Chapter 10

SURVEY OF DESCENT BASED
METHODS FOR UNCONSTRAINED
AND LINEARLY CONSTRAINED
MINIMIZATION

Nonlinear Programming Problems

Eventhough the title “Nonlinear Programming” may convey the impression that the
subject includes all optimization problems other than linear programming problems,
it is not usually the case. Optimization problems involving discrete valued variables
(i. e., those which are restricted to assume values from specified discrete sets, such
as 0-1 variables) are not usually considered under nonlinear programming, they are
called discrete, or mixed-discrete optimization problems and studied separately.
There are good reasons for this. To solve discrete optimization problems we normally
need very special techniques (typically of some enumerative type) different from those
needed to tackle continous variable optimization problems. So, the term nonlinear
program usually refers to an optimization problem in which the variables are continuous
variables, and the problem is of the following general form:

minimize 6(x)
subject to  hi(x) =0, i=1tom (P)
gp(x) 20, p=1tot
where 6(z), h;(x), gp(x) are all real valued continuous functions of x = (z1,...,z,) €

R".

Suppose some of these functions are not differentiable at some points x. Assume
that gradients exist for each function almost everywhere, but are not continuous. Then
problem (P) is known as a non-smooth or non-differentiable optimization prob-
lem. On such a problem, the usual gradient-based methods and results may fail, and
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special attention must be given to the surfaces of non-differentiability, it becomes very
important to consider generalized gradients to handle such problems.

If all the functions 6(z), h;(x), g,(x) are continuously differentiable, problem (P)
is known as a smooth nonlinear program. In this book we only study smooth
nonlinear programs. However, some of the techniques that we discuss may convert a
smooth NLP into a special type of nonsmooth NLP, and then solve it. As an example,
the simplicial method discussed in Section 2.7.6 to solve the smooth NLP: minimize
6(x), subject to g;(x) < 0, converts it into the NLP: minimize 0(x), subject to s(z) < 0,
where s(z) = max-{g1(z), g2(x),...,gm(z)}. This modified problem is a nonsmooth
optimization problem, since s(x) may not be differentiable at some points z. However,
because of the special nature of s(x), we know that ds(z) = convex hull of {Vg;(x) : i
such that g;(x) = s(z)}, and hence for any given z, it is easy to find at least one point
in ds(x), and the special simplicial algorithms discussed in Section 2.7, are able to
solve this modified problem using only this information.

Consider the NLP (P) and assume that all the functions are continuously differen-
tiable. The constraints in (P) are either equality constraints, or inequality constraints.
(P) is the general form of the problem, and in a particular instance of (P), there may
or may not be such constraints. This problem is said to be:

an unconstrained minimization problem, if there are no constraints on the
variables, in the statement of the problem,

a linear programming problem, if all the functions 0(x), h;(x), g,(z) are affine
functions,

a quadratic programming problem, if #(z) is a quadratic function, and all
hi(z) and gp(x) are affine functions,

an equality constrained problem, if there are no inequality constraints on the
variables,

a linearly constrained NLP, if all the constraint functions h;(x), g,(z) are affine
functions,

a convex programming problem if §(z) is a convex function, all h;(x) are
affine functions, and all g,(z) are concave functions,

a nonconvex programming problem, if it is not a convex programming prob-
lem as defined above.

In this chapter, we provide a brief survey of some commonly used algorithms for
smooth NLPs, those in the areas of unconstrained and linearly constrained NLPs, which
constitute alternate methods to those discussed so far for solving quadratic programs.
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10.1 A FORMULATION EXAMPLE FOR
A LINEARLY CONSTRAINED
NONLINEAR PROGRAM

We begin this chapter with a practical example due to C. H. White, of a nonlinear
model in which the constraints are linear. It arose in the boiler shop of a company
which has five (5) boilers operating in parallel for generating steam. Data on the
boilers is given below.

Tableau 10.1

Boiler | Boiler load range

7 limits

lower | upper

Ly k; ap; | a1 a2; as;

1 10 units | 60 56.49 |1.67 | —.041 |.00030

2 10 60 71.37 |0.61 | —.016 |.00011
3 15 120 23.88 [2.05 | —.024 |.00009
4 12.5 112.5 |17.14 |2.73 | —.035 |.00014
5 15 135 72.38 10.34 | —.003 |.00001

The unit measures the rate at which steam is produced per unit time. If the ¢th boiler
is kept on, it must be operated within its load range limits [;, k;. The boiler’s energy
efficiency defined as a percentage is 100 x (energy content of output steam)/(energy
content in the input fuel). It tends to increase as the load moves up from the minimum
allowable operating load, and then peaks and drops as the load approaches the upper
limit. Data was collected on the boiler efficiencies at different operating load levels,
and the plots indicated that boiler efficiency can be approximated very well by a cubic
polynomial of the operating load. Let y(§) = efficiency of a boiler when it is operating
at load ¢ units. We approximate y(&) by f(£) = ag + a1€ + a2£2 + azé3, where ag, ay,
a2, ag are parameters to be estimated from data. The problem of determining the best
values of the parameters that give the closest fit between observed efficiency and the
cubic polynomial, is known as the parameter estimation problem or the curve
fitting problem. Suppose we have r observations on a boiler, at load levels &, t =1
to r yielding observed efficiencies of y;, t = 1 to r respectively. To derive the closest
fit we need to construct a measure of deviation of the functional value f(¢) from the
observed y(&) over the range of values of £ used in the experiment, depending on the
parameter vector a = (ag, a1, as,a3). Three different measures are in common use.
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They are

r 3
Ly(a) =) (yr— a0 — Y a.&5)?
1 s=1

t=

r 3

Li(a) = Z lyt — ao — Zaséﬂ
t=1 s=1

3

Loo(a) = Maximum {|y; — ag — Zas§f| :t=1tor}.

s=1

Since the Lo (a) measure is a sum of squares, the technique which chooses the parameter
vector a to minimize Lo(a) is called the least squares approach or the method of
least squares. If a = (ao, a1, Go, a3) is the best vector of parameter values obtained
under this method, the function ag + @1 + @262 + 4363 is called the least squares
approximation for y(¢).

If the parameter vector a is determined so as to minimize the measure Lo, (a), the
resulting function f(&) is known as the Tschebycheff approximation for y(¢).

If all the parameters appear linearly in the functional form f(&) (as in this boiler
efficiency example) the problem of minimizing either the Li- or L.,-measures can both
be posed as linear programs and solved by the efficient simplex method. However, if
the parameters appear nonlinearly in the functional form, the least squares method is
preferred for parameter estimation.

If the measure of deviation is too large even at the best parameter values, it is
necessary to review the choice of the functional form and modify it. Besides, it is
possible that no simple function provides a good approximation for all possible values
of load. It is only necessary to find a good functional representation of the efficiency
in the neighborhood of the optimum load values, if some reliable practical knowledge
is available on the likely location of this optimum.

Thus, even the process of constructing a mathematical model for the problem
might itself need the application of optimization algorithms for parameter estimation.

The Basic Difference Between Linear and Nonlinear Models

To construct a linear programming model involving n nonnegative variables subject to
m constraints, we need to estimate the (m + 1)(n + 1) — 1 coefficients of the variables
in the constraints and the objective function, these are the data elements in the model.
Real life LP applications routinely involve models with n = 100, 000 or more, and m
as large as 6000. A large scale LP model is usually of this size.

To construct a nonlinear model, we have to determine the functional form of the
objective and each constraint function, and obtain the best values for any parameters
in each. For this reason, practical nonlinear models tend to have fewer variables than
linear models. Depending on how complicated the functions involved are, a nonlinear
model with about 200 variables could usually be considered as a large scale model.
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Boiler Example, Continued

For the boiler problem, estimates of the best parameter values in the functional form
for the efficiency of each boiler are given in Tableau 10.1.

At a point of time, the Company’s steam requirements are 350 units per unit time.
The problem is to determine how this total load of 350 units should be shared across
the five (5) parallel boilers so as to minimize the total fuel cost. It may be possible to
get a lower overall cost by shutting down one or more of the boilers and meeting the
demand using only the remaining boilers. For example, here it can be verified that the
total load of 350 units can be met using boilers 3, 4, and 5 only. Thus the problem of
determining the most efficient plan to meet a load of exactly 350 units, leads to a mixed
integer nonlinear programming problem in which there are five zero-one variables to
determine which of the five boilers are shut down and which are kept operating, and
the operating load level for the boilers that are kept operating. In this plant however,
it is known that the Company’s steam requirements vary with time. When the demand
for steam goes up, if a boiler is kept operating, it is a relatively easy matter to increase
the boiler’s steam output by turning a few valves. On the other hand turning on a
shut down boiler is an expensive operation. In order to be able to meet the varying
steam requirements over time, it was determined that all the five boilers should be
kept operating. Under this condition, since x;/ f;(x;) is a measure of the energy cost of
obtaining a load of x; units from boiler ¢, we are lead to the following nonlinear model:

5
minimize Z JTz/fz(SUz)
i=1

5

subject to le = 350
i=1

llél'lékl, 1=1tob

which is a linearly constrained nonlinear program.

FExercise

10.1 Using the 0 — 1 variables y; defined by

y; = 1 if the ¢th boiler is kept operating
= 0 otherwise

formulate the problem of determining the most efficient plan for producing exactly 350
units of steam per unit time as a mixed integer NLP.
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10.2 TYPES OF SOLUTIONS FOR
A NONLINEAR PROGRAM

Consider a NLP in which a function 6(x) is required to be optimized subject to some
constraints on the variables z = (x1,...,7,)T. Let K denote the set of feasible so-
lutions for this problem. For this problem a feasible solution T € K is said to be
a

local minimum, if there exists an ¢ > 0 such that #(z) > 0(z) for all z € KN
{z: [l — =] <e},

strong local minimum, if there exists an € > 0 such that 6(x) > 0(Z) for all
reKn{x:||z-Z|| <e}, z #£7,

weak local minimum, if it is a local minimum, but not a strong one,

global minimum, if §(z) > 6(7) for all z € K,

local maximum, if there exists an ¢ > 0 such that 0(z) < 0() for all z € KN
{z: [l — =] <e},

strong local maximum, if there exists an € > 0 such that 6(z) < (%) for all
reKn{x:||lz—-Z|| <e}, v #£7,

weak local maximum, if it is a local maximum, but not a strong one,

global maximum, if §(z) < §(Z) for all z € K,

stationary point, if some necessary optimality conditions for the problem are
satisfied at the point 7.

These concepts are illustrated in Figure 10.1 for the one dimensional problem:

optimize 6(z) subject to z € R, a <z < b. 0(x) is plotted in Figure 10.1.

The points a, 2%, 27, !0, z'2 are strong local minima; z°, z*, 2%, 2!, b are

12

strong local maxima; z'2 is the global minimum; z° is the global maximum; in this

problem. At the point 23 the derivative of §(x) is zero, and so it is a stationary point

(satisfies the necessary optimality condition %(f) = 0) even though it is neither a local
minimum or maximum. In each of the intervals ' < z < 22, and 2® <z < 29, 0(z) is

1 2

a constant. z!', 22 are weak local minima; and 28, z°

are weak local maxima. Every
point z satisfying 2! < z < 22, 2% < x < 2% is both a weak local minimum and a weak
local maximum.
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0(X)

Figure 10.1

10.3 TYPES OF NONLINEAR PROGRAMS,
WHAT CAN AND CANNOT BE DONE
EFFICIENTLY BY EXISTING METHODS

Every local minimum is a global minimum for the problem of minimizing a convex
objective function on a convex set. Likewise, every local maximum is a global maximum
for the problem of maximizing a concave function on a convex set. Problems of this type
are considered to be nice problems in nonlinear programming, they are called convex
programming problems. The other class of NLPs in which a nonconvex objective
function is required to be minimized, or in which the set of feasible solutions is not
convex, are called nonconvex programming problems.

In general, it is very hard to find the global minimum, or even to check whether
a given feasible solution is a global minimum in a nonconvex programming problem.
Efforts have been made to find global minima by enumerating all local minima, but
these methods tend to be very inefficient. The enormity of this task can be appreciated
when we realize that some of the most difficult problems in mathematics that have
remained unresolved for centuries, can be posed as nonconvex programming problems.
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As an example, consider Fermat’s last Theorem (unresolved since 1637 AD, see
[10.34]) which states that the equation: z™ 4+ y™ — 2™ = 0, has no solution in integers
in the region x > 1, y > 1, 2 > 1, n > 3. Consider the following NLP, where o
is some positive parameter, 7w denotes the irrational number which is the length of
the circumference of the circle with unit diameter in R?, and cos @ denotes the cosine
function of the angle # measured in radians.

+ (=1 + cos(27y)) 2+

minimize (2% + y® — 2®)2 + a((—1 + cos(27z))?
2) (10.1)

(=1 + cos(272))2 + (=1 + cos(27n))
subject to z,y,2 > 1, n > 3.

(10.1) is a linearly constrained NLP. It can be verified that Fermat’s last Theorem
is false iff the optimum objective value in (10.1) is 0 and attained, since any feasible
solution (z,y,z,n) to (10.1) which makes the objective value zero provides a coun-
terexample to Fermat’s last Theorem. (10.1) is a nonconvex programming problem in
which every integer feasible solution is a local minimum. The objective function in
(10.1) is a sum of several penalty terms. The number of distinct local minima can be
very large even in nonconvex programming problems that do not have such penalty
terms in the objective function. As an example, consider the concave minimization

problem
n

minimize (x) = — ;(W —(1/2)) (10.2)

subject to 0 < z; <1, =1 ton.

Each of the 2™ extreme points of the set of feasible solutions of (10.2) is a local mini-
mum. Unfortunately, there are no techniques known for determining how many local
minima a general nonconvex programming problem has, other than plain enumeration.
In nonconvex programming problems, since in general it is very difficult to guarantee
that a global minimum will be obtained, the best thing that we can expect from an
algorithm is that it leads to a point satisfying a necessary condition for being a local
mimimum, and many of the descent type methods discussed in this chapter do that.
In these methods, the terminal solution obtained may depend on the initial point with
which the method is initiated. Usually, by running the algorithm with different initial
points, several local minima may be obtained, and the best among them might be a
reasonably good solution for the problem.

Starting the algorithm with an initial point, suppose a local minimum 7 is obtained
for a nonconvex programming problem. A technique often used to move to a different
local minimum is to add a penalty term like a/(||z — Z||)P where a > 0 and p > 2, to
the objective function, and use the algorithm again on the augmented problem. As z
approaches T, the penalty term a/(||x —Z||)P blows up to 0o, and this guarantees that
the algorithm moves to a point different from Z. But this may not be a satisfactory
approach to enumerate the local minima in a nonconvex program, because of the
numerical difficulties created by the addition of the penalty terms to avoid previously
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obtained local minima. Also, the augmented problem may have new local minima
which are not local minima of the original problem.

Because of this, if someone can establish the global minimum in a class of noncon-
vex programming problems, it is considered to be a mathematical breakthrough and
becomes a major international headline item. An example of this is the recent break-
through on establishing the minimum value of the permanent of a doubly stochastic
matrix of order n. Given a square matrix A = (a;;) of order n, its permanent is defined
by

F(A) =) ([(a1p,) - (anp,)] : sum over all the n!

permutations (p1,...,pn) of {1,...,n}).

A doubly stochastic matrix of order n is a nonnegative square matrix X = (z;;) of order
n, whose row sums and column sums are all equal to 1. The problem of minimizing the
permanent of doubly stochastic matrix of order n is therefore the NLP: find a square
matrix X = (x;;) of order n to

minimize  f(X)

n
subject to Z zi; =1, 1=1ton
=1

n
Y my=1j=1ton
=1

l’ijio, i,jzlton.

The objective function in this NLP is nonconvex, hence, this is a nonconvex pro-
gramming problem. In 1926 B. L. vanderWaerden [10.40] conjectured that the global
optimum for this problem is the doubly stochastic matrix (Z;;) in which Z;; = 1/n
for all 4,7; with an optimum objective value of n!/n™. This conjecture resisted the
attacks of many of the world’s greatest mathematicians, but was finally resolved in the
affirmative by G. P. Egorychev in 1980, see references [10.10, 10.11, 10.20].

10.4 CAN WE AT LEAST COMPUTE A
LOCAL MINIMUM EFFICIENTLY?

In convex programming problems, any point satisfying any of the well known necessary
optimality conditions such as the KKT conditions, is a local minimum and therefore it
is also a global minimum for the problem. To solve a convex programming problem, any
algorithm that is guaranteed to find a KKT point, if one exists, is thus adequate. Most
of the algorithms for solving NLP’s discussed in this book can be shown to converge
to a KKT point, if one exists, and so these algorithms compute local, and thus global
minima when applied on convex programming problems.
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In a nonconvex program, given a feasible solution x satisfying the usual necessary
optimality conditions, it may or may not even be a local minimum. If x does not satisfy
the sufficient optimality condition given in Appendix 4 for being a local minimum, it
may be very hard to verify whether it is a local minimum. As an example, consider
the problem discussed in Section 2.9.3

minimize 27 Dz

subject to x>0
where D is a given square matrix of order n. When D is not PSD, this NLP is the
simplest nonconvex NLP.

A sufficient condition for 0 to be a local minimum for this problem is that D
be PSD. If D is not PSD, 0 is a local minimum for this problem iff the matrix D is
copositive, no efficient methods are known at the moment for doing this. The method
discussed in Section 2.9.1 for testing copositiveness is a finite enumeration method,
but it may not be practically useful when n is large. As discussed in Section 2.9.3, the
problem of checking whether 0 is a local minimum for this problem is a hard problem.

On nonconvex programs involving inequality constraints, existing algorithms can
at best guarantee convergence to a KKT point in general. If the KK'T point obtained
does not satisfy some known sufficient condition for being a local minimum, it is then
hard to check whether it is actually a local minimum. However, as mentioned in Section
2.7.6, if the algorithm is based on a descent process (i. e., in a minimization problem,
if the algorithm is designed to obtain a sequence of points with decreasing objective
values) one can be reasonably confident that the solution obtained is likely to be a
local minimum.

