rays� Half�Lines� and Step Length

Any point y � Rn� y �� 
� de�nes a direction in Rn� Given the direction y� it�s ray

is the half	line obtained by joining the origin 
 to y and continuing inde�nitely in the
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same direction� it is the set of points f�y � � �
� 
g� Given x � Rn� by moving from

x in the direction y we get points of the form x � �y where � �
� 
� and the set of all

such points fx� �y � � �
� 
g is the hal�ine or ray through x in the direction y� The

point x��y for � � 
 is said to have been obtained by moving from x in the direction

y a step length of �� As an example� if y � ��� ��T � Rn� the ray of y is the set of all

points of the form f��� ��T � � �
� 
g� In addition� if� x � ������T � the hal�ine through

x in the direction y is the set of all points of the form f�� � ����� ��T � � �
� 
g� See

Figure ���� In this half	line� letting � � �� we get the point ��
� ��T � and this point is

obtained by taking a step of length � from x � ������T in the direction y � ��� ��T �
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Figure ��� Rays and Half	Lines

����� Complementary Cones

In the LCP �q�M�� the complementary cones are de�ned by the matrix M � The point

q does not play any role in the de�nition of complementary cones�

Let M be a given square matrix of order n� For obtaining C�M�� the class of

complementary cones corresponding to M � the pair of column vectors �I�j ��M�j� is



���� The Linear Complementarity Problem and its Geometry 	

known as the jth complementary pair of vectors� � �� j �� n� Pick a vector from

the pair �I�j ��M�j� and denote it by A�j � The ordered set of vectors �A��� � � � � A�n� is

known as a complementary set of vectors� The cone Pos�A��� � � � � A�n� � fy � y �

��A��� � � ���nA�n
�� �� 
� � � � � �n �� 
g is known as a complementary cone in the

class C�M�� Clearly there are �n complementary cones�

Example ���

Let n � � and M � I� In this case� the class C�I� is just the class of orthants in R�� In

general for any n� C�I� is the class of orthants in Rn� Thus the class of complementary

cones is a generalization of the class of orthants� See Figure ���� Figures ��� and ���

provide some more examples of complementary cones� In the example in Figure ���

since fI����M��g is a linearly dependent set� the cone Pos�I����M��� has an empty

interior� It consists of all the points on the horizontal axis in Figure ��� �the thick

axis�� The remaining three complementary cones have nonempty interiors�

1I 2IPos( ),M 1

2I

1I M 2Pos( , )

1I 1I

2I

2I

2II 1 , )Pos( 1I 2IPos( ),

1I2I 2I M 2

M 1 M 2, )Pos(

M 1

)Pos( 2, I

1I

Pos( ,)1IPos( , )

Figure ��� When M � I� the Complementarity Cones are the Orthants�

Figure ��� Complementary Cones when M �

��� � ��
� �

����
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Degenerate� Nondegenerate Complementary Cones

Let Pos�A��� � � � � A�n� be a complementary cone in C�M�� This cone is said to be a non	

degenerate complementary cone if it has a nonempty interior� that is if fA��� � � � � A�ng
is a linearly independent set
 degenerate complementary cone if its interior is empty�

which happens when fA��� � � � � A�ng is a linearly dependent set� As examples� all the

complementary cones in Figures ���� ���� ���� are nondegenerate� In Figure ��� the

complementary cone Pos�I����M��� is degenerate� the remaining three complemen	

tary cones are nondegenerate�

M 2
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1I

M 1

2I

1I

M 2

M 1

Figure ��	 Complementary Cones when M �

����� �
� ��

����

Figure ��
 Complementary Cones when M �

��� � �
� 


����

����� The Linear Complementary Problem

Given the square matrixM of order n and the column vector q � Rn� the LCP �q�M��

is equivalent to the problem of �nding a complementary cone in C�M� that contains

the point q� that is� to �nd a complementary set of column vectors �A��� � � � � A�n� such

that

�i� A�j � fI�j ��M�jg for � �� j �� n

�ii� q can be expressed as a nonnegative linear combination of �A��� � � � � A�n�
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where I is the identity matrix of order n and I�j is its jth column vector� This is

equivalent to �nding w � Rn� z � Rn satisfying
Pn

j�� I�jwj�
Pn

j��M�jzj � q� wj �� 
�

zj �� 
 for all j� and either wj � 
 or zj � 
 for all j� In matrix notation this is

w �Mz � q �����

w �
� 
 z �� 
 �����

wjzj � 
 for all j� �����

Because of ������ the condition ����� is equivalent to
Pn

j��wjzj � wT z � 

 this con	

dition is known as the complementarity constraint� In any solution of the LCP

�q�M�� if one of the variables in the pair �wj � zj� is positive� the other should be zero�

Hence� the pair �wj � zj� is known as the jth complementary pair of variables and

each variable in this pair is the complement of the other� In ����� the column vector

corresponding to wj is I�j � and the column vector corresponding to zj is �M�j � For

j � � to n� the pair �I�j ��M�j� is the jth complementary pair of column vectors in

the LCP �q�M�� For j � � to n� let yj � fwj � zjg and let A�j be the column vector

corresponding to yj in ������ So A�j � fI�j �M�jg� Then y � �y�� � � � � yn� is a com�

plementary vector of variables in this LCP� the ordered set �A��� � � � � A�n� is the

complementary set of column vectors corresponding to it and the matrix A

with its column vectors as A��� � � � � A�n in that order is known as the complemen�

tary matrix corresponding to it� If fA��� � � � � A�ng is linearly independent� y is a

complementary basic vector of variables in this LCP� and the complementary

matrix A whose column vectors are A��� � � � � A�n in that order� is known as the com�

plementary basis for ����� corresponding to the complementary basic vector y� The

cone Pos�A��� � � � � A�n� � fx � x � ��A�� � � � � � �nA�n� �� �� 
� � � � � �n �
� 
g is the

complementary cone in the class C�M� corresponding to the complementary set of

column vectors �A��� � � � � A�n�� or the associated complementary vector of variables y�

A solution of the LCP �q�M�� always means a �w
 z� satisfying all the constraints

������ ������ ������

A complementary feasible basic vector for this LCP is a complementary basic

vector satisfying the property that q can be expressed as a nonnegative combination of

column vectors in the corresponding complementary basis� Thus each complementary

feasible basic vector leads to a solution of the LCP�

The union of all the complementary cones associated with the square matrix M

is denoted by the symbol K�M�� K�M� is clearly the set of all vectors q for which the

LCP �q�M� has at least one solution�

We will say that the vector z leads to a solution of the LCP �q�M� i� �w �

Mz � q� z� is a solution of this LCP�

As an illustration� here are all the complementary vectors of variables and the

corresponding complementary matrices for ������ an LCP of order ��
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Complementary The corresponding

vector of variables complementary matrix

�w�� w��

��� � 


 �

���
�w�� z��

��� � ��

 ��

���
�z�� w��

����� 

�� �

���
�z�� z��

����� ��
�� ��

���
Since each of these complementary matrices is nonsingular� all the complemen	

tary vectors are complementary basic vectors� and all the complementary matrices are

complementary bases� in this LCP� Since q � �������T in ����� can be expressed

as a nonnegative combination of the complementary matrix corresponding to �z�� z��


�z�� z�� is a complementary feasible basic vector for this LCP� The reader should draw

all the complementary cones corresponding to this LCP on the two dimensional Carte	

sian plane� and verify that for this LCP� their union� the set K�M� � R��

The Total Enumeration Method for the LCP

Consider the LCP �q�M� of order n� The complementarity constraint ����� implies

that in any solution �w� z� of this LCP� for each j � � to n� we must have

either wj � 


or zj � 
�

This gives the LCP a combinatorial� rather than nonlinear �avour� It automatically

leads to an enumeration method for the LCP�

There are exactly �n complementary vectors of variables� Let

yr � �yr�� � � � � y
r
n�� r � � to �n

where yrj � fwj � zjg for each j � � to n� be all the complementary vectors of variables�

Let Ar be the complementary matrix corresponding to yr� r � � to �n� Solve the

following system �Pr��
Ary

r � q

yr �� 
 �
�Pr�

This system can be solved by Phase I of the simplex method for LP� or by other methods

for solving linear equality and inequality systems� If this system has a feasible solution�

yr� say� then

yr � yr

all variables not in yr� equal to zero
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is a solution of LCP �q�M�� If the complementary matrix Ar is singular� the system

�Pr� may have no feasible solution� or have one or an in�nite number of feasible solu	

tions� Each feasible solution of �Pr� leads to a solution of the LCP �q�M� as discussed

above� When this is repeated for r � � to �n� all solutions of the LCP �q�M� can be

obtained� The method discussed at the beginning of Section ��� to solve an LCP of

order � is exactly this enumeration method�

This enumeration method is convenient to use only when n � �� since �� � � is

small
 and to check whether the system �Pr� has a solution for any r� we can draw the

corresponding complementary cone in the two dimensional Cartesian plane and check

whether it contains q� When n � �� particularly for large n� this enumeration method

becomes impractical since �n grows very rapidly� In Chapter � and later chapters we

discuss e�cient pivotal and other methods for solving special classes of LCPs that arise

in several practical applications� In Section ��� we show that the general LCP is a hard

problem� At the moment� the only known algorithms which are guaranteed to solve

the general LCP are enumerative methods� see Section �����

��� APPLICATION TO

LINEAR PROGRAMMING

In a general LP there may be some inequality constraints� equality constraints� sign

restricted variables and unrestricted variables� Transform each lower bounded variable�

say xj �� lj � into a nonnegative variable by substituting xj � lj � yj where yj �� 
�

Transform each sign restricted variable of the form xj �� 
 into a nonnegative variable

by substituting xj � �yj where yj �
� 
� Eliminate the unrestricted variables one

after the other� using the equality constraints �see Chapter � of ����� or ������� In the

resulting system� if there is still an equality constraint left� eliminate a nonnegative

variable from the system using it� thereby transforming the constraint into an inequality

constraint in the remaining variables� Repeat this process until there are no more

equality constraints� In the resulting system� transform any inequality constraint of

the ���� form into one of ���� form� by multiplying both sides of it by �	��� If the objetive

function is to be maximized� replace it by its negative which should be minimized� and

eliminate any constant terms in it� When all this work is completed� the original LP

is transformed into�
Minimize cx

Subject to Ax �� b

x �� 

�����

which is in symmetric form� Here� suppose A is of order m�N � If x is an optimum

feasible solution of ������ by the results of the duality theory of linear programming

�see ������ ������ there exists a dual vector y � Rm� primal slack vector v � Rm� and

dual slack vector u � RN which together satisfy
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���u
v

����
��� 
 �AT

A 


������x
y

��� �

��� cT

�b
������u

v

��� �
� 


���x
y

��� �
� 
 and

���u
v

���T ���x
y

��� � 
 �

����
�

Conversely� if u� v� x� y together satisfy all the conditions in ����
�� x is an optimum

solution of ������ In ����
� all the vectors and matrices are written in partitioned

form� For example�
�
u
v

�
is the vector �u�� � � � � uN � v�� � � � � vm�T � If n � m�N �

w �

���u
v

��� � z �

���x
y

��� � M �

��� 
 �AT

A 


��� � q �

��� cT

�b
��� �

����
� is seen to be an LCP of order n of the type ����� to ������ Solving the LP �����

can be achieved by solving the LCP ����
��

Also� the various complementary pairs of variables in the LCP ����
� are exactly

those in the pair of primal� dual LPs ����� and its dual� As an example consider the

following LP�
Minimize ���x����x�
Subject to �x�� x�� �x� �� ���

� �x�� �x�� ��x� �� ��

xj �� 
� j � �� �� ��

Let �v�� y��� �v�� y�� denote the nonnegative slack variable� dual variable respectively�

associated with the two primal constraints in that order� Let u�� u�� u� denote the

nonnegative dual slack variable associated with the dual constraint corresponding to

the primal variable x�� x�� x�� in that order� Then the primal and dual systems

together with the complementary slackness conditions for optimality are

�x�� x�� �x� � v� ����
��x�� �x�� ��x� � v� � ��

�y�� �y� �u� ����
� y�� �y� �u� � ��

�y�� ��y� �u� � 
�

xj � uj � yi� vi �� 
 for all i� j�

xjuj � yivi � 
 for all i� j�
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This is exactly the following LCP�

u� u� u� v� v� x� x� x� y� y�

� 
 
 
 
 
 
 
 � �� ���

 � 
 
 
 
 
 
 �� � ��


 
 � 
 
 
 
 
 � ��� 



 
 
 � 
 �� � �� 
 
 ��


 
 
 
 � � �� �� 
 
 ���
All variables �� 
� u�x� � u�x� � u�x� � v�y� � v�y� � 
�

��� QUADRATIC PROGRAMMING

Using the methods discussed in Section ��� any problem in which a quadratic objective

function has to be optimized subject to linear equality and inequality constraints can

be transformed into a problem of the form

Minimize Q�x� � cx� �
�x

TDx

Subject to Ax�� b

x�� 


������

where A is a matrix of order m�N � and D is a square symmetric matrix of order

N � There is no loss of generality in assuming that D is a symmetric matrix� because if

it is not symmetric replacing D by �D �DT ��� �which is a symmetric matrix� leaves

Q�x� unchanged� We assume that D is symmetric�

����� Review on Positive Semide�nite Matrices

A square matrix F � �fij� of order n� whether it is symmetric or not� is said to be a

positive semide�nite matrix if yTFy �� 
 for all y � Rn� It is said to be a positive

de�nite matrix if yTFy � 
 for all y �� 
� We will use the abbreviations PSD� PD

for �positive semide�nite� and �positive de�nite�� respectively�

Principal Submatrices� Principal Subdeterminants

Let F � �fij� be a square matrix of order n� Let fi�� � � � � irg � f�� � � � � ng with its

elements arranged in increasing order� Erase all the entries in F in row i and column

i for each i �� fi�� � � � � irg� What remains is a square submatrix of F of order r�
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���������
fi��i� � � � fi��ir
���

���
fir�i� � � � fir�ir

��������� �

This submatrix is known as the principal submatrix of F determined by the subset

fi�� � � � � irg� Denoting the subset fi�� � � � � irg by J� we denote this principal submatrix

by the symbol FJJ� It is �fij � i � J� j � J�� The determinant of this principal

submatrix is called the principal subdeterminant of F determined by the subset J� The

principal submatrix of F determined by �� the empty set� is the empty matrix which

has no entries� Its determinant is de�ned by convention to be equal to �� The principal

submatrix of F determined by f�� � � � � ng is F itself� The principal submatrices of F

determined by nonempty subsets of f�� � � � � ng are nonempty principal submatrices
of F � Since the number of distinct nonempty subsets of f�� � � � � ng is �n � �� there are

�n�� nonempty principal submatrices of F � The principal submatrices of F determined

by proper subsets of f�� � � � � ng are known as proper principal submatrices of F �

So each proper principal submatrix of F is of order �� n� ��

Example ���

Let

F �

������� 
 �� �
� � �
� � ��

������� �

The principal submatrix corresponding to the subset f�� �g is

��� 
 �
� ��

���� The princi	

pal submatrix corresponding to the subset f�g is �� the second element in the principal

diagonal of F �

Several results useful in studying P�S�D matrices will now be discussed�

Results on P�S�D Matrices

Result ��� If B � �b��� is a matrix of order � � �� it is PD i� b�� � 
� and it is

PSD i� b�� �� 
�

Proof� Let y � �y�� � R�� Then yTBy � b��y
�
� � So yTBy � 
 for all y � R�� y �� 
�

i� b�� � 
� and hence B is PD i� b�� � 
� Also yTBy �� 
 for all y � R�� i� b�� �� 
�

and hence B is PSD i� b�� �� 
�

Result ��� If F is a PD matrix all its principal submatrices must also be PD�

Proof� Consider the principal submatrix� G� generated by the subset f�� �g�

G �

��� f�� f��
f�� f��

��� � Let t �

��� y�
y�

��� �



���� Quadratic Programming ��

Pick y � �y�� y�� 
� 
� � � � � 
�
T � Then yTFy � tTGt� However� since F is PD� yTFy � 


for all y �� 
� So tTGt � 
 for all t �� 
� Hence� G is PD too� A similar argument can

be used to prove that every principal submatrix of F is also PD�

Result ��� If F is PD� fii � 
 for all i� This follows as a corollary of Result ����

Result ��� If F is a PSD matrix� all principal submatrices of F are also PSD� This

is proved using arguments similar to those in Result ����

Result ��	 If F is PSD matrix� fii �� 
 for all i� This follows from Result ����

Result ��
 Suppose F is a PSD matrix� If fii � 
� then fij � fji � 
 for all j�

Proof� To be speci�c let f�� be 
 and suppose that f�� � f�� �� 
� By Result ��� the

principal submatrix ��� f�� f��
f�� f��

��� �

��� 
 f��
f�� f��

���
must be PSD� Hence f��y

�
� � �f�� � f���y�y� �� 
 for all y�� y�� Since f�� � f�� �� 
�

take y� � ��f�� � ����f�� � f��� and y� � �� The above inequality is violated since

the left	hand side becomes equal to ��� leading to a contradiction�

Result ��� If D is a symmetric PSD matrix and dii � 
� then D�i � Di� � 
� This

follows from Result ����

De�nition� The Gaussian Pivot Step

Let A � �aij� be a matrix of order m� n� A Gaussian pivot step on A� with row r as

the pivot row and column s as the pivot column can only be carried out if the element

lying in both of them� ars� is nonzero� This element ars is known as the pivot element

for this pivot step� The pivot step subtracts suitable multiples of the pivot row from

each row i for i � r so as to transform the entry in this row and the pivot column into

zero� Thus this pivot step transforms

A �

����������������������

a�� � � � a�s � � � a�n
���

���
���

ar� � � � ars � � � arn
ar���� � � � ar���s � � � ar��� n

���
���

���
am� � � � ams � � � amn

����������������������

into

�����������������������

a�� � � � a�s � � � a�n
���

���
���

ar� � � � ars � � � arn
a�r���� � � � 
 � � � a�r��� n

���
���

���
a�m� � � � 
 � � � a�mn

�����������������������
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where a�ij � aij � �arjais��ars� for i � r� � to m� j � � to n� As an example consider

the Gaussian pivot step in the following matrix with row � as the pivot row and column

� as the pivot column� The pivot element is inside a box������������
� �� �
 �� ��
� � � �� ��

�� � � � � �
� �� � � 


�����������
This Gaussian pivot step transforms this matrix into����������

� � � �
 � � ��
� � � � � ��

�� � 
 � � �
�� ��
 
 �� �

����������
Result ��� Let D be a square symmetric matrix of order n �

� �� Suppose D is PD�

Subtract suitable multiples of row � from each of the other rows so that all the entries

in column � except the �rst is transformed into zero� That is� transform

D �

�		

d�� � � � d�n
d�� � � � d�n
���

���
dn� � � � dnn

���
 into D� �

�		

d�� � � � d�n

 �d�� � � � �d�n
���

���
���


 �dn� � � � �dnn

���

by a Gaussian pivot step with row � as pivot row and column � as pivot column� clearly
�dij � dij � d�jdi��d�� for all i� j �� �� E�� the matrix obtained by striking o� the �rst

row and the �rst column from D�� is also symmetric and PD�

Also� if D is an arbitrary square symmetric matrix� it is PD i� d�� � 
 and the

matrix E� obtained as above is PD�

Proof� Since D is symmetric dij � dji for all i� j� Therefore�

yTDy �
nX
i��

nX
j��

yiyjdij � d��y
�

� � �y�

nX
j��

d�jyj �
X
i�j�

�
�

yiyjdij

� d��
�
y� �

� nX
j��

d�jyj
�
�d��

��
�
X
i�j�

�
�

yi �dijyj �

Letting y� � ��Pn
j�� d�jyj��d��� we verify that if D is PD� then

P
i�j�

�
� yi

�dijyj � 
 for

all �y�� � � � � yn� �� 
� which implies that E� is PD� The fact that E� is also symmetric

is clear since �dij � dij � d�jdi��d�� � �dji by the symmetry of D� If D is an arbitrary

symmetric matrix� the above equation clearly implies that D is PD i� d�� � 
 and E�

is PD�



���� Quadratic Programming �	

Result ��
 A square matrix F is PD �or PSD� i� F � FT is PD �or PSD��

Proof� This follows because xT �F � FT �x � �xTFx�

Result ���� Let F be a square matrix of order n and E a matrix of order m� n�

The square matrix A �

���F �ET

E 


��� of order �m� n� is PSD i� F is PSD�

Proof� Let 	 � �y�� � � � � yn� t�� � � � � tm�T � Rn�m and y � �y�� � � � � yn�
T � For all 	� we

have 	TA	 � yTFy� So 	TA	 �� 
 for all 	 � Rn�m i� yTFy �� 
 for all y � Rn� That

is� A is PSD i� F is PSD�

Result ���� If B is a square nonsingular matrix of order n� D � BTB is PD and

symmetric�

Proof� The symmetry follows because DT � D� For any y � Rn� y �� 
� yTDy �

yTBTBy � kyBk� � 
 since yB �� 
 �because B is nonsingular� y �� 
 implies yB �� 
��

So D is PD�

Result ���� If A is any matrix of order m� n� ATA is PSD and symmetric�

Proof� Similar to the proof of Result �����

Principal Subdeterminants of PD� PSD Matrices

We will need the following theorem from elementary calculus�

Theorem ��� Intermediate value theorem� Let f�
� be a continuous real valued

function de�ned on the closed interval 
� �� 
 �
� 
� where 
� � 
�� Let f be a real

number strictly between f�
�� and f�
��� Then there exists a 
 satisfying 
� � 
 � 
��

and f�
� � f �

For a proof of Theorem ��� see books on calculus� for example� W� Rudin� Prin�

ciples of Mathematical Analysis� McGraw	Hill� second edition� ����� p� ��� Theorem

��� states that a continuous real valued function de�ned on a closed interval� assumes

all intermediate values between its initial and �nal values in this interval�

Now we will resume our discussion of PD� PSD matrices�

Theorem ��� If F is a PD matrix� whether it is symmetric or not� the determinant

of F is strictly positive�

Proof� Let F be of order n� Let I be the identity matrix of order n� If the determinant

of F is zero� F is singular� and hence there exists a nonzero column vector x � Rn such

that xTF � 
� which implies that xTFx � 
� a contradiction to the hypothesis that F
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is PD� So the determinant of F is nonzero� In a similar manner we conclude that the

determinant of any PD	matrix is nonzero� For 
 � 
 � �� de�ne F �
� � 
F ����
�I�

and f�
� � determinant of F �
��

Obviously f�
� is a polynomial in 
� and hence f�
� is a real valued continuous

function de�ned on the interval 
 �
� 
 �

� �� Given a column vector x � Rn� x �� 
�

xTF �
�x � 
xTFx � �� � 
�xTx � 
 for all 
 �
� 
 �

� � because F is PD� So F �
�

is a PD matrix for all 
 �
� 
 �

� �� So from the above argument f�
� �� 
 for any 


satisfying 
 �
� 
 �

� �� Clearly� f�
� � �� and f��� � determinant of F � If f��� � 


by Theorem ��� there exists a 
 satisfying 
 � 
 � � and f�
� � 
� a contradiction�

Hence f��� �� 
� Hence the determinant of F cannot be negative� Also it is nonzero�

Hence the determinant of F is strictly positive�

Theorem ��� If F is a PD matrix� whether it is symmetric or not� all principal

subdeterminants of F are strictly positive�

Proof� This follows from Result ��� and Theorem ����

Theorem ��� If F is a PSD matrix� whether it is symmetric or not� its determinant

is nonnegative�

Proof� For 
 �
� 
 �

� �� de�ne F �
�� f�
� as in the proof of Theorem ���� Since I is

PD� and F is PSD
 F �
� is a PD matrix for 
 �
� 
 � �� f�
� � �� and f��� is the

determinant of F � If f��� � 
� there exists a 
 satisfying 
 � 
 � �� and f�
� � 
� a

contradiction since F �
� is a PD matrix� Hence f��� �� 
� So the determinant of F is

nonnegative�

Theorem ��	 If F is a PSD matrix� whether it is symmetric or not� all its principal

subdeterminants are nonnegative�

Proof� Follows from Result ��� and Theorem ����

Theorem ��
 Let

H �

������������
d�� � � � d�n d��n��
���

���
���

dn� � � � dnn dn�n��
dn���� � � � dn���n dn���n��

������������ � D �

��������
d�� � � � d�n
���

���
dn� � � � dnn

��������
be symmetric matrices� H is of order n � � and D is a principal submatrix of H�

So dij � dji for all i� j � � to n � �� Let x � Rn� d � �d��n��� � � � � dn�n���
T � and

Q�x� � xTDx��dTx�dn���n��� Suppose D is a PD matrix� Let x� � �D��d� Then

x� is the point which minimizes Q�x� over x � Rn� and

Q�x�� � �determinant of H� � �determinant of D�� ������
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Also for any x � Rn

Q�x� � Q�x�� � �x� x��TD�x� x��� ������

Proof� Since H is symmetric �Q�x�
�x

� ��Dx � d�� Hence x� is the only point in Rn

which satis�es �Q�x�
�x � 
� Also Dx� � �d implies

Q�x�� � x�
T

Dx� � �dTx� � dn���n��

� dTx� � dn���n�� �
������

For i � � to n � �� if gi�n�� � di�n�� �
Pn

j�� dijx
�

j � and if g � �g��n��� � � � � gn�n���
T �

then g � d�Dx� � 
� Also gn���n�� � dn���n�� � dTx� � Q�x�� from ������� Now�

from the properties of determinants� it is well known that the value of a determinant

is unaltered if a constant multiple of one of its columns is added to another� For j � �

to n� multiply the jth column of H by x�j and add the result to column n � � of H�

This leads to

Determinant of H � determinant of

������������
d�� � � � d�n g��n��
���

���
���

dn� � � � dnn gn�n��
dn���� � � � dn���n gn���n��

������������

� determinant of

������������
d�� � � � d�n 

���

���
���

dn� � � � dnn 

dn���� � � � dn���n Q�x��

������������
� �Q�x��� �determinant of D�

which yields ������� ������ can be veri�ed by straight forward expansion of its right

hand side� or it also follows from Taylor expansion of Q�x� around x�� since ��Q�x�
�x�

�

�D and x� satis�es �Q�x�
�x

� 
� Since D is a PD matrix� we have �x�x��TD�x�x�� � 
�

for all x � Rn� x �� x�� This and ������ together imply that� Q�x� � Q�x��� for all

x � Rn� x �� x�� Hence x� is the point which minimizes Q�x� over x � Rn�

Theorem ��� Let H� D be square� symmetric matrices de�ned as in Theorem 	�
�

H is PD i� D is PD and the determinant of H is strictly positive�

Proof� Suppose H is PD� By Theorem ��� the determinant of H is strictly positive�

and by Result ��� its principal submatrix D is also PD�

Suppose that D is PD and the determinant of H is strictly positive� Let x � �x��

� � � � xn�
T and 	 � �x�� � � � � xn� xn���

T � De�ne d� Q�x� as in Theorem ���� If xn�� � 
�

but 	 �� 
 �i� e�� x �� 
�� 	TH	 � xTDx � 
� since D is PD� Now suppose xn�� �� 
�

Let � � ���xn���x� Then 	TH	 � xTDx � �xn��d
Tx � dn���n��x

�
n�� � x�n��Q����
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So� when xn�� �� 
� 	TH	 � x�n��Q��� �� x�n�� �minimum value of Q��� over � � Rn�

� x�n�� ��determinant of H� determinant of D�� � 
� So under our hypothesis that D

is PD and the determinant of H is strictly positive� we have 	TH	 � 
 for all 	 � Rn���

	 �� 
� that is H is PD�

Theorem ��� Let H be the square symmetric matrix de�ned in Theorem 	�
� H

is PD i� the determinants of these n� � principal submatrices of H�

�d����

��� d�� d��
d�� d��

��� �

������� d�� d�� d��
d�� d�� d��
d�� d�� d��

������� � � � � � D�H

are strictly positive�

Proof� Proof is by induction on the order of the matrix� Clearly� the statement of the

theorem is true if H is of order �� Now suppose the statement of the theorem is true

for all square symmetric matrices of order n� By this and the hypothesis� we know that

the matrix D is PD� So D is PD and the determinant of H is strictly positive by the

hypothesis� By Theorem ��� these facts imply that H is PD too� Hence� by induction�

the statement of the theorem is true in general�

Theorem ��
 A square symmetric matrix is PD i� all its principal subdeterminants

are strictly positive�

Proof� Let the matrix be H de�ned as in Theorem ���� If H is PD� all its principal

subdeterminants are strictly positive by Theorem ���� On the other hand� if all the

principal subdeterminants ofH are strictly positive� the n�� principal subdeterminants

of H discussed in Theorem ��� are strictly positive� and by Theorem ��� this implies

that H is PD�

De�nition� P �matrix

A square matrix� whether symmetric or not� is said to be a P 	matrix i� all its principal

subdeterminants are strictly positive�

As examples� the matrices I�

��� � ��

 �

����

��� � �
� �

��� are P 	matrices� The matrices��� 
 �

 �

����

����� 


 �


����

��� � �
� �

��� are not P 	matrices�

Theorem ���� A symmetric P �matrix is always PD� If a P �matrix is not symmetric�

it may not be PD�

Proof� By Theorem ��� B� a symmetric matrix is PD i� it is a P 	matrix� Consider

the matrix B�

B �

��� � 

� �

��� � B � BT �

��� � �
� �

��� �
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Since all its principal subdeterminants are �� B is a P 	matrix� However� the determi	

nant of �B � BT � is strictly negative� and hence it is not a PD matrix by Theorem

���� and by Result ��� this implies that B is not PD� Actually� it can be veri�ed that�

������B������T � �� � 
�

Note ��� The interesting thing to note is that if H is a symmetric matrix� and if

the n�� principal subdeterminants of H discussed in Theorem ��� are strictly positive�

by Theorems ���
 and ��� all principal subdeterminants of H are positive� This result

may not be true if H is not symmetric�

Exercises

��� If H is a square symmetric PSD matrix� and its determinant is strictly positive�

then prove that H is a PD matrix� Construct a numerical example to show that this

result is not necessarily true if H is not symmetric�

��� Is the following statement true! �H is PSD i� its �n��� principal subdeterminants

discussed in Theorem ��� are all nonnegative�� Why! Illustrate with a numerical

example�

By Theorem ��� the class of PD matrices is a subset of the class of P 	matrices�

By Theorem ���
 when restricted to symmetric matrices� the property of being a PD

matrix is the same as the property of being a P 	matrix� An asymmetric P 	matrix may

not be PD� it may be a PSD matrix as the matrix fM�n� below is� or it may not even

be a PSD matrix� Let

fM�n� �

��������������������

� 
 
 � � � 
 

� � 
 � � � 
 

� � � � � � 
 

���

���
���

� � �
���

���
� � � � � � � 

� � � � � � � �

��������������������
� ������

fM�n� is a lower triangular matrix in which all the diagonal entries are �� and all entries

below the diagonal are �� All the principal subdeterminants of fM�n� are clearly equal

to �� and hence fM�n� is a P 	matrix� However� fM�n���fM�n��T is the matrix in which

all the entries are �� and it can be veri�ed that it is a PSD matrix and not a PD matrix�

Theorem ���� Let F be a square PSD matrix of order n� whether it is symmetric

or not� If x � Rn is such that xTFx � 
� then �F � FT �x � 
�



�� Chapter �� Linear Complementarity Problem� Its Geometry� and Applications

Proof� Let D � F�FT � D is symmetric and by Result ���� D is PSD� For all x � Rn�

xTDx � �xTFx� So xTDx � 
 too� We wish to prove that Dx � 
� Let x � Rn� For

all real numbers 
� �x� 
x�T D�x� 
x� �� 
� that is


�xTDx� �
xTDx �� 
 ������

since xTDx � 
� If xTDx � 
� by taking 
 � � and then �� in ������� we conclude

that xTDx � 
� If xTDx �� 
� since D is PSD� xTDx � 
� In this case� from ������

we conclude that �xTDx �
� �
xTDx for 
 � 
� and �xTDx �

� �
xTDx for 
 � 
�

Taking 
 to be a real number of very small absolute value� from these we conclude

that xTDx must be equal to zero in this case� Thus whether xTDx � 
� or xTDx � 
�

we have xTDx � 
� Since this holds for all x � Rn� we must have xTD � 
� that is

Dx � 
�

Algorithm for Testing Positive De�niteness

Let F � �fij� be a given square matrix of order n� Find D � F � FT � F is PD i�

D is� To test whether F is PD� we can compute the n principal subdeterminants of

D determined by the subsets f�g� f�� �g� � � � � f�� �� � � � � ng� F is PD i� each of these n

determinants are positive� by Theorem ���� However� this is not an e�cient method

unless n is very small� since the computation of these separate determinants is time

consuming�

We now describe a method for testing positive de�niteness of F which requires at

most n Gaussian pivot steps on D along its main diagonal
 hence the computational

e�ort required by this method is O�n��� This method is based on Result ����

�i� If any of the principal diagonal elements in D are nonpositive� D is not PD�

Terminate�

�ii� Subtract suitable multiples of row � from all the other rows� so that all the entries

in column � and rows � to n of D are transformed into zero� That is� transform

D into D� as in Result ���� If any diagonal element in the transformed matrix�

D�� is nonpositive� D is not PD� Terminate�

�iii� In general� after r steps we will have a matrix Dr of the form��									


d�� d�� � � � d�n

 �d�� � � � �d�n



�� �

���
drr � � � drn

 "dr���r�� � � � "dr���n

���
���

���
���

���

 
 
 "dn�r�� � � � "dnn

����������

�

Subtract suitable multiples of row r � � in Dr from rows i for i � r � �� so that

all the entries in column r � � and rows i for i � r � � are transformed into 
�
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This transforms Dr into Dr��� If any element in the principle diagonal of Dr��

is nonpositive� D is not PD� Terminate� Otherwise continue the algorithm in the

same manner for n� � steps� until Dn�� is obtained� which is of the form�				

d�� d�� � � � d�n

 �d�� � � � �d�n



���

���
���


 
 � � � dnn

�����
 �

Dn�� is upper triangular� That�s why this algorithm is called the superdiago�

nalization algorithm� If no termination has occured earlier and all the diagonal

elements of Dn�� are positive� D� and hence� F is PD�

Example ���

Test whether

F �

�	

� � � �

�� � 
 �

 � � 	

�

 �� ���

� �

��
 is PD� D � F � FT �

�	

� 
 � �

 � � 

� � � � 


�
� 
 � 


� ��

��
 �

All the entries in the principal diagonal of D �i� e�� the entries dii for all i� are strictly

positive� So apply the �rst step in superdiagonalization getting D�� Since all elements

in the principal diagonal of D� are strictly positive� continue� The matrices obtained

in the order are�

D� �

�		

� 
 � �

 � � 


 � ��

� ���
�


 
 ���
�

��
�

���
 � D� �

�		

� 
 � �

 � � 


 
 ��

� ���
�


 
 ���
�

��
�

���
 �

D� �

�		

� 
 � �

 � � 


 
 ��

� ���
�


 
 
 �

���
 �
The algorithm terminates now� Since all diagonal entries in D� are strictly positive�

conclude that D and� hence� F is PD�

Example ���

Test whether D �

����������
� 
 � 


 � � 

� � � �

 
 � �

���������� is PD�
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D is already symmetric� and all its diagonal elements are positive� The �rst step of

the algorithm requires performing the operation� �row �� # ��row �� on D� This leads

to

D� �

����������
� 
 � 


 � � 


 � 
 �

 
 � �

���������� �

Since the third diagonal element in D� is not strictly positive� D is not PD�

Algorithm for Testing Positive Semide�niteness

Let F � �fij� be the given square matrix� Obtain D � F � FT � If any diagonal

element of D is 
� all the entries in the row and column of the zero diagonal entry

must be zero� Otherwise D �and hence F � is not PSD and we terminate� Also� if any

diagonal entries in D are negative� D cannot be PSD and we terminate� If termination

has not occurred� reduce the matrix D by striking o� the rows and columns of zero

diagonal entries�

Start o� by performing the row operations as in �ii� above� that is� transform D

into D�� If any diagonal element in D� is negative� D is not PSD� Let E� be the

submatrix of D� obtained by striking o� the �rst row and column of D�� Also� if a

diagonal element in E� is zero� all entries in its row and column in E� must be zero�

Otherwise D is not PSD� Terminate� Continue if termination does not occur�

In general� after r steps we will have a matrix Dr as in �iii� above� Let Er be the

square submatrix of Dr obtained by striking o� the �rst r rows and columns of Dr�

If any diagonal element in Er is negative� D cannot be PSD� If any diagonal element

of Er is zero� all the entries in its row and column in Er must be zero
 otherwise D is

not PSD� Terminate� If termination does not occur� continue�

Let dss be the �rst nonzero �and� hence� positive� diagonal element in Er� Subtract

suitable multiples of row s in Dr from rows i� i � s� so that all the entries in column

s and rows i� i � s in Dr� are transformed into 
� This transforms Dr into Ds and

we repeat the same operations with Ds� If termination does not occur until Dn�� is

obtained and� if the diagonal entries in Dn�� are nonnegative� D and hence F are

PSD�

In the process of obtaining Dn��� if all the diagonal elements in all the matrices

obtained during the algorithm are strictly positive� D and hence F is not only PSD

but actually PD�

Example ��	

Is the matrix

F �

�			


 �� �� �� �
� � � 
 

� � � 
 

� 
 
 � �

�� 
 
 � �

����
 PSD! D � F � FT �
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 � � 
 


 
 
 �� �

 
 
 � �

����
 �
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D�� and D�� are both zero vectors� So we eliminate them� but we will call the remaining

matrix by the same name D� All the diagonal entries in D are nonnegative� Thus we

apply the �rst step in superdiagonalization� This leads to

D� �

����������
� � 
 


 
 
 


 
 �� �

 
 � �

���������� E� �

������� 
 
 


 �� �

 � �

������� �

The �rst diagonal entry in E� is 
� but the �rst column and row of E� are both zero

vectors� Also all the remaining diagonal entries in D� are strictly positive� So continue

with superdiagonalization� Since the second diagonal element in D� is zero� move to

the third diagonal element of D�� This step leads to

D� �

����������
� � 
 


 
 
 


 
 �� �

 
 
 


���������� �

All the diagonal entries in D� are nonnegative� D and hence F is PSD but not PD�

Example ��


Is the matrix D in Example ��� PSD! Referring to Example ��� after the �rst step in

superdiagonalization� we have

E� �

������� � � 

� 
 �

 � �

������� �

The second diagonal entry in E� is 
� but the second row and column of E� are not

zero vectors� So D is not PSD�

����� Relationship of Positive Semide�niteness

to the Convexity of Quadratic Functions

Let $$$ be a convex subset of Rn� and let g�x� be a real valued function de�ned on $$$�

g�x� is said to be a convex function on $$$� if

g��x� � ��� ��x�� �� �g�x�� � ��� ��g�x�� ������
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for every pair of points x�� x� in $$$� and for all 
 �� � �
� �� g�x� is said to be a strictly

convex function on $$$ if ������ holds as a strict inequality for every pair of distinct

points x�� x� in $$$ �i� e�� x� �� x�� and for all 
 � � � �� See Appendix ��

Let F be a given square matrix of order n and c a row vector in Rn� Let

f�x� � cx� xTFx� Here we discuss conditions under which f�x� is convex� or strictly

convex� Let D � ������F � FT �� If F is symmetric then F � D� otherwise D is

the symmetrized form of F � Clearly f�x� � cx � xTDx� It can be veri�ed that
�f�x�
�x

�
��f�x�

�x�
� � � � � �f�x�

�xn

�T
� cT � �F � FT �x � cT � �Dx� and that ��f�x�

�x�
� the

Hessian of f�x� � F � FT � �D� Let x�� x� be two arbitrary column vectors in Rn

and let 	 � x� � x�� Let � be a number between 
 and �� By expanding both sides it

can be veri�ed that �f�x��������f�x���f��x�������x�� � ������	TD	 where

	 � x� � x�� So �f�x�� � ��� ��f�x�� � f��x� � ��� ��x�� �� 
 for all x�� x� � Rn

and 
 �� � �
� �� i� 	TD	 �� 
 for all 	 � Rn� that is i� D �or equivalently F � is PSD�

Hence f�x� is convex on Rn i� F �or equivalently D� is PSD�

Also by the above argument we see that �f�x��������f�x���f��x�������x��
� 
 for all x� �� x� in Rn and 
 � � � �� i� 	TD	 � 
 for all 	 � Rn� 	 �� 
�

Hence f�x� is strictly convex on Rn i� 	TD	 � 
 for all 	 �� 
� that is i� D �or

equivalently F � is PD� These are the conditions for the convexity or strict convexity

of the quadratic function f�x� over the whole space Rn� It is possible for f�x� to

be convex on a lower dimensional convex subset of Rn �for example� a subspace of

Rn� even though the matrix F is not PSD� For example� the quadratic form f�x� �

�x�� x��

����� 


 �

��� �x�� x��
T is convex over the subspace f�x�� x�� � x� � 
g but not

over the whole of R��

Exercise

��� Let K � Rn be a convex set and Q�x� � cx� �
�x

TDx� If Q�x� is convex over K

and K has a nonempty interior� prove that Q�x� is convex over the whole space Rn�

����� Necessary Optimality Conditions

for Quadratic Programming

We will now resume our discussion of the quadratic program �������

Theorem ���� If x is an optimum solution of �	�		�� x is also an optimum solution

of the LP
minimize �c� xTD�x

subject to Ax �� b

x �� 
 �
������
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Proof� Notice that the vector of decision variables in ������ is x
 x is a given point

and the cost coe�cients in the LP ������ depend on x� The constraints in both ������

and ������ are the same� The set of feasible solutions is a convex polyhedron� Let "x be

any feasible solution� By convexity of the set of feasible solutions x� � 
"x����
�x �

x � 
�"x � x� is also a feasible solution for any 
 � 
 � �� Since x is an optimum

feasible solution of ������� Q�x�� � Q�x� �
� 
� that is 
�c � xTD��"x � x� � �����


��"x�x�TD�"x�x� �� 
 for all 
 � 
 � �� Dividing both sides by 
 leads to �c�xTD�

�"x�x� �� ��
����"x�x�TD�"x�x� for all 
 � 
 � �� This obviously implies �c�xTD�

�"x� x� �� 
� that is� �c� xTD�"x �� �c� xTD�x� Since this must hold for an arbitrary

feasible solution "x� x must be an optimum feasible solution of �������

Corollary ��� If x is an optimum feasible solution of �	�		�� there exist vectors

y � Rm and slack vectors u � RN � v � Rm such that x� y� u� v together satisfy���u
v

��� �
���D �AT

A 


��� ���x
y

��� �

��� cT

�b
������u

v

��� �
� 


���x
y

��� �
� 
 and

���u
v

���T ���x
y

��� � 
 �

������

Proof� %From the above theorem x must be an optimum solution of the LP �������

The corollary follows by using the results of Section ��� on this fact�

Necessary and Su�cient Optimality Conditions

for Convex Quadratic Programs

The quadratic minimization problem ������ is said to be a convex quadratic pro�

gram if Q�x� is convex� that is� if D is a PSD matrix �by the results in Section

������ or Theorem �� of Appendix ��� If D is not PSD� ������ is said to be a non�

convex quadratic program� Associate a Lagrange multiplier yi to the ith constraint

�Ai�x �
� bi� i � � to m
 and a Lagrange multiplier uj to the sign restriction on xj in

������� j � � to N � Let y � �y�� � � � � ym�T � u � �u�� � � � � uN �T � Then the Lagrangian

corresponding to the quadratic program ������ is L�x� y� u� � Q�x��yT �Ax�b��uTx�
The Karush	Kuhn	Tucker necessary optimality conditions for ������ are

�L

�x
�x� y� u� � cT �Dx� AT y � u � 


y �� 
� u �� 


yT �Ax� b� � 
� uTx � 


Ax� b �� 
� x �� 
 �

����
�

Denoting the slack variables Ax � b by v� the conditions ����
� can be veri�ed to

be exactly those in ������� written out in the form of an LCP� A feasible solution x
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for ������� is said to be a Karush�Kuhn�Tucker point �or abbreviated as a KKT

point� if there exist Lagrange multiplier vectors y� u� such that x� y� u together satisfy

����
� or the equivalent ������� So the LCP ������ is the problem of �nding a KKT

point for ������� We now have the following results�

Theorem ���� If x is an optimum solution for �	�		�� x must be a KKT point for

it� whether Q�x� is convex or not�

Proof� Follows from Theorem ���� and Corollary ����

Thus ����
� or equivalently ������ provide the necessary optimality conditions for a

feasible solution x of ������ to be optimal� Or� in other words� every optimum solution

for ������ must be a KKT point for it� However� given a KKT point for ������ we

cannot guarantee that it is optimal to ������ in general� In the special case when D

is PSD� every KKT point for ������ is optimal to ������� this is proved in Theorem

���� below� Thus for convex quadratic programs� ����
� or equivalently ������ provide

necessary and su�cient optimality conditions�

Theorem ���� If D is PSD and x is a KKT point of �	�		�� x is an optimum

feasible solution of �	�		��

Proof� %From the de�nition of a KKT point and the results in Section ���� if x is a

KKT point for ������� it must be an optimum feasible solution of the LP ������� Let x

be any feasible solution of �������

Q�x��Q�x� � �c� xTD��x� x� �
�

�
�x� x�TD�x� x� �

The �rst term on the right	hand side expression is nonnegative since x is an optimal

feasible solution of ������� The second term in that expression is also nonnegative since

D is PSD� Hence� Q�x��Q�x� �� 
 for all feasible solutions� x� of ������� This implies

that x is an optimum feasible solution of �������

Clearly ������ is an LCP� An optimum solution of ������ must be a KKT point for

it� Solving ������ provides a KKT point for ������ and if D is PSD� this KKT point is

an optimum solution of ������� �If D is not PSD and if a KKT point is obtained when

������ is solved� it may not be an optimum solution of ��������

Example ��� Minimum Distance Problem�

Let K denote the shaded convex polyhedral region in Figure ���� Let P� be the point

�������� Find the point in K that is closest to P� �in terms of the usual Euclidean

distance�� Such problems appear very often in operations research applications�
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Every point in K can be expressed as a convex combination of its extreme points �or

corner points� P�� P�� P�� P�� That is� the coordinates of a general point in K are�

�
���
���
���
�� �
��

���
���
�� where the 
i satisfy 
��
��
��
� � �

and 
i �� 
 for all i� Hence� the problem of �nding the point in K closest to P� is

equivalent to solving�

Minimize �
� � �
� � �
� � �
� � ������ � ��
� � �
� � �
� � ������
Subject to 
� � 
� � 
� � 
� � �


i �� 
 for all i �


� can be eliminated from this problem by substituting the expression 
� � ��
��
��

� for it� Doing this and simplifying� leads to the quadratic program

Minimize �����������
�
�
��
�

�

T

������� �� �� �
�� �� ��
� �� �

������� 


Subject to �
� � 
� � 
� �� ��

 �� 


where 
 � �
�� 
�� 
��
T � Solving this quadratic program is equivalent to solving the

LCP ����������
u�
u�
u�
v�

���������� �

����������
�� �� � �
�� �� �� �
� �� � �

� � � � � � 


����������
����������

�

�

�
y�

���������� �

����������
���
���
��


�

���������� �
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All variables u�� u�� u�� v�� 
�� 
�� 
�� y� �� 


and u�
� � u�
� � u�
� � v�y� � 
 �

Let ��u�� �u�� �u�� �v�� �
�� �
�� �
�� �y�� be a solution to this LCP� Let �
� � �� �
� � �
� � �
��

Then �x � ��
� � ��
� � ��
� � ��
�� ��
� � ��
� � ��
�� is the point in K that is closest to

P��

����� Convex Quadratic Programs and LCPs

Associated with PSD Matrices

Consider the LCP �q�M�� which is ����� # ������ in which the matrix M is PSD�

Consider also the quadratic program

Minimize zT �Mz � q�

Subject to Mz � q �� 


z �� 
 �

This is a convex quadratic programming problem since M is PSD� If the optimum

objective value in this quadratic program is� 
� clearly the LCP �q�M� has no solution�

If the optimum objective value in this quadratic program is zero� and z is any optimum

solution for it� then �w � Mz � q� z� is a solution of the LCP� Conversely if � �w� �z� is

any solution of the LCP �q�M�� the optimum objective value in the above quadratic

program must be zero� and �z is an optimum solution for it� Thus every LCP associated

with a PSD matrix can be posed as a convex quadratic program�

Now� consider a convex quadratic program in which Q�x� � cx� �
�x

TDx �where D

is a symmetric PSD matrix� has to be minimized subject to linear constraints� Replace

each equality constraint by a pair of opposing inequality constraints �for example�

Ax � b is replaced by Ax �
� b and Ax �

� b�� Now the problem is one of minimizing

Q�x� subject to a system of linear inequality constraints� This can be transformed into

an LCP as discussed in Section ������ The matrix M in the corresponding LCP will

be PSD by Result ���
� since D is PSD� Thus every convex quadratic programming

problem can be posed as an LCP associated with a PSD matrix�
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����� Applications of Quadratic Programming

The Portfolio Problem

A big investment �rm has a total of & a to invest� It has a list of n stocks in which this

money can be invested� The problem is to determine how much of the available money

should be invested in each stock� The solution of this problem is called a portfolio� In

this problem� it is well known that �one should never put all of their eggs in one basket��

So after a thorough study� the manager of the company has determined a lower bound

& lj and an upper bound & kj for the amount to be invested in stock j� j � � to n�

The yield from each stock varies randomly from year to year� By the analysis of past

data� 
j � the expected �or average� yield per dollar invested in stock j per year has

been estimated� The yields from various stocks are not mutually independent� and the

analysis of past data has also provided an estimate of the variance	covariance matrix�

D� for the annual yields from the various stocks per dollar invested� D is a symmetric

positive de�nite matrix of order n� If & xj is the amount invested in stock j� j � � to n�

the portfolio is x � �x�� � � � � xn�
T � the expected annual yield from it is

Pn
j�� 
jxj and

the variance of the yield is xTDx� The variance is a measure of the random �uctuation

in the annual yield and hence it should be minimized� The company would� of course�

like to see its expected yield maximized� One way of achieving both of these objectives

is to specify a target or lower bound� say 
� on the expected yield and to minimize the

variance subject to this constraint� This leads to the problem�

Minimize xTDx

Subject to
Pn

j�� 
jxj �� 
P
xj �� a

lj �� xj �� kj � j � � to n

which is a quadratic programming problem�

Constrained Linear Regression

We will illustrate this application with an example of eggs and chickens due to C� Mar	

molinero ������� The �rst step in chicken farming is hatching� carried out by specialized

hatcheries� When hatched� a day�old�chicken is born� It needs no food for the �rst

two days� at the end of which it is called a growing pullet and moved out of the

hatchery� Pullets have to grow over a period of approximately �� weeks before they

start producing eggs� and this is done by specialized growing units under optimum

conditions of diet� heating� lighting etc� After �� weeks of age� pullets are moved into

the laying �ock and are then called hens� Consider a geographical region� say a State�

Data on the number of chickens hatched by hatcheries in the state during each month

is available from published state government statistics� But� day	old	chickens may be
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bought from� or sold to �rms outside the state� statistics on which are not available�

De�ne

yt � number �in millions� of growing pullets in the state� on the �rst day of

month t�
dt � number �in millions� of day	old	chickens hatched by hatcheries in the

state in month t �from government statistics��

Here dt are not variables� but are the given data� People in the business of producing

chicken feed are very much interested in getting estimates of yt from dt� This provides

useful information to them in their production planning� etc� Not all the day	old	

chickens placed by hatcheries in a month may be alive in a future month� Also� after

�ve months of age� they are recorded as hens and do not form part of the population of

growing pullets� So the appropriate linear regression model for yt as a function of the

dt�s seems to be yt � �� �
P	

i�� �idt�i� where �� is the number of pullets in census�

which are not registered as being hatched �pullets imported into the State� or chickens

exported from the State�� and �i is a survival rate �the proportion of chickens placed in

month t� i that are alive in month t� i � � to ��� We� of course� expect the parameters

�i to satisfy the constraints


 �� �	 �� �� �� �� �� �� �� �� �� � � ������

To get the best estimates for the parameters � � ���� ��� ��� ��� ��� �	�
T from past

data� the least squares method could be used� Given data on yt� dt over a period of

time �say for the last �
 years�� de�ne L���� �
P

t�yt����
P	

i�� �idt�i�
�� Under the

least squares method the best values for � are taken to be those that minimize L����

subject to the constraints ������� This is clearly a quadratic programming problem�

One may be tempted to simplify this problem by ignoring the constraints ������

on the parameters �� The unconstrained minimum of L���� can be found very easily

by solving the system of equations �L����
��

� 
�

There are two main di�culties with this approach� The �rst is that the solution of

this system of equations requires the handling of a square matrix �aij� with aij � ���i�

j � ��� known as the Hilbert matrix� which is di�cult to use in actual computation

because of ill	conditioning� It magni�es the uncertainty in the data by very large

factors� We will illustrate this using the Hilbert matrix of order �� This matrix is

H� �

��� � �
�

�
�

�
�

��� �

Consider the following system of linear equations with H� as the coe�cient matrix�

x� x�

� �
� b�

�
�

�
� b�
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It can be veri�ed that the solution of this system of linear equations is x � ��b�� �b��

��b� � ��b��
T � Suppose we have the exact value for b� but only an approximate

value for b�� In the solution x� errors in b� are magni�ed by �� times in x�� and �

times in x�� This is only in a small system involving the Hilbert matrix of order ��

The error magni�cation grows very rapidly in systems of linear equations involving

Hilbert matrices of higher orders� In real world applications� the coe�cients in the

system of linear equations �constants corresponding to b�� b� in the above system�

are constructed using observed data� which are always likely to have small errors�

These errors are magni�ed in the solution obtained by solving the system of equations�

making that solution very unreliable� See reference ������� The second di�culty is

that even if we are able to obtain a reasonable accurate solution "� for the system of

equations �L����
��

� 
� "� may violate the constraints ������ that the parameter vector

� is required to satisfy� For example� when this approach was applied on our problem

with actual data over a �
	year horizon from a State� it led to the estimated parameter

vector "� � ��� ���� ����� ��
� ���� ��
�T � We have "�� � 
 and "�� � �� these values are

not admissible for survival rates� So � � "� does not make any sense in the problem�

For the same problem� when L���� was minimized subject to the constraints �������

using a quadratic programming algorithm it gave an estimate for the parameter vector

which was quite good�

Parameter estimation in linear regression using the least squares method is a very

common problem in many statistical applications� and in almost all branches of sci	

enti�c research� In a large proportion of these applications� the parameter values are

known to satisfy one or more constraints �which are usually linear�� The parameter es	

timation problem in constrained linear regression is a quadratic programming problem

when the constraints on the parameters are linear�

����� Application of Quadratic Programming

in Algorithms for NLP	 Recursive Quadratic

Programming Methods for NLP

Recently� algorithms for solving general nonlinear programs� through the solution

of a series of quadratic subproblems have been developed ����� to ������ These methods

are called recursive quadratic programming methods� or sequential quadratic

programming methods� or successive quadratic programming methods in the

literature� Computational tests have shown that these methods are especially e�cient

in terms of the number of function and gradient evaluations required� Implementation

of these methods requires e�cient algorithms for quadratic programming� We provide

here a brief description of this approach for nonlinear programming� Consider the

nonlinear program�
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Minimize ��x�

Subject to gi�x� � 
� i � � to k

gi�x� �� 
� i � k � � to m
������

where ��x� and gi�x� are real valued twice continuously di�erentiable functions de�ned

over Rn� Let g�x� � �g��x�� � � � � gm�x��T � Given the Lagrange multiplier vector � �

���� � � � � �k� �k��� � � � � �m�� the Lagrangian corresponding to ������ is L�x� �� � ��x��
�g�x�� The �rst order �or Karush	Kuhn	Tucker� necessary optimality conditions for

this problem are
rxL�x� �� � r��x���rg�x� � 


�i �� 
 i � k � � to m

�igi�x� � 
 i � k � � to m

gi�x� � 
 i � � to k

gi�x� �� 
 i � k � � to m�

������

The methods described here for tackling ������ try to obtain a solution x and a La	

grange multiplier vector �� which together satisfy ������� through an iterative process�

In each iteration� a quadratic programming problem is solved� the solution of which

provides revised estimates of the Lagrange multipliers and also determines a search

direction for a merit function� The merit function is an absolute value penalty func	

tion �L�	penalty function� that balances the two competing goals of decreasing ��x�

and reducing the amounts by which the constraints are violated� The merit function

is then minimized in the descent direction by using a line minimization procedure�

The solution of this line minimization problem produces a revised point x� With the

revised x and �� the method goes to the next iteration� The �rst iteration begins with

an initial point x and Lagrange multiplier vector � satisfying �i �� 
� i � k � � to m�

At the beginning of an iteration� let "x� "� be the current vectors� De�ne

Q�d� � L�"x� "�� �
�rxL�"x� "��

�
d�

�

�
dT

��L�"x� "��

�x�
d ������

where d � x�"x� Q�d� is the Taylor series approximation for L�x� "�� around the current

point "x up to the second order� Clearly ��L��x����
�x� changes in each iteration� Since this

is an n � n matrix� recomputing it in each iteration can be very expensive computa	

tionally� So in computer implementations of this method� ��L��x����
�x� is approximated by

a matrix B which is revised from iteration to iteration using the BFGS Quasi	Newton

update formula that is widely used for unconstrained minimization� In the initial step�

approximate ��L
�x� by B� � I� the unit matrix of order n� Let xt� �t� Bt� denote the

initial point� the initial Lagrange multiplier vector� and the approximation for ��L
�x�

in

the t	th iteration� Let xt�� be the point and �t�� the Lagrange multiplier vector at

the end of this iteration� De�ne

	t�� � xt�� � xt

qt�� �
�rxL�x

t��� �t����rxL�x
t� �t���

�T
pt�� � rt��q

t�� � ��� rt���Bt	
t��
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where

rt��

���
� � if �	t���T qt�� �� �
����	t���TBt	

t��

�
�
�����	t���TBt	

t���

�	t���TBt	t�� � �	t���T qt��
� if �	t���T qt�� � �
����	t���TBt	

t�� �

Then update ��L
�x� by the formula

Bt�� � Bt �
pt���pt���T

�	t���T pt��
� �Bt	

t����Bt	
t���T

�	t���TBt	t��
� ������

This updating formula is a slight modi�cation of the BFGS �Broyden	Fletcher	Gold	

farb	Shanno� formula for updating the Hessian �the BFGS updating formula discussed

in Section �
���� is for updating the inverse of the Hessian� the one given here is for

updating the actual Hessian itself��

If rt�� � �� then pt�� � qt�� and the updating formula reduces to the standard

BFGS formula for the approximation of the Hessian� The de�nition of pt�� using rt��
is introduced to assure that �	t���T pt�� � 
� which guarantees the hereditary positive

de�niteness of the updates Bt� The quantities 
��� 
�� are choosen from numerical ex	

periments� they can be changed� This updating formula provides a symmetric positive

de�nite approximation for ��L
�x� � Also� in actual implementation� the second term in

Q�d� in ������ is replaced by �r��"x��d�
Therefore� the quadratic program solved in this iteration is� �nd d that

minimizes �r��"x��d� �����dT "Bd

subject to gi�"x� � �rgi�"x��d
�
� 
� i � � to k

�
� 
� i � k � � to m

������

where "B is the current approximation for ��L
�x� �

Let �d denote the optimum solution of the quadratic program ������� and let �� �

����� � � � � ��m� denote the associated Lagrange multiplier vector corresponding to the

constraints in ������� If �d � 
� from the optimality conditions for the quadratic program

������� it can be veri�ed that �"x� ��� together satisfy ������ and we terminate� If �d �� 
�

it will be a descent direction for the merit function at "x� In the quadratic programm

������� to make sure that the Taylor series approximations remain reasonable� one

could add additional bound conditions of the form ��j �� dj �� �j � j � � to n� where

�j are suitably choosen small positive numbers�

The form of the function that is minimized in the line search in this iteration is

the merit function which is a L�	penalty function

S�x� � ��x� �
kX
i��

"
ijgi�x�j�
mX

i�k��

"
ijminimum f
� gi�x�gj ������

where the last two terms are weighted sums of the absolute constraint violations� The

weights "
i used in ������ satisfy 
i � j��ij� they are usually obtained from

"
i � maximum fj��ij� ������
i � j��ij�g � i � � to m�
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where 
i are the weights used in the previous iteration� In Theorem ���� given below

we prove that if �d �� 
� it is a descent direction at the current point "x� for the specially

choosen merit functions S�x� de�ned in ������ �this means that for � � 
 and small

S�"x�� �d� � S�"x�� i� e�� that S�x� strictly decreases as we move from "x in the direction
�d�� The merit function S�x� is minimized on the half	line fx � x � "x � � �d� � �

� 
g�
For this we de�ne f��� � S�"x � � �d� and minimize f��� over � �

� 
 by using some

one dimensional line search algorithm �see Chapter �
�� If �� is the value of � that

minimizes f��� over � �
� 
� let �x � "x� �� �d� The point �x is the new point� it is obtained

by moving a step length of �� from "x in the direction �d�

If �x� �� satisfy ������ to a reasonalbe degree of approximation� the method termi	

nates� otherwise it moves to the next iteration with them�

The Descent Property

Theorem ���	 Suppose "B is symmetric and PD� Let �d� �� be the optimum solution

and the associated Lagrange multiplier vector for the quadratic program �	��
�� If
�d �� 
� it is a descent direction for the merit function S�x� at "x�

Proof� By the �rst order necessary optimality conditions for the quadratic program

������ we have

r��"x� � � "B �d�T � ��rg�"x� � 


��i�gi�"x� � �rgi�"x�� �d� � 
 � i � � to m�
������

So� for � positive and su�ciently small� since all the functions are continuously di�er	

entiable� we have

f��� � S�"x� � �d� � ��"x� � ��r��"x�� �d�
kX
i��

"
ijgi�"x� � ��rgi�"x�� �dj

�
mX

i�k��

"
i�minf
� gi�"x� � ��rgi�"x�� �dg� � o���

������

where o��� is a function of � satisfying the property that the limit �o������ as �� 


is 
 �the reason for the minus sign in the last line of ������ is the following� Since

minf
� gi�x�g �� 
� jminf
� gi�x�gj � �minf
� gi�x�g��
Let J � fi � k � � �� i �� m� gi�"x� � 
g� the index set of inequality constraints in

the original problem ������ violated by the current point "x� For k � � �� i �� m� i �� J�
if gi�"x� � 
� then �rgi�"x�� �d �� 
� from the constraints in ������� So� when � is positive

but su�ciently small� for k � � �
� i �� m� i �� J� minf
� gi�"x� � ��rgi�"x�� �dg � 
�

Therefore�

mX
i�k��

"
i�minf
� gi�"x� � ��rgi�"x�� �dg� �
X
i�J

"
i�gi�"x� � ��rgi�"x�� �d� � ����
�
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Also� for � �� i �� k� �rgi�"x�� �d � �gi�"x� by the constraints in ������� Therefore

kX
i��

"
ijgi�"x� � ��rgi�"x�� �dj � ��� ��
kX
i��

"
ijgi�"x�j � ������

%From ������ we have �r��"x�� �d � � �dT "B �d����rg�"x�� �d � � �dT "B �d�
Pm

i�� ��i�rgi�"x�� �d �

� �dT "B �d�Pm
i�� ��igi�"x�� Using this and ����
�� ������ in ������� we get

f��� � ��"x� �
kX
i��

"
ijgi�"x�j �
X
i�J

"
igi�"x�

� ��� �dT "B �d�
kX
i��

"
ijgi�"x�j �
mX
i��

��igi�"x��
X
i�J

"
i�rgi�"x�� �d� � o���

� f�
� � ��� �dT "B �d�
kX
i��

�"
ijgi�"x�j� "�igi�"x��

�
X
i�J

��igi�"x��
X
i�J

�"
i�rgi�"x�� �d� ��igi�"x��� � o��� �

������

where J � fk � �� � � � �mg n J� Now �dT "B �d � 
 since "B is PD and �d �� 
� Also�Pk
i���"
ijgi�"x�j���igi�"x�� �� 
� since "
i �� j��ij for all i � � to k� Again

P
i�J ��igi�"x� �� 


since ��i �� 
 and gi�"x� �� 
 for all i � J � fk � �� � � � �mg n J� Further� for i � J�

gi�"x� � 
� the constraints in the quadratic program imply �rgi�"x�� �d �
� �gi�"x� � 



therefore�
P

i�J�"
i�rgi�"x�� �d � ��igi�"x�� ��
P

i�J jgi�"x�j�"
i � ��i� �� 
� All this implies

that the coe�cient of � on the right hand side of ������ is strictly negative� that is�

f���� f�
� � 
 when � is su�ciently small and positive�

It is possible that even though the original problem is feasible and has a KKT

point� the quadratic program ������ may be infeasible in some steps� See Example

���� In such steps� it is possible to de�ne an alternate quadratic program of higher

dimension which is always feasible� whose solution again provides a descent direction

for the merit function S�x�� One such modi�cation is given by the following quadratic

programming problem

minimize �r��"x��d� �����dT "Bd� �
� mX
i��

ui �
kX
i��

vi
�

subject to gi�"x� � �rgi�"x��d� ui � vi � 
 � i � � to k

gi�"x� � �rgi�"x��d� ui �� 
 � i � k � � to m

ui� vi �� 
� for all i

������

where � is a positive penalty parameter�
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The quadratic program ������ is always feasible� since� d � 
 leads to a feasible

solution to it� Let �d� �� be an optimum solution and the associated Lagrange multiplier

vector for ������� If �d �� 
� it can be shown that it provides a descent direction for

the merit function S�x� at the current point "x using arguments similar to those in the

proof of Theorem ����� and the method proceeds as usual� If ������ is infeasible and
�d � 
 is an optimum solution of ������� we cannot conclude that "x is a KKT point for

the original problem ������� and the method breaks down
 however� the possibility of

this occurrence can be discounted in practice�

Example ���

Consider the following nonlinear program from the paper of K� Tone �������

Minimize ��x� � x���x
�
�

Subject to g��x� � x���x
�
���
 � 


g��x� � x� � � �� 


g��x� � x�� � �� 
 �

������

The set of feasible solutions for this problem is the thick chord of the circle in R� in

Figure ���� It can be veri�ed that x � ��� ��T is an optimum solution of this problem�

1

0 1

Figure ���
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We have�
r��x� � ��x�� � �x��

rg��x� � ��x�� �x��

rg��x� � ��� 
�

rg��x� � �
� �� �

We try to solve this problem by the recursive quadratic programming method using

x� � ���
���
�T as the initial point� The constraints for the initial quadratic pro	

gramming subproblem are

g��x
�� � �rg��x���d � ��
��
d���
d� � 


g��x
�� � �rg��x���d � � ��� d� �

� 


g��x
�� � �rg��x���d � � �� � d� �� 
 �

Even though the original NLP is feasible and has an optimum solution� it can be

veri�ed that this quadratic subproblem is infeasible� So� we use the quadratic pro	

gramming subproblem as in ������� Taking the initial approximation to the Hessian

of the Lagrangian to be B� � I�� this leads to the following quadratic programming

problem�

minimize �

d���
d��������d�� � d���

���u� � u� � u� � v��

subject to �
d���
d� �u��v�� ��


d� �u� �
� ��

d� �u��� ��

u�� v�� u�� u� �
� 
 �

������

Taking the penalty parameter � � �


� this quadratic program has �d � ������ ���T
as the optimum solution with �� � ���� � ��� �


� ��� � �� as the associated Lagrange

multiplier vector corresponding to the constraints�

If we take penalty parameter vector 
 � ���

� ��

� ��

� for constructing the

merit function� we get the merit function

S�x� � x�� � x�� � ��

jx�� � x�� � �
j� ��

jminf
� x� � �gj� ��

jminf
� x� � �gj �

We minimize S�x� on the half	line fx��
 �d � ���
� � � �
���
���
�T � 
 �� 
g� This
problem can be solved using some of the line minimization algorithms discussed in

Chapter �
� If the output of this problem is x�� we update the Hessian approximation

B� and with x�� �� move over to the next quadratic programming subproblem and

continue in the same way�

Under the assumptions�

�i� the quadratic program has an optimum solution in each step�

�ii� if �x� �� satis�es the KKT optimality conditions ������� then letting J�x� � fi �
� �� i �� m� gi�x� � 
g� we have frgi�x� � i � J�x�g is linearly independent
 �i � 
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for all i � J�x� 	 fk � �� � � � �mg
 and for any y �� 
� y � fy � �rgi�x�� y � 
� i �
J�x�g� yT ���L�x����x�

�
y � 
�

�iii� the initial point x� is su�ciently close to a KKT point for ������


it has been proved �see references ������ ������ that the sequence �xr� �r� generated by

the algorithm converges superlinearly to �x� �� which together satisfy �������

These recursive quadratic programming methods have given outstanding numer	

ical performance and thereby attracted a lot of attention� However� as pointed out

above� one di�culty with this approach is that the quadratic programming problem

������ may be infeasible in some steps� even if the original nonlinear program has an

optimum solution� in addition the modi�ed quadratic program ������ may have the

optimum solution �d � 
� in which case the method breaks down� Another di�culty is

that constraint gradients need to be computed for each constraint in each step� even for

constraints which are inactive� Yet another di�culty is the function f��� minimized

in the line search routine in each step� which is a non	di�erentiable L�	penalty func	

tion� To avoid these and other di�culties� the following modi�ed sequential quadratic

programming method has been proposed for solving ������ by K� Schittkowski ����
�

������

Choose the initial point x�� multiplier vector ��� B� � I or some PD symmetric

approximation for ��L�x�����
�x� � �� � R�� �� � Rm ��� � 
� �� � 
� and constants � � 
�

� � �� 
 � � � �� The choice of � � �
��� � � 
��� � � �

� and suitable positive

values for ��� �
� is reported to work well by K� Schittkowski ������� Evaluate ��x���

gi�x
��� rgi�x��� i � � to m and go to stage ��

General Stage r��� Let xr� �r denote the current solution and Lagrange multiplier

vector� De�ne

J� � f�� � � � � kg 
 fi � k � � �� i �� m� and either gi�x
r� �� � or �ri � 
g

J� � f�� � � � �mg n J� �

The constraints in ������ corresponding to i � J� are treated as the active set of

constraints at this stage� constraints in ������ corresponding to i � J� are the current

inactive constraints�

Let Br be the present matrix which is a PD symmetric approximation for ��L�xr ��r�
�x� �

this matrix is updated from step to step using the BFGS quasi	Newton update formula

discussed earlier� The quadratic programming subproblem to be solved at this stage

contains an additional variable� xn��� to make sure it is feasible� It is the following

minimize P �d� �
�

�
dTBrd� �r��xr��d� �

�

�
�rx

�

n��

�
subject to �rgi�xr��d� ��� xn���gi�x

r�

�
� 
� i � � to k
�
� 
� i � J� 	 fk � �� � � � �mg

�rgi�xsi��d� gi�x
r� �� 
� i � J�


 �� xn�� �� �

������
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where� for each i � J�� x
si denotes the most recent point in the sequence of points

obtained under the method� at which rgi�x� was evaluated
 and �r is a positive penalty
parameter which is updated in each step using the formula

�r � maximum

�
�� �

����dr���TAr��u
r�����

�� xr��n��

��
�dr���TBr��dr��

�
������

where xr��n�� u
r��� dr�� are the value of xn�� in the optimum solution� the optimum

Lagrange multiplier vector� and the optimum d	vector� associated with the quadratic

programming problem in the previous stage
 �� � � is a constant
 and Ar�� is the

n�m matrix� whose jth column is the gradient vector of gi�x� computed at the most

recent point� written as a column vector�

By de�nition of the set J�� the vector �d � 
� xn�� � �� is feasible to this quadratic

program� and hence� when Br is PD� this quadratic program ������ has a �nite unique

optimum solution� One could also add additional bound constraints on the variables

of the form �j �� dj �� �j � j � � to n� where �j are suitable chosen positive numbers�

to the quadratic programming subproblem ������� as discussed earlier�

Let �dr� xrn���� u
r� be the optimum solution and the optimum Lagrange multiplier

vector� for the quadratic program ������� The solution of the quadratic programming

subproblem ������ gives us the search direction dr� for conducting a line search for a

merit function or line search function corresponding to the original nonlinear program

������� If xrn�� � �� change �r into ��r in ������ and solve ������ after this change� If

this fails to lead to a solution with the value of xn�� within the upper bound� de�ne

dr � �B��
r

�rx���r �x
r� �r��

�T
ur � �r �r����r �x

r� �r��
������

where ��r �x
r� �r� is the line search function or the merit function de�ned later on in

�������

The new point in this stage is of the form

xr�� � xr � �rd
r

�r�� � �r � �r�u
r � �r�

where �r is a step length obtained by solving the line search problem

minimize h��� � ��r���x
r � �dr� �r � ��ur � �r��

over � � R�� where

���x� �� � ��x��
X
i�


��igi�x�� �

�
�i�gi�x��

��� �

�

X
i��

��i ��i ������

where � � f�� � � � � kg 
 fi � k � i �� m� gi�x� �� �i��ig� � � f�� � � � �mg n �� and the

penalty parameters �i are updated using the formula

�r��i � maximum

�
�ri �

r
i �

�m�uri � �ri �
�

��� xrn����d
r�TBrdr

�
� i � � to m� ����
�
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The sequence f�ri � r � 
� �� � � �g is a bounded sequence with �ri �� � for all r� and it

allows the possibility of decreasing the penalty parameters �i� A possible choice for

updating these parameters �r from stage to stage is by the formula

�ri � minimum
n
��

rp
�ri

o
� r � �� �� � � � � i � � to m�

The function ���x� �� is a di�erentiable augmented Lagrangian function� If �dr� ur�

are obtained from the solution of the quadratic program ������� let �r�� be obtained

using ����
�� On the other hand� if �dr� ur� are obtained from ������� let �r�� � �r�

If d h���
d	

�
� 
� replace �r by ��r� and go back to solving the modi�ed quadratic

subproblem ������� Otherwise� perform a line search to minimize h��� with respect

to �� over � �
� 
� and let �r be the optimum value of � for this line minimization

problem� De�ne
xr�� � xr � �rd

r

�r�� � �r � �r�u
r � �r�

update the matrix Br by the BFGS updating formula ������ and go to the next stage

with these new quantities�

The algorithm can be terminated in the rth stage� if the following conditions are

satis�ed
�dr�TBrd

r �
� ��

mX
i��

juri gi�xr�j �� �

krxL�x
r� ur��k� �� �

kX
i��

jgi�xr�j�
mX

i�k��

j minimum �
� gi�x
r��j ��

p
� �

For a global convergence analysis of this algorithm under suitable constraint quali�ca	

tion assumptions� see �������

Algorithms for Quadratic Programming Problems

In this book we will discuss algorithms for quadratic programming problems which

are based on its transformation to an LCP as discussed above� Since the quadratic

program is a special case of a nonlinear program� it can also be solved by the reduced

gradient methods� linearly constrained nonlinear programming algorithms� and various

other methods for solving nonlinear programs� For a survey of all these nonlinear

programming algorithms� see Chapter �
�

��� TWO PERSON GAMES

Consider a game where in each play of the game� player I picks one out of a possible

set of his m choices and independently player II picks one out of a possible set of his
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N choices� In a play� if player I has picked his choice� i� and player II has picked his

choice j� then player I loses an amount a�ij dollars and player II loses an amount b�ij
dollars� where A� � �a�ij� and B� � �b�ij� are given loss matrices�

If a�ij � b�ij � 
 for all i and j� the game is known as a zero sum game
 in

this case it is possible to develop the concept of an optimum strategy for playing

the game using Von Neumann�s Minimax theorem� Games that are not zero sum

games are called nonzero sum games or bimatrix games� In bimatrix games it is

di�cult to de�ne an optimum strategy� However� in this case� an equilibrium pair

of strategies can be de�ned �see next paragraph� and the problem of computing an

equilibrium pair of strategies can be transformed into an LCP�

Suppose player I picks his choice i with a probability of xi� The column vector

x � �xi� � Rm completely de�nes player I�s strategy� Similarly let the probability

vector y � �yj� � RN be player II�s strategy� If player I adopts strategy x and player

II adopts strategy y� the expected loss of player I is obviously xTA�y and that of player

II is xTB�y�

The strategy pair �x� y� is said to be an equilibrium pair if no player bene�ts

by unilaterally changing his own strategy while the other player keeps his strategy in

the pair �x� y� unchanged� that is� if

xTA�y �� xTA�y for all probability vectors x � Rm

and

xTB�y �� xTB�y for all probability vectors y � RN �

Let �� � be arbitrary positive numbers such that aij � a�ij�� � 
 and bij � b�ij�

� � 
 for all i� j� Let A � �aij�� B � �bij�� Since xTA�y � xTAy � � and xTB�y �

xTBy � � for all probability vectors x � Rm and y � RN � if �x� y� is an equilibrium

pair of strategies for the game with loss matrices A�� B�� then �x� y� is an equilibrium

pair of strategies for the game with loss matrices A� B� and vice versa� So without any

loss of generality� consider the game in which the loss matrices are A� B�

Since x is a probability vector� the condition xTAy �
� xTAy for all probability

vectors x � Rm is equivalent to the system of constraints

xTAy �� Ai�y for all i � � to m�

Let er denote the column vector in Rr in which all the elements are equal to �� In

matrix notation the above system of constraints can be written as �xTAy�em �
� Ay�

In a similar way the condition xTBy �
� xTBy for all probability vectors y � RN is

equivalent to �xTBy�eN �
� BTx� Hence the strategy pair �x� y� is an equilibrium pair

of strategies for the game with loss matrices A� B i�

Ay �� �xTAy�em

BTx �� �xTBy�eN �
������
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Since A� B are strictly positive matrices� xTAy and xTBy are strictly positive numbers�

Let 	 � x��xTBy� and � � y��xTAy�� Introducing slack variables corresponding to

the inequality constraints� ������ is equivalent to���u
v

����
��� 
 A
BT 


������ 	
�

��� �

����em
�eN

������u
v

��� �
� 
�

��� 	
�

��� �
� 
�

���u
v

���T ��� 	
�

��� � 
 �

������

Conversely� it can easily be shown that if �u� v� 	� �� is a solution of the LCP ������ then

an equilibrium pair of strategies for the original game is �x� y� where x � 	��
P

	i� and

y � ���
P

�j�� Thus an equilibrium pair of strategies can be computed by solving the

LCP �������

Example ��


Consider the game in which the loss matrices are

A� �

��� � � 


 � �

��� B� �

����� � 


 �� �

��� �

Player I�s strategy is a probability vector x � �x�� x��
T and player II�s strategy is a

probability vector y � �y�� y�� y��
T � Add � to all the elements in A� and � to all the

elements in B�� to make all the elements in the loss matrices strictly positive� This

leads to

A �

��� � � �
� � �

��� B �

��� � � �
� � �

��� �

The LCP corresponding to this game problem is�			

u�
u�
v�
v�
v�

����
�
�			


 
 � � �

 
 � � �
� � 
 
 

� � 
 
 

� � 
 
 


����

�			

	�
	�
��
��
��

����
 �

�			

��
��
��
��
��

����
 ������

u� v� 	� � �� 
 and u�	� � u�	� � v��� � v��� � v��� � 
 �

Example ����

The Prisoner�s Dilemma�

Here is an illustration of a bimatrix game problem from ������� Two well known

criminals were caught� During plea bargaining their Judge urged them both to confess

and plead guilty� He explained that if one of them confesses and the other does not�

the one who confesses will be acquitted and the other one given a sentence of �
 years
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in prison� If both of them confess� each will get a � year prison sentence� Both of

them know very well that the prosecution�s case against them is not strong� and the

established evidence against them rather weak� However� the Judge said that if both

of them decide not to confess� he will book both of them on some tra�c violations for

a year�s prison term each� For each prisoner� let � refer to his choice of confessing and

� to the choice of pleading not guilty� Measuring the loss in years in prison� their loss

matrices are�

A B

Player II�s Choice � � � � �

� � 
 � �


Player I�s Choice

� �
 � 
 �

In this game it can be veri�ed that the probability vectors �x � ��� 
�T � y � ��� 
�T �

provide the unique equilibrium pair for this game� resulting in a loss of a �ve year prison

term for each player� But if both player�s collude and agree to use the probability

vectors �"x � �
� ��T � "y � �
� ��T �� the result� loss of a year�s prison term for each

player� is much better for both� The trouble with the strategy �"x� "y� is that each can

gain by double	crossing the other�

Example ����

The Battle of the Sexes�

Here is another illustration of a bimatrix game from ������� A newly married couple

have to decide how they will spend Friday evening� The husband �player II� proposes

to go to a boxing match and the wife �player I� proposes to go to a musical concert�

The man rates the pleasure �or gain� or negative loss� he derives by going to the concert

and the boxing match to be � and � units respectively on a scale from 
 to �
 and the

corresponding �gure for the woman are � and � units respectively� For each player let

�� � refer to the choices of insisting on going to concert� boxing match respectively� If

their choices disagree� there is a �ght� and neither gains any pleasure from going out

that evening� Treating loss as negative pleasure� here are the loss matrices�

A B

Player II�s Choice � � � � �

� �� 
 �� 


Player I�s Choice

� 
 �� 
 ��
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For this game� it can be veri�ed that the probability vectors �x � ��� 
�T � y � ��� 
�T ��

�"x � �
� ��T � "y � �
� ��T � are both equilibrium pairs� The losses from the two equi	

librium pairs �x� y�� �"x� "y� are distinct� �x� y� will be preferred by player I� whereas II

will prefer �"x� "y�� Because of this� these equilibrium pairs are unstable� Even if player

I knows that II will use the strategy "y� she may insist on using strategy x rather than

"x� hoping that this will induce II to switch to y� So� in this game� it is di�cult to

foresee what will happen� The probability vectors ��x � ����� ����� �y � ����� ����T � is

another equilibrium pair� In this problem� knowledge of these equilibrium pairs seems

to have contributed very little towards the development of any �optimum� strategy�

Even though the theory of equilibrium strategies is mathematically elegant� and

algorithms for computing them �through the LCP formulation� are practically e�cient�

they have not found many real world applications because of the problems with them

illustrated in the above examples�

��� OTHER APPLICATIONS

Besides these applications� LCP has important applications in the nonlinear analysis of

certain elastic	plastic structures such as reinforced concrete beams� in the free bound	

ary problems for journal bearings� in the study of �nance models� and in several other

areas� See references ���� to ���� ���� ����� ����� ����� ����� ����� ����� ������

��� THE NONLINEAR

COMPLEMENTARITY PROBLEM

For each j � � to n� let fj�z� be a real valued function de�ned on Rn� Let f�z� �

�f��z�� � � � � fn�z��
T � The problem of �nding z � Rn satisfying

z �� 
� f�z� �� 


zjfj�z� � 
� for each j � � to n
������

is known as a nonlinear complementarity problem �abbreviated as NLCP�� If we de�ne

fj�z� � Mj�z � qj for j � � to n� it can be veri�ed that ������ becomes the LCP

������ Thus the LCP is a special case of the NLCP� Often� it is possible to transform

the necessary optimality conditions for a nonlinear program into that of an NLCP and

thereby solve the nonlinear program using algorithms for NLCP� The NLCP can be

transformed into a �xed point computing problem� as discussed in Section ������ and

solved by the piecewise linear simplicial methods presented in Section ���� Other than

this� we will not discuss any detailed results on NLCP� but the references ����� to �����

����� ����� ����� can be consulted by the interested reader�
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��� Exercises

��� Consider the two person game with loss matrices A� B� Suppose A � B � 
�

Then the game is said to be a zero sum game �see references ������ ������� In this

case prove that every equilibrium pair of strategies for this game is an optimal pair

of strategies in the minimax sense �that is� it minimizes the maximum loss that each

player may incur� See references ������ ������� Show that the same results continue to

hold as long as aij � bij is a constant independent of i and j�

��	 Consider the bimatrix game problem with given loss matrices A� B� Let x �

�x�� � � � � xm�T and y � �y�� � � � � yn�
T be the probability vectors of the two players� Let

X � �x�� � � � � xm� xm���
T and Y � �y�� � � � � yn� yn���

T � Let er be the column vector in

Rr all of whose entries are �� Let S � fX � BTx� eTnxm�� �� 
� eTmx � �� x �� 
g and

T � fY � Ay�eTmyn�� �� 
� eTny � �� y �� 
g� Let Q�X�Y � � xT �A�B�y�xm���yn���
If �x� y� is an equilibrium pair of strategies for the game and xm�� � xTBy� yn�� �

xTAy� prove that �X�Y � minimizes Q�X�Y � over S�T � f�X�Y � � X � S� Y � Tg�
�O� L� Mangasarian�

��
 Consider the quadratic program�

Minimize Q�x� � cx� �
�x

TDx

Subject to Ax �� b

x �� 


where D is a symmetric matrix� K is the set of feasible solutions for this problem� x

is an interior point of K �i� e�� Ax � b and x � 
��

�a� What are the necessary conditions for x to be an optimum solution of the problem!

�b� Using the above conditions� prove that if D is not PSD� x could not be an optimum

solution of the problem�

��� For the following quadratic program write down the corresponding LCP�

Minimize ��x� � �x� � �x� ��x�� � �x�� �
�
�x

�
�

Subject to x� � �x� � x� �� �

xj �� 
 for allj �

If it is known that this LCP has a solution in which all the variables x�� x�� x� are

positive� �nd it�
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��� Write down the LCP corresponding to

Minimize cx� �
�x

TDx

Subject to x �� 
 �

��
 Let

M �

����� �
� ��

��� � q �

��� �
�

��� �

Show that the LCP �q�M� has four distinct solutions� For n � �� construct a square

matrix M of order � and a q � R� such that �q�M� has eight distinct solutions�

Hint� Try �M �

������� � �� ��
�� � ��
�� �� �

������� q �

������� �
�
�

������� 
 or try M � �I� q � 
 �

���� Let

M �

������� 
 
 �

 
 �

 
 


������� q �

������� 

��



������� �

Find out a solution of the LCP �q�M� by inspection� However� prove that there exists

no complementary feasible basis for this problem�

�L� Watson�

���� Test whether the following matrices are PD� PSD� or not PSD by using the

algorithms described in Section ������������ 
 � ��

 
 ��
� � �

������� �

������� � � ��

 
 ��

 
 �

������� �

������� � �

 �

 � �


 
 �

������� �

������� � �� ��

 � ��

 
 �

������� �

���� Let Q�x� � �����xTDx� cx� If D is PD� prove that Q�x� is bounded below�

���� Let K be a nonempty closed convex polytope in Rn� Let f�x� be a real valued

function de�ned on Rn� If f�x� is a concave function� prove that there exists an

extreme point of K which minimizes f�x� on K�

���� Let D be an arbitrary square matrix of order n� Prove that� for every positive

and su�ciently large 
� the function Q��x� � xT �D � 
I�x� cx is a concave function

on Rn�
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���	 Consider the following quadratic assignment problem�

minimize z�x� �
nX
i��

nX
j��

nX
p��

nX
q��

cijpqxijxpq

subject to
nX
j��

xij � �� for all i � � to n

nX
i��

xij � �� for all j � � to n

xij �� 
� for all i� j � � to n

������

and

xij integral for i� j � � to n � ������

Show that this discrete problem ������� ������ can be posed as another problem of the

same form as ������ without the integrality constraints �������

���
 Consider an optimization problem of the following form

minimize
�xTDx��
�

dx� �

subject to Ax �� b

x �� 


where D is a given PSD matrix and it is known that dx � � � 
 on the set of fea	

sible solutions of this problem� Using the techniques of fractional programming �see

Section ���
 in �������� show how this problem can be solved by solving a single con	

vex quadratic programming problem� Using this� develop an approach for solving this

problem e�ciently by algorithms for solving LCPs

�J� S� Pang� ��������

���� Let D be a given square matrix of order n� Develop an e�cient algorithm which

either con�rms that D is PSD or produces a vector y � Rn satisfying yTDy � 
�

���� Consider the following quadratic programming problem

minimize Q�x�� cx�
�

�
xTDx

subject to a�� Ax �� b

l�� x �� u

where A� D� c� a� b� l� u are given matrices of orders m � n� n � n� � � n� m � ��

m� �� n� �� n�� respectively� and D is symmetric� Express the necessary optimality

conditions for this problem in the form of an LCP� �R� W� H� Sargent� �������



�� Chapter �� Linear Complementarity Problem� Its Geometry� and Applications

���
 Suppose D is a symmetric matrix of order n� Show that the KKT necessary

optimality conditions for the quadratic program

minimize cx� �����xTDx

subject to 
 �� x �� b

where b � 
 is a given vector� are of the form� �nd� x� y �
� 
 in Rn satisfying cT �

Dx� y �� 
� b� x �� 
� xT �cT �Dx� y� � yT �b� x� � 
� Express these conditions in

the form of an LCP� Also prove that this is equivalent to �nding an x � Rn satisfying


 �� x �
� b and �u� x�T �Dx� cT � �� 
 for all 
 �� u �

� b� Prove that this LCP always

has a solution and that the solution is unique if D is a P 	matrix�

�B� H� Ahn ������ S� Karamardian �������

���� Weighted Min�Max Location Problem� Givenm points ai � �ai�� � � � � a
i
n�

T

� Rn� i � � to m� and positive weights �i� i � � to m associated with these points�

de�ne the function ��x� � maximum f�i
p
�x� ai�T �x� ai� � i � � to mg over x �

Rn� The weighted min	max location problem is to �nd an x � Rn that minimizes

��x�� Show that this problem is equivalent to the problem

minimize 


subject to 
� ��i �kaik� �
nX
j��

x�j � �
nX

j��

aijxj� �� 
� i � � to m ������

where 
 is treated as another variable in ������� Consider the following quadratic

program

minimize Q�X� �
nX

j��

x�j � xn��

subject to xn�� � �
nX
j��

aijxj �� kaik� � 


��i
� i � � to m

������

where xn�� is an additional variable in ������� X � �x�� � � � � xn� xn���� Prove that

if �x� 
� is feasible to ������� �x� 
� xn��� where xn�� �
Pn

j�� x
�

j � is feasible to ������

with Q�X� � 
� Conversely if �"x� "
� is feasible to ������ with Q� "X� �� 
� then show

that �"x � �"x�� � � � � "xn�� "
� is feasible to ������� Also� for each 
 � 
� prove that the

optimum solution of ������ is unique� Treating 
 as a parameter� denote the optimum

solution of ������ as a function of 
 by X�
�� Let �
 be the smallest value of 
 for

which Q�X�
�� �� 
� Prove that x��
� is the optimum solution of the min	max location

problem� Use these results to develop an algorithm for the min	max location problem

based on solving a parametric right hand side LCP�

�R� Chandrasekaran and M� J� A� P� Pacca� ������

���� Let F be a square matrix of order n� In general there may be no relation

between determinant ��F � FT ���� and determinant �F �� Establish conditions under

which determinant ��F � FT ���� �� determinant �F ��
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���� Let K � Rn convex and Q�x� � cx� �
�x

TDx� If Q�x� is convex over K and K

has nonempty interior� prove that Q�x� is convex over the whole space Rn�

���� Concave Regression Problem� Here� given a real valued function ��t� de	

�ned on an interval� it is desired to �nd a convex �or concave� depending on the

application� function that approximates it as closely as possible� Speci�cally� suppose

we are given �i � ���i�� i � � to n� where �� � �� � � � � � �n� So we are given the

values of ��t� at the points t � ��� � � � � �n� It is required to �nd real values f�� � � � � fn
so that fi � f��i�� i � � to n where f is a convex function de�ned on the real line�

that minimizes the measure of deviation
Pn

i�� �i��i � fi�
� where �i� i � � to n are

given positive weights� Formulate this problem as an LCP�

���� K� and K� are two convex polyhedra in Rn� each of them provided as the set

of feasible solutions of a given system of linear inequalities� Develop an algorithm for

the problem

minimize kx� yk
x � K��y � K� �

���	 Sylvester�s Problem� We are given a set of n points in Rm� fA��� � � � � A�ng�
where A�j � �a�j� � � � � amj�

T � j � � to n� It is required to �nd the smallest diameter

sphere in Rm containing all the points in the set fA��� � � � � A�ng� Transform this into a

quadratic program and discuss an algorithm for solving it� Apply your algorithm to �nd

the smallest diameter circle containing all the points in f��� ��� ���� ��� ������� ���� ��g
in R��

�References ����� ������

���
 Let K be any convex polyhedral subset of Rn �you can assume that K is the

set of feasible solutions of Ax �� b where A� b are given�� Let x�� x� be given points in

Rn� Let �x� "x be respectively the nearest points in K �in terms of the usual Euclidean

distance� to x�� x� respectively� Prove that k�x� "xk �� kx� � x�k�

���� Let � � ���� � � � � �n� be a given row vector of Rn and let x� � Rn be another

given column vector� It is required to �nd the nearest point in K � fx � �x �� 
� x �� 
g
to x�� in terms of the usual Euclidean distance� For this� do the following� Let 
 be

a real valued parameter� Let 
� be the smallest nonnegative value of 
 for which

the piecewise linear� monotonically decreasing function ��x� � 
�T �� assumes a non	

positive value� Let x � �x� � 
��
T ��� �For any vector y � �yj� � Rn� y� � �y�j �

where y�j � Maximum f
� yjg for each j�� Prove that x is the nearest point in K to

x��
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Extend this method into one for �nding the nearest point in � � fx � x �� 
� �x ��
�g to x�� where � is a given number� assuming that � �� ��
�W� Oettli ����
��

���� Let M be a square matrix of order n and q � Rn� Let z � Rn be a vector of

variables� De�ne� fi�z� � minimum fzi�Mi�z � qig� that is

fi�z� � Ii�z if �Mi� � Ii��z � qi �� 


� Mi�z � qi if �Mi� � Ii��z � qi �� 


for each i � � to n�

�a� Show that fi�z� is a piecewise linear concave function de�ned on Rn

�b� Consider the system of equations

fi�z� � 
 i � � to n �

Let z be a solution of this system� Let w � Mz � q� Prove that �w� z� is a

complementary feasible solution of the LCP �q�M��

�c� Using �b� show that every LCP is equivalent to solving a system of piecewise linear

equations�

�R� Saigal�

���
 For j � � to n de�ne x�j � Maximum f
� xjg� x�j � � Minimum f
� xjg� Let

x � �xj� � Rn� x� � �x�j �� x
� � �x�j �� Given the square matrix M of order n� de�ne

the piecewise linear function

TM �x� � x� �Mx� �

Show that TM �x� is linear in each orthant of Rn� Prove that �w � x�� z � x�� solves

the LCP �q�M� i� q � TM �x��

�R� E� Stone �������

���� Let D be a given square matrix of order n� and f�x� � xTDx� Prove that there

exists a nonsingular linear transformation� y � Ax �where A is a square nonsingular

matrix of order n� such that

f�x� � y�� � � � �� y�p � y�p�� � � � �� y�r

where 
 �� p �� r �� n� Discuss an e�cient method for �nding such a matrix A� given

D�

Find such a transformation for the quadratic form f�x�� x�� x�� � x���x
�
��x

�
���x�x��

�x�x� � �x�x� �this dates back to Lagrange in ����� see D� E� Knuth ��
��
���
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���� Sylvester�s Law of Inertia �dates from ������ Let D be a given square

matrix of order n� and f�x� � xTDx� If there exist nonsingular linear transformations�

y � Ax� z � Bx �A� B are both square nonsingular matrices of order n� such that

f�x� � y�� � � � �� y�p � y�p�� � � � �� y�r � z�� � � � �� z�q � z�q�� � � � �� z�s

then prove that p � q and r � s�

This shows that the numbers p and r associated with a quadratic form� de�ned in

Exercise ���
 are unique

�see D� E� Knuth ��
��
���

���� Using the notation of Exercise ���
 prove that r � n i� the matrix �D �DT ���

has no zero eigenvalues and that p is the number of positive eigenvalues of

�D �DT ����

Let D�� D� be two given square matrices of order n� and let D	 � �� � ��D� �

�D�� Let r�D	�� p�D	� be the numbers r� p� associated with the quadratic form f	 �

xTD	x as de�ned in Exercise ���
� If r�D	� � n for all 
 �� � �
� �� prove that p�D�� �

p�D���

�See D� E� Knuth ��
��
���

���� To Determine Optimum Mix of Ingredients for Moulding Sand in a

Foundry� In a heavy casting steel foundry� moulding sand is prepared by mixing

sand� resin �Phenol formaledhyde� and catalyst �Para toluene sulfonic acid�� In the

mixture the resin undergoes a condensation polymerization reaction resulting in a

phenol formaldehyde polymer that bonds and gives strength� The bench life of the

mixed sand is de�ned to be the length of the time interval between mixing and the

starting point of setting of the sand mix� In order to give the workers adequate time

to use the sand and for proper mould strength� the bench life should be at least �


minutes� Another important characteristic of the mixed sand is the dry compression

strength which should be maximized� An important variable which in�uences these

characteristics is the resin percentage in the mix� extensive studies have shown that the

optimum level for this variable is � ' of the weight of sand in the mix� so the company

has �xed this variable at this optimal level� The other process variables which in�uence

the output characteristics are�

x� � temperature of sand at mixing time

x� � ' of catalyst� as a percent of resin added

x� � dilution of catalyst added at mixing �

The variable x� can be varied by adding water to the catalyst before it is mixed� An

experiment conducted yielded the following data�
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Bench life can be approximated very closely by an a�ne function in the variables x��

x�� x�
 and dry compression strength can be approximated by a quadratic function in

the same variables� Find the functional forms for these characteristics that provide the

best approximation� Using them� formulate the problem of �nding the optimal values

of the variables in the region 
 �
� x� �

� �
� �� �
� x� �

� �
� �
 �
� x� �

� �
� so as to

maximize the dry compression strength subject to the additional constraint that the

bench life should be at least ten� as a mathematical programming problem� Find an

optimum solution to this mathematical program� �Hint� For curve �tting use either

the least squares method discussed in Section ������ or the minimum absolute deviation

methods based on linear programming discussed in ������ Section ��������

�Bharat Heavy Electricals Ltd�� Hardwar� India��

���� Synchronous Motor Design Problem� There are �� important design vari	

ables �these are variables like the gauge of the copper wring used� etc� etc�� denoted by

x� to x�� and let x � �x�� � � � � x���
T � These variables e�ect the raw material cost for

this motor� denoted by f��x�
 the e�ciency of the motor �� �output energy� �input

energy� measured as a percentage� denoted by f��x�
 and the power factor �this mea	

sures leakage� it is a loss measured as a percentage� denoted by f��x�� Subroutines

are available for computing each of the functions f��x�� f��x�� f��x� for given x� The

problem is to �nd optimal values for the variables which minimizes f��x� subject to

f��x� �� ���� and f��x� �� �
 and l �� x �
� u� where l� u are speci�ed lower and upper

bound vectors for the variables� Discuss a method for solving this problem�



���� Exercises 	�

���	 Quadratic Programming Model to Determine State Taxes� It is re	

quired to determine optimum levels for various state government taxes that minimizes

instability while meeting constraints on growth rates over time� Seven di�erent taxes

are considered� sales� motor fuel� alcoholic beverages� tobacco� motor vehicle� personal

income� and corporate taxes� State government �nance is based on the assumption

of predictable and steady growth of each tax over time� Instability in tax revenue is

measured by the degree to which the actual revenue di�ers from predicted revenue�

Using past data� a regression equation can be determined to measure the growth

in tax revenue over time� Let s be the tax rate for a particular tax and St the expected

tax revenue from this tax in year t� Then the regression equation used is

logeSt � a� bt� cs

where a� b� c are parameters to be determined using past data to give the closest �t�

Data for the past �
 years from a state is used for this parameter estimation� Clearly�

the parameter c can only be estimated� if the tax rate s for that tax has changed during

this period� this has happened only for the motor fuel and the tobacco taxes� The best

�t parameter values for the various taxes are given below �for all but the motor fuel

and tobacco taxes� the tax rate has remained the same over the �
 years period for

which the tax data is available� and hence the parameter a given below for these taxes�

is actually the value of a� cs� as it was not possible to estimate a and c individually

from the data��

Table �� Regression coe�cient values

j Tax j a b c

� Sales ����� ��
�

� Motor fuel �
��� �
�
 ����

� Alcoholic beverages �
��� �
��

� Tobacco ���� �
�� ��
�

� Motor vehicle �
��� �
��

� Personal income ����� ���


� Corporate ����
� ����

The annual growth rate is simply the regression coe�cient b multiplied by �

 to

convert it to percent�

For ����� the tax revenue from each tax as a function of the tax rate can be

determined by estimating the tax base� This data� available with the state� is given

below�
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j Tax j Tax base �millions of dollars�

� Sales ������

� Motor fuel �����

� Alcoholic beverages ���

� Tobacco �
�

� Motor vehicle �����

� Personal income �
��
�

� Corporate ���



If sj is the tax rate for tax j in ���� as a fraction� xj � tax revenue to be collected in

���� in millions of dollars for the jth tax is expected to be� �tax base for tax j� sj�

Choosing the decision variables to be xj for j � � to �� let x � �x�� � � � � x��
T �

The total tax revenue is
P�

j�� xj� Then the variability or instability in this revenue is

measured by the quadratic function Q�x� � xTV x where V � the variance	covariance

matrix estimated from past data is����������������������
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Since V is symmetric� only the upper half of V is recorded above�

The problem is to determine the vector x that minimizes Q�x�� subject to several

constraints� One of the constraints is that the total expected tax revenue for ����

should be T � ��

 in millions of dollars� The second constraint is that a speci�ed

growth rate of 
 in the total tax revenue should be maintained� It can be assumed

that this overall growth rate is the function
P�

i��
xjbj
T which is a weighted average of

the growth rates of the various taxes� We would like to solve the problem treating 


as a nonnegative parameter� Of particular interest are values 
 � � ' and �� '�

The other constraints are lower and upper bounds on tax revenues xj � these are

of the form 
 �� xj �� uj for each j
 where uj is twice the ���� revenue from tax j� The

vector u � �uj� is ������ ��
� ���� ���� ��� �
��� �
�� in millions of dollars�

Formulate this problem as an LCP and solve it using the complementary pivot al	

gorithm discussed in Chapter �� Using the tax base information given above� determine

the optimal tax rates for ���� for each tax�

�F� C� White ����
�� my thanks to H� Bunch for bringing this paper to my attention��
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���
 Consider the equality constrained nonlinear program

minimize ��x�

subject to hi�x� � 
� i � � to m�

The quadratic merit function for this problem is S�x� � ��x� � �����
Pm

i���hi�x��
�

where � is a positive penalty parameter� Let x � Rn be an initial point and 
 �

�
�� � � � � 
m� � Rm be a given Lagrange multiplier vector� Consider the equality

constrained quadratic program in variables d � �d�� � � � � dn�
T

minimize r��x�d� �
�d

TBd

subject to �h�x��T � �rh�x��d � 
��

where B is a symmetric PD matrix of order n� If d �� 
 is an optimum solution of this

quadratic program� and � � ���� � � � � �m� the associated Lagrange multiplier vector�

prove that d is a descent direction for S�x� at x�

���� Let A � �aij� be a given square matrix of order n� Consider the usual assignment

problem

minimize z�x� �
nX
i��

nX
j��

aijxij

subject to
nX
i��

xij � �� j � � to n

subject to
nX
j��

xij � �� i � � to n

subject to xij �� 
� i� j � � to n �

i� Prove that if A is PD and symmetric� x � In � unit matrix of order n� is an

optimum solution for this problem� Is the symmetry of A important for this

result to be valid!

ii� Using the above� prove that if A is PD and symmetric� there exists a vector

u � �u�� � � � � un� satisfying

ui � uj �� aij � ajj� i� j � � to n �

���� Consider the problem of an investor having one dollar to invest in assets i �

�� � � � � n� If xi is invested in asset i� then 	ixi is returned at the end of the investment

period� where �	�� � � � � 	n� are random variables independent of the choice of xis� with

the row	vector of means 
 � �
�� � � � � 
n� �
 � 
� and a positive de�nite symmetric

variance	covariance matrix D� In portfolio theory� under certain assumptions� it is

shown that optimal investment proportions� x � �x�� � � � � xn�
T � may be obtained by

maximizing the fractional objective function

g�x� �

x

�xTDx��
�
�
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i� A real valued function f�x� de�ned on a convex set K � Rn is said to be pseudo	

concave on K if it is di�erentiable on K and for every x�� x� � K� rf�x���x� �
x�� �� 
 implies f�x�� �� f�x���

Prove that g�x� is pseudo	concave in fx � x � 
g� even though it is not in general

concave on this set�

For the problem of maximizing a pseudo	concave function on a convex set� prove

that every local maximum is a global maximum�

Consider the problem

maximize g�x�

subject to
nX
j��

xj � �

xj �� 
� for all j �

Show that this problem has a unique optimum solution� Also� show that an optimum

solution of this problem can be obtained from the solution of the LCP ��
�D��

�W� T� Ziemba� C� Parkan and R� Brooks	Hill ����
��

���
 In Section ������ the computational problems associated with the Hilbert matrix

were mentioned brie�y� Consider the following linear program

maximize cx

subject to Ax �� b

where

A �

��������������
�
�

�
� � � � �

n��
�
�

�
� � � � �

n��

���
���

���
�

n��
�

n�� � � � �
�n

��������������
b � �bi � i � � to n�T �

� nX
j��

�

i� j

�
c � �cj � j � � to n� �

� �

j � �
�

nX
i��

�

j � i

�
Clearly� this problem has the unique optimum solution x � ��� �� � � � � ��T and the dual

problem has the unique optimum solution � � ��� �� �� � � � � ��� The coe�cient matrix

A is related to the Hilbert matrix of order n� Verify that when this problem is solved

by pivotal algorithms such as the simplex algorithm� or by the complementary pivot

algorithm through an LCP formulation� using �nite precision arithmetic� the results

obtained are very bad� if n exceeds �
� say�

�E� Bernarczuk� �On the results of solving some linear programming problems using

program packages of IBM and Robotron computers��
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���� Consider the LCP �q�M�� De�ne

f�z� �
nX
i��

�minimum f
�Mi�z � qi � zig� zi��

Show that the LCP �q�M� is equivalent to the following concave minimization problem

minimize f�z�

subject to Mz�q�� 


z �
� 
�

�O� L� Mangasarian �������

���� Let n be a positive integer� Consider a square matrix x � �xij� of order n�

Order the entries xij in the matrix in the form of a vector in Rn� � in some order� Let

K � Rn� denote the set of all such vectors corresponding to PSD matrices x� Prove

that K is a convex cone� but not polyhedral� and has a nonempty interior�

���� Consider the LCP �q�M� ����� to ������ of order n� Now consider the following

mixed 
	� integer programming problem �MIP�

maximize yn��
subject to 
 �� My � qyn�� �� e� x


 �� y �� x� 
 �� yn�� �� �

xi � 
 or � for all i � � to n

������

where y � �y�� � � � � yn�
T � x � �x�� � � � � xn�

T and e is the vector of all �s in Rn� Suppose

the optimum objective value in the MIP ������ is y�n���

If y�n�� � 
� prove that the LCP �q�M� has no solution�

If y�n�� � 
 and �y�� x�� y�n��� is any optimum solution of the MIP ������� prove

that �w�� z�� is a solution of the LCP �q�M�� where

z� � ���y�n���y
�

w� � Mz� � q

�J� Ben Rosen� �Solution of general LCP by 
	� Mixed integer programming��

Computer Science Tech� Report ��	��� University of Minnesota� Minneapolis� May�

������
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