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SURVEY OF DESCENT BASED

METHODS FOR UNCONSTRAINED

AND LINEARLY CONSTRAINED

MINIMIZATION

Nonlinear Programming Problems

Eventhough the title �Nonlinear Programming� may convey the impression that the

subject includes all optimization problems other than linear programming problems�

it is not usually the case� Optimization problems involving discrete valued variables

�i� e�� those which are restricted to assume values from speci�ed discrete sets� such

as �	
 variables� are not usually considered under nonlinear programming� they are

called discrete� ormixed�discrete optimization problems and studied separately�

There are good reasons for this� To solve discrete optimization problems we normally

need very special techniques �typically of some enumerative type� di�erent from those

needed to tackle continous variable optimization problems� So� the term nonlinear

program usually refers to an optimization problem in which the variables are continuous

variables� and the problem is of the following general form


minimize ��x�

subject to hi�x� � �� i � 
 to m

gp�x� �
� �� p � 
 to t

�P�

where ��x�� hi�x�� gp�x� are all real valued continuous functions of x � �x�� � � � � xn� �
Rn�

Suppose some of these functions are not di�erentiable at some points x� Assume

that gradients exist for each function almost everywhere� but are not continuous� Then

problem �P� is known as a non�smooth or non�di�erentiable optimization prob�

lem� On such a problem� the usual gradient	based methods and results may fail� and



��� Chapter ��� Survey of Descent Based Methods

special attention must be given to the surfaces of non	di�erentiability� it becomes very

important to consider generalized gradients to handle such problems�

If all the functions ��x�� hi�x�� gp�x� are continuously di�erentiable� problem �P�

is known as a smooth nonlinear program� In this book we only study smooth

nonlinear programs� However� some of the techniques that we discuss may convert a

smooth NLP into a special type of nonsmooth NLP� and then solve it� As an example�

the simplicial method discussed in Section ����� to solve the smooth NLP
 minimize

��x�� subject to gi�x� �� �� converts it into the NLP
 minimize ��x�� subject to s�x�
�
� ��

where s�x� � max �fg��x�� g��x�� � � � � gm�x�g� This modi�ed problem is a nonsmooth
optimization problem� since s�x� may not be di�erentiable at some points x� However�

because of the special nature of s�x�� we know that �s�x� � convex hull of frgi�x� 
 i
such that gi�x� � s�x�g� and hence for any given x� it is easy to �nd at least one point
in �s�x�� and the special simplicial algorithms discussed in Section ���� are able to

solve this modi�ed problem using only this information�

Consider the NLP �P� and assume that all the functions are continuously di�eren	

tiable� The constraints in �P� are either equality constraints� or inequality constraints�

�P� is the general form of the problem� and in a particular instance of �P�� there may

or may not be such constraints� This problem is said to be


an unconstrained minimization problem� if there are no constraints on the

variables� in the statement of the problem�

a linear programming problem� if all the functions ��x�� hi�x�� gp�x� are a�ne

functions�

a quadratic programming problem� if ��x� is a quadratic function� and all

hi�x� and gp�x� are a�ne functions�

an equality constrained problem� if there are no inequality constraints on the

variables�

a linearly constrained NLP� if all the constraint functions hi�x�� gp�x� are a�ne

functions�

a convex programming problem if ��x� is a convex function� all hi�x� are

a�ne functions� and all gp�x� are concave functions�

a nonconvex programming problem� if it is not a convex programming prob	

lem as de�ned above�

In this chapter� we provide a brief survey of some commonly used algorithms for

smooth NLPs� those in the areas of unconstrained and linearly constrained NLPs� which

constitute alternate methods to those discussed so far for solving quadratic programs�
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���� A FORMULATION EXAMPLE FOR

A LINEARLY CONSTRAINED

NONLINEAR PROGRAM

We begin this chapter with a practical example due to C� H� White� of a nonlinear

model in which the constraints are linear� It arose in the boiler shop of a company

which has �ve ��� boilers operating in parallel for generating steam� Data on the

boilers is given below�

Tableau ����

Boiler Boiler load range
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lower upper
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The unit measures the rate at which steam is produced per unit time� If the ith boiler

is kept on� it must be operated within its load range limits li� ki� The boiler�s energy

e�ciency de�ned as a percentage is 
�� � �energy content of output steam���energy
content in the input fuel�� It tends to increase as the load moves up from the minimum

allowable operating load� and then peaks and drops as the load approaches the upper

limit� Data was collected on the boiler e�ciencies at di�erent operating load levels�

and the plots indicated that boiler e�ciency can be approximated very well by a cubic

polynomial of the operating load� Let y��� � e�ciency of a boiler when it is operating

at load � units� We approximate y��� by f��� � a� � a�� � a��
� � a��

�� where a�� a��

a�� a� are parameters to be estimated from data� The problem of determining the best

values of the parameters that give the closest �t between observed e�ciency and the

cubic polynomial� is known as the parameter estimation problem or the curve

	tting problem� Suppose we have r observations on a boiler� at load levels �t� t � 


to r yielding observed e�ciencies of yt� t � 
 to r respectively� To derive the closest

�t we need to construct a measure of deviation of the functional value f��� from the

observed y��� over the range of values of � used in the experiment� depending on the

parameter vector a � �a�� a�� a�� a��� Three di�erent measures are in common use�
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They are

L��a� �
rX

t��

�yt � a� �
�X

s��

as�
s
t �
�

L��a� �
rX

t��

jyt � a� �
�X

s��

as�
s
t j

L��a� � Maximum fjyt � a� �
�X

s��

as�
s
t j 
 t � 
 to rg�

Since the L��a� measure is a sum of squares� the technique which chooses the parameter

vector a to minimize L��a� is called the least squares approach or the method of

least squares� If �a � ��a�� �a�� �a�� �a�� is the best vector of parameter values obtained

under this method� the function �a� � �a�� � �a��
� � �a��

� is called the least squares

approximation for y����

If the parameter vector a is determined so as to minimize the measure L��a�� the

resulting function f��� is known as the Tschebyche� approximation for y����

If all the parameters appear linearly in the functional form f��� �as in this boiler

e�ciency example� the problem of minimizing either the L�	 or L�	measures can both

be posed as linear programs and solved by the e�cient simplex method� However� if

the parameters appear nonlinearly in the functional form� the least squares method is

preferred for parameter estimation�

If the measure of deviation is too large even at the best parameter values� it is

necessary to review the choice of the functional form and modify it� Besides� it is

possible that no simple function provides a good approximation for all possible values

of load� It is only necessary to �nd a good functional representation of the e�ciency

in the neighborhood of the optimum load values� if some reliable practical knowledge

is available on the likely location of this optimum�

Thus� even the process of constructing a mathematical model for the problem

might itself need the application of optimization algorithms for parameter estimation�

The Basic Di�erence Between Linear and Nonlinear Models

To construct a linear programming model involving n nonnegative variables subject to

m constraints� we need to estimate the �m� 
��n� 
�� 
 coe�cients of the variables
in the constraints and the objective function� these are the data elements in the model�

Real life LP applications routinely involve models with n � 
��� ��� or more� and m

as large as ����� A large scale LP model is usually of this size�

To construct a nonlinear model� we have to determine the functional form of the

objective and each constraint function� and obtain the best values for any parameters

in each� For this reason� practical nonlinear models tend to have fewer variables than

linear models� Depending on how complicated the functions involved are� a nonlinear

model with about ��� variables could usually be considered as a large scale model�
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Boiler Example� Continued

For the boiler problem� estimates of the best parameter values in the functional form

for the e�ciency of each boiler are given in Tableau 
��
�

At a point of time� the Company�s steam requirements are ��� units per unit time�

The problem is to determine how this total load of ��� units should be shared across

the �ve ��� parallel boilers so as to minimize the total fuel cost� It may be possible to

get a lower overall cost by shutting down one or more of the boilers and meeting the

demand using only the remaining boilers� For example� here it can be veri�ed that the

total load of ��� units can be met using boilers �� �� and � only� Thus the problem of

determining the most e�cient plan to meet a load of exactly ��� units� leads to a mixed

integer nonlinear programming problem in which there are �ve zero	one variables to

determine which of the �ve boilers are shut down and which are kept operating� and

the operating load level for the boilers that are kept operating� In this plant however�

it is known that the Company�s steam requirements vary with time� When the demand

for steam goes up� if a boiler is kept operating� it is a relatively easy matter to increase

the boiler�s steam output by turning a few valves� On the other hand turning on a

shut down boiler is an expensive operation� In order to be able to meet the varying

steam requirements over time� it was determined that all the �ve boilers should be

kept operating� Under this condition� since xi�fi�xi� is a measure of the energy cost of

obtaining a load of xi units from boiler i� we are lead to the following nonlinear model


minimize
�X

i��

xi�fi�xi�

subject to
�X

i��

xi � ���

li �� xi �� ki� i � 
 to �

which is a linearly constrained nonlinear program�

Exercise

���� Using the �� 
 variables yi de�ned by

yi � 
 if the ith boiler is kept operating

� � otherwise

formulate the problem of determining the most e�cient plan for producing exactly ���

units of steam per unit time as a mixed integer NLP�
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���� TYPES OF SOLUTIONS FOR