10.5 PRECISION IN COMPUTATION

In linear or in convex quadratic programming problems, if all the data are rational
numbers, and if an optimum solution exists, there exists an optimum solution which is
a rational vector that can be computed exactly with finite precision arithmetic using
algorithms like the simplex algorithm or the complementary pivot method discussed
earlier. However, in general nonlinear programming, even when the constraints are
linear, and all the data in the model is rational, there may be optimum solutions,
but no rational optimum solution. For example consider the simple one dimensional
optimization problem: find z € R' that minimizes f(z) = —2z + (2%/3) subject
to x > 0. The unique optimum solution of this problem is T = V2, an irrational
number, so we can never compute the exact optimum solution of this problem on
digital computers that operate with finite precision arithmetic.

Hence, when dealing with general nonlinear programs, emphasis is placed on get-
ting an approximate optimum solution. In practical implementations, nonlinear algo-
rithms are usually terminated when optimality conditions are satisfied to a reasonable
degree of approximation, or when it is evident that the algorithm has obtained an
interval of sufficiently small length containing the true optimum solution.
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10.6 RATES OF CONVERGENCE

The algorithms discussed in this chapter are iterative in nature. They generate a
sequence of points {z” : 7 = 0,1,2,...} beginning with an initial point z°. Under
some conditions on the problem being solved, for most of these methods, it is usually
possible to prove that the sequence converges in the limit to a point x* which is a
point satisfying the necessary optimality conditions for a local minimum. Even when
this convergence is mathematically proven, the method is useful for solving practical
problems only if 2" converges rapidly to x* as r increases. Here we discuss how this
rate of convergence is measured mathematically.

Finite Termination Property: The sequence is said to have this property, if there
exists a finite value N such that ¥ = z* and the method terminates.

Quadratic Termination Property: The method is said to have this property if the
sequence generated terminates in a known finite number of iterations when applied to
a strictly convex quadratic function minimization problem.

Suppose the method does not have either of the above properties. Then it gen-
erates the truly infinite sequence {z" : r = 0,1,2,...}. Assume that the sequence
converges to z*, that " # z* for any r. The measure of the rate of convergence of
this sequence, tries to assess the improvement that occurs in each step, that is, in
effect it measures how close "1 is to z* compared to the closeness of z" to z*,
as r goes to co. The converging sequence {z"} is said to converge with order k
(or to have an asymptotic convergence rate k) if k is the largest number such that
limit, o0 (|27 — 2*||/]|2" — 2*||%) < co. When k = 1, the sequence is said to have
linear (or first order, or geometric) convergence rate, if limit, o (||z"T1 — 2*||/
|lz" — x*]|]) = v < 1. In this case, the quantity v is called the convergence ratio of
the sequence. If in fact v = 0 in this case, the sequence is said to have superlinear
convergence rate.

As an example consider the sequence of real numbers {a” : 7 = 0,1,...} where
0 < a < 1. The sequence converges to zero linearly. On the other hand the sequence
of real numbers {z" = (1/r) : r = 1,2,...} converges to zero with £ = 1, but its rate
of convergence is not linear, since limit, _, o (||[z"TY|/[|z"||) = limit, o0 ((r/(r+1)) =1
which is not strictly less than one.

If k = 2, the sequence {z"} is said to have quadratic (or second order) conver-
gence rate. Quadratic convergence is rapid, since it implies that once the sequence
reaches a small neighborhood of x*, the error in a step decreases as the square of the
error in the previous step (i. e. , the number of digits to which z" agrees with z* begin
to double after each step, after a certain number of steps).

Summary of Later Sections

In the following sections we discuss various descent methods in common use for solving
linearly constrained NLPs. These algorithms typically use some unconstrained mini-
mization algorithms and algorithms for solving nonlinear programs in a single variable
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(the so-called line minimization algorithms) as subroutines. So we survey these algo-
rithms first.

10.7 SURVEY OF SOME
LINE MINIMIZATION ALGORITHMS

The line minimization problem is the problem of minimizing a real valued function
f(A) of one variable A, either over the whole real line, or over the half-line A > for a
specified number [, or over a specified finite interval [[,u] = {A: I < XA < u}. Assuming
that f(\) is continuously differentiable, the global minimum for f(\) in the interval
I < X < wis the point A* in this interval which gives the minimum value for f(\) among

those A satisfying % = 0, and the points [, u, if these are finite. In fact if f(\) is

concave and [, u are finite, the global minimum for f(A) in the interval I < A < w is
either [ or u, whichever gives a smaller value for f(\). See Figure 10.2.

In the interval [a, b] if f'(a) > 0, a is a local minimum for f(A); and if f'(b) < 0,
b is a local minimum for f(\).

When f()) is a general function, a bracket is defined to be an interval in the
feasible region which contains the minimum. When the derivative f'(A) = d’;(/\)‘ ) s
not available, a bracket usually refers to an interval [A1, A3] in the feasible region,
satisfying the property that we have a A satisfying A; < Ay < Az and f(A2) <
minimum {f (A1), f(As)}. If the derivative f(A) is available, a bracket usually refers
to an interval [A1, A2] with A1 < Ao, satisfying the property that /(A1) < 0 and f'(\a)
> 0.
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f(A)

Figure 10.2 The global minimum for one dimensional concave minimization
problem is a boundary point (I here).

How to Select an Initial Bracket?

First consider the problem in which we are required to minimize f(A) over the entire
real line. Begin with an initial point Ay and choose a positive step lenth A. Compute
f(Ao) and f(A1), where Ay = Ao+ A. If f(A1) < f(Xo), the direction of increasing A is
the right direction to pursue; otherwise, replace A by —A to reverse the direction and
go through the procedure discussed next. Define A, = \,_1 +2°7'A for r = 2,3, ...
as long as they keep on decreasing, until either the upper bound on A is reached or
a value k for r is found such that f(Ag+1) > f(Ak). In this case we have A\g_1, Ag,
Ai+1 satisfying f(Ax) < f(Ak=1), f(Ak+1) > f(Ax). Among the four points A\gx_1, Ag,
(A +Akr1)/2, and Agyq, drop either Ag_1 or A\gx11, whichever is farther from the point
in the pair { g, (At +Ax11)/2} that yields the smallest value to f(A). Let the remaining
points be called A,, Ap, Ac, where A\, < Ay < A.. These points are equi-distant, and
f(As) < F(Ae), fF(As) < f(Aa)- So this interval A, to A. brackets the minimum.

If the problem is to minimize f(A) over A > [ or u > A > [, it is reasonable to
expect that f(\) decreases as A\ increases through [ (i. e., the derivative f’(I) < 0,
otherwise [ is itself a local minimum for the problem). So in these problems, we can
get a bracket by beginning with \g = [ and applying the above procedure.



402 CHAPTER 10. SURVEY OF DESCENT BASED METHODS

10.7.1 The Golden Section Search Method

The function f(A) is said to be a unimodal function in the interval a < XA < b if it has
a unique local minimum in the interval. See Figures 10.3, 10.4.

f(A)

a

Figure 10.3 A unimodal function in the interval [a, b].

f(2)

a C

d b
Figure 10.4 This function is constant in the interval ¢ < A < d, so every point
in this interval is a local minimum. So this function is not unimodal in the
interval [a, b].
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In many practical applications, it is reasonable to assume that the interval has
been narrowed down using prior knowledge of the problem such that the objective
function has a single minimum in the interval. A unimodal function f(\) in the interval
a < X < b satisfies the property that there exists a unique A, in the interval (this A, is
the minimum) such that given any Aj, Ay in the interval with Ay < Ag, if Ay < A, we
have f(A1) > f(A2); and if A, < A1, we have f(A1) < f(A2). The golden section search
method is a method for minimizing a unimodal function in an interval by sectioning
(i. e., interval reduction) using only function values evaluated at selected points.

The number 7 = 2/(1 + v/5) ~ .618 is known as the golden ratio. Let [a, 3]
be the current interval in which the minimum is known to lie. If function value has
not been evaluated at any interior point in this interval, let A\ = «a + .382(8 — «),
A2 = a+ .618(8 — «a), evaluate f(A1), f(A2) (depending on what happened in the
previous step, it is possible that the function value at one of these points A; or Ag
has already been computed in the previous steps). If f(A1) < f(A2), the minimum is
contained in the interval [a, Ao]. If f(A1) > f(A2), the minimum is contained in the
interval (A1, 8]. If f(A1) = f(A2), the minimum is contained in the interval [Aq, Aa].
Repeat this process with the new interval.

There is a reduction in the length of the interval of uncertainty (i. e., the bracket
length) by a factor of .618 or more in each step. The length of the interval of uncertainty
converges linearly to zero. When the length of the interval of uncertainty has become
less than a specified tolerance, e, any point in the final interval could be taken as an
approximation for the minimum.

10.7.2 The Method of Bisection

This method can be used if f(A) is continuously differentiable and the derivative f’())
can be computed. It starts with an initial bracket for the minimum [a, b] satisfying
f'(a) < 0and f'(b) > 0. Evaluate f'((a+b)/2). If f'((a+b)/2) = 0, the point (a+b)/2
satisfies the first order necessary condition for a local minimum. If f'((a + b)/2) > 0,
take [a, (a+b)/2] as the new bracket and continue. If f'((a+b)/2) < 0, take [(a+b)/2, ]
as the new bracket and continue.

Since the bracket is cut in half each time, the length of this interval converges
to zero linearly. When its length has become less than a specified tolerance ¢, any
point in the final interval could be taken as an approximation to the minimum. One
disadvantage of this method is that it relies totally on the values of the derivative f’(\)
and does not use the values of the function f(\) being minimized.

10.7.3 Newton’s Method

This is a second order gradient method that can be used if f()) is twice continuously
differentiable and the second derivative f”(A) can be computed easily either through
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a subroutine or by using a finite difference approximation, and f(\) is required to be
minimized over the entire real line. The method is the application of the Newton-
Raphson method to find a solution of the equation: f’(A) = 0. The method generates
a sequence {\. : r = 0,1,...} beginning with an initial point Ag. Given A,, the
second order Taylor series approximation for f(A) at A. is f(A) + f/(A) (A — Ap) +
(1/2) f" (M) (A = A)2. IF f7 (X)) > 0, this has a minimum at

>\r~|—1 =Ar — f/()‘r)/f//()‘r)' (103)

Equation (10.3) gives the iterative scheme for Newton’s method. The method is not
suitable to be used if f”(X) turns out to be < 0 at any point encountered during the
algorithm. It is quite suitable if an initial point Ay in the vincinity of a local minimum
is known. In the vincinity of a minimum, the second derivative f”'(\) is of constant
sign (nonnegative) and the first derivative f’(\) changes sign from a negative to a
positive value. If f(\) is a quadratic function with a minimum, this method finds the
minimum in one step. In general, any twice continuously differentiable function has a
Taylor series expansion around a point, the first three terms of this series (which form
a quadratic function) are dominant when the point is in the vincinity of the minimum.
The method has rapid convergence (quadratically) once the vincinity of the minimum
is reached. A result on the convergence rate of this method follows as a corollary of
Theorem 10.1, where a convergence rate result for Newton’s method applied to find
the unconstrained minimum of a real valued function 0(x) over x € R" is proved.
See references [10.9, 10.13, 10.26, 10.33] for results on the convergence and rates of
convergence of Newton’s method.

10.7.4 Modified Newton’s Method

Several modifications have been proposed for Newton’s method to handle cases where
a good initial point is not available to initiate Newton’s method, or when a point
satisfying f”(A) < 0 is encountered during the method, and to handle the problem
in which the feasible range is a specified interval and not the entire real line. We
discuss one such modification here. We consider the problem of minimizing a twice
continuously differentiable function f(X) in the interval [a,c] = {A:a < X < ¢} and
we have a piont b satisfying a < b < ¢ and f(b) < minimum {f(a), f(c)}. This method
generates a sequence of points {A, : r = 0,1,...} satisfying the property that the
entire sequence lies in the interval [a,c] and that f(\.11) < f(\,) for all r. Initiate
the method with Ao = b, and select a constant « satisfying 0 < o« < 1. The quantity
« is called the attenuation factor.

Given )., the point obtained by moving in the direction of f’(\;.) a step of length
Bis Ar — Bf'(A\.). From the Taylor series, f(A. — Bf'(\.)) = f(\) — B(f'(\))2 +
error term, where the error term tends to zero faster than 3. So, if § > 0, we make
improvement in the objective value by this move. Notice that Newton’s method takes
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B = 1/f"(\:) to get the next point in the sequence. In this method you do the
following.

(a) If f"(Ar) > 0 compute y = A — f'(A)/f"(A). Iy, € [a,c] and f(Ar) — f(yr) >
(a/2)(f' N ))2/f"(\r), define A\pyy = y,. If yp € [a,c] but f(N\) — f(yr) <
(a/2)(f'(M))2/f" (M), use a first order Armijo step size procedure which requires

the determination of the smallest nonnegative integer s satisfying
(A — f'(\)/2%) € [a,c], and

FOW) = FOr = F1(A)/2%) > (a/2°)(f' ()
and then define A,.1 = A, — f'(A)/2%. The motivation for this step size procedure
is explained in Section 10.8.1.
(b) If f"(Ar) <0, define 6 = —1if f'(A,) > 0, +1if f'(A\,) < 0 and use the second
order Armijo step size procedure. This requires the determination of the smallest
nonnegative integer s satisfying

(Ar = (f'(A)/2°) + (6/2/%)) € [a,¢], and
FOW) = FOv = (F'(A)/2°) +8/25%) Z a(((F'(A))2/2%) = f" (An) /2.
For a finite s satisfying these conditions to exist, it is sufficient that f”(\,.) < 0 if
f'(A\r) = 0. Then define A\, y1 = A — (f'(A)/25) + 6/25/2.
Under certain conditions it can be shown that this method has second-order con-
vergence. See references [10.1, 10.26, 10.27].

10.7.5 Secant Method

In Newton’s method or modified Newton’s method discussed above, we need to com-
pute the value of the second derivative f”/(A,.). This may be hard. In the secant method
we replace f(A,) by its finite difference approximation (f'(A)—f (Ar=1))/(Ar —Ar—1).
This is the only change in the Secant method from Newton’s or modified Newton’s
method. The secant method is initiated with two initial points Ay, A1 in the feasible
region satisfying Ag < A1 and f'(Ag) <0, f'(A1) > 0.

10.7.6 The Method of False Position

In the secant method we always use f'(A;) and f’(A._1) to get a finite difference
approximation for f”(\,.) for each r. Even though initially f'(Ao), f'(A1) are of opposite
signs, after some steps it may happen that f'(A,) and f’'(A,—1) have the same sign, and
this could make the iterates diverge when minimizing over the real line. In this method
we make sure that f”(\) is always approximated using the values of f’(\) of opposite
signs at two different values of A\. For some r, suppose f”()\,.) was approximated
using f'(Ar) and f'(As) for an s < r — 1. Compute A,y; using this approximation
as under the secant method, and compute f’(A,11). Determine which of f’(\;) for
t = r or s has a sign opposite to that of f'(\.41). Then approximate f”(\.11) by
A1 — (A1) /(Ars1 — At), and continue in the same way.
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10.7.7 Univariate Minimization by

Polynomial Approximation Methods

The essential feature of these methods is to approximate the original function f(\)
by a simpler function P(\) (normally a second or third degree polynomial) by curve
fitting, and then using the minimum of P(A) to approximate that of f(\). These
methods are also called polynomial interpolation methods. If the minimum is known
to lie in a small enough interval, the application of these methods usually produces
very satisfactory results.

Quadratic Interpolation

This method needs an interval of the form A1 < Ay < A3 with f(A2) < min{f(Aq),
f(A3)}, a bracket for the minimum, as discussed earlier. Ao, the initial best point, is the
initial point in the sequence. It constructs a quadratic approximation P(\) = a\? +
bA+ ¢ which coincides with f(A) at A = A1, A2, A3. By the properties mentioned above,
P()) determines a parabola. The three independent pieces of information (value of
P(X) = value of f(A) at A = A1, Ag, A3) are used to determine a, b, ¢ in P(\) uniquely.
Since P(A) is a parabola (by the condition imposed), the minimum of P(A) lies in the

interval [\, A3] at the point A satisfying dl;g\’\) = 0. It can be verified that this point
is

N — (A2 = XA3)f(M1) + (A3 = AD)f(A2) + (A = A3) f(X3)
T 2[(Ae = A3) F(A) + (A3 = A1) F(X2) + (A1 — A2) f(A3)]

A« 18 a minimum for P(A) if

(A2 = A3) f( A1) + (A3 — A1) f(A2) + (A1 — A2) f(X3)
(A1 = A2) (A2 — A3) (A3 — A1)

<0

a condition which will hold because of the properties satisfied by A1, Aa, As.

It is possible for A, to be equal to Ay even though this point is far away from a
local minimum of f(A). See Figure 10.5. If this happens, the quadratic interpolation
has failed to generate a new trial point.

If |\ — A2] is not too small, we can replace one of the points in Ay, Ay, A3 by A,
so that the new set of three points again satisfies the conditions for a bracket for the
minimum of f(A). The best point among these three is the next point in the sequence,
and the procedure is repeated with the new bracket. If A, and Ay are too close (even
if they are not equal) repeating the procedure with such close values could lead to
numerical problems in the next step. In this case, we select a small distance §, and
take the new point to be either A, + 0 or A\, — 0 whichever leads to the smallest length
new bracket.
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function
value

f(2)

Figure 10.5 The minimum of f(\) in the bracket [A1, A3] is at X. But the
minimum of Quadratic approximation, A, is the same as As.

Note 10.1 Newton’s method is a quadratic approximation method. Given the cur-
rent point A, at which the second derivative f”(\,.) > 0, Newton’s method constructs a
quadratic function P(\) satisfying the three properties P(\.) = f(A,), P'(Ar) = f/(Ar)
and P"(A.) = f"”(\.). It can be verified that the function P()) is just the second order
Taylor series approximation to f(\) around this point A,, and that the next point in
the sequence A,y is the minimum of this quadratic approximation P(A).

Cubic Interpolation Method

This method can be used when f(A) is differentiable and the derivative f’(\) can
be computed either numerically using a finite difference approximation or computed
directly using a subroutine for evaluating it. The method needs a bracket [\, Ag]
satisfying the property that f'(A;) < 0, f(A2) > 0. A cubic function P3(\) = aA3 +
bA2 + ¢ + d can be fitted such that it agrees in value with f(\) at A; and As and
its derivative has the same value as f’(A) at A\; and Ay. From the bracket conditions
the minimum of this cubic function occurs inside the bracket at the point A\, satisfying
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L (P5(\)) = 0. It can be verified that

' A2)+v—n )

A = A1+ (A — )\1)<1 - f'(A2) — f'(\1) + 2v

where

3(f(A1) — f(A2)) |, :
Ny — A + f1(M) + f1(A2)

v= (%= () (A2))'/2.

If |f'(A«)] is small, A, can be accepted as a good approximation for the minimum.
Otherwise, if f/(A.) > 0, repeat the process with [A1, \.] as the new bracket. If
(&) <0, repeat the process with [A«, A2] as the new bracket.

It can be shown that these polynomial approximation methods have superlinear
or better convergence rate under certain conditions. See [10.13, 10.17, A8]. It is
possible to develop algorithms based on a combination of sectioning and polynomial

77:

interpolation steps.

Difficulty in Computing Derivatives During
Line Minimization Steps Encountered in Solving
NLPs Involving Several Variables

Let O(x) be a continuously differentiable real valued function defined on R"™. Consider
the NLP in which 0(z) is to be minimized, possibly subject to some constraints. Many
algorithms for solving such a problem make repeated use of line minimization algo-
rithms to solve problems of the form: given a point z° € R™ and a search direction
y € R", y #0, find the step length A that minimizes 6(z° + Ay) subject to A > 0.

In this problem, since z° and y are given vectors, 0(z° + \y) = f()\) is purely a
function of the step length parameter . If the problem of minimizing f(A) in A > 0
needs the derivative f’(\) for some given value of A, we use

£/ = (0 + X)) = (VO(a® + X))y
where V6(x°+ \y) is the row vector of partial derivatives of 0(z) evaluated at z = 20+
Ay. So, the computation of f’(\) needs the evaluation of each of the partial derivatives
of O(x) at the point 2° + Ay, which in the worst case takes n function evaluations (the
work would be less if, for example, we know from the structure of §(z) that some of
these partial derivatives are zero). Thus, evaluating f(\) = 0(z° + \y) needs only one
function evaluation; while evaluating f’(A) needs n function evaluations, considerably
more work. In the same manner, evaluation of the second derivative f”(A) for any A,
needs n? function evaluations in the worst case. These facts should be considered in
choosing an algorithm for line minimization, to be used as a subroutine in algorithms for
NLPs involving many variables. Since evaluating derivatives (f'(A) or f”(\)) requires a



10.7. SURVEY OF SOME LINE MINIMIZATION ALGORITHMS 409

lot more function evaluations, typically line minimization algorithms based on function
values only, are to be preferred as far as possible.

When f(X) = 0(z° + Xy), the formula f'(X) = (VO(x® + \y))y is an analytical
formula for the exact derivative of f(A) at A, and the value of f'(X) computed using
this formula is known as the analytically computed derivative. Since the analytical
computation of the derivative is so expensive, it may be appropriate to use an ap-
proximation for it. Let ¢ be a small positive number, it is called the finite difference
interval. Then f’(\) can be approximated by any of the three following quantities

) = f(A—e)

m

The topmost quantity is called the backward-difference approximation, the middle
quantity is known as the forward-difference approximation, and the bottom quantity is
known as the central-difference approximation, to f'()). If the value of f()) is already
known, the computation of the forward or backward-difference approximation to f’())
needs one more function evaluation, whereas the computation of the central-difference
approximation needs two more function evaluations. If ¢ is small compared to |f'(\)]
and the magnitude of |f”(\)| in the neighborhood of A, the error in approximation
will be small, because f(A +¢) = f(A) +ef + %f”(X%—fy) for some 0 < v < ¢, by
Taylor’s theorem. Thus with a suitable choice of the finite difference interval, these
finite difference approximations provide a reasonable approximation to the derivative,
with much less computational effort than that involved in using the analytical formula.
Because of this, many professional software packages for NLP algorithms use finite
difference approximations to the derivatives.

Even the partial derivatives of #(z) can be approximated by finite difference ap-
proximations. Let I be the unit matrix of order n. Then

6(x) — 0(x —el.j)

€
or O(x+el.j) —0(x)
£
or O(z+el.j) —0(x —el.;)
2e

where ¢ is the suitable finite difference interval, are the backward, forward and central-

difference approximations for the partial derivative aaey)’ respectively.
J
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10.7.8 Practical Termination Conditions for

Line Minimization Algorithms

In practice, line minimization algorithms discussed above are terminated either when
the bracket length is small, or when a point A satisfying |f'(\)| < e for some specified
tolerance ¢ is obtained, or when the improvement in objective value between two
consecutive points obtained in the method is small, or when the difference between
two consecutive points obtained under the method is small. At termination, if we have
a bracket for the minimum, a final interpolation step can be carried out to provide the
approximate location of the minimum in the bracket.

10.7.9 Line Minimization Algorithms Based on

Piecewise Linear and Quadratic Approximations

In this section we discuss new line minimization algorithms based upon a combination
of piecewise linear (or polyhedral) and quadratic approximations, due to C. Lemarechal
and R. Mifflin [10.23, 10.28, 10.29]. These algorithms are rapidly convergent, and seem
best suited as line search subroutines in higher dimensional optimization algorithms.

Let f(A): R' — R! be the real valued function defined on R' which is required
to be minimized over A € R'. At any given X, the limit (if it exists) of M as
e — 0 through positive values is known as the right derivative of f(A) at A and denoted
by fL(A), the limit of the same quantity as ¢ — 0 through negative values is known as
the left derivative of f(\) at A and is denoted by f’ (A). If f(A) is differentiable at A,
then f(A) = fL(A) = f'(A). If f(A) is convex, these f. (X)) and f) (A) exist and they
satisfy

if X <1, then fL(N) < fL(N) = fL(v) £ fL(9)

When f(A) is convex, the subdifferential 0 f()) is the line segment [f’ (A), f1(A)], and
a necessary and sufficient condition for a A, to be the minimizer point for f(\) is:

FLA) =0 < FL (M)

For the moment, let g(A) denote the derivative f’(A) if it exists; or a number from
Of(\), that is, a subgradient of f()\) at A, otherwise. Given two points A and ¥
satisfying the properties that f(A) < f(¥) and g(A)g(¥) < 0, the interval between A
and 7 is a bracket for the minimum.

Polyhedral Approximation

The affine functions f(A) +g(A)(A = X), f(F) + g(F)(A — 7), are the linearizations of
f()\) at A = X, 7 respectively. The pointwise supremum function P()\) = max.{f()) +
g N (A=X), fF(F)+9(F)(A—5)} provides a piecewise linear or polyhedral approximation
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for () in the interval between X and 7. If f()\) is convex, this piecewise linear function
underestimates f(A) at each point in the interval, see Figure 10.6. The point where
this piecewise linear function attains its minimum is the point that equalizes the two
expressions inside the max., it is A + d©, where

g f) =) 9O =7)

—g(A

9(7)

~—

This d¥ provides the polyhedral approximation step from the point A for the line
minimization problem. If f(\) is convex, the numerator in d¥ is > 0 and X + dF lies

in the interval between A and 7.

Figure 10.6 A Polyhedral approximation (the dashed lines) for f(\), and
the point A + d¥ where it attains its minimum.

Quadratic Approximation

A quadratic approximation for f(A) at A = X is of the form

Q) = FR) +9(MNA =) + 3 (A~ D*G()
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where G(\) approximates the second derivative of f(\) and is determined in a one-sided
secant manner, that is,

< A —g(t

G 10 =90
A—t

where t is a point such that A is in the interval between ¢ and the minimizer of f()).

If f()) is convex, G(A) is > 0. If G(A) > 0, the minimum of Q()) is attained at A +d®

where _
1@ = 9,
G(A)
If G(A) <0, |[d9] = +oo. d9 is the quadratic approximation step from A for the line
minimization problem.

The algorithm uses a step that is the shorter of the quadratic approximation and
the polyhedral approximation steps. Some modifications are made to these steps if the
functions are not convex, to guarantee convergence to at least a stationary point.

These methods generate two sequences {\.}, {7} where for each r, A, and 7,
are on opposite sides of the minimizing point A.. The sequence {f(\.)} will be non-
increasing, and |\, — 7,.| is a decreasing sequence, since at least one of the two points

Ar, ¥ changes in each step.
We describe different versions of the algorithm in various numbered subsections
in the following, for ease of cross referencing.

1 Line Minimization of a Convex Function

Assume that f(A) is convex and that it is required to find the point A, that minimizes
f(X) over A € R'. In this subsection, g()) denotes f'(X) if f()) is differentiable at X,
or a subgradient of f(\) at A otherwise (i. e., a point from 9 f(\), the interval between
fL(A) and f/ (A)). The method initially needs two points A; and ; satisfying

Ff(A1) < f(71) and g(A1)g(y1) < 0.

A pair of points like this can be generated by some initialization procedure. In this
case A, is in the interval between A\; and ;. Choose G(A1) = (g(71) —g(A1))/(v1—A1).
We will now describe the general step.

Step r. At the beginning of this step we have A, v, satisfying

f(Ar) < f () and g(Ar)g(yr) <O
and we also have G(A,). Compute

. fO) = (f(ve) + 9(ve) (A — 1))
9(vr) — 9(Ar)
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where |d?| = +o0 if G(),;) = 0. Now determine

dy = (sign of (—g(\.)))(min {|d], |d?[})
v, =\ +d,.

Terminate with the conclusion that v, is the minimizer of f(A) if either d, = 0 or
9(vr) = 0.

Otherwise, update the quantities for the next step as given below. If f(v,) >
f(Ar), then set A\ry1 = Ay Vg1 = Uy, G(Arg1) = G(A,). In this case there is no move
in the A,.-sequence.

If f(v,) < f(A), then set A\.41 = v,., and

if g(Ar)g(Vr) > 0, then set Yr+1 = Vr
vy) — g( A,
G(Ars1) = 9(vr) —g(Ar)

dr
if g(\r)g(v) <0, then set v,11 = A,

G()\r—i—l) _ g(Vr) B g(7r) )

Ve — Yr

Under rather general assumptions, it has been proved in [10.23] that if this algorithm
does not terminate in a finite number of steps, then f(A,.) — f(As) as r — oo; and
that the sequence {\,} itself converges superlinearly to A., a minimizer of f(A).

2 Constrained Line Minimization With Convex Functions

Need For a Constraint in Line Minimization

Let 0(x) be a real valued function defined on R™. In algorithms for the unconstrained
minimization of #(z), we start at a point T € R", develop a search direction y € R",
y # 0, which is a descent direction at T; and then have to solve the line minimization
problem of minimizing f(A) = 6(Z + Ay) over A > 0. It has been shown that such
algorithms will have desirable convergence properties if the step length A > 0 is chosen
so as to satisfy

where w is a negative number that is a positive fraction of an estimate of the directional
derivative of §(z) at T in the direction y. To satisfy this condition, we define ¢(\) =
f(A) — f(0) — wA, and solve the constrained line minimization problem

minimize  f(\)
subject to ¢(A) < 0.
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For another application of constrained line minimization, consider the general NLP

minimize  6(x)
subject to  h;(z) <0, i =1 to m.

Algorithms for solving these problems usually begin with an initial feasible point Z, find
a descent search direction y at Z, and do a line minimization in that direction. Define
¢(A) = max .{h;(T + Ay) : i = 1 to m}. The problem of finding the best feasible point
in this search direction, leads to the constrained line minimization problem: minimize

f(A), subject to c(A) < 0.

The Constrained Line Minimization Problem

Here we consider the constrained line minimization problem

minimize  f(\)
subject to ¢(A) <0

where both functions f(A) and ¢()\) are convex. Let
S={X:c(A) Z0}.

Since ¢(A) is convex, S is an interval, but it may be hard to determine S explicitly
if ¢(A) is nonlinear. However, we assume that S has a nonempty interior and that a
feasible point (i. e., A € S) may be found, for example, by finding an unconstrained
minimum of ¢(}).

Here we discuss a modification of the algorithm of Subsection 1 due to R. Mifflin
[10.28] for solving this constrained problem.

The method generates two sequences {A.}, {7}, where for each r, A, is feasible
and A, v, are on opposite sides of any constrained minimization point \,; 7, is either
infeasible (i. e., c(y,) > 0) or f(v,) = f(A). The sequence {f(A,)} is non-increasing
with r. In this subsection we define

g(N) € 9f(A) if ¢(A)

<
g(A) € de(N) if e(N) >

0(i.e, A€S)
0(i.e, AES).

We therefore have

g(v) (A —=7), for all A, and v ¢ S
g(y)(A =), for all A\, and v € S.

c(7)

_+_
(7) +
For ) feasible, as in Subsection 1, we define G(A) = (g(\) — g(t))/(A — t) where ¢ is
feasible and X is between ¢ and A,. The quadratic approximation step at a feasible
point A is defined as before, using G()).
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In Step r of the algorithm, if both the points A\, and ~, are feasible, the polyhedral
approximation step is defined exactly as under Subsection 1.

Given A., v, if 7, is infeasible; then g(v,) is a subgradient of the constraint
function ¢(\), and is not related to the objective function f(A). Thus, in this case,
the polyhedral approximation step given A, 7, is not well defined as in Subsection
1. One aim for this step could be to move the vy-sequence towards feasibility. Taking
this step to be d, where A, +d = v, — (¢(7)/g(7»)) would correspond to a Newton-
Raphson step for solving ¢(A) = 0 based upon linearization of ¢(A) at 7,.. On the other
hand, in order to make a move not just towards feasibility, but towards a minimizing
feasible point, we could take the step to be d where \, + d is the point at which the
linearization of f(A) at A, and the linearization of ¢(A) at ,- become equal. This leads
to d = (—c(v) — (7)) A — 7))/ (g(7) — g(Ar)). In order to achieve fast convergence,
the actual polyhedral approximation step in this case, from the feasible point A, is
taken to be a compromise between d and d given by

P(Aryvr)
9(77') - brg()‘r)
where P(\.,v.) = —c(v) — g(7) (A — ) and b, = P(\.,7,.). We are now ready to
describe the algorithm.

The algorithm needs an initial pair of points A1, v; such that A; is feasible (i. e.,
A1 € S), and either ¢(y1) > 0 or f(v1) > f(A1); and g(A1)g(y1) < 0. This implies that
a constrained minimizing point lies between A; and 7;. Also choose G'(A1) > 0. We

df =

will now describe the general step in the algorithm.

Step r. Let A, 7, be the points at the beginning of this step. Define
PAryve) = —c(v) = 9(v) (A = ¥2), and by = P(Ar, ), if e(v:) >0
PXrsve) = f(A) = f(0r) —9(ve)(Ar — ), and by = 1, if c(7;) <0

g POww)
" g(%) - brg()‘T)
=g(A) .
d9 = GO it G(A\) >0
49| = +o0, if G(A,) <0
d, = (sign of (—g(A+)))(min.{|d;’], |d?[})

vy = A + d,.

Terminate with the conclusion that v, is the optimum solution of the problem if either
d, =0 or g(v,) =0.

Otherwise, update the quantities for the next step as given below. If ¢(v,.) > 0 or
f(Vr) i f()\r)a set )\r—{—l - )\ry Yr+1 = Vp, G()\r—i—l) = G()\r)

If c(vy) £0and f(v) < f(Ar), then set A\yy1 = 14, and
g(Vr) - g()‘r)

dy
g(Vr) B g(fYT‘)
Vp — Yr .

ifg()‘v“)g(’/r) > 07 then set Yr+1 = 7T7G()‘r+1) =

ifg()‘v“)g(’/r) < 07 then set Yr+1 = )\raG()‘r+1) =
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Under rather general conditions, R. Mifflin [10.28] has proved that if the algorithm
does not terminate finitely, then f(\,.) converges to the minimum value of f(\) over
S, and that the sequence {\,.} itself converges to an optimum solution of the problem,
As, with [ — ||y — Ar| converging to zero superlinarly.

3 General Constrained Line Minimization

Let f()), ¢(A) be real valued functions defined on R, not necessarily convex. Here we
consider the constrained line minimization problem

minimize  f(\)

subject to ¢(\) < 0.

[IA

The set S = {A: ¢(A) < 0} is the feasible set. Since ¢(A) is not assumed to be convex,
S may consist of a collection of disjoint intervals.

Let F'(\) denote either f(\) or ¢(A). If F/(X) is continuoulsy differentiable at A, we
let OF(A) be the singleton set {dFdE\)‘) }, as in Appendix 3. If F/(\) is not differentiable at
A, OF () denotes the set of subgradients or generalized gradients, it is the convex hull of
all limits of sequences of the form {% : {\x} — A and F(A) is differentiable at each
Ar}. With this definition OF'(\) agrees with the subdifferential set when F'(A) is convex.
Also if F'()) is not given explicitly, but is defined implicitly as the pointwise supremum,
say, as F'(A\) = max{F;(A),..., F;(\)} where each F;()) is continuously differentiable,
then OF(A) will be the convex hull of {242+ gver all 7 such that Fj(A) = F(A)}. The
algorithm discussed in this subsection needs a subroutine which can evaluate F'(\) for

any A, and another subroutine to obtain a number g(\) € 9F()).

Stationary Points

A point A, € S is a stationary point for this constrained line minimization problem if

either ¢(Ay) < 0, and 0 € 9f(\y)
or ¢(Ay) =0, and 0 € convex hull of df(A,) U dc(Ay)

because these are the necessary optimality conditions for this problem. See Figure
10.7.
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function
values

f(A)

c(A)

Figure 10.7 The feasible set S consists of the thick portion of the A-axis. A\;
is a stationary point since c¢(A;) = 0; %/\11) > 0, % < 0 and so 0 is in the

convex hull of %, and %. Ao is another stationary point, but As is not.

In the algorithm discussed in this subsection, we need

g\ edf(N)ifres
g(A) € Oc(A) if A E S.

The algorithm generates two sequences of points {\.}, {7} with A, feasible for all
and f(\,) non-increasing. For each r we will have

c(Ar) <0 and g(Ar)(vr — Ar) <0
and either ¢(y,) > 0, or c¢(y,) <0 and f(v.) = f(Ar).

These conditions imply that there exists a stationary point between A, and +,. The
algorithm needs a pair of initial points A1, v; satisfying the above conditions, these can
be obtained by a suitable initialization routine. The sequence of points {),.} obtained
in the algorithm converges to a stationary point A, and |\, — Ai|. |- — A«| converges
to zero superlinearly.
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The Quadratic Approximation Step

As before, G(\,) is an approximation to the second derivative of f(\) at A,, and it is
determined in a one-sided secant-manner, that is, when A, # Ay,

g(Ar) — g(tr)

A

where ¢, is a feasible \; or «y; for some j < r and is on the opposite side of A, from .
If f(A) is convex, then we will have G(),) > 0 for all r. But due to nonconvexity we
may get some G(A,;) < 0. So, the quadratic approximation step is defined here by

_g()\r)
max.{G(A;),0}

d9 =
with the understanding that |d¥¢| = +oo if G(A,) < 0.

The Polyhedral Approximation Step

Consider the case when both A, and +, are feasible first. In this case, if g(\.), g(v»)
have opposite signs, we define the polyhedral approximation step by

dP — P()‘T77r)
og(w) —9(A)

where P(Ar,vr) = f(Ar) — f(vr) — 9(v)(Ar — 1), as before. If P(A.,7,) > 0 (which
will be the case when f(\) is convex) then A, + df will be between ), and +,.. Due to
nonconvexity it may happen that g(A,.) and g(,) do not have opposite signs and/or
P(A,7-) is negative. In this case, the polyhedral approximation step needs to be
modified as follows. See Figure 10.8.

Let H, be a secant estimate of f”(\) near +,, that is when =, # 71,

9(vr) — g(uy)
Yr — Uy

H, =

where u, is a feasible A; or 7; for some j < r on the opposite side of ~, from A,. In
this case a quadratic approximation to f(A) around -, is

1) = FO) + 90 (A=) + 5 Hy (A= 7)°.

A linear approximation for g(A, + d) based at A, is

FO) 4 90m) e =) + 5 e = )2 + 9(3) + Hy (Ar — )]

We can take d¥’ to be the value of d which equalizes this to f(),)+dg()\). This leads to
d = (f(A) = f(w) =lg(ve) + R\ = 7))/ (g (v) + 20— g(A)), where h = S H, (Ar — ).
Since this needs to be carried out only under negative curvature, we define a negative
curvature correction
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linearization of

f(2) at A

Ay

I
1
1
I
I

linear approximation
to f(A) a A,

Figure 10.8 ¢(\) (the dashed curve) is the quadratic approximation to f(\)
based at A = +,.. The point A, +dZ is the point where the linearizations of f(\)
and ¢(A) based at A, become equal.

h,. = %()\r — ) min{H,.,0}
and let
Pr=f(Ar) = f(7) = (9(%) + he ) (A = 7)

=0 if P. <0
" =5 /(g(n) + 2k — g(A)), i P> 0.

Now consider the case when v, € S. In this case we make a similar quadratic approx-
imation to ¢(\), and using it estimate the point A, + d where ¢(A,. + d) would be zero.
In this case H, is an estimate of ¢’(,), and h, is defined as above. Using again the
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compromise as done in Subsection 2 for fast convergence, in this case we are lead to
the following polyhedral approximation step.

Pr = —clyr) = (9(y) + 1) (Ar = 7)

w =0 if P, <0
" 1= P /(g(w) + 2hy — Prg(Ny)), if Pr > 0.

To handle this general problem, we also define a positive safeguard parameter ¢ such
that

1
A\ < =
Cly | 5

so that .
C(’Yr - )‘r)z < §|’Yr - )‘r| < |’Yr - )‘r| - <|'Yr - )‘r|2-

In the algorithm, the step dZ is modified into d$ so that |d$| is between the lower and
upper bounds in the above inequality. This guarantees that A, +d, is away from A, and
7,. If the problem functions are convex, then G(A,) > 0, H, >0, h, =0 and P, > 0,
and if ¢ = 0, the algorithm discussed below will be the same as the one discussed in
Subsection 2. Now we describe the algorithm.

The algorithm needs an initial pair of points A\; and ~; satisfying the conditions
mentioned above. Choose the safeguard parameter ¢ > 0 such that ((y; — A1) < %,
and choose the initial curvature estimates G(A;) and H;. We will now describe the
general step in the algorithm.

Step r. Let A, v, be the points at the beginning of this step. Let G(\,.), H,. be the
curvature estimates. Set

1
hy = 5()\,, — v) min{ H,., 0}.

P = —c(v:) = (g(vr) + he ) (A —72)

if e(yy) > 0.
and 6, = g(v) + 2h, — Prg(\)

P.=f(A) = f(ve) = (g(v) + Be)(Ae — 1) .
if ¢(y,) <0.
Or = g(’YT) + 2h, — g()‘r) -
df =0 if P, <0
= P,/ if P, >0
G = C|’Yr - )\r|2
a. =+1 it —g(A) >0
=-1 if —g(\) <O.
di =Gy, if [dF| < ¢,
:ar|d1{3|7 if(?“§|df|§|7r_)‘r|_<r

= ar(h/r - )‘7“| - CT)? if |d71«3| > |’Yr - )‘7“| - G
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df? = —g(\)/ max{G(A,),0}
dr - ar(min{|d79|7 |d<|})
vy, = A +d,.

If c(vy) <0, f(vy) < f(Ar) and g(v,) = 0, terminate with the conclusion that v,

is a stationary point.

Otherwise update the quantities for the next step as given below.

If c(vy) > 0, 0r f(vr) > f(Ar), then set Ary1 = A, Yog1 = U, G(Arg1) = G(Ar),

and Hy11 = [9(vy) — g(v)l/(vr — 7).

If c(vy) <0, f(vr) < fF(A), 9g(vr) # 0, and g(A,)g(vr) > 0, then set A\, y1 = vy,

Yr+1 = Yy G(Ary1) = (9(vr) — 9(Ar))/dy, and Hyyq = H,..

If c(v,) £0, f(vr) < f(A), 9(vr) # 0, and g(Ar)g(vr) < 0, then set A1 = vy,

Yr+1 = )‘7’7 G()‘T'-f—l) = [g(VT) - g(%“)]/(yr - 77“)7 and Hr+1 = G()‘T’)

Under rather general conditions on the functions, R. Mifflin [10.29] has proved
that if the algorithm does not terminate finitely, then {\,.} converges to a stationary
point of f(A) on S.

To start the algorithm from a feasible A\; when a suitable v; is not known, one
can use a safeguarded quadratic step of the form

—g(Aj)/ max[G(Aj), a;], 7 =1,2

where {a;} is a bounded positive sequence chosen so that it converges to zero if {g(\;)}
converges to zero.

10.8 SURVEY OF DESCENT METHODS FOR
UNCONSTRAINED MINIMIZATION IN r»

In this section we consider methods for solving the problem

minimize 6(x)

n (10.4)
over z€eR

where 0(x) is a real valued continuously differentiable function defined over R". The
methods discussed in this section make use of the first and sometimes the second order
partial derivatives of #(x) when they exist, or approximations for these constructed
from the information accumulated over the iterations. The methods are iterative, they
generate a sequence of points {z°, z!,22,...} C R" beginning with an initial point z°,
and satisfy the property that #(z") monotonically decreases as r increases.

In this section V@(z") denotes the row vector of partial derivatives of 6(x) at the
point z" (the gradient vector of §(z) at 2"). When the second order partial derivatives
exist, we denote the n x n Hessian matrix of f(z) at the point " by H(0(z")) =
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8%6(z")
( Ox; 0z
three parts. The (k + 1)th step begins with the point z* (z* is the point obtained at
the end of step k if & > 0, 2° is the initial point with which the method is initiated)
and consists of the following parts

). In the methods discussed in this section, each iteration or step consists of

i) compute the search direction at z*, denoted by y*. y* € R™, y* #£ 0,

ii) compute the step length in the search direction, aj > 0,

k+1 — 2% + ag,y* and check whether termination criteria
k+1 is accepted as the
solution of (10.4). Otherwise, continue the method by going to the next step.

iii) compute the new point z
are satisfied. If the termination criteria are satisfied, =

In order to guarantee that (z") decreases monotonically, we require the search
directions to be descent directions. The point ¥ € R", y # 0 is said to be a descent
direction for §(z) at the point z* if there exists a A > 0 for which

(" + \y) < 0(x*), forall0 < A < A (10.5)

Since f(x) is differentiable at 2, (10.5) implies that the limit of (6(z* + \y) —0(z*)) /A
as A approaches zero through positive values, is < 0, that is (VO(z*))y < 0. Conversely,
it can be verified that any y satisfying

(VO(z*))y < 0 (10.6)

is a descent direction at z*. The condition (10.6) is a sufficient condition for y to be a
descent direction at z*. We define a descent direction for () at z*, to be a y € R™,
y # 0, satisfying (10.6). Similarly the point y € R"™, y # 0 is said to be a nonascent
direction for f(x) at z* if,

(Vo(z*) Ty <o. (10.7)

When 6(x) is twice continuously differentiable, the point y € R"™, y # 0 is said to be a
direction of nonpositive curvature for () at z* if,

yTH(0(*))y < 0 (10.8)
and a direction of negative curvature if,

yTH(0(z*))y < 0. (10.9)

10.8.1 How to Determine the Step Length?

Let ¥ be the current point and suppose the search direction y*, which is a descent
direction, has been selected. Since z*, y* are given points, 8(z*+Ay*) is now a function
of X only, and it can be verified that its derivative with respect to X is (VO(z*+y*))y*.
The descent step length can be determined to minimize 6(z* + Ay*) over A > 0. This
operation is a line search operation. Step lengths determined to minimize (2% + Ay*)
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over A > 0 are referred to as optimal step lengths and algorithms using them are
called optimal step descent techniques. Since y* is a descent direction for f(x) at
z¥, the optimal step length Ay is > 0 and

%( " Aey®) = (VO + Mey®))y* = 0. (10.10)
So if optimal step lengths are used, the gradient direction at the termination of a line
search step is orthogonal to the descent direction.

In practice, it may not be efficient to use optimal step lengths in every itera-
tion. Algorithms which allow for termination of line searches when conditions for an
approximate minimum on the line are satisfied, are said to use partial or inexact
line searches. When using inexact line searches, it is necessary to make sure that
the line search achieves a sufficient decrease in objective value, to guarantee conver-
gence. A practical criterion requires that the step length A be determined to make
|(VO(zF + \y¥))y¥| sufficiently small. Stated in terms of the decrease in the magnitude
of the derivative of §(z* + Ay*) with respect to A from that at A = 0, another criterion
requires that the step length A be chosen to satisfy

(VO(® + M)y | < nl(VO(z*))y"| (10.11)

where 7 is a parameter satisfying 0 <n < 1. If p = 0 in (10.11), exact line searches are
required, and when 7 is small, the line search procedure needs to be close to optimal.

Step Length Criterion to Achieve Sufficient Rate of Decrease

A fundamental requirement of step size procedures used in descent methods is that
there be a sufficient decrease in the objective value in each step. There are many ways of
specifying what a “sufficient-decrease” is. For example, consider the line minimization
problem of minimizing 6(z* + Ay*) over A > 0, where y* is a descent direction for
0(x) at z*. The quantity, (V6(z*))y*, the directional derivative of §(z) in the search
direction y*, is a measure of the rate of decrease in f(z) at ¥ in the direction y*.
Select a number a, 0 < a < 1, known as the attenuation factor. One sufficient
decrease criterion requires that over the step length taken, the function value must
decrease per unit step, at least a fraction « of the rate of decrease in §(z) at =¥ in the
direction y*. That is, that the step length A chosen satisfy

0(z%) — 0(z" + My®) > Aa|(VO(zF))y"|. (10.12)

To depict this pictorially, we plot A on the horizontal axis, and function values on the
vertical axis in the two dimensional cartesian plane in Figure 10.9. The curve in Figure
10.9 is O(z* + A\y*) plotted against A\. The straight lines in Figure 10.9 are plots of

la(A) = 0(z%) = Aa|(VO(2*))y"|

against A.
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8(x¥)
function
values N 1
' |, (A) for o=
l(A) for oo =1
@ L L L
0 1 1 1
4 2

Figure 10.9 The dashed line is I, (A) for &« = 1. The continuous straight line

is lo(A) for o = 3. (10.12) requires that for step length A chosen, 6(z* + Ay*) <
Lo (V).

The sufficient decrease condition (10.12) states that the step size A chosen, should
satisfy

H(xk + )\yk) <la(N) = H(xk) — )\a|(V9(xk))yk|.

This inequality is called Armijo inequality.

Other Step Length Criteria

Many theoretical convergence proofs for descent algorithms assume that the step length
used is the first local minimum along the line in the direction A > 0.
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The First Order Armijo Step Size Procedure

This procedure was introduced by L. Armijo [10.1]. Let y* be the descent direction
k. Let 0 < a < 1 be a predetermined constant. This
procedure finds s = smallest nonnegative integer satisfying

k

0(z*) — 0 (2 + g—s) > —%(VQ(:Uk))yk (10.13)

and chooses the step length to be 1/25. Since y* is a descent direction, a finite s

for 8(z) at the current point x

satisfying (10.13) exists.

As an example, consider the problem depicted in Figure 10.9. Let the attenuation
factor a = % In Figure 10.9, we verify that A = 1 violates the Armijo inequality
(10.13), since O(z* + y*) > I, (1) for « = 1. Even X = 3 violates the Armijo inequality
(10.13) since 0(z* + $y*) > 1,(3) for @ = 1. X = § satisfies Armijo inequality (10.13)
because 0(z* + 1y*) < lo(3) for @ = 1 in Figure 10.9. So the step length chosen by
this procedure in this problem is Ay = i.

It can be verified that there is always a positive integer s satisfying (10.13). So,
the step length indicated in this procedure is well defined and unique.

One thing that should be noted here is that the step length chosen by this pro-
cedure depends on the scaling of y*. Replacing y* by By* where 3 > 0; does not
change the search direction, or the line search problem; but it could change the step
length chosen by this procedure and the final point obtained in the line search by this
procedure. The direction y* is usually selected by a descent direction selection subrou-
tine, using the values of the function #(x) or its gradient vectors or hessian matrices
evaluated at previous points, and this procedure takes the output of that subroutine

as it is.

Second Order Armijo Step Size Procedure

This procedure is useful when using second order methods like Newton’s method dis-
cussed below. Let z* be the current point. Here we will have two directions of
nonascent, y* and r¥. If VO(2¥) # 0, y* should be a descent direction satisfying
(10.6). If VO(z*) = 0, then h* is a direction of negative curvature satisfying (10.9).
Let 0 < @ < 1 be a predetermined constant. Let s be the smallest nonnegative integer
s satisfying

0(a*) — G(xk A ) >~ L ((VOER)yE + = (FTHOE )Y (10.14)
o= " 9s/2) =7 9s Yy '
and take the next point to be zFtl = zF 4 g—: + 2’52. The conditions mentioned

above guarantee that a finite s satisfying (10.14) exists. It can be proved that if (z)
is twice continuously differentiable, and a descent algorithm using this second order
Armijo procedure is carried out, then every limit point Z of the sequences of points
{z"} generated by this method is a point T satisfying VO(Z) = 0 and H(0(Z)) is PSD
(the second order necessary optimality condition for Z to be a local minimum of 6(z)).
See [10.1, 10.26, 10.27].
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10.8.2 The Various Methods

Now we present various descent methods for (10.4). Since each method has the same
structure (each step consisting of three parts (i), (ii), (iii) described under Section
10.8), we will briefly describe how the search direction is chosen in each step, what
step size procedures can be used, and a summary of convergence results.

10.8.3 The Method of Steepest Descent

In this method, the search direction in the (k + 1)th step is chosen to be the steepest
descent direction at the current point z*. The steepest descent direction at ¥ is clearly
the direction d € R"™ which minimizes

k (kK
limit 6(z" + Ad) — 0(x*)

A0 A = (VO(h)d

subject to ||d|| = 1. In R", ||d||, the distance between d and 0 can be measured by the
general distance function f(d) = VdT Ad where A is a PD symmetric matrix of order
n. If A=1, f(d) becomes the usual Euclidean distance. The matrix A is known as the
metric matrix in the distance function f(d). With respect to this metric matrix A, the

steepest descent direction at z* is therefore the d which minimizes (V0(z*))d subject
to ||d|| = d¥ Ad = 1. It can be verified that this direction is given by —(V@(x*))A~1 if

Vo (z*) # 0.
The steepest descent method, dating back to Cauchy (1847) takes the metric
matrix to be I in each step, and thus uses the search direction to be y* = —(V(z*))T

when z* is the current point.

It can be shown that the steepest descent method converges when applied with
any of the step length procedures discussed in Section 10.8.1. Every limit point T of the
sequence {x"} generated satisfies the necessary optimality condition VO(Z) = 0. The
convergence rate for the algorithm is linear [10.13, 10.17, 10.27, 10.33]. In practice,
the method has been observed to be notoriously slow and unreliable due to round-off
effects.

10.8.4 Newton’s Method

This is a second derivative method that can be used only if #(z) is twice continuously
differentiable. At the current point 2*, #(x) is approximated by the quadratic function
0(z*)+(VO(z*))(x —z*)+ 1 (x—2*)T H(0(2")) (x — "), containing the first three terms
of the Taylor series expansion for §(z) around z*. The first order necessary condition

for the minimum y = 2 — 2* of this quadratic approximation is that y satisfies

H(O(x%))y = —(VO(z*))T. (10.15)
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A direction y that satisfies (10.15) is known as the Newton direction for 0(z) and
o¥. Assuming the H(0(x*)) is PD (since this matrix is nonsingular, the solution of
(10.15) is unique), the unique minimum of the quadratic approximation at x* is

Z* = 2k (H(0(zR) "L (VO ()T (10.16)

the iterative scheme given by (10.16) is the traditional Newton’s method. When
H(9(x%)) is PD, (H(0(z*)))~1(VO(x*))T is the steepest descent direction at z* using
H(0(x")) as the metric matrix, and the formula (10.16) is based on using a constant
step length of +1 in this direction. When 6(x) satisfies the property that H(0(x)) is
PD for all 2 (in this case #(z) is strictly convex) Newton’s method uses the steepest
descent direction with the metric matrix H(6(z*)) in the step in which z* is the cur-
rent point, and since the metric matrix changes in each step, it is called a variable
metric method in this case.

As an illustration of convergence proofs we provide below a theorem on the con-
vergence of Newton’s method.

Theorem 10.1 Suppose 6(z) is twice continuously differentiable. Let H(x) =

(hij(z)) = H(0(x)). So hij(x) = g;_gé(,? . Suppose each of the functions h;;(x) satisfies
the Lipschitz condition, that is, there exists a positive number « satistying |hi;(§) —
hij(n)| < a|l¢ —n|| for all §,n € R". Let T be a point satisfying V(T) = 0, H(0(x))
is PD. If the initial point z° is sufficiently close to T, the sequence of points {z" : r =

0,1,...} obtained by Newton’s method converges to T at a second order rate.

Proof. By Taylor expansion of V6(z) around z” we have (VO(z"+£))T = (VO(z"))T +
H(z")¢+ (&) where |f(€)] < B]|€]|? for some positive number (3, when ¢ is sufficiently
close to zero. Assuming that z” is sufficiently close to Z, and substituting £ =7 — 2",
we get 0 = (VO(Z))T = (VO(x")T + H(z")(T — 2") + f(T — 2"). By the continuity
of H(x), and the hypothesis, when z" is sufficiently close to Z, H(x") is also PD and
so (H(z"))~! exists. Multiplying the above equation on both sides by (H(z"))~! we
get (since 2" = 2" — (H(2"))~1(VO(2"))T in Newton’s method) 0 = —(z"+! — 2") +
(T—2")+ (H(2") " f(@—2")= (T —2")+ (H(2")) " f(T — 2"). Since H(T) is PD,
when z" is sufficiently close to T, there exists a constant ¢ such that ||H(z") | < 6.
So from the above equation we conclude that

1@ = 2" == (HE") @ —a")| S ollf@ -2 £ Bo|lT — 27|

Using this inequality for r = 0, we conclude that there exists an ¢ > 0 sufficiently
small, such that |7 — 2°|| < ¢ implies |7 — 2| < v||T — 2°|| < ve where v < 1.
Repeating this argument we conclude that [|[Z — z"|| — 0 as r — oo, that is, the
sequence {z"} converges to T. That the convergence is of second order follows from
the above inequality.

[
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10.8.5 Modified Newton’s Methods

When H(0(z*)) is PD, —(H(0(x*)))~1(VO(2*))T is a descent direction for §(x) at x*,
but there is no guarantee that 0(z**!) < #(2*) when 2**! is determined by (10.16),
because the step length is a constant, 1, independent of the data. The sequence can be
made into a descent sequence by modifying Newton’s method into Newton’s method
with line search, in which the direction of search is +y* satisfying (10.15), the sign
determined (when H(6(z*)) is not PD) so as to ensure that the direction is a descent
direction, and any of the step length procedures discussed earlier are used for the line
search.

The major difficulty with Newton’s method arises when H (0(z¥)) is not PD. If
H(0(x")) is singular, (10.15) may not have a solution, and even if it has a solution,
when H (0(x*)) is not PD, solutions of (10.15) are not necessarily descent directions,
and methods based on using them may not converge. In the case when H((z¥)) is not
even PSD, it is possible to modify Newton’s method by using directions of negative
curvature together with step size procedures such as the second order Armijo step.

One modification suggested to guarantee that the search directions are descent
directions is to replace H(A(z*)) in (10.15) by o*Q* + H(6(x*)) where Q¥ is either I
or a positive diagonal matrix and o is a positive number to ensure that the resulting
matrix is PD, and then solve the modified equation to give the search direction to be
used at z*.

For other modified versions of Newton’s method see [10.9, 10.13, 10.26, A8].

One main difficulty in using Newton’s method (or modified Newton methods) is
that the Hessian matrix has to be evaluated in each step. If subroutines for directly
computing each element of the Hessian matrix are not available, they can be approx-
imated by finite differences of the gradient vector. For this, select a positive number
@, the finite difference interval. To approximate the Hessian at the point ¥, compute

H,; = é(V@(ajk +al;) — Vo(z*)T.
Let H be the matrix with columns H.;, i = 1 to n. Then (H + HT)/2 can be used
as an approximation for H(0(z*)) in executing Newton’s or the appropriate modified
Newton’s method. With this change, the method is usually called a discrete (or
finite difference) Newton or modified Newton method. These methods are very
worthwhile when the Hessian matrix has a known sparsity pattern.

10.8.6 Quasi Newton Methods

Newton’s method is difficult to implement because of the computational burden in-
volved in calculating the Hessian matrix in each step (even if we decide to use a finite
difference approximation for it). The Quasi-Newton methods try to build up informa-
tion on the Hessian through various steps of the descent method using the computed
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values of Vf(z) and 0(z). In these methods (H(0(x*)))~! is approximated by a sym-
metric positive definite matrix, Dy, which is updated in each iteration. Thus in these
methods, the (k + 1)th step consists of the following.

(a) Initiate this step with the point 2* obtained in the previous step (if k = 0, initiate
this step with 2°, some initial point with which the method is started).

(b) Compute the search direction at ¥, denoted by y* = — Dy, (VO (2*))T.

(c) Compute step length in the search direction, oy > 0, by doing a line search,

B — gk 4 apyb.

(d) Check whether termination criteria (see Section 10.8.8) are satisfied by the new
k+1

leading to the new point x
point 81 in which case accept z¥*1 as the solution of (10.4) and terminate.
Otherwise update Dy, giving D41 and go to the next step.

The methods start out with an initial solution z°, and a symmetric positive definite
matrix Do (usually Dy = I). Dy is an approximation to the inverse Hessian at a
local minimum to which the sequence of points generated is presumed to converge.
Different algorithms use different formula for updating Dy from step to step. The
advantages are that these methods only need the computation of the gradient vector
V0(z) at one point in each step. When the matrices Dy, are all PD, the search directions
yr = —Dp(V0(z*))T are descent directions. In some quasi-Newton methods Dy may
not always be PD, but the important methods do maintain this property. When Dy
is PD, the search direction y* is the steepest descent direction at z* using D, 1 as the
metric matrix, and since this metric matrix changes from iteration to iteration, these
methods are also known as variable metric methods.

The updating formula which gives Dy as a function of Dy, attempts to take into
account the second derivative information obtained during the (k 4+ 1)th step. The
formula is derived to ensure that Dy becomes a good approximation of (H (#(z*)))~1
as the method progresses. This is done through the use of an equation known as the
quasi-Newton condition, which we will now derive. By taking the Taylor series
expansion of V#(x) around the point #* and neglecting higher order terms, we get

(VO TN ~ (V)T + H(O(2%)) (" — ).
So, if H(0(x*)) is invertible, we have
(H(O(x*) (VO ) — VO(z")T ~ (aF 1 — 2F). (10.17)

Since the quantities zF*1 and VO(z¥*1) are not available until the k + 1th step is
completed, we cannot expect the matrix Dy, to satisfy (10.17) in place of (H(8(z*)))~1,
but we could require Dy to satisfy

D1 (VO(zF Y — VO(ENT = (251 — 2F), (10.18)

This condition is the quasi-Newton condition, and the updating formulae for the
matrices Dy in quasi-Newton methods are usually formulated so that this condi-
tion holds for all k. If the updating formulae are such that this condition is satis-
fied, and satisfies certain other prior conditions (sometimes it is also required that
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Dy1(VO(z7t) — VO(27))T = (27T — 27) hold for all j < k) it can be shown that
%ZUTAZU + cx where A is PD and symmetric,
using exact line searches, then the search directions generated are conjugate directions
(see Section 10.8.7 for the definition of conjugate directions), that D,, = A~!, and that

the method terminates after at most n steps with the minimum.

when the algorithm is applied to minimize

The three basic considerations in constructing updating formulae for Dy in quasi-
Newton methods are (i) the quasi-Newton condition (10.18), (ii) hereditary symmetry
(i. e., if Dy is symmetric, the updating formula should guarantee that Djy; is also
symmetric), and (iii) hereditary positive definiteness. Not all the quasi-Newton meth-
ods satisfy all these properties. In some of them, these properties may only hold if the
line searches are carried out to a high degree of precision in each iteration.

The updating formula usually has the form Dy; = Dy + C} where Cf is a matrix
known as the correction term. Usually C% has rank 1 or 2, and depending on its rank,
the methods are classified either as rank-one or rank-two methods.

Now we will present the updating formulas used by some important quasi-Newton
methods. The remaining details are the same as discussed above, for each method.
For k > 1, we define

k k k—1
ST . (10.19)
nt = (VO(z®) = VO(z*))

The Davidon-Fletcher-Powell (DFP) Method

Here the updating formula is

ERFL(ERIT (D +1) Dy 1T

Diy1 = Dy + (ER+1)T pk+1 - (nF+ )T Dykt1
where £¥1 pF+1 are column vectors defined as in (10.19). The method has the hered-
itary symmetry property. It also has the hereditary PD property if (¢¥+1)Tn*+1 > 0
for all k. Notice that this condition will hold if the search direction y* is a descent
direction and the line search is carried out optimally or to a local minimum. The

method has superlinear rate of convergence. When applied to minimize a strictly con-
vex quadratic function %.TTAZU + cx with exact line searches, the method preserves
the condition Dyy1n/t! = &7T1 for all j < k, for all k; it generates conjugate search
directions and terminates after n steps with D,,;; = A~! and the optimum solution.
See [10.9, 10.13, 10.37, A3] for proofs of these results.

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) Method

Here the updating formula is

k+1 TD k+1 é‘k—i—l é‘k—i—l T
Dyy1 =Dy + (1 + (77(§k+)1)T7l;:+1 > <(£k+1()Tnk3-1> o

Ek+1(77k+1)TDk + Dknk+1(5k+1)T
(£k+1)T,,7k+1
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where £¥1 pF+1 are column vectors defined as in (10.19). The method has the hered-
itary symmetry and hereditary PD properties, satisfies the quasi-Newton conditions
(Dgp1m? ™t = ¢7F1 for all j < k), and has the quadratic termination property. At
present this is considered the best quasi-Newton method. The method has been shown
to converge even with inexact line searches (using several of the line search termination
criteria discussed in Section 10.7.8).

Resetting in Quasi-Newton Methods

In quasi-Newton methods, the steps can continue until termination. However, in some
implementations the method is reset by setting the matrix Dy to some positive definite
matrix (usually the same as Dy, or I) after every n steps. If implemented this way,
the method goes through cycles. Each cycle begins with the point obtained at the end
of the last step in the previous cycle (the initial cycle begins with the initial point z°
with which the method is initiated) and the initial step of each cycle begins with the
matrix Dy (usually I or some other PD symmetric matrix) and the cycle consists of n
steps.

Also in each step one should check that the search direction y* satisfies (V0 (z*))y*
< 0, as otherwise the direction is not a descent direction. Usually the method is also
reset, whenever this descent condition is violated.

See references [10.2, 10.8, 10.9, 10.13, 10.26, 10.27, 10.33, A3] for a discussion of
various other quasi-Newton methods, their best computer implementations, and the
convergence results established about them.

10.8.7 Conjugate Direction Methods

These are a class of methods that use only first order derivatives, which obtain search
directions without the need for storing or updating a square matrix of order n. Conju-
gate direction methods were developed with the aim of solving strictly convex quadratic
programming problems with an effort of at most n line searches. For this, the search di-
rections have to be chosen to satisfy the conjugancy property. Let f(z) = cx + %xTAx
where A is a PD symmetric matrix of order n. Consider the linear transformation
x = Pz where P is a nonsingular square matrix of order n. This transforms f(z) into
F(z) = cPz+ 32" PTAPz. F(z) can be minimized with an effort of at most n line
searches in the z-space if it is separable, that is, if PTAP = (Q is a diagonal matrix
with positive diagonal entries (11, ..., Qnn, and

(P;)TAP; =0 for each i # j. (10.20)

In this case F'(z) is equal to Z?Zl F;(zj) where Fj(z;) involves only one variable, and
hence minimizing F(z) over z € R" can be achieved by n one dimensional problems
of minimizing Fj(z;) over z; € R! for each j = 1 to n separately, that is, n line
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searches. The set of nonzero vectors {P.i,...,P.,} is said to be conjugate with
respect to the PD symmetric matrix A if (10.20) holds. Let v = (vq,...,v,) =
cP. So F(z) = Y7 vjzj + 5511 Qj;22. Hence, the point which minimizes F(z)
is Z = (Z;) = (—v;/Qj;) and so the point which minimizes f(x) in the z-space is
Z = (z;) = Pz. Since F(z) is separable, we can visualize the minimum of F(z) as
being obtained by starting at an arbitrary point zy in the z-space and doing n line
searches exactly, once in each direction I.;, 7 = 1 to n (the alternating variables
method). Let 27 be the point obtained at the end of the jth line search in this scheme.
So 27+ is the minimizer of F(2/ + al.j11) over a € R', j=0ton—1. Then 2" =Z.
If 27 = P27, j = 0 to n, it can be verified that 277! is the minimizer of f(27 + aP.j;1)
over « € R', j = 0 to n — 1 and that 2™ = %, the point which minimizes f(x). The
following properties can be verified to hold

1. the conjugacy condition (10.20) implies that { P.1, ..., P.,} is linearly independent.

2. (Vf(z*T1)P,; =0, for j =1 to k.

3. Let aj be the minimizer of f(z? + aP. 1) over a € R!, for j =0 ton — 1. Then
I =29 + a;jPjy1. So (Vf(aiT) = Vf(29)T = Azt — 27) = a; AP.j 1. So
(Vf(z*t) =V f(z*)P; =0 for i # j.

The conjugate gradient methods for minimizing f(z) construct the conjugate di-
rections one after the other using information collected from earlier line searches. Each
direction will be a descent direction at the point which is the current point in the step
in which this direction is generated. We now describe these methods.

Step 1 is initiated with an arbitrary initial point z°. The search direction in
step 1 is the steepest descent one, y° = —(Vf(2°))T. Do a line search to minimize
(2" +ay®), a > 0.

The general (k+ 1)th step for k£ > 1 begins with the point z* obtained at the end
of the line search in the kth step. The search direction in this step is

yk _ —(Vf(l'k))T +ﬁkyk_1

where (i is a scalar. The various conjugate gradient algorithms use different formula
for (. They are

B = IV F @) P/NV f (D)2 (10.21)
in Fletcher and Reeves method [10.13].
= (Vf(a") = V)V (") T/IV ("D (10.22)
in Polak and Ribiere and Polyak’s method [10.13, 10.17, 10.37].
= —IVFEOIP/(VF )y (10.23)

in conjugate descent method [10.13].

It can be verified that (Vf(z%))y* = —||Vf(2*)||? if the line search in the previous
step is carried out exactly, and in this case y* is therefore a descent direction at z*.
Now do a line search to minimize f(z*+ay"), « > 0. If oy, is the optimum step length,
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oPtl = 2k 4 gk If V(28T = 0, 2! minimizes f(x), terminate. Otherwise, go
to the next step.

The method terminates after at most n steps. It can be verified that the search
directions generated are conjugate with respect to the Hessian matrix A, and they are
all descent directions if the line search is carried out exactly in each step. Since f(x)
is quadratic, it can be verified that (B obtained in (10.21) or (10.22) or (10.23) are
exactly the same if all the line searches are carried out exactly.

To solve the problem of minimizing (x), which is in general not quadratic, we
apply the method exactly as above, replacing f(z) by 0(x) wherever it appears. In
this general problem, the search directions generated will be descent directions as long
as line searches are carried out exactly in each step. In this general problem, the
values for (j obtained from (10.21), (10.22), (10.23) may be different. In numerical
experiments the method using (10.22) seemed to perform better, particularly when
n is large. The application of the method can be continued until some termination
condition is satisfied (see Section 10.8.8). In practical implementations to minimize
general non-quadratic functions 6(x), the method is usually restarted (or reset) after
every n steps. If this is done, the method goes through several cycles. Each cycle
consists of n steps. Step 1 of each cycle begins with the point obtained at the end of
the previous cycle (or 2%, the initial point, for the first cycle) and uses the negative
gradient search direction. In the general non-quadratic case, if inexact line searches are
used, the directions generated, y*, may not be descent directions (that is, (VO (2*))Ty*
may not be < 0). The method based on updating using (10.23) (the conjugate descent
method) produces descent directions even when line searches are not very exact. If the
search direction in a step is not descent, we can carry out the line search in that step
over the entire line (instead of the half-line with step length oo > 0 as is done usually,
that is, allow step length to be negative), but usually the cycle is terminated in such a
step and the method is reset to begin the next cycle with the steepest descent direction
in step 1. It can be shown that these methods have superlinear convergence in terms
of cycles. See [10.8, 10.13, 10.17, 10.26, 10.37].

10.8.8 Practical Termination Conditions for

Unconstrained Minimization Algorithms

When the descent algorithm generates the sequence of points {z" : r = 0,1,...} in
practical implementations for minimizing 6(x), the method can be terminated when
some or all of the following conditions are met

0(*) — 0(z"~1)| < e
k :Uk_1|| < &9

IVO(®)]| < e

|

where the ¢’s are suitably chosen tolerances.
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10.9 SURVEY OF SOME METHODS FOR
LINEAR EQUALITY CONSTRAINED
MINIMIZATION IN r~

Here we consider the NLP
minimize  6(x)

10.24
subject to Ax =10 (10.24)

where A is a matrix of order m x n and rank m, and 0(z) is a real valued continuously
differentiable function. Given a feasible point x for this problem, the first order neces-
sary conditions for it to be a local minimum are that there exist a Lagrange multiplier
vector m = (my,...,Ty) satisfying

(VO(z)) = wA. (10.25)

Suppose (10.24) is feasible, and let = be any feasible solution for it. Then every feasible
solution for (10.24) is of the form Z + z where z satisfies

Az =0. (10.26)

There exists a matrix Z of order n x (n —m) and rank n — m, such that every column
vector of Z is a solution of (10.26) and conversely every solution of (10.26) is a linear
combination of the column vectors of Z. To obtain a matrix like 7, find a basis B for
(10.24). B is a square nonsingular submatrix of A of order m. Rearrange the variables
and their columns in A so that A can be partitioned into basic and nonbasic parts as
(B, D) where D is the m x (n — m) matrix of nonbasic columns. Then the matrix Z

Z = <_B_1D> (10.27)

In—m

can be taken to be

where I,_,, is the unit matrix of order n — m. It is not necessary to compute Z
explicitly. All the computations in the algorithms discussed below can be carried out
using a factorization for B~1.

Since any solution for (10.24) is of the form z = & + Z¢ where Z is a solution
of (10.24) and £ € R"™™, (10.24) is equivalent to the problem of minimizing f(¢) =
0(z+ Z€) over £ € R"™™ that is the unconstrained minimum of f(£) over £ € R"™™.
It can be verified that Vf(§) = (V,0(z + Z€))Z. Also if 6(z) is twice continuously
differentiable, H(f(¢)) = ZTH,(0(Z + Z¢))Z. For z feasible to (10.24) the vector
(VO(z))Z is known as the projected gradient or the reduced gradient vector of
0(z) at =, and the matrix ZTH(0(z))Z of order (n — m) x (n — m) is known as the
reduced or projected Hessian matrix of 6(z) at . The condition (10.25) implies

(VO(z))Z = 0. (10.28)
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If O(x) is twice continuously differentiable, a second order necessary condition for
the feasible solution x of (10.24) to be a local minimum for it is that the matrix
ZTH(0(x))Z is PSD.

The algorithms discussed in this section generate a sequence of feasible points
{20 2%, ...} begmnmg with the initial feasible point z°. If ¥ is feasible, the search
dlrectlon at 2% in step k 4+ 1 must satisfy Ay* = 0, that is, y¥ = Z¢&F for some
¢8 ¢ R"™™, such directions are called feasible search directions, because a move of any
length in such a direction, starting from a feasible point, remains in the feasible region
for (10.24). Step k + 1 of the algorithm consists of the following tasks:

1. Compute a feasible search direction: First compute &¢* and then compute the
search direction y* = Z¢*.
2. Determine step length: Compute the positive step length ay.
B+ — 2k 4ok
4. Check whether 2F*! satisfies the conditions for termination, if so, accept z**1 as
the solution of (10.24) and terminate. Otherwise go to the next step.

3. Compute the new point x

The feasible search direction y* selected in 1. above is a descent direction at z* if
(VO(z*)) Z2) ek = (VO (zF))y* < 0. (10.29)

The method of steepest descent uses (£F)T = —(VO(2¥))Z to determine the feasible
search direction at ¥, which is therefore y* = —ZZT(V0(z*))T, and uses step length
procedures exactly as in the unconstrained case. However, this method has slow linear
rate of convergence.

Newton’s method is based on minimizing the second order Taylor approximation
for f(&) = 0(z* + Z€) around € = 0, that is 6(z*) + (VO(z*)) Z¢ + 1T ZTH(0(2F)) ZE.
So, Newton’s method uses the search direction y* = Z¢&*, where £k solves

(ZTH(O(z*)2)¢ = 2T (VO(«P)T (10.30)

and uses fixed step lengths of a; = 1. Modified Newton methods replace the matrix
ZTH(O(x*))Z in (10.30) (when this matrix is not PD) by a PD approximation to
it such as ZTH(0(z*))Z + vI for some v > 0, and step lengths determined by line
searches.

When the second derivatives are not available, the matrix ZT H(6(z*))Z can be
approximated by finite difference approximation. For this, let €; be an appropriate
finite difference interval, and for ¢ = 1 to n — m let

W, = 2 (VO(a* + e Z.5) — VO(z*))T

€z

and let W be the n x (n — m) matrix with column vectors W.;, i =1 to n — m. Then
a symmetric approximation for ZT H(0(z*))Z is (1/2)(ZTW + W1 Z).

Quasi-Newton methods can be developed for (10.24) by looking at the corre-
sponding unconstrained minimization problem of minimizing f(¢) = 6(a* + Z¢), but
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carrying out all the operations in the z-space. In this case the search direction in step
k+1 will be y* = Z¢F, where ¥ = —Dy,ZT(VO(2*))T. The matrix Dy, is of order
(n —m) x (n —m). We choose Dy = I,,_,, and in updating Dy, from step to step, we
use the updating formulas discussed in Section 10.8.6 with ¢¥ = ZT (z**1 — 2F), and
n* = ZT(VO(z**1) — VO(2*))T instead of (10.19).

Another approach for solving (10.24) is to use a conjugate gradient method on
the corresponding reduced problem of minimizing f(¢) = 0(z* + Z¢), but doing all the
computations in the x-space. The search directions used are

yt = -2(vo(z")2)*
y* = —Z(VO(*)Z)" + Bry !

where B = [|(VO(z*)) Z|2/|(VO(z*~1)) Z||? or (VO(a*) — VO(a*~1)ZZT(VO(z*))T/
|VO(xF—1Z||2, or —||VO(2*)Z||2/(VO(xF~1)Z)EF (here €F is the unique solution of
ZEF = ¢*), as in (10.21), (10.22), (10.23), depending on the method used. Statements
made in Section 10.8.7 about resetting the algorithm remain valid here also (here
resetting is done after every n —m steps or whenever the search direction generated is
not a descent direction).

10.9.1 Computing the Lagrange Multiplier Vector

Let T be the terminal point obtained in the algorithm for solving (10.24). The corre-
sponding Lagrange multiplier vector is the vector T which satisfies (10.25). Given 7,
(10.25) is a system of n equations in the m unknowns my,...,T,,, and since n > m,
this is an overdetermined system of equations. We can determine 7 as the row vector
in R™ which minimizes ||(V8(Z))T — 7 A||? over 7 € R™, for which the solution is given
by

7= (AAT)"1AVH(Z). (10.31)

If 7 is a local minimum for (10.24), the vector 7 given by (10.31) is an exact solution for
(10.25). If T is an approximation to a local minimum (obtained when the algorithms
discussed above are terminated using some practical termination criteria discussed in
Section 10.8, there is no 7 satisfying (10.25) exactly, however, the 7 obtained from
(10.31) is a corresponding approximation to the Lagrange multiplier vector for (10.24).
For other approximating estimates to the Lagrange multiplier vector see references
[10.13, 10.17).
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10.10 SURVEY OF OPTIMIZATION SUBJECT
TO GENERAL LINEAR CONSTRAINTS

10.10.1 The Use of Lagrange Multipliers to
Identify Active Inequality Constraints

For the purpose of this discussion, consider the following NLP:

minimize  6(x)
subject to Az > (10.32)
where A is a matrix of order m X n, say. If T is feasible, the ith constraint in (10.32)
is said to be active or tight or binding at z if it holds as an equation at T, that is, if
A;.T = b;; inactive if A, T > b;. For T feasible to (10.32), let I(Z) = {i : ¢ such that
A;. T = b;} = index set of active constraints in (10.32) at . Let y € R", y # 0. y
is said to be a feasible direction at T, if T + Ay remains feasible for (10.32) for all
0<A< A, for some positive X. Clearly y is a feasible direction at Z iff

Ay >0, for each i € I(Z). (10.33)
The direction y is said to be a binding direction or a non-binding direction at =
with respect to the ith constraint for i € I(Z), depending on whether A;.y = 0 or A;.y >
0 respectively. A move in a binding direction continues to keep the constraint active,
while any move of positive length in a non-binding direction makes the constraint
inactive, that is, moves off the constraint.
Now consider the corresponding equality constrained NLP:

minimize  6(x)

10.34
subject to Ax =0 (10.34)

and further assume that the set of row vectors of A is linearly independent. Suppose
Z is a KKT point for (10.34) with the associated Lagrange multiplier vector 7 =
(T1,...,Tm). So T, T together satisfy the first order necessary optimality conditions

Vo(z) = TA. (10.35)

Since the set of feasible solutions of (10.34) is a subset of the set of feasible solutions
of (10.32), an optimum solution for (10.34) may not be optimal for (10.32) in general.
The point T is of course feasible to (10.32) and clearly it is also a KKT point for (10.32)
if ™ > 0.
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Suppose there is a t such that 7; < 0, we will now show that there exists a descent
feasible direction at T for (10.32) which moves off the ¢th constraint. Since the set of
row vectors of A is assumed to be linearly independent, by standard results in linear
algebra, there exists a y € R" satisfying

Ajy=1 fori=t
=0 fori#t.

Let y be a solution for (10.36). From (10.35) and (10.36), we have (VO(Z))y = TAy =
7t < 0, and hence y is a descent feasible direction for (10.32) at 7.

Thus a necessary condition for a KKT point of (10.34) to be a KKT point for
(10.32) is that all the Lagrange multipliers be nonnegative. Otherwise we can construct
a descent feasible direction for (10.32) at such a point. These results are used in some of
the algorithms discussed below, to solve NLP’s involving linear inequality constraints
using techniques for solving NLP’s involving linear equality constraints only. They try
to guess the set of active inequality constraints at the optimum, and apply the equality
constraint techniques to the problem treating these active constraints as equations.
Modifications are made in the active set using Lagrange mulitplier information gathered
over each step.

10.10.2 The General Problem

Here we consider the NLP

minimize  0(z)
subject to  A;x = b, i=1tom (10.37)
> by, t=m+1tom+p

where 2z € R", and 0(z) is a real valued continuously differentiable function. Given
a feasible point z, the first order necessary conditions for z to be a local minimum
for this problem are that there exists a Lagrange multiplier vector m = (71, ..., Tm4p)

satisfying
m-+p

VO(x) =) mid
=1

20, t=m+1tom-+p
mi(A;.x —b;)) =0, i=m+1tom+p.

(10.38)

Without any loss of generality we assume that {A;. : i = 1 to m} is linearly inde-
pendent. Let K denote the set of feasible solutions of (10.37). Given T € K, all the
equality constraints for i = 1 to m are active at Z in (10.37). For m+1 < i < m+p, the
ith constraint in (10.37) is active at T (also said to be an active inequality constraint
at T) if A;.T = b;, inactive otherwise. Let I(Z) = {i : A;.T = b;}, the index set of active
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constraints at Z. The point y € R", y # 0, is a feasible direction at T if T+ Ay € K
for 0 <A< A, for some positive A. Clearly y is a feasible direction at Z iff

Ai.yZO, 1=1tom
>0,icl(m)N{m+1,...,m+p}.

If y is a feasible direction at T and A;.y > 0 for some i € I(Z) N {m +1,...,m+p}, a
move in the direction y from 7 is said to move off the ith constraint in (10.37).
We will now discuss some algorithms for solving (10.37).

10.10.3 The Frank-Wolfe Method

To solve (10.37), this method generates a descent sequence of feasible points {z" : r =
0,1,...} beginning with an initial feasible solution z°, satisfying 0(z" ') < 0(z") for
all r.

For k > 0, in step k + 1, the initial point is z*, the feasible point obtained at
the end of the previous step if £ > 0, or the feasible point with which the method is
initiated, if £ = 0. In this step the search direction y* is of the form z*¥ — 2* where 2*
is a feasible point satisfying (V0(z*)) (2"
z*. To find a point like z*, we solve the LP in variables z

—2%) < 0, and so y* is a descent direction at

minimize  (VO(2*))z

10.39
subject to =z € K. ( )

If 2 is an optimum solution obtained when the LP is solved and (V0 (z*))T2* =
(VO(x*))Tzk, then 2* is also optimal to the LP (10.39). By the duality theorem of
linear programming, there exists a vector 7% such that z*, 7% together satisfy the first
order necessary optimality conditions (10.38) for (10.37), and so we terminate with x*
as the solution for (10.37). Otherwise, since z* € K, we must have (VO(z*))(z* —2*) <
0, and so y¥ = 2¥ — 2% is a feasible descent direction at z¥. Now do a line search to
find the minimum of 0(z* + ay*) subject to 0 < o < 1. If ay is the minimum for this

k+1

line search problem, the next point in the sequence is x = z* + oy, continue.

We have the following results about the convergence properties of this method.

Theorem 10.2 Suppose K # () and that the linear function in x, (VO(Z))z, is
bounded below on x € K for each x € K. Assume that K has at least one extreme
point, and that for each k, the optimum solution z* for the LP (10.39) obtained in
the method is an extreme point of K. If the method does not terminate after a finite
number of steps, the sequence {z" : r = 0,1,...} generated by the above method has
at least one limit point, and every limit point of this sequence is a KKT point for
(10.37), if the line searches are carried out exactly in each step.

Proof. Since VO(Z)z is bounded below for = € K for each # € K, the LP (10.39) has
an optimum solution always. The LP (10.39) may have alternate optima, and we are
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assuming that 2* is an optimum solution for (10.39) which is an extreme point of K
(this will be the case, for example, if K has at least one extreme point and (10.39) is
solved by the simplex method). Since K is a convex polyhedron, it has a finite number
of extreme points, and let K2 be the convex hull of these extreme points. Because of
the descent property #(z") is monotonic decreasing as r increases, and by the manner
in which the algorithm is carried out, it is clear that every point in the infinite sequence
{2"} lies in the convex hull of K® and z°, a compact set. So the sequence {z"} has at
least one limit point. Let T be a limit point of the sequence {z"}. Let S be an infinite
set of positive integers such that ¥ — T as k — oo with all kK € S. For each k € S we
have an associated extreme point of K, z*, which is an optimum solution of (10.39).
Since there are only a finite number of extreme points of K, there must exist at least
one extreme point of K, say Z, which is equal to ¥ for k¥ € S an infinite number of
times. Let S; C S such that for each k € Sy, 2¥ = 2. So (VO(2*))T(z — 2¥) < 0 for
each k € S;. z¥ — 7 as k — oo through k € S, so taking the limit in the above
inequality as k — oo through k € Sq, we get

(Vé(z))(z—7) < 0. (10.40)

By our hypothesis, the line searches are carried out exactly in each step. Let S; = {r; :
t =1 to oo}, with the elements in S; arranged in increasing order. So limit "t = T as
t — oco. In step k = 1 + r¢, the optimal step length is a14,,, and so we must have, for
0<acgl,

O(z" + a(z — ™)) > 0(z' ) > o(z"t+). (10.41)

This follows because £ is the point on the line segment {z"t+a(z—2") : 0 < o < 1}
which minimizes 6(x) on this line segment. Also, since 7, is an increasing sequence,
we have 7441 > 1+ ¢, and since {0(z'),0(z?),...} is a descent sequence we have
O(z1t7t) > O(2z"+1). In (10.41) let ¢ — co. This leads to

0Z+a(z-7)—-0(T) >0 (10.42)

for all 0 < o < 1. When « is sufficiently small and positive, by the mean value theorem
of calculus, (10.42) implies that «(V6(Z))(Z — T) > 0, that is, (VO(Z))(Z — ) > 0.
Combining this with (10.40) we have

Vo(z)(z —%) =0. (10.43)
Since Z is an optimum solution of (10.39) whenever k € S;, and since z*¥ — T as
k — oo with all £ € S1, by (10.43) we conclude that T is a feasible solution for (10.37)
satisfying the property that £ = T is an optimum solution of the LP

minimize  (VO(Z))z
subject to A;.x=10b;, i=1tom (10.44)
> by, i=m+1tom+p.
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Let T = (T1,...,Tm+p) be an optimum dual solution associated with (10.44), then
by the duality and complementary slackness theorems of linear programming, =, ™
together satisfy (10.38), and hence T is a KKT point for (10.37).

[]

If O(z) is convex, and z¥ is a point obtained during the Frank-Wolfe method,
and satisfies (VO(z%))(z* — 2¥) < e, where z* is an optimum solution of (10.39), then
0(z*) < e+ minimum value of #(z) in (10.37). To see this, since 0(z) is convex, we
have for z € K, 0(z) — 0(z*) > (VO(z*))(z — z*) > (VO(2"))(z* — 2¥) > —¢, and so
0(z) > 0(z*) — ¢ for all z € K. So if f(x) is convex and z* satisfies (VO(zF))(zF — 2¥)
< g, where ¢ is small, we can conclude that z* is near optimum and terminate.

In each step of this method, an LP and a line search problem have to be solved.
Even though the system of constraints in the LP to be solved in all the steps is the
same, the objective function changes from step to step. The line search problem in
each step has to be solved either optimally or at least to guarantee a sufficient decrease
in the objective value. Since there is a considerable amount of work to be done in
each step, the method tends to be slow. It is practical to use the method only on
such problems for which the structure of the problem allows the solution of the LP in
each step by an efficient special algorithm. One such application arises in the study of
traffic flow along a city’s street network using a traffic assignment model. We discuss
this application briefly here.

The Traffic Assignment Problem

Let G = (N, A) be a city’s street network. N is a set of points which are the various
centers in the city or street intersections. A is a set of arcs or street segments, each
arc joining a pair of points. The prupose of the study is to determine how the traffic
will be distributed over alternate routes. Each driver makes his own choice of the
route to take, but traffic flow on road network exhibits certain patterns. One broad
principle for the analysis of traffic movement enunciates that traffic distributes itself
over alternative routes so that the average journey time is a minimum.

The cost associated with an arc (7, j) in the network is a measure of the journey
time from node 7 to node j along that arc. Journey time is influenced by traffic
congestion, and tends to increase with traffic flow. Let f;; denote the traffic flow on
this arc (i. e., the number of cars entering this arc at node 4 per unit time) and let
¢ij(fij) denote the journey time as a function of the flow f;;. This function has the
shape given in Figure 10.10, and so is a monotone increasing convex function.
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Cij(fij)
journey
time

traffic flow Tij

Figure 10.10

Traffic modelers construct these functions ¢;;(f;;) by actually collecting data. They
also have data on the volumes of traffic (i. e., how many people travel and from where,
to where) for different periods of the day. For example, during a particular peak
period, suppose we know that V* vehicles will be travelling from node s, (origin) to
node t, (destination) in the network, u = 1 to g. Let f be the number of these
vehicles (with origin s, and destination ¢,) travelling along arc (7, j) in the network.
For u =1 to g let f* = (fi%) be the vector of arc flows of the s, to t, vehicle flows.
The problem is to determine these vectors f“. The traffic assignment model states
that the (f*:wu =1 to g) form an optimum solution to the following nonlinear (flow
dependent cost) multicommodity flow problem

minimize Z cij(fij)

(i,j)eA
g
subject to f;;= flow on arc (i, j) = Z i
u=1

> (fi%: j such that (i, 7) € A)—Z( i+ J such that (7,7) € A) (10.45)
0, if 7 £ 54 OT Ty
— VM = s,
Vi =t,
0,u=1tog,(ij) €A

Uu
ij

IAVAI
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In this model it is quite reasonable to make the simplifying assumption that the flow
variables are continuous variables rather than discrete integer variables. Also, since the
cost function ¢;;(f;;) is constructed to reflect the journey time as a function of the flow
fij, there is no need to include a constraint in the model corresponding to the capacity
for flow of this arc. So, (10.45) is an uncapacitated, convex, multicommodity flow
problem, and this can be solved efficiently using the Frank-Wolfe method. It begins
with a feasible flow ((f*)? : 4 =1 to g), which can be generated by standard network
flow methods, and generates a sequence of feasible flow vectors ((f*)" : u =1to g :
r=0,1,...) converging to the optimum solution of (10.45). In the (k+1)th step of this
method, the initial flow vectors are ((f*)*,u =1 to g). Let (fi;)* = >29_, (f%)¥, the

u=1\J1)
deij (fij)

total flow on arc (7, j) in these flow vectors. Let ¢;; = ( il evaluated at f;; =
ij

(fij)k). Then the LP to be solved in this step is

9
minimize Z Z Cij [is

u=1 (i,j)eA
subject to Z( 152 j such that (i,7) € A) — Z( # + j such that (j,1) € A)

= 0, ifi# s, or ty (10.46)
= VU, ifi=s,
VU i =t,

> 0u=1 to g, (,7) € A.
Clearly, (10.46) can be broken up into g separate network flow problems one for each
u =1 to g. Also, the uth problem becomes the shortest chain problem from s, to t,
in the network G = (N, A) with (¢;;) as the vector of arc lengths, for which there are
very efficient special algorithms.

Let P, be the shortest chain from s, to ¢, in G with (¢;;) as the vector of arc
costs. Define the flow vector 2" = (z;;)" where

zi; = V" if (i,7) is on P,

= ( otherwise.

Then the flow vectors (2% : u = 1 to g) are an optimum solution of the LP (10.46), to
be solved in this step.

Since the objective function in (10.45) is separable in the arcs, even the line search
problem to be solved in this step, which is that of minimizing Z(i,j)E.A Cij (fi1j+. .+ Z)
over the line segment {f* = a(f“)* + (1 — @)z, u = 1tog,0 < a < 1}, can be
simplified.

Thus the Frank-Wolfe method provides a reasonable approach for solving the
traffic assignment problem (10.45). The main reason for this is the fact that the LP
to be solved in each step of the method breaks down into g separate shortest chain
problems, for which very efficient special algorithms are available.
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10.10.4 Reduced Gradient Methods

The name reduced gradient method refers to a method which uses the equality con-
straints to eliminate some variables (the dependent or basic variables) from the prob-
lem, and treats the remaining problem in the space of the independent (or nonbasic)
variables only, either explicitly or implicitly. The gradient of the objective function in
the space of independent variables is the reduced gradient defined in Section 10.9, the
search direction is usually the steepest descent vector in the space of the independent
variables (the negative reduced gradient vector); or the Newton search direction in
the space of the independent variables, determined using the reduced Hessian or an
approximation for it.
We will consider the problem in the following form

minimize  0(z)
subject to Az =1b (10.47)
I<z<u

where A is a matrix of order m x n and rank m. As discussed in Chapter 1, the
problem (10.37) can be put in this form. Here [, u are the lower and upper bound
vectors for x in (10.47). Let B be a basis for A (i. e., a square nonsingular submatrix
of A of order m) and partition A as (B, D), and let © = (xp,zp) be the corresponding
partition of the vector z. xp is the vector of independent (nonbasic) variables and xp
is the vector of dependent (basic) variables. Let T = (Tp,Zp) be a feasible solution
for (10.47). So Tp = B~'(b— DZp). The problem can be transformed into one in the
space of independent variables zp only, by eliminating the dependent variables xzpg.
The reduced gradient at T is €p = (V4 ,0(T)) — (V4 0(T)) B~ D. Define 5 = (7;) by

Y; = —¢; it z;is a nonbasic variable in zp and either ¢; < 0 and

Tj <wujorc; >0andxT; >

= 0 if z; is a nonbasic variable in zp,

and the above conditions not met.

If yp = 0, T satisfies the first order necessary optimality condition for being a local
minimum for (10.47), and the method terminates. Otherwise verify that ¢pyp < 0, so
Yp is a descent direction in the space of independent variables xp. It is the steepest
descent (negative reduced gradient) direction. Define 3z = —B~ 1Dy, and let 5 =

(U,¥Up)- Then 7 is the search direction at T. Since Ay = 0, the equality constraints
in (10.47) continue to be satisfied when we move in this direction. Define

A1 = minimum {(Z; — [;)/(-¥;) : j such that y; < 0},
A2 = minimum {(u; —;)/(y;) : j such that g; > 0},
A = minimum {1, A2},

Do a line search for minimizing 6(Z + Ay) over 0 < A < X, and repeat the whole process
with the optimum point in this line segment.
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Let I, up denote the bound vectors for the dependent variables zg. If Ig < Tp <
up, from the definition of the search direction ¥, it can be verified that A > 0. If
however, (10.47) is degenerate, given a feasible solution  for it, it may not be possible
to find a basis B for (10.47) for which lp < Tp < up holds. In this degenerate case,
it may so happen that A = 0. In this case 7 is not a feasible direction at Z, and the
line search problem does not make any sense, since any move of positive length in
the direction ¥ results in infeasibility. In this case the method can be continued by
identifying the active constraints at , and moving from 7 in the direction of 7”, the
orthogonal projection of ¥ in the subspace of active constraints at T (this will be a
gradient projection step, see the next section, Section 10.10.5). This is equivalent to
carrying out the line search problem exactly as above after replacing y by y?.

For convergence and rate of convergence results in this method see [10.2, 10.13,
10.15, 10.17, 10.26].

This method has been generalized very directly into the Generalized Reduced
Gradient method (GRG) for solving NLPs involving nonlinear constraints. See [10.2,
10.13, 10.15, 10.17, 10.25, 10.26].

10.10.5 The Gradient Projection Method

When applied to solve the NLP (10.37), this method generates a descent sequence
{z" : r = 0,1,...} beginning with a feasible point z°, all the points in which are
feasible. Step 1 begins with z°, and in general for k > 1 step k + 1 begins with the
point z¥ at the end of step k.

For any feasible solution = of (10.37) define I(z) = {i : A;.T = b;}. Clearly,

{1,...,m} C I(z) for all feasible solutions .
In step k + 1, if there are no equality constraints in the problem and if I(z¥) =
(), choose the search direction at =¥ to be y*¥ = —(VO(2*))T. If I(z*) £ 0, the

search direction in this step is determined by projecting the negative gradient of the
objective function at 2¥, onto the subspace parallel to the affine space of currently
active constraints treated as equations. Let Ap denote the matrix whose rows are A;.
for i € I(z¥). So Ay is of order |I(2*)| x n. Assume that the set of rows of Ay is
linearly independent, otherwise delete some dependent row vectors of Ay from it until
this property holds. The projection matrix corresponding to the active subspace is
P, =1— AT (AR AT)~1Ai. The projection of —(V6(z*))T onto the active subspace is
— P (VO(2*))T. Tt can be verified that this vector — P, (V6(z¥))T is a positive multiple
of the vector which minimizes (V6(z*))y subject to Ayy = 0 and yTy < 1.

If —Px(VO(z*))T = 0, define B* = (A AL)"1AL(VO(zF))T. Then VO(aF) —
(B*)T A, = 0. (BF)T is a row vector of dimension |[I(z*)]. Augment (3%)T into a vector
of dimension m + p, by inserting 0’s for all 4 ¢ I(z¥), and let the vector obtained be
called 7%. Then V6(2*) = 7% A where A is the (m+p) x n coefficient matrix in (10.37).
So if 7F > 0forall s =m+1tom+p, xF, 7% together satisfy the first order necessary
optimality conditions (10.38) and the method terminates with z* as the KKT point
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for (10.37). On the other hand if 7% < 0 for some 4 between m + 1 to m + p, identify
the i for which 7% is the most negative, say 7, delete the rth constraint from the active
set (that is, eliminate A,. from the matrix Aj) update the projection matrix, and the
projection of —(V@(z*))T on the new active subspace, and repeat the whole process.

If —Px(VO(z*)T # 0, define y* = —P,(VO(x*))T, y* is the search direction at
z¥. It can be verified that Pj is symmetric and PkT P, = P, so P is PSD. Also
Vo (z*)y* = —||y*[|2 < 0. So y* is a descent direction. Now find X from

A;.xk —b;
Zikb .4 such that i ¢ I(z*) and A;.4* < 0}
—A4.Y

= +o0 if A.y* >0 for all i ¢ I(z¥).

A = minimum {

Do a line search to minimize 0(z* + Ay*), 0 < A < . If Ay, is the optimum step length
in this line search problem, ¥t = 2¥ 4+ X\, 4* is the new point; go to the next step.

Methods for Updating the Projection Matrices

The periodic updating of the projection matrix is a considerable computational prob-
lem. However, the matrix A usually changes by one row, say A,., which is either
dropped from the set of active constraint rows, or is added to it. Here we discuss how
to efficiently update (A AL)~! when a change like this takes place.

To Delete a Row From A,

Let A,. be the sth row in A at the moment and suppose we want to delete it from
Ap. After deletion suppose Ay becomes A, of order (g—1) xn.

Interchange the last row and the sth row in (A3 AL)~!. In the resulting matrix
interchange the sth column and the last column. After these interchanges suppose this
matrix (AgAT)~! is written down in partitioned form as

[ 5)
ul 6
where E is of order (g—1) x (g —1). Then it can be shown that (AAT)~! = F — %.

To Add a Row to A,

Suppose the row A,. has to be added to A;. We will make A,.. as the last row of the
Ay,
A,.
to Ay, which is I — AF (A, AT)"1Ay. Compute ¢ = [|P(A,.)T|? = A4,.P(A.)T, w =
(ARATY LA (A,)T u = —(w/e), F = (A4 AL)~! 4 w2l Then

resulting matrix, which is A = [ ] . Let P be the projection matrix corresponding

e

u
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In the process of this updating, if ¢ turns out to be zero, i. e., PA,. = 0, then the
new active constraint row, A,., is linearly dependent on the previous active constraint
rows, and the updating cannot be carried out. In this case the new active constraint
row is ignored and the method can be continued with the same set of active constraint
rows as before.

The updating procedure can also be used recursively to obtain the inverse (AkAf)_1
in the first step of the algorithm, from the set of active constraints at that stage, by
introducing them one at a time. An advantage of this recursion is that it selects the
largest set of linearly independent active constraint rows among the set of all active
constraint rows at this stage.

10.10.6 The Active Set Methods

We consider the NLP (10.37). These methods begin with a feasible solution z° and
obtain a descent sequence {z" : r = 0,1,...}, where each point in the sequence is
feasible.

If 7 is an optimum solution for (10.37), and I(%) = {i : A;.T = b;,i = 1 to m+ p},
then ¥ is also an optimum solution of the equality constrained NLP

minimize  6(x)

If we can guess the correct active set I(Z), we could solve (10.48) by methods for solving
equality constrained NLPs discussed in Section 10.9.

In these methods, a guess is built up over the steps, on the likely set of active
constraint indices at the optimum. This set is known as the working active set. The
working active set in step k + 1 is denoted by Ij. Clearly {1,...,m} C Iy for all k.
Changes are made in the set I using information gathered in each step. Ij always
satisfies the property: {A;. : i € I} is linearly independent. The initial point in step
1 is 2%, in initial feasible solution with which the method is initiated. For k > 1, the
initial point in step k41 is 2¥, the feasible point obtained at the end of step k. Usually
we have I, C I(z*).

In step k£ + 1, we carry a step for the equality constrained minimization problem

minimize  6(x)

10.49
subject to  A;.x = b;,i € I} ( )

as discussed in Section 10.9. The search direction at z* is the direction determined
using the projected gradient, the projected Hessian or some quasi-Newton search di-
rection at ¥ for (10.49) as discussed in Section 10.9.

If 2% satisfies the termination criteria for (10.49), let Ay denote the matrix with
rows A;., i € Iy. The corresponding Lagrange multiplier vector for (10.49) is g% =
(AR AT) =T AR(VO(z*)T from (10.31). If BF >0 foralli € Iy N{m+1,...,m+ p}, as
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discussed in Section 10.9.1, z* is a KKT point for (10.37), terminate. If g¥ < 0 for
some i € Iy N {m +1,...,m + p}, select the most negative among these, say 3, then
delete r from the working active set, and repeat the whole process.

If ¥ does not satisfy the termination criteria for (10.49), let y* be the search

direction generated at z* for solving (10.49). Find out A from

A,’..Tk - b,
—A;.yk

=00 if A;.y* >0 for all i ¢ Iy,

A = minimum { .4 such that ¢ € I, and A;.y% < 0}

Do a line search to minimize 6(z* + Ay*) over 0 < A < X. Let A; be the optimum

step length for this line search problem. If \; < A, leave the working active set Ij
unchanged, and with 2¥*! = 2% 4+ A\9* go to the next step. If A, = A, all the ¢ which
tie for the minimum in the definition of X join the active set, select one of these and
include it in Ix. Then go to the next step.

To carry out a step of the algorithm discussed in Section 10.9 for the equality
constrained minimization problem (10.49), we need the corresponding matrix Z, which
we denote by Zj here, as discussed in Section 10.9. Whenever we change the working
active set Iy by dropping an element from it, or including a new element in it, it is
necessary to make the corresponding changes in Z;. Suppose Zj is computed as in
(10.27) using a basis By, for A, and maintained by storing Bj, either explicitly or in
some factored form. Whenever I changes by one element, By changes by one row and
one column, and B, 1 can be updated by using the standard pivot methods of LP.

Several practical strategies have been developed to decide when to include a con-
straint in the working active set, and when to drop a constraint from it. Software pack-
ages for linearly constrained nonlinear programming based on such active set strategies
seem to give the most satisfactory performance. Many of the commercially available
packages usually include a combination of several of the strategies discussed above, in
order to satisfactorily solve the widest class of problems.

All these methods become considerably simplified when applied to solve a qua-
dratic programming problem, because of the special nature of the objective function.

10.11 Exercises

10.2 Fermat’s Problem
Let A.; = (aij,...,am;)T, 7 = 1 to n be given distinct points in R™. Let
w; be a given positive weight associated with point A.;. For any x € R™ define
fl@) =30 willz — Agll.
(i) If no three points among {A.1,..., A.,} are collinear, prove that f(z) is positive
and strictly convex on R™.
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Assuming that no three points in the set {A.; : j = 1 to n} are collinear prove
that the problem of minimizing f(x) over R" has a unique solution, call it =, and
prove that T lies in the convex hull of {A.q,..., A.,}.

Define

w;(A.; —x) . .
g(z) = Z(W), if z # A.;, for each j =1 to n.

For such points, g(z) = —V f(x). This function g(z) given above, is not defined if
x = A.; for some j. By analogy, define for j =1 to n,

" rwi(Ay — A
heds) = 2 =, )
17£]
| h(A.y)
g(A.;) = maximum {||h(A.;)| — wj, 0}(||h,(A ])H)

Prove that a given point x is T (whether z is one of the points in the set {A.; :
j =1ton} or not) iff g(z) = 0, with g(x) defined as above.

Assume that no three points in the set {A.; : j =1 to n} are collinear.

Define:

) if x # A, for each j =1 ton

(Z o - ) (Z e

T(A.;) = A.j, for each j =1 to n.

y||

Prove that T'(Z) = . Also prove that if  is such that x # A.; for each j =1 to
n and T(x) = z, then z = 7.

Prove that if z € R™ satisfies x # T'(z), then f(T(x)) < f(x).

Consider the interative method z° = initial point in R™ choosen so that

z0 £ A.j for each j =1 ton
"t =T("),r=0,1,....
If 2" ¢ {A.; : j = 1ton} for all 7, prove that the sequence {z" : r = 0,1,...}

converges to T.
Let A.; be the jth column vector of the following matrix for j =1 to 6.

-2 -1 1 2 0 0
0 0 0 0 1 -1)°

Let w; =1 for all j =1 to 6. In this case prove that T = (0,0)7.
Show that there is an 29 (approximately 1.62) such that for 2z° = (29,0)7 we have

T(z°) = A.3, which is not optimal. This shows that the iterative method discussed in

(iv) may not always converge to T even if the initial point 2° & {A.; : 7 = 1 to n}.
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However, prove that there exists a countable set T’ of points in R™ such that if 2° ¢
I, then the sequence of points generated by the iterative method discussed in (iv)
converges to .

(H. W. Kuhn [10.21])

10.3 Consider the NLP
minimize 0(x)

subject to  f(x) =0

where 6(z) and f(x) are both continuously differentiable real valued functions defined
over R". Using the ideas of the reduced gradient method and the results given by the
implicit function theorem, develop an efficient algorithm for solving this problem.

10.4 Define the diameter of a convex hexagon (convex polytope with six extreme
points in R?) K to be maximum {||z — 2z : z,2 € K}. Formulate the problem of
finding a maximum area convex hexagon of diameter < 1, as an NLP. Is this a convex
programming problem? Find a solution to this problem using some of the algorithms
discussed in this book.

10.5 D = (d;;) is a square symmetric matrix of order n satisfying, d;; = 0 for all ¢,
the triangle inequality (d;; + d;i > dii, for all 4, j, k), and d;; > 0 for all ¢ # j. It is the
matrix of Euclidean distances between pairs of points among a set of n points in R?.
We are given the matrix D, but not the actual points from which D was calculated.
It is required to find the coordinates (z;,y;), ¢ = 1 to n, of n points in R?2, for which
the pairwise distance matrix is D. Formulate this as an NLP and discuss an efficient
approach for solving it.

The rectilinear or Li-distance between two points (z1,y1), (z2,y2) in R? is defined
to be |1 — x2| + |y1 — y2|- Consider the version of the above problem of finding the
coordinates of n points in R?, for which the matrix of pairwise rectilinear distances is
a given matrix D. Formulate this problem. Is this easier or harder to solve than the

version for the Euclidean distances? Why?
(S. M. Pollock)

10.6 Let n > 1,z = (vq,...,2,)7, S = Z?Zl . Consider the NLP
minimize S2 — 855,
subject to  0<z; <1, j=1ton.

Prove that the vector = (x;) is a strict local minimum for this problem if m of the z;
are equal to 1, and p of the x; are equal to 1/2, where m+p = n and n > m > (1/9)n.
Also, prove that x is a global minimum for this problem if it is of the above form and
either m or p is [(1/2)n].

(P. Wolfe [10.41])



10.11. EXERCISES 451

10.7 Automatic Voltage Regulator Control Panel (AVR) Design Problem.
AVR’s are used to stabilize voltage in electrical power systems. AVR contains many
circuits, each circuit may consist of several components like resistors, transistors, ca-
pacitors, zener diodes etc. Each component is characterized by some variables (e. g. the
resistence of a resistor measured in ohms, the gain value of a transistor measured in
hFE, the capacitance of a capacitor measured in microfared (MF) etc.). The problem
is to find an optimum design (i. e., find the optimal values of all the variables) which
stabilizes the output voltage as far as possible, while the input voltage may fluctuate
uncontrollably in some specified range. Here we provide a simplified example relating
to the triggering circuit design in the AVR control panel for a diesel 2MW AC gen-
erator, to illustrate the basic principles involved in modelling and solving this class
of problems (the general problem may have many more variables, and the functions
involved are more complicated and may have many more terms, but the basic features
remain identical). The functional form for the output voltage as a function of the input
voltage and the design variables is available from electrical engineering theory. Given
this function, and the range of fluctuation of the input voltage, the problem is to find
optimal values for the design variables that stabilizes the output voltage as much as
possible. In our example, the positive and negative voltages are denoted by vy, vs;
each of these fluctuates between 14.25 to 15.75 and we have no way of controlling it.
There are 5 design variables, x1, T3, T3, x4, 5. The functional form for the output
voltage v is the following:

vy = ,Ul(l _ e—(0.5/X1X5))
vy = (x4(x3 + 100) 4+ 100v2) /(3 + 200)
v = (v3— v4)e_(10/x2x5).

The constraints on the variables are, 1 < z5 < 10, 3 < x4 < 15, 10 < x; < 200,
100 < w9 < 4000, 1 < 3 < 1000. Formulate the problem as a nonlinear program and
discuss an algorithm for solving it.

(Kirloskar Electricals Ltd., India)

10.8 The variable y represents the yield in a chemical process. There are n process
variables 1, zg, ..., x, (such as temperature, flow rate, etc.) which influence the yield
y. Data was collected to observe the yield y for various values of the process variable
vector x = (x1,...,%,). This leads to k data points, t = 1 to k.

Process variable vector z¢ = (zt,...,at), corresponding yield y;.

In the vectors zf, t = 1 to k, each process variable takes several values spanning
its possible range of variation, and each combination of process variables takes several
values in the combined range of variation of the vector of these process variables. It is
believed that y can be approximated reasonably well by a convex quadratic function
of the form Q(z) = cx + (3)2T Dz. It is required to find the best convex quadratic
fit Q(x) for y, using the available data. Formulate this problem of finding the best
convex quadratic approximation @(x) for y using the available data as a nonlinear
programming problem, and discuss how this problem can be solved.
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If I, uj are known lower and upper bounds for the process variable z; for j =1
to n, and you are asked to design an experiment for collecting the necessary data
in the above problem, outline how you will determine the process variable vectors
zt = (x},...,2t) at which the yield has to be observed, in order to obtain the best fit.

10.9 Let 0(z) be a continuously differentiable real valued function defined on R". Tt
is required to find the unconstrained minimum of §(z) over R". Beginning with an
initial point z° € R", the sequence of points {z" : 7 = 0,1,2,...} was obtained by
using Cauchy’s Method of steepest descent with optimal step lengths in each step (the

metric matrix for determining the steepest descent direction is always the unit matrix
I). Prove that (2"+2 — 2" +1)T (g7t — ") = 0 for all r.

10.10 Let ¢ be a given row vector in R". Write down explicitly, an optimum solution
for the following problem

minimize cT
subject to  zTz =1
€xr >

10.11 Let 0(z) be a continuously differentiable real valued convex function defined
on a bounded convex set K C R", that attains its minimum over K at z* € K.
{z" :r =1,2,...}, {7 : r = 1,2,...} are sequences of points in K satisfying the
following conditions

VO(z")(y" —2") < Infimum {e, + VO(z")(z —2") : x € K}
VO(x")(y" —z") - 0 asr — oo

where ¢, > 0 for all » and e, — 0 as 7 — oo. Then, prove that 6(z") — 0(z*) as
r — 00.

10.12 We are given a set of n points in R?, say, a* = (af, a), t = 1 to n. It is required

to fit a circle to these points. The objective function to be minimized is Y~ ((r2-square
of the Euclidean distance between a’ and the center)? : t = 1 to n), where r is the
radius of the circle. Formulate this problem as an NLP and discuss an efficient method
for solving it.

(R. Chandrasekaran)

10.13 We are given row vectors ¢!, ..., c"

in R"™ and real numbers dq, ..., d,. Define
0(x) = Maximum {|c’z —dg|:t =1 to r}.

It is required to find the unconstrained minimum of #(z) over z € R". Discuss an
efficient method for computing it.
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10.14 Let dq,...,d, be given positive integers. The partition problem with this data,
is to check whether there exists a subset S C {1,...,n} such that

D di=) d

1€ES i€S

where S = {1,...,n} \'S. This is a well known AP-complete problem (see [8.12]).
Formulate this problem as a special case of

minimize  ||z]|, (10.50)
subject to x € K = {z: Ax > b} '
where ||z||, = (37—, |7:[P)1/P, and A, b are integer matrices of orders m x n and m x 1
respectively, p a positive integer > 1, and K is known to be nonempty and bounded.
||z||p is known as the p-norm of the vector x. Thereby establish that the problem of
maximizing the p-norm on a convex polytope specified in terms of linear inequalities
with integer data, is an NP-hard problem.

Show that an upper bound on the optimum objective value in (10.50) can be
obtained by solving a relaxed linear program.

The oco-norm of the vector x = (z;) € R", denoted by ||z||~ is defined to be
maximum {|z;| : ¢ = 1 to n}. Show that when p = oo, (10.50) can be solved by solving
at most 2n linear programs.

(O. L. Mangasarian and T.-H. Shiau, “A variable-complexity norm maximization prob-
lem”, Technical Report 2780, Mathematics Research Center, University of Wisconsin,
Madison, 1984)

10.15 Optimal Betting in a Race Track

The “market” at a race track in North America typically convenes for about 20 minutes,
during which participants make bets on any number of 6 to 12 horses in the following
race. To keep the discussion simple, we consider a race in which participants can bet
on each horse either to win or place. All participants who have bet on a horse to
win, realize a positive return on that bet only if that horse comes first, while a place
bet realizes a positive return if that horse comes first or second. Consider a race with
the following data declared at the time we are ready to bet.

= number of horses running in the race.
= total amount bet by public (all participants so far) on horse i to win.

= Y, W; = win pool.

O 3T 57
|

= track payback proportion (typically .83, it is the proportion of pool given
away; the remaining proportion .17 is kept by the race track company).

= total amount bet by public (all participants so far) on horse j to place.

v 3
|

= Z?Zl P; = place pool.
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¢; = probability that horse ¢ finishes first in the race.
qij = fi—qu. = probability that horse 7 finishes first and horse j finishes second in
the race.
payoff per dollar bet WWQ, iff horse ¢ comes in first place
on horse ¢ to win 0 otherwise.
1+ %, if horses i, j are first
J
payoff per dollar bet two winners in any order
on horse j to place 0, if horse j did not finish in the first

two places in the race.

Thus the payoff on horse j to place is independent of whether j finishes first or second,
but dependent on which horse finishes with it in first two places.

We assume that ¢; = W; /W, that is that the crowd is good at picking a winner,
or that the relative amount bet on a horse to win corresponds closely to its actual
chances of winning.

The W;, P; are the public’s bets in the race, are known. Consider the problem
of determining the place bets to make optimally, given all the above data and the
assumptions, subject to a budget of b $. The Kelly criterion determines the optimal
bets to maximize the expected logarithm of final wealth. The decision vector in this

problem is © = (z1,...,7,)T, where x; is the place bet on the ith horse, i = 1 to n.
Define
fisla) = (Q(PJFZl:lffl) —wi—ri— b —Pj>( Ti o, T )
2 I; + P, .Tj + Pj

Then the problem for determining the optimal x is

n n n
minimize Z Z qijlog<fij () +b— Z a:l>
i=1 j=1 =1
J#i I#1,5
n
subject to le <b
=1
2y >0, foralll =1 to n.

Discuss an efficient approach for solving this problem. Solve the numerical problem
using this approach, when the data is

n=8, Q=0.83, b=500.

W; 10,000 |15,000 |5,000 |35,000 |5,000 | 10,000 |18,000 |12,000

P; | 4,000 | 4,000 |4,000 | 8,000 |3,000 | 8,000 |13,000 | 5,000
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(See the delightful book, W. T. Ziemba and D. B. Hausch [10.42] for a complete
treatment of this problem.)

10.16 Consider the following LP

minimize cr
subject to z € K = {z: Az > b}

where A, b are given matrices of orders m x n, m x 1 respectively. Assume that K # ().
For A > 0, let () denote the nearest point in K to Ac in terms of the usual Euclidean
distance.

If the above LP has an optimum solution, prove that there exists a A > 0 such that
z(A) is constant for all A > X and that z()) is the least (Euclidean) norm optimum
solution for the LP.

If the objective value is unbounded below on K in the above LP, prove that
|lz(A)|| = o0 as A — oc.

(O. L. Mangasarian)

10.17 Consider the following NLP

minimize  0(z)
subject to Az >b

where 6(x) is a strictly convex function defined over R" with a unique unconstrained
minimum, Z, in R"; and A is a matrix of order m x n. Suppose T satisfies

A <0, 2=1¢tor
i — b >0, fori=r+1tom.

Let 2" denote the point which minimizes 6(z) subject to one constraint only “A;.z >
b;”, for i = 1 to r. Suppose there is a unique k € {1,...,r} such that z* is feasible to
the original NLP. Then prove that z* is an optimum solution for the original NLP.

10.18 A Curve Fitting Application in High Voltage Coil Insulation Testing: The
life of the insulation system on high voltage coils used in rotating electrical machines,
depends on it’s DLA (dielectric loss analyzer) value. The DLA value for a coil is
expected to depend on it’s Atand (increase in tand or dissipation factor expressed
as a percentage, with increase in test voltage) and AC (inrease in capacitance with
increase in test voltage) values. The DLA value is hard to measure, but the Atané
and AC values can be measured easily. Given below are the DLA, Atand and AC
values for a sample of 95 test coils. Use this data to determine if the DLA value of
a coil can be estimated reliably from it’s Atand and AC values, and if so, determine
the appropriate functional form. Using this analysis, design a scheme for checking the
acceptability of coils (acceptable if DLA value is < 8.0 units) using measurements of
their Atand and AC values as far as possible.
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AC and A tand with their corresponding DLA values for 95 test coils.

Atand, Atand,
Sample | 6.6 KV |A C, 6.6 |[DLA at | Sample | 6.6 KV |A C, 6.6 | DLA at
coil No. | to 11 KV to 11 KV | coil No. | to 11 KV to 11 KV
KV 11 KV KV 11 KV
1 .0011 0.5 0.4 26 .0044 2.4 2.5
2 .0017 0.9 0.8 27 .0042 2.5 1.6
3 .0030 1.0 1.6 28 .0041 2.5 2.2
4 .0019 1.2 0.8 29 .0048 2.6 2.0
5 .0020 1.3 0.2 30 .0042 2.7 1.5
6 .0026 1.3 1.1 31 .0060 2.7 1.7
7 .0020 1.4 1.2 32 .0039 2.7 1.4
8 .0028 1.6 1.4 33 .0030 2.7 1.2
9 .0023 1.6 1.4 34 .0031 2.8 2.3
10 .0027 1.7 1.6 35 .0047 2.9 3.0
11 .0024 1.7 1.6 36 .0052 3.3 2.7
12 .0023 1.8 1.0 37 .0036 3.3 2.1
13 .0032 1.9 2.1 38 .0049 3.3 2.4
14 .0026 1.9 1.5 39 .0045 3.3 2.5
15 .0027 2.0 1.6 40 .0053 3.3 2.4
16 .0026 2.0 1.2 41 .0050 3.6 3.7
17 .0031 2.0 2.8 42 .0054 3.6 2.9
18 .0041 2.0 0.6 43 .0056 3.7 4.0
19 .0045 2.1 0.6 44 .0059 3.8 2.4
20 .0032 2.1 2.1 45 .0057 3.8 2.5
21 .0031 2.1 1.2 46 .0057 3.9 3.5
22 .0024 2.2 1.5 47 .0067 4.1 3.3
23 .0031 2.2 1.4 48 .0045 4.3 3.5
24 .0028 2.2 1.4 49 .0059 4.5 4.0
25 .0029 2.4 1.1 50 .0066 4.5 3.4
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Atand, Atand,
Sample | 6.6 KV |A C, 6.6 |[DLA at | Sample | 6.6 KV |A C, 6.6 | DLA at
coil No. | to 11 KV to 11 KV | coil No. | to 11 KV to 11 KV
KV 11 KV KV 11 KV

51 .0076 4.5 3.4 71 .0045 6.2 5.1
52 .0073 4.6 4.2 72 .0066 6.2 5.2
53 .0058 4.6 4.0 73 .0077 6.3 3.6
54 .0060 4.7 3.4 74 .0093 6.4 7.0
55 .0072 4.8 4.2 75 .0089 6.3 5.8
56 .0057 4.9 4.1 76 .0055 6.8 7.3
57 .0068 4.9 3.6 77 .0083 7.3 5.9
58 .0076 5.3 6.5 78 .0096 7.5 5.0
59 .0084 5.0 3.4 79 .0091 7.7 6.0
60 .0063 5.0 3.1 80 .0100 8.0 5.5
61 .0058 5.0 5.4 81 .0109 8.3 7.6
62 .0053 5.2 4.6 82 .0045 8.8 7.3
63 .0067 5.2 4.6 83 .0094 9.1 7.0
64 .0064 5.3 5.2 84 .0104 9.1 6.4
65 .0072 5.3 4.2 85 .0093 8.2 9.3
66 .0086 5.3 6.7 86 .0140 10.0 8.2
67 .0074 5.6 5.1 87 .0121 10.0 10.8
68 .0081 6.0 3.8 88 .0143 10.3 6.7
69 .0070 6.0 4.2 89 .0124 10.5 9.9
70 .0074 6.0 4.0 90 .0120 12.1 9.7

91 .0131 11.1 10.4

92 .0155 13.3 7.1

93 0127 14.6 9.0

94 .0144 14.7 16.0

95 .0139 15.4 13.2
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