A NONLINEAR PROGRAM

Consider a NLP in which a function ��x� is required to be optimized subject to some

constraints on the variables x � �x�� � � � � xn�
T � Let K denote the set of feasible so	

lutions for this problem� For this problem a feasible solution x � K is said to be

a

local minimum� if there exists an 	 � � such that ��x� �� ��x� for all x � K �
fx 
 kx� xk � 	g�
strong local minimum� if there exists an 	 � � such that ��x� � ��x� for all

x � K � fx 
 kx� xk � 	g� x �� x�

weak local minimum� if it is a local minimum� but not a strong one�

global minimum� if ��x� �� ��x� for all x � K�

local maximum� if there exists an 	 � � such that ��x� �� ��x� for all x � K �
fx 
 kx� xk � 	g�
strong local maximum� if there exists an 	 � � such that ��x� � ��x� for all

x � K � fx 
 kx� xk � 	g� x �� x�

weak local maximum� if it is a local maximum� but not a strong one�

global maximum� if ��x� �� ��x� for all x � K�

stationary point� if some necessary optimality conditions for the problem are

satis�ed at the point x�

These concepts are illustrated in Figure 
��
 for the one dimensional problem


optimize ��x� subject to x � R�� a �� x �� b� ��x� is plotted in Figure 
��
�

The points a� x�� x�� x��� x�� are strong local minima� x�� x�� x	� x��� b are

strong local maxima� x�� is the global minimum� x	 is the global maximum� in this

problem� At the point x� the derivative of ��x� is zero� and so it is a stationary point

�satis�es the necessary optimality condition d�
x�
dx � �� even though it is neither a local

minimum or maximum� In each of the intervals x� �� x �� x�� and x� �� x �� x
� ��x� is

a constant� x�� x� are weak local minima� and x�� x
 are weak local maxima� Every

point x satisfying x� � x � x�� x� � x � x
 is both a weak local minimum and a weak

local maximum�
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���� TYPES OF NONLINEAR PROGRAMS�

WHAT CAN AND CANNOT BE DONE

EFFICIENTLY BY EXISTING METHODS

Every local minimum is a global minimum for the problem of minimizing a convex

objective function on a convex set� Likewise� every local maximum is a global maximum

for the problem of maximizing a concave function on a convex set� Problems of this type

are considered to be nice problems in nonlinear programming� they are called convex

programming problems� The other class of NLPs in which a nonconvex objective

function is required to be minimized� or in which the set of feasible solutions is not

convex� are called nonconvex programming problems�

In general� it is very hard to �nd the global minimum� or even to check whether

a given feasible solution is a global minimum in a nonconvex programming problem�

E�orts have been made to �nd global minima by enumerating all local minima� but

these methods tend to be very ine�cient� The enormity of this task can be appreciated

when we realize that some of the most di�cult problems in mathematics that have

remained unresolved for centuries� can be posed as nonconvex programming problems�
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As an example� consider Fermat�s last Theorem �unresolved since 
��� AD� see

�
������ which states that the equation
 xn � yn � zn � �� has no solution in integers

in the region x �
� 
� y

�
� 
� z

�
� 
� n

�
� �� Consider the following NLP� where 


is some positive parameter� � denotes the irrational number which is the length of

the circumference of the circle with unit diameter in R�� and cos � denotes the cosine

function of the angle � measured in radians�

minimize �xn � yn � zn�� � 
���
 � cos���x��� � ��
 � cos���y����
��
 � cos���z��� � ��
 � cos���n����

subject to x� y� z �� 
� n
�
� ��

�
��
�

�
��
� is a linearly constrained NLP� It can be veri�ed that Fermat�s last Theorem

is false i� the optimum objective value in �
��
� is � and attained� since any feasible

solution �x� y� z� n� to �
��
� which makes the objective value zero provides a coun	

terexample to Fermat�s last Theorem� �
��
� is a nonconvex programming problem in

which every integer feasible solution is a local minimum� The objective function in

�
��
� is a sum of several penalty terms� The number of distinct local minima can be

very large even in nonconvex programming problems that do not have such penalty

terms in the objective function� As an example� consider the concave minimization

problem

minimize ��x� � �
nX

j��

�xj � �
�����

subject to � �� xj �� 
� j � 
 to n�

�
����

Each of the �n extreme points of the set of feasible solutions of �
���� is a local mini	

mum� Unfortunately� there are no techniques known for determining how many local

minima a general nonconvex programming problem has� other than plain enumeration�

In nonconvex programming problems� since in general it is very di�cult to guarantee

that a global minimum will be obtained� the best thing that we can expect from an

algorithm is that it leads to a point satisfying a necessary condition for being a local

mimimum� and many of the descent type methods discussed in this chapter do that�

In these methods� the terminal solution obtained may depend on the initial point with

which the method is initiated� Usually� by running the algorithm with di�erent initial

points� several local minima may be obtained� and the best among them might be a

reasonably good solution for the problem�

Starting the algorithm with an initial point� suppose a local minimum x is obtained

for a nonconvex programming problem� A technique often used to move to a di�erent

local minimum is to add a penalty term like 
��kx� xk�p where 
 � � and p �� �� to

the objective function� and use the algorithm again on the augmented problem� As x

approaches x� the penalty term 
��kx�xk�p blows up to�� and this guarantees that
the algorithm moves to a point di�erent from x� But this may not be a satisfactory

approach to enumerate the local minima in a nonconvex program� because of the

numerical di�culties created by the addition of the penalty terms to avoid previously
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obtained local minima� Also� the augmented problem may have new local minima

which are not local minima of the original problem�

Because of this� if someone can establish the global minimum in a class of noncon	

vex programming problems� it is considered to be a mathematical breakthrough and

becomes a major international headline item� An example of this is the recent break	

through on establishing the minimum value of the permanent of a doubly stochastic

matrix of order n� Given a square matrix A � �aij� of order n� its permanent is de�ned

by

f�A� �
X
���a�p�� � � � �anpn�� 
 sum over all the n�

permutations �p�� � � � � pn� of f
� � � � � ng��
A doubly stochastic matrix of order n is a nonnegative square matrixX � �xij� of order

n� whose row sums and column sums are all equal to 
� The problem of minimizing the

permanent of doubly stochastic matrix of order n is therefore the NLP
 �nd a square

matrix X � �xij� of order n to

minimize f�X�

subject to
nX

j��

xij � 
� i � 
 to n

nX
i��

xij � 
� j � 
 to n

xij �� �� i� j � 
 to n�

The objective function in this NLP is nonconvex� hence� this is a nonconvex pro	

gramming problem� In 
��� B� L� vanderWaerden �
����� conjectured that the global

optimum for this problem is the doubly stochastic matrix �xij� in which xij � 
�n

for all i� j� with an optimum objective value of n��nn� This conjecture resisted the

attacks of many of the world�s greatest mathematicians� but was �nally resolved in the

a�rmative by G� P� Egorychev in 
���� see references �
��
�� 
��

� 
������

���� CAN WE AT LEAST COMPUTE A

LOCAL MINIMUM EFFICIENTLY�

In convex programming problems� any point satisfying any of the well known necessary

optimality conditions such as the KKT conditions� is a local minimum and therefore it

is also a global minimum for the problem� To solve a convex programming problem� any

algorithm that is guaranteed to �nd a KKT point� if one exists� is thus adequate� Most

of the algorithms for solving NLP�s discussed in this book can be shown to converge

to a KKT point� if one exists� and so these algorithms compute local� and thus global

minima when applied on convex programming problems�
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In a nonconvex program� given a feasible solution x satisfying the usual necessary

optimality conditions� it may or may not even be a local minimum� If x does not satisfy

the su�cient optimality condition given in Appendix � for being a local minimum� it

may be very hard to verify whether it is a local minimum� As an example� consider

the problem discussed in Section �����

minimize xTDx

subject to x �� �

where D is a given square matrix of order n� When D is not PSD� this NLP is the

simplest nonconvex NLP�

A su�cient condition for � to be a local minimum for this problem is that D

be PSD� If D is not PSD� � is a local minimum for this problem i� the matrix D is

copositive� no e�cient methods are known at the moment for doing this� The method

discussed in Section ����
 for testing copositiveness is a �nite enumeration method�

but it may not be practically useful when n is large� As discussed in Section ������ the

problem of checking whether � is a local minimum for this problem is a hard problem�

On nonconvex programs involving inequality constraints� existing algorithms can

at best guarantee convergence to a KKT point in general� If the KKT point obtained

does not satisfy some known su�cient condition for being a local minimum� it is then

hard to check whether it is actually a local minimum� However� as mentioned in Section

������ if the algorithm is based on a descent process �i� e�� in a minimization problem�

if the algorithm is designed to obtain a sequence of points with decreasing objective

values� one can be reasonably con�dent that the solution obtained is likely to be a

local minimum�

���	 PRECISION IN COMPUTATION

In linear or in convex quadratic programming problems� if all the data are rational

numbers� and if an optimum solution exists� there exists an optimum solution which is

a rational vector that can be computed exactly with �nite precision arithmetic using

algorithms like the simplex algorithm or the complementary pivot method discussed

earlier� However� in general nonlinear programming� even when the constraints are

linear� and all the data in the model is rational� there may be optimum solutions�

but no rational optimum solution� For example consider the simple one dimensional

optimization problem
 �nd x � R� that minimizes f�x� � ��x � �x���� subject
to x �

� �� The unique optimum solution of this problem is x �
p
�� an irrational

number� so we can never compute the exact optimum solution of this problem on

digital computers that operate with �nite precision arithmetic�

Hence� when dealing with general nonlinear programs� emphasis is placed on get	

ting an approximate optimum solution� In practical implementations� nonlinear algo	

rithms are usually terminated when optimality conditions are satis�ed to a reasonable

degree of approximation� or when it is evident that the algorithm has obtained an

interval of su�ciently small length containing the true optimum solution�
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���
 RATES OF CONVERGENCE

The algorithms discussed in this chapter are iterative in nature� They generate a

sequence of points fxr 
 r � �� 
� �� � � �g beginning with an initial point x�� Under
some conditions on the problem being solved� for most of these methods� it is usually

possible to prove that the sequence converges in the limit to a point x� which is a

point satisfying the necessary optimality conditions for a local minimum� Even when

this convergence is mathematically proven� the method is useful for solving practical

problems only if xr converges rapidly to x� as r increases� Here we discuss how this

rate of convergence is measured mathematically�

Finite Termination Property� The sequence is said to have this property� if there

exists a �nite value N such that xN � x� and the method terminates�

Quadratic Termination Property� The method is said to have this property if the

sequence generated terminates in a known �nite number of iterations when applied to

a strictly convex quadratic function minimization problem�

Suppose the method does not have either of the above properties� Then it gen	

erates the truly in�nite sequence fxr 
 r � �� 
� �� � � �g� Assume that the sequence
converges to x�� that xr �� x� for any r� The measure of the rate of convergence of

this sequence� tries to assess the improvement that occurs in each step� that is� in

e�ect it measures how close xr�� is to x� compared to the closeness of xr to x��

as r goes to �� The converging sequence fxrg is said to converge with order k
�or to have an asymptotic convergence rate k� if k is the largest number such that

limitr���kxr�� � x�k�kxr � x�kk� � �� When k � 
� the sequence is said to have

linear �or 	rst order� or geometric� convergence rate� if limitr���kxr�� � x�k�
kxr � x�k� � � � 
� In this case� the quantity � is called the convergence ratio of

the sequence� If in fact � � � in this case� the sequence is said to have superlinear

convergence rate�

As an example consider the sequence of real numbers f
r 
 r � �� 
� � � �g where
� � 
 � 
� The sequence converges to zero linearly� On the other hand the sequence

of real numbers fxr � �
�r� 
 r � 
� �� � � �g converges to zero with k � 
� but its rate
of convergence is not linear� since limitr���kxr��k�kxrk� � limitr����r��r�
�� � 

which is not strictly less than one�

If k � �� the sequence fxrg is said to have quadratic �or second order� conver�

gence rate� Quadratic convergence is rapid� since it implies that once the sequence

reaches a small neighborhood of x�� the error in a step decreases as the square of the

error in the previous step �i� e� � the number of digits to which xr agrees with x� begin

to double after each step� after a certain number of steps��

Summary of Later Sections

In the following sections we discuss various descent methods in common use for solving

linearly constrained NLPs� These algorithms typically use some unconstrained mini	

mization algorithms and algorithms for solving nonlinear programs in a single variable
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�the so	called line minimization algorithms� as subroutines� So we survey these algo	

rithms �rst�

���� SURVEY OF SOME

LINE MINIMIZATION ALGORITHMS

The line minimization problem is the problem of minimizing a real valued function

f�
� of one variable 
� either over the whole real line� or over the half	line 
 �
� l for a

speci�ed number l� or over a speci�ed �nite interval �l� u� � f
 
 l �� 
 �
� ug� Assuming

that f�
� is continuously di�erentiable� the global minimum for f�
� in the interval

l �� 
 �� u is the point 
� in this interval which gives the minimum value for f�
� among

those 
 satisfying df
��
d�

� �� and the points l� u� if these are �nite� In fact if f�
� is

concave and l� u are �nite� the global minimum for f�
� in the interval l �� 
 �
� u is

either l or u� whichever gives a smaller value for f�
�� See Figure 
����

In the interval �a� b� if f ��a� � �� a is a local minimum for f�
�� and if f ��b� � ��

b is a local minimum for f�
��

When f�
� is a general function� a bracket is de�ned to be an interval in the

feasible region which contains the minimum� When the derivative f ��
� � df
��
d�

is

not available� a bracket usually refers to an interval �
�� 
�� in the feasible region�

satisfying the property that we have a 
� satisfying 
� � 
� � 
� and f�
�� �
�

minimum ff�
��� f�
��g� If the derivative f�
� is available� a bracket usually refers
to an interval �
�� 
�� with 
� � 
�� satisfying the property that f

��
�� � � and f
��
��

� ��
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(   )f λ

l u
λ

Figure ���
 The global minimum for one dimensional concave minimization

problem is a boundary point �l here��

How to Select an Initial Bracket�

First consider the problem in which we are required to minimize f�
� over the entire

real line� Begin with an initial point 
� and choose a positive step lenth  � Compute

f�
�� and f�
��� where 
� � 
�� � If f�
�� � f�
��� the direction of increasing 
 is

the right direction to pursue� otherwise� replace  by � to reverse the direction and
go through the procedure discussed next� De�ne 
r � 
r�� � �

r�� for r � �� �� � � �

as long as they keep on decreasing� until either the upper bound on 
 is reached or

a value k for r is found such that f�
k��� � f�
k�� In this case we have 
k��� 
k�


k�� satisfying f�
k� � f�
k���� f�
k��� � f�
k�� Among the four points 
k��� 
k�

�
k�
k������ and 
k��� drop either 
k�� or 
k��� whichever is farther from the point

in the pair f
k� �
k�
k�����g that yields the smallest value to f�
�� Let the remaining
points be called 
a� 
b� 
c� where 
a � 
b � 
c� These points are equi	distant� and

f�
b� �� f�
c�� f�
b� �� f�
a�� So this interval 
a to 
c brackets the minimum�

If the problem is to minimize f�
� over 
 �
� l or u �

� 
 �
� l� it is reasonable to

expect that f�
� decreases as 
 increases through l �i� e�� the derivative f ��l� � ��

otherwise l is itself a local minimum for the problem�� So in these problems� we can

get a bracket by beginning with 
� � l and applying the above procedure�
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������ The Golden Section Search Method

The function f�
� is said to be a unimodal function in the interval a �� 
 �
� b if it has

a unique local minimum in the interval� See Figures 
���� 
����

(   )f λ

a b
λ

Figure ���� A unimodal function in the interval �a� b��

(   )

da bc

f λ

λ

Figure ���� This function is constant in the interval c � 
 � d� so every point

in this interval is a local minimum� So this function is not unimodal in the

interval �a� b��
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In many practical applications� it is reasonable to assume that the interval has

been narrowed down using prior knowledge of the problem such that the objective

function has a single minimum in the interval� A unimodal function f�
� in the interval

a �� 
 �
� b satis�es the property that there exists a unique 
� in the interval �this 
� is

the minimum� such that given any 
�� 
� in the interval with 
� � 
�� if 
� � 
� we

have f�
�� � f�
��� and if 
� � 
�� we have f�
�� � f�
��� The golden section search

method is a method for minimizing a unimodal function in an interval by sectioning

�i� e�� interval reduction� using only function values evaluated at selected points�

The number � � ���
 �
p
�� 	 ��
� is known as the golden ratio� Let �
� ��

be the current interval in which the minimum is known to lie� If function value has

not been evaluated at any interior point in this interval� let 
� � 
 � ������ � 
��


� � 
 � ��
��� � 
�� evaluate f�
��� f�
�� �depending on what happened in the

previous step� it is possible that the function value at one of these points 
� or 
�
has already been computed in the previous steps�� If f�
�� � f�
��� the minimum is

contained in the interval �
� 
��� If f�
�� � f�
��� the minimum is contained in the

interval �
�� ��� If f�
�� � f�
��� the minimum is contained in the interval �
�� 
���

Repeat this process with the new interval�

There is a reduction in the length of the interval of uncertainty �i� e�� the bracket

length� by a factor of ��
� or more in each step� The length of the interval of uncertainty

converges linearly to zero� When the length of the interval of uncertainty has become

less than a speci�ed tolerance� 	� any point in the �nal interval could be taken as an

approximation for the minimum�

������ The Method of Bisection

This method can be used if f�
� is continuously di�erentiable and the derivative f ��
�

can be computed� It starts with an initial bracket for the minimum �a� b� satisfying

f ��a� � � and f ��b� � �� Evaluate f ���a�b����� If f ���a�b���� � �� the point �a�b���

satis�es the �rst order necessary condition for a local minimum� If f ���a� b���� � ��

take �a� �a�b���� as the new bracket and continue� If f ���a�b���� � �� take ��a�b���� b�

as the new bracket and continue�

Since the bracket is cut in half each time� the length of this interval converges

to zero linearly� When its length has become less than a speci�ed tolerance 	� any

point in the �nal interval could be taken as an approximation to the minimum� One

disadvantage of this method is that it relies totally on the values of the derivative f ��
�

and does not use the values of the function f�
� being minimized�

������ Newton�s Method

This is a second order gradient method that can be used if f�
� is twice continuously

di�erentiable and the second derivative f ���
� can be computed easily either through
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a subroutine or by using a �nite di�erence approximation� and f�
� is required to be

minimized over the entire real line� The method is the application of the Newton	

Raphson method to �nd a solution of the equation
 f ��
� � �� The method generates

a sequence f
r 
 r � �� 
� � � �g beginning with an initial point 
�� Given 
r� the

second order Taylor series approximation for f�
� at 
r is f�
r� � f ��
r��
 � 
r� �

�
���f ���
r��
� 
r�
�� If f ���
r� � �� this has a minimum at


r�� � 
r � f ��
r��f
���
r�� �
����

Equation �
���� gives the iterative scheme for Newton�s method� The method is not

suitable to be used if f ���
� turns out to be �� � at any point encountered during the

algorithm� It is quite suitable if an initial point 
� in the vincinity of a local minimum

is known� In the vincinity of a minimum� the second derivative f ���
� is of constant

sign �nonnegative� and the �rst derivative f ��
� changes sign from a negative to a

positive value� If f�
� is a quadratic function with a minimum� this method �nds the

minimum in one step� In general� any twice continuously di�erentiable function has a

Taylor series expansion around a point� the �rst three terms of this series �which form

a quadratic function� are dominant when the point is in the vincinity of the minimum�

The method has rapid convergence �quadratically� once the vincinity of the minimum

is reached� A result on the convergence rate of this method follows as a corollary of

Theorem 
��
� where a convergence rate result for Newton�s method applied to �nd

the unconstrained minimum of a real valued function ��x� over x � Rn is proved�

See references �
���� 
��
�� 
����� 
����� for results on the convergence and rates of

convergence of Newton�s method�

������ Modi	ed Newton�s Method

Several modi�cations have been proposed for Newton�s method to handle cases where

a good initial point is not available to initiate Newton�s method� or when a point

satisfying f ���
� �� � is encountered during the method� and to handle the problem

in which the feasible range is a speci�ed interval and not the entire real line� We

discuss one such modi�cation here� We consider the problem of minimizing a twice

continuously di�erentiable function f�
� in the interval �a� c� � f
 
 a �
� 
 �

� cg and
we have a piont b satisfying a � b � c and f�b� � minimum ff�a�� f�c�g� This method
generates a sequence of points f
r 
 r � �� 
� � � �g satisfying the property that the
entire sequence lies in the interval �a� c� and that f�
r��� � f�
r� for all r� Initiate

the method with 
� � b� and select a constant 
 satisfying � � 
 � 
� The quantity


 is called the attenuation factor�

Given 
r� the point obtained by moving in the direction of f
��
r� a step of length

� is 
r � �f ��
r�� From the Taylor series� f�
r � �f ��
r�� � f�
r� � ��f ��
r��
��

error term� where the error term tends to zero faster than �� So� if � � �� we make

improvement in the objective value by this move� Notice that Newton�s method takes
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� � 
�f ���
r� to get the next point in the sequence� In this method you do the

following�

�a� If f ���
r� � � compute yr � 
r � f ��
r��f
���
r�� If yr � �a� c� and f�
r�� f�yr� ��

�
����f ��
r��
��f ���
r�� de�ne 
r�� � yr� If yr � �a� c� but f�
r� � f�yr� �

�
����f ��
r��
��f ���
r�� use a �rst order Armijo step size procedure which requires

the determination of the smallest nonnegative integer s satisfying

�
r � f ��
r���
s� � �a� c�� and

f�
r�� f�
r � f ��
r���
s� � �
��s��f ��
r��

�

and then de�ne 
r�� � 
r�f ��
r���s� The motivation for this step size procedure
is explained in Section 
����
�

�b� If f ���
r� �� �� de�ne � � �
 if f ��
r� �� �� �
 if f ��
r� � � and use the second
order Armijo step size procedure� This requires the determination of the smallest

nonnegative integer s satisfying

�
r � �f ��
r���s� � ����s���� � �a� c�� and
f�
r�� f�
r � �f ��
r���s� � ���s��� �� 
���f ��
r��

���s�� f ���
r���
s����

For a �nite s satisfying these conditions to exist� it is su�cient that f ���
r� � � if

f ��
r� � �� Then de�ne 
r�� � 
r � �f ��
r���s� � ���s���

Under certain conditions it can be shown that this method has second	order con	

vergence� See references �
��
� 
����� 
������

�����
 Secant Method

In Newton�s method or modi�ed Newton�s method discussed above� we need to com	

pute the value of the second derivative f ���
r�� This may be hard� In the secant method

we replace f ���
r� by its �nite di�erence approximation �f
��
r��f ��
r������
r�
r����

This is the only change in the Secant method from Newton�s or modi�ed Newton�s

method� The secant method is initiated with two initial points 
�� 
� in the feasible

region satisfying 
� � 
� and f
��
�� � �� f

��
�� � ��

������ The Method of False Position

In the secant method we always use f ��
r� and f ��
r��� to get a �nite di�erence

approximation for f ���
r� for each r� Even though initially f
��
��� f

��
�� are of opposite

signs� after some steps it may happen that f ��
r� and f
��
r��� have the same sign� and

this could make the iterates diverge when minimizing over the real line� In this method

we make sure that f ���
� is always approximated using the values of f ��
� of opposite

signs at two di�erent values of 
� For some r� suppose f ���
r� was approximated

using f ��
r� and f ��
s� for an s �
� r � 
� Compute 
r�� using this approximation

as under the secant method� and compute f ��
r���� Determine which of f
��
t� for

t � r or s has a sign opposite to that of f ��
r���� Then approximate f
���
r��� by

f ��
r�� � f ��
t����
r�� � 
t�� and continue in the same way�
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������ Univariate Minimization by

Polynomial Approximation Methods

The essential feature of these methods is to approximate the original function f�
�

by a simpler function P �
� �normally a second or third degree polynomial� by curve

�tting� and then using the minimum of P �
� to approximate that of f�
�� These

methods are also called polynomial interpolation methods� If the minimum is known

to lie in a small enough interval� the application of these methods usually produces

very satisfactory results�

Quadratic Interpolation

This method needs an interval of the form 
� � 
� � 
� with f�
�� � minff�
���
f�
��g� a bracket for the minimum� as discussed earlier� 
�� the initial best point� is the
initial point in the sequence� It constructs a quadratic approximation P �
� � a
� �

b
� c which coincides with f�
� at 
 � 
�� 
�� 
�� By the properties mentioned above�

P �
� determines a parabola� The three independent pieces of information �value of

P �
� � value of f�
� at 
 � 
�� 
�� 
�� are used to determine a� b� c in P �
� uniquely�

Since P �
� is a parabola �by the condition imposed�� the minimum of P �
� lies in the

interval �
�� 
�� at the point 
 satisfying
dP 
��
d� � �� It can be veri�ed that this point

is


� �
�
�� � 
���f�
�� � �


�
� � 
���f�
�� � �


�
� � 
���f�
��

���
� � 
��f�
�� � �
� � 
��f�
�� � �
� � 
��f�
���


� is a minimum for P �
� if

�
� � 
��f�
�� � �
� � 
��f�
�� � �
� � 
��f�
��

�
� � 
���
� � 
���
� � 
��
� �

a condition which will hold because of the properties satis�ed by 
�� 
�� 
��

It is possible for 
� to be equal to 
� even though this point is far away from a

local minimum of f�
�� See Figure 
���� If this happens� the quadratic interpolation

has failed to generate a new trial point�

If j
� � 
�j is not too small� we can replace one of the points in 
�� 
�� 
� by 
�
so that the new set of three points again satis�es the conditions for a bracket for the

minimum of f�
�� The best point among these three is the next point in the sequence�

and the procedure is repeated with the new bracket� If 
� and 
� are too close �even

if they are not equal� repeating the procedure with such close values could lead to

numerical problems in the next step� In this case� we select a small distance �� and

take the new point to be either 
�� � or 
�� � whichever leads to the smallest length

new bracket�
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P λ
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Figure ���� The minimum of f�
� in the bracket �
�� 
�� is at 
� But the

minimum of Quadratic approximation� 
� is the same as 
��

Note ���� Newton�s method is a quadratic approximation method� Given the cur	

rent point 
r at which the second derivative f
���
r� � �� Newton�s method constructs a

quadratic function P �
� satisfying the three properties P �
r� � f�
r�� P
��
r� � f ��
r�

and P ���
r� � f ���
r�� It can be veri�ed that the function P �
� is just the second order

Taylor series approximation to f�
� around this point 
r� and that the next point in

the sequence 
r�� is the minimum of this quadratic approximation P �
��

Cubic Interpolation Method

This method can be used when f�
� is di�erentiable and the derivative f ��
� can

be computed either numerically using a �nite di�erence approximation or computed

directly using a subroutine for evaluating it� The method needs a bracket �
�� 
��

satisfying the property that f ��
�� � �� f
��
�� � �� A cubic function P��
� � a
� �

b
� � c
 � d can be �tted such that it agrees in value with f�
� at 
� and 
� and

its derivative has the same value as f ��
� at 
� and 
�� From the bracket conditions

the minimum of this cubic function occurs inside the bracket at the point 
� satisfying
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d
d� �P��
�� � �� It can be veri�ed that


� � 
� � �
� � 
��
�

� f ��
�� � � � �

f ��
��� f ��
�� � ��

�

where

� �
��f�
��� f�
���


� � 
�
� f ��
�� � f ��
��

� � ��� � f ��
��f
��
���

����

If jf ��
��j is small� 
� can be accepted as a good approximation for the minimum�
Otherwise� if f ��
�� � �� repeat the process with �
�� 
�� as the new bracket� If

f ��
�� � �� repeat the process with �
�� 
�� as the new bracket�

It can be shown that these polynomial approximation methods have superlinear

or better convergence rate under certain conditions� See �
��
�� 
��
�� A��� It is

possible to develop algorithms based on a combination of sectioning and polynomial

interpolation steps�

Di�culty in Computing Derivatives During

Line Minimization Steps Encountered in Solving

NLPs Involving Several Variables

Let ��x� be a continuously di�erentiable real valued function de�ned on Rn� Consider

the NLP in which ��x� is to be minimized� possibly subject to some constraints� Many

algorithms for solving such a problem make repeated use of line minimization algo	

rithms to solve problems of the form
 given a point x� � Rn and a search direction

y � Rn� y �� �� �nd the step length 
 that minimizes ��x� � 
y� subject to 
 �
� ��

In this problem� since x� and y are given vectors� ��x� � 
y� � f�
� is purely a

function of the step length parameter 
� If the problem of minimizing f�
� in 
 �
� �

needs the derivative f ��
� for some given value of 
� we use

f ��
� �
d

d

���x� � 
y�� � �r��x� � 
y��y

where r��x��
y� is the row vector of partial derivatives of ��x� evaluated at x � x��


y� So� the computation of f ��
� needs the evaluation of each of the partial derivatives

of ��x� at the point x� � 
y� which in the worst case takes n function evaluations �the

work would be less if� for example� we know from the structure of ��x� that some of

these partial derivatives are zero�� Thus� evaluating f�
� � ��x�� 
y� needs only one

function evaluation� while evaluating f ��
� needs n function evaluations� considerably

more work� In the same manner� evaluation of the second derivative f ���
� for any 
�

needs n� function evaluations in the worst case� These facts should be considered in

choosing an algorithm for line minimization� to be used as a subroutine in algorithms for

NLPs involving many variables� Since evaluating derivatives �f ��
� or f ���
�� requires a
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lot more function evaluations� typically line minimization algorithms based on function

values only� are to be preferred as far as possible�

When f�
� � ��x� � 
y�� the formula f ��
� � �r��x� � 
y��y is an analytical

formula for the exact derivative of f�
� at 
� and the value of f ��
� computed using

this formula is known as the analytically computed derivative� Since the analytical

computation of the derivative is so expensive� it may be appropriate to use an ap	

proximation for it� Let 	 be a small positive number� it is called the �nite di�erence

interval� Then f ��
� can be approximated by any of the three following quantities

f�
�� f�
� 	�

	

or
f�
� 	�� f�
�

	

or
f�
� 	�� f�
� 	�

�	
�

The topmost quantity is called the backward	di�erence approximation� the middle

quantity is known as the forward	di�erence approximation� and the bottom quantity is

known as the central	di�erence approximation� to f ��
�� If the value of f�
� is already

known� the computation of the forward or backward	di�erence approximation to f ��
�

needs one more function evaluation� whereas the computation of the central	di�erence

approximation needs two more function evaluations� If 	 is small compared to jf ��
�j
and the magnitude of jf ���
�j in the neighborhood of 
� the error in approximation
will be small� because f�
 � 	� � f�
� � 	f � � ��

� f
���
 � �� for some � �� � �

� 	� by

Taylor�s theorem� Thus with a suitable choice of the �nite di�erence interval� these

�nite di�erence approximations provide a reasonable approximation to the derivative�

with much less computational e�ort than that involved in using the analytical formula�

Because of this� many professional software packages for NLP algorithms use �nite

di�erence approximations to the derivatives�

Even the partial derivatives of ��x� can be approximated by �nite di�erence ap	

proximations� Let I be the unit matrix of order n� Then

��x�� ��x� 	I�j�

	

or
��x� 	I�j�� ��x�

	

or
��x� 	I�j�� ��x� 	I�j�

�	

where 	 is the suitable �nite di�erence interval� are the backward� forward and central	

di�erence approximations for the partial derivative ��
x�
�xj

� respectively�
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������ Practical Termination Conditions for

Line Minimization Algorithms

In practice� line minimization algorithms discussed above are terminated either when

the bracket length is small� or when a point 
 satisfying jf ��
�j � 	 for some speci�ed

tolerance 	 is obtained� or when the improvement in objective value between two

consecutive points obtained in the method is small� or when the di�erence between

two consecutive points obtained under the method is small� At termination� if we have

a bracket for the minimum� a �nal interpolation step can be carried out to provide the

approximate location of the minimum in the bracket�

�����
 Line Minimization Algorithms Based on

Piecewise Linear and Quadratic Approximations

In this section we discuss new line minimization algorithms based upon a combination

of piecewise linear �or polyhedral� and quadratic approximations� due to C� Lemarechal

and R� Mi!in �
����� 
����� 
������ These algorithms are rapidly convergent� and seem

best suited as line search subroutines in higher dimensional optimization algorithms�

Let f�
� 
 R� 
 R� be the real valued function de�ned on R� which is required

to be minimized over 
 � R�� At any given 
� the limit �if it exists� of f
�����f
��
�

as

	
 � through positive values is known as the right derivative of f�
� at 
 and denoted

by f ���
�� the limit of the same quantity as 	
 � through negative values is known as

the left derivative of f�
� at 
 and is denoted by f ���
�� If f�
� is di�erentiable at 
�

then f ���
� � f ���
� � f ��
�� If f�
� is convex� these f ���
� and f
�
��
� exist and they

satisfy

if 
 � �� then f ���
� �� f ���
� �� f ����� �� f ������

When f�
� is convex� the subdi�erential �f�
� is the line segment �f ���
�� f
�
��
��� and

a necessary and su�cient condition for a 
� to be the minimizer point for f�
� is


f ���
�� �� �
�
� f ���
���

For the moment� let g�
� denote the derivative f ��
� if it exists� or a number from

�f�
�� that is� a subgradient of f�
� at 
� otherwise� Given two points 
 and �

satisfying the properties that f�
� �� f��� and g�
�g��� � �� the interval between 


and � is a bracket for the minimum�

Polyhedral Approximation

The a�ne functions f�
� � g�
��
 � 
�� f��� � g����
 � ��� are the linearizations of

f�
� at 
 � 
� � respectively� The pointwise supremum function P �
� � max �ff�
��
g�
��
�
�� f����g����
���g provides a piecewise linear or polyhedral approximation
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for f�
� in the interval between 
 and �� If f�
� is convex� this piecewise linear function

underestimates f�
� at each point in the interval� see Figure 
���� The point where

this piecewise linear function attains its minimum is the point that equalizes the two

expressions inside the max �� it is 
� dP � where

dP �
f�
�� f���� g����
� ��

g���� g�
�
�

This dP provides the polyhedral approximation step from the point 
 for the line

minimization problem� If f�
� is convex� the numerator in dP is �� � and 
� dP lies

in the interval between 
 and ��

(   )

d
P

+

f λ

λ

λ

γ

Figure ���
 A Polyhedral approximation �the dashed lines� for f�
�� and

the point 
� dP where it attains its minimum�

Quadratic Approximation

A quadratic approximation for f�
� at 
 � 
 is of the form

Q�
� � f�
� � g�
��
� 
� �



�
�
� 
��G�
�
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where G�
� approximates the second derivative of f�
� and is determined in a one	sided

secant manner� that is�

G�
� �
g�
�� g�t�


� t

where t is a point such that 
 is in the interval between t and the minimizer of f�
��

If f�
� is convex� G�
� is � �� If G�
� � �� the minimum of Q�
� is attained at 
�dQ
where

dQ �
�g�
�
G�
�

�

If G�
� �� �� jdQj � ��� dQ is the quadratic approximation step from 
 for the line

minimization problem�

The algorithm uses a step that is the shorter of the quadratic approximation and

the polyhedral approximation steps� Some modi�cations are made to these steps if the

functions are not convex� to guarantee convergence to at least a stationary point�

These methods generate two sequences f
rg� f�rg where for each r� 
r and �r
are on opposite sides of the minimizing point 
�� The sequence ff�
r�g will be non	
increasing� and j
r � �rj is a decreasing sequence� since at least one of the two points

r� �r changes in each step�

We describe di�erent versions of the algorithm in various numbered subsections

in the following� for ease of cross referencing�

� Line Minimization of a Convex Function

Assume that f�
� is convex and that it is required to �nd the point 
� that minimizes

f�
� over 
 � R�� In this subsection� g�
� denotes f ��
� if f�
� is di�erentiable at 
�

or a subgradient of f�
� at 
 otherwise �i� e�� a point from �f�
�� the interval between

f ���
� and f
�
��
��� The method initially needs two points 
� and �� satisfying

f�
�� �� f���� and g�
��g���� � ��

A pair of points like this can be generated by some initialization procedure� In this

case 
� is in the interval between 
� and ��� Choose G�
�� � �g�����g�
��������
���
We will now describe the general step�

Step r� At the beginning of this step we have 
r� �r satisfying

f�
r� �� f��r� and g�
r�g��r� � �

and we also have G�
r�� Compute

dPr �
f�
r�� �f��r� � g��r��
r � �r��

g��r�� g�
r�

dQr �
�g�
r�
G�
r�
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where jdQr j � �� if G�
r� � �� Now determine

dr � �sign of ��g�
r����min �fjdPr j� jdQr jg�
�r � 
r � dr�

Terminate with the conclusion that �r is the minimizer of f�
� if either dr � � or

g��r� � ��

Otherwise� update the quantities for the next step as given below� If f��r� ��
f�
r�� then set 
r�� � 
r� �r�� � �r� G�
r��� � G�
r�� In this case there is no move

in the 
r	sequence�

If f��r� � f�
r�� then set 
r�� � �r� and

if g�
r�g��r� � �� then set �r�� � �r

G�
r��� �
g��r�� g�
r�

dr
if g�
r�g��r� � �� then set �r�� � 
r

G�
r��� �
g��r�� g��r�

�r � �r
�

Under rather general assumptions� it has been proved in �
����� that if this algorithm

does not terminate in a �nite number of steps� then f�
r� 
 f�
�� as r 
 �� and
that the sequence f
rg itself converges superlinearly to 
�� a minimizer of f�
��

� Constrained Line Minimization With Convex Functions

Need For a Constraint in Line Minimization

Let ��x� be a real valued function de�ned on Rn� In algorithms for the unconstrained

minimization of ��x�� we start at a point x � Rn� develop a search direction y � Rn�

y �� �� which is a descent direction at x� and then have to solve the line minimization
problem of minimizing f�
� � ��x � 
y� over 
 �

� �� It has been shown that such

algorithms will have desirable convergence properties if the step length 
 �
� � is chosen

so as to satisfy

f�
�� f��� �� �


where � is a negative number that is a positive fraction of an estimate of the directional

derivative of ��x� at x in the direction y� To satisfy this condition� we de�ne c�
� �

f�
�� f���� �
� and solve the constrained line minimization problem

minimize f�
�

subject to c�
� �� ��
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For another application of constrained line minimization� consider the general NLP

minimize ��x�

subject to hi�x� �� �� i � 
 to m�

Algorithms for solving these problems usually begin with an initial feasible point x� �nd

a descent search direction y at x� and do a line minimization in that direction� De�ne

c�
� � max �fhi�x� 
y� 
 i � 
 to mg� The problem of �nding the best feasible point
in this search direction� leads to the constrained line minimization problem
 minimize

f�
�� subject to c�
� �� ��

The Constrained Line Minimization Problem

Here we consider the constrained line minimization problem

minimize f�
�

subject to c�
� �� �

where both functions f�
� and c�
� are convex� Let

S � f
 
 c�
� �� �g�

Since c�
� is convex� S is an interval� but it may be hard to determine S explicitly

if c�
� is nonlinear� However� we assume that S has a nonempty interior and that a

feasible point �i� e�� 
 � S� may be found� for example� by �nding an unconstrained

minimum of c�
��

Here we discuss a modi�cation of the algorithm of Subsection 
 due to R� Mi!in

�
����� for solving this constrained problem�

The method generates two sequences f
rg� f�rg� where for each r� 
r is feasible

and 
r� �r are on opposite sides of any constrained minimization point 
�� �r is either

infeasible �i� e�� c��r� � �� or f��r� �� f�
r�� The sequence ff�
r�g is non	increasing
with r� In this subsection we de�ne

g�
� � �f�
� if c�
� �� � �i� e�� 
 � S�

g�
� � � c�
� if c�
� � � �i� e�� 
 �� S��

We therefore have

c�
� �� c��� � g��� �
� ��� for all 
� and � �� S

f�
� �� f��� � g����
� ��� for all 
� and � � S�

For 
 feasible� as in Subsection 
� we de�ne G�
� � �g�
� � g�t����
 � t� where t is

feasible and 
 is between t and 
�� The quadratic approximation step at a feasible

point 
 is de�ned as before� using G�
��
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In Step r of the algorithm� if both the points 
r and �r are feasible� the polyhedral

approximation step is de�ned exactly as under Subsection 
�

Given 
r� �r� if �r is infeasible� then g��r� is a subgradient of the constraint

function c�
�� and is not related to the objective function f�
�� Thus� in this case�

the polyhedral approximation step given 
r� �r is not well de�ned as in Subsection


� One aim for this step could be to move the �	sequence towards feasibility� Taking

this step to be �d� where 
r � �d � �r � �c��r��g��r�� would correspond to a Newton	
Raphson step for solving c�
� � � based upon linearization of c�
� at �r� On the other

hand� in order to make a move not just towards feasibility� but towards a minimizing

feasible point� we could take the step to be "d where 
r � "d is the point at which the

linearization of f�
� at 
r� and the linearization of c�
� at �r become equal� This leads

to "d � ��c��r�� g��r��
r� �r����g��r�� g�
r��� In order to achieve fast convergence�

the actual polyhedral approximation step in this case� from the feasible point 
r� is

taken to be a compromise between �d and "d given by

dPr �
P �
r� �r�

g��r�� brg�
r�

where P �
r� �r� � �c��r� � g��r��
r � �r� and br � P �
r� �r�� We are now ready to

describe the algorithm�

The algorithm needs an initial pair of points 
�� �� such that 
� is feasible �i� e��


� � S�� and either c���� � � or f���� �� f�
��� and g�
��g���� � �� This implies that

a constrained minimizing point lies between 
� and ��� Also choose G�
�� �� �� We

will now describe the general step in the algorithm�

Step r� Let 
r� �r be the points at the beginning of this step� De�ne

P �
r� �r� � �c��r�� g��r��
r � �r�� and br � P �
r� �r�� if c��r� � �

P �
r� �r� � f�
r�� f��r�� g��r��
r � �r�� and br � 
� if c��r� �� �

dPr �
P �
r� �r�

g��r�� brg�
r�

dQr �
�g�
r�
G�
r�

� if G�
r� � �

jdQr j � ��� if G�
r� �� �

dr � �sign of ��g�
r����min �fjdPr j� jdQr jg�
�r � 
r � dr�

Terminate with the conclusion that �r is the optimum solution of the problem if either

dr � � or g��r� � ��

Otherwise� update the quantities for the next step as given below� If c��r� � � or

f��r� �� f�
r�� set 
r�� � 
r� �r�� � �r� G�
r��� � G�
r��

If c��r� �� � and f��r� � f�
r�� then set 
r�� � �r� and

if g�
r�g��r� � �� then set �r�� � �r� G�
r��� �
g��r�� g�
r�

dr

if g�
r�g��r� � �� then set �r�� � 
r� G�
r��� �
g��r�� g��r�

�r � �r
�
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Under rather general conditions� R� Mi!in �
����� has proved that if the algorithm

does not terminate �nitely� then f�
r� converges to the minimum value of f�
� over

S� and that the sequence f
rg itself converges to an optimum solution of the problem�

�� with j
r � 
�jj�r � 
rj converging to zero superlinarly�

� General Constrained Line Minimization

Let f�
�� c�
� be real valued functions de�ned on R�� not necessarily convex� Here we

consider the constrained line minimization problem

minimize f�
�

subject to c�
� �� ��

The set S � f
 
 c�
� �� �g is the feasible set� Since c�
� is not assumed to be convex�
S may consist of a collection of disjoint intervals�

Let F �
� denote either f�
� or c�
�� If F �
� is continuoulsy di�erentiable at 
� we

let �F �
� be the singleton set fdF 
��
d�

g� as in Appendix �� If F �
� is not di�erentiable at

� �F �
� denotes the set of subgradients or generalized gradients� it is the convex hull of

all limits of sequences of the form fdF 
�k�
d�


 f
kg 
 
 and F �
� is di�erentiable at each


kg� With this de�nition �F �
� agrees with the subdi�erential set when F �
� is convex�
Also if F �
� is not given explicitly� but is de�ned implicitly as the pointwise supremum�

say� as F �
� � maxfF��
�� � � � � Ft�
�g where each Fi�
� is continuously di�erentiable�
then �F �
� will be the convex hull of fdFi
��

d�

 over all i such that Fi�
� � F �
�g� The

algorithm discussed in this subsection needs a subroutine which can evaluate F �
� for

any 
� and another subroutine to obtain a number g�
� � �F �
��

Stationary Points

A point 
� � S is a stationary point for this constrained line minimization problem if

either c�
�� � �� and � � �f�
��

or c�
�� � �� and � � convex hull of �f�
�� � �c�
��

because these are the necessary optimality conditions for this problem� See Figure


����
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Figure ���� The feasible set S consists of the thick portion of the 
	axis� 
�
is a stationary point since c�
�� � ��

dc
���
d��

� �� df
���
d�

� � and so � is in the

convex hull of dc
���
d�

� and df
���
d�

� 
� is another stationary point� but 
� is not�

In the algorithm discussed in this subsection� we need

g�
� � �f�
� if 
 � S

g�
� � �c�
� if 
 �� S�

The algorithm generates two sequences of points f
rg� f�rg with 
r feasible for all r
and f�
r� non	increasing� For each r we will have

c�
r� �� � and g�
r���r � 
r� � �

and either c��r� � �� or c��r� �� � and f��r�
�
� f�
r��

These conditions imply that there exists a stationary point between 
r and �r� The

algorithm needs a pair of initial points 
�� �� satisfying the above conditions� these can

be obtained by a suitable initialization routine� The sequence of points f
rg obtained
in the algorithm converges to a stationary point 
� and j
r � 
�j� j�r � 
�j converges
to zero superlinearly�
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The Quadratic Approximation Step

As before� G�
r� is an approximation to the second derivative of f�
� at 
r� and it is

determined in a one	sided secant	manner� that is� when 
r �� 
��

G�
r� �
g�
r�� g�tr�


r � tr

where tr is a feasible 
j or �j for some j � r and is on the opposite side of 
r from �r�

If f�
� is convex� then we will have G�
r� �� � for all r� But due to nonconvexity we

may get some G�
r� �� �� So� the quadratic approximation step is de�ned here by

dQr �
�g�
r�

max �fG�
r�� �g
with the understanding that jdQr j � �� if G�
r� �� ��

The Polyhedral Approximation Step

Consider the case when both 
r and �r are feasible �rst� In this case� if g�
r�� g��r�

have opposite signs� we de�ne the polyhedral approximation step by

dPr �
P �
r� �r�

g��r�� g�
r�

where P �
r� �r� � f�
r� � f��r� � g��r��
r � �r�� as before� If P �
r� �r� �� � �which

will be the case when f�
� is convex� then 
r � dPr will be between 
r and �r� Due to

nonconvexity it may happen that g�
r� and g��r� do not have opposite signs and�or

P �
r� �r� is negative� In this case� the polyhedral approximation step needs to be

modi�ed as follows� See Figure 
����

Let Hr be a secant estimate of f
���
� near �r� that is when �r �� ���

Hr �
g��r�� g�ur�

�r � ur

where ur is a feasible 
j or �j for some j � r on the opposite side of �r from 
r� In

this case a quadratic approximation to f�
� around �r is

q�
� � f��r� � g��r��
� �r� �



�
Hr�
� �r�

��

A linear approximation for q�
r � d� based at 
r is

f��r� � g��r��
r � �r� �



�
Hr�
r � �r�

� � �g��r� �Hr�
r � �r��d�

We can take dPr to be the value of d which equalizes this to f�
r��dg�
r�� This leads to

d � �f�
r��f��r�� �g��r��h��
r��r����g��r���h�g�
r��� where h � �
�Hr�
r��r��

Since this needs to be carried out only under negative curvature� we de�ne a negative

curvature correction
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Figure ���� q�
� �the dashed curve� is the quadratic approximation to f�
�

based at 
 � �r� The point 
r�d
P
r is the point where the linearizations of f�
�

and q�
� based at 
r� become equal�

hr �



�
�
r � �r�minfHr� �g

and let

Pr � f�
r�� f��r�� �g��r� � hr��
r � �r�

dPr

�
� �� if Pr �� �
� Pr��g��r� � �hr � g�
r��� if Pr � ��

Now consider the case when �r �� S� In this case we make a similar quadratic approx	

imation to c�
�� and using it estimate the point 
r � d where c�
r � d� would be zero�

In this case Hr is an estimate of c
����r�� and hr is de�ned as above� Using again the
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compromise as done in Subsection � for fast convergence� in this case we are lead to

the following polyhedral approximation step�

Pr � �c��r�� �g��r� � hr��
r � �r�

dPr

�
� �� if Pr �� �
� Pr��g��r� � �hr � Prg�
r��� if Pr � ��

To handle this general problem� we also de�ne a positive safeguard parameter � such

that

�j�r � 
rj � 

�

so that

���r � 
r�
� �




�
j�r � 
rj � j�r � 
rj � �j�r � 
rj��

In the algorithm� the step dPr is modi�ed into d
�
r so that jd�rj is between the lower and

upper bounds in the above inequality� This guarantees that 
r�dr is away from 
r and

�r� If the problem functions are convex� then G�
r� �� �� Hr �� �� hr � � and Pr
�
� ��

and if � � �� the algorithm discussed below will be the same as the one discussed in

Subsection �� Now we describe the algorithm�

The algorithm needs an initial pair of points 
� and �� satisfying the conditions

mentioned above� Choose the safeguard parameter � � � such that ���� � 
�� �
�
� �

and choose the initial curvature estimates G�
�� and H�� We will now describe the

general step in the algorithm�

Step r� Let 
r� �r be the points at the beginning of this step� Let G�
r�� Hr be the

curvature estimates� Set

hr �



�
�
r � �r�minfHr� �g�

Pr � �c��r�� �g��r� � hr��
r � �r�

and �r � g��r� � �hr � Prg�
r�

�
if c��r� � ��

Pr � f�
r�� f��r�� �g��r� � hr��
r � �r�

�r � g��r� � �hr � g�
r�

�
if c��r� �� ��

dPr � � if Pr �� �

� Pr��r if Pr � �

�r � �j�r � 
rj�

r � �
 if � g�
r� � �

� �
 if � g�
r� � ��

d�r � 
r�r� if jdPr j � �r

� 
rjdPr j� if �r �� jdPr j �� j�r � 
rj � �r

� 
r�j�r � 
rj � �r�� if jdPr j � j�r � 
rj � �r
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dQr � �g�
r��maxfG�
r�� �g
dr � 
r�minfjdQr j� jd�jg�
�r � 
r � dr�

If c��r� �� �� f��r� � f�
r� and g��r� � �� terminate with the conclusion that �r
is a stationary point�

Otherwise update the quantities for the next step as given below�

If c��r� � �� or f��r� �� f�
r�� then set 
r�� � 
r� �r�� � �r� G�
r��� � G�
r��

and Hr�� � �g��r�� g��r�����r � �r��

If c��r� �� �� f��r� � f�
r�� g��r� �� �� and g�
r�g��r� � �� then set 
r�� � �r�

�r�� � �r� G�
r��� � �g��r�� g�
r���dr� and Hr�� � Hr�

If c��r� �� �� f��r� � f�
r�� g��r� �� �� and g�
r�g��r� � �� then set 
r�� � �r�

�r�� � 
r� G�
r��� � �g��r�� g��r�����r � �r�� and Hr�� � G�
r��

Under rather general conditions on the functions� R� Mi!in �
����� has proved

that if the algorithm does not terminate �nitely� then f
rg converges to a stationary
point of f�
� on S�

To start the algorithm from a feasible 
� when a suitable �� is not known� one

can use a safeguarded quadratic step of the form

�g�
j��max�G�
j�� aj�� j � 
� �

where fajg is a bounded positive sequence chosen so that it converges to zero if fg�
j�g
converges to zero�

���� SURVEY OF DESCENT METHODS FOR

UNCONSTRAINED MINIMIZATION IN Rn

In this section we consider methods for solving the problem

minimize ��x�

over x � Rn �
����

where ��x� is a real valued continuously di�erentiable function de�ned over Rn� The

methods discussed in this section make use of the �rst and sometimes the second order

partial derivatives of ��x� when they exist� or approximations for these constructed

from the information accumulated over the iterations� The methods are iterative� they

generate a sequence of points fx�� x�� x�� � � �g 
 Rn beginning with an initial point x��

and satisfy the property that ��xr� monotonically decreases as r increases�

In this section r��xr� denotes the row vector of partial derivatives of ��x� at the
point xr �the gradient vector of ��x� at xr�� When the second order partial derivatives

exist� we denote the n � n Hessian matrix of ��x� at the point xr by H���xr�� �
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��
��
xr�
�xi�xj

�� In the methods discussed in this section� each iteration or step consists of

three parts� The �k � 
�th step begins with the point xk �xk is the point obtained at

the end of step k if k � �� x� is the initial point with which the method is initiated�

and consists of the following parts

i� compute the search direction at xk� denoted by yk� yk � Rn� yk �� ��
ii� compute the step length in the search direction� 
k � ��

iii� compute the new point xk�� � xk � 
ky
k and check whether termination criteria

are satis�ed� If the termination criteria are satis�ed� xk�� is accepted as the

solution of �
����� Otherwise� continue the method by going to the next step�

In order to guarantee that ��xr� decreases monotonically� we require the search

directions to be descent directions� The point y � Rn� y �� � is said to be a descent
direction for ��x� at the point xk if there exists a 
 � � for which

��xk � 
y� � ��xk�� for all � � 
 �� 
� �
����

Since ��x� is di�erentiable at xk� �
���� implies that the limit of ���xk�
y����xk���


as 
 approaches zero through positive values� is �� �� that is �r��xk��y �� �� Conversely�
it can be veri�ed that any y satisfying

�r��xk��y � � �
����

is a descent direction at xk� The condition �
���� is a su�cient condition for y to be a

descent direction at xk� We de�ne a descent direction for ��x� at xk� to be a y � Rn�

y �� �� satisfying �
����� Similarly the point y � Rn� y �� � is said to be a nonascent
direction for ��x� at xk if�

�r��xk��T y �� �� �
����

When ��x� is twice continuously di�erentiable� the point y � Rn� y �� � is said to be a
direction of nonpositive curvature for ��x� at xk if�

yTH���xk��y �� � �
����

and a direction of negative curvature if�

yTH���xk��y � �� �
����

������ How to Determine the Step Length�

Let xk be the current point and suppose the search direction yk� which is a descent

direction� has been selected� Since xk� yk are given points� ��xk�
yk� is now a function

of 
 only� and it can be veri�ed that its derivative with respect to 
 is �r��xk�
yk��yk�
The descent step length can be determined to minimize ��xk � 
yk� over 
 �

� �� This

operation is a line search operation� Step lengths determined to minimize ��xk � 
yk�
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over 
 �
� � are referred to as optimal step lengths and algorithms using them are

called optimal step descent techniques� Since yk is a descent direction for ��x� at

xk� the optimal step length 
k is � � and

d�

d

�xk � 
ky

k� � �r��xk � 
ky
k��yk � �� �
��
��

So if optimal step lengths are used� the gradient direction at the termination of a line

search step is orthogonal to the descent direction�

In practice� it may not be e�cient to use optimal step lengths in every itera	

tion� Algorithms which allow for termination of line searches when conditions for an

approximate minimum on the line are satis�ed� are said to use partial or inexact

line searches� When using inexact line searches� it is necessary to make sure that

the line search achieves a su�cient decrease in objective value� to guarantee conver	

gence� A practical criterion requires that the step length 
 be determined to make

j�r��xk�
yk��ykj su�ciently small� Stated in terms of the decrease in the magnitude
of the derivative of ��xk�
yk� with respect to 
 from that at 
 � �� another criterion

requires that the step length 
 be chosen to satisfy

j�r��xk � 
yk��ykj �� �j�r��xk��ykj �
��

�

where � is a parameter satisfying � �� � � 
� If � � � in �
��

�� exact line searches are

required� and when � is small� the line search procedure needs to be close to optimal�

Step Length Criterion to Achieve Su�cient Rate of Decrease

A fundamental requirement of step size procedures used in descent methods is that

there be a su�cient decrease in the objective value in each step� There are many ways of

specifying what a �su�cient	decrease� is� For example� consider the line minimization

problem of minimizing ��xk � 
yk� over 
 �
� �� where y

k is a descent direction for

��x� at xk� The quantity� �r��xk��yk� the directional derivative of ��x� in the search
direction yk� is a measure of the rate of decrease in ��x� at xk in the direction yk�

Select a number 
� � � 
 � 
� known as the attenuation factor� One su�cient

decrease criterion requires that over the step length taken� the function value must

decrease per unit step� at least a fraction 
 of the rate of decrease in ��x� at xk in the

direction yk� That is� that the step length 
 chosen satisfy

��xk�� ��xk � 
yk� �� 

j�r��xk��ykj� �
��
��

To depict this pictorially� we plot 
 on the horizontal axis� and function values on the

vertical axis in the two dimensional cartesian plane in Figure 
���� The curve in Figure


��� is ��xk � 
yk� plotted against 
� The straight lines in Figure 
��� are plots of

l��
� � ��xk�� 

j�r��xk��ykj

against 
�
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Figure ���� The dashed line is l��
� for 
 � 
� The continuous straight line

is l��
� for 
 �
�
� � �
��
�� requires that for step length 
 chosen� ��x

k�
yk� ��
l��
��

The su�cient decrease condition �
��
�� states that the step size 
 chosen� should

satisfy

��xk � 
yk� �� l��
� � ��xk�� 

j�r��xk��ykj�

This inequality is called Armijo inequality�

Other Step Length Criteria

Many theoretical convergence proofs for descent algorithms assume that the step length

used is the �rst local minimum along the line in the direction 
 �
� ��
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The First Order Armijo Step Size Procedure

This procedure was introduced by L� Armijo �
��
�� Let yk be the descent direction

for ��x� at the current point xk� Let � � 
 � 
 be a predetermined constant� This

procedure �nds s � smallest nonnegative integer satisfying

��xk�� �
�
xk �

yk

�s
�
�
� � 


�s
�r��xk��yk �
��
��

and chooses the step length to be 
��s� Since yk is a descent direction� a �nite s

satisfying �
��
�� exists�

As an example� consider the problem depicted in Figure 
���� Let the attenuation

factor 
 � �
� � In Figure 
���� we verify that 
 � 
 violates the Armijo inequality

�
��
��� since ��xk� yk� � l��
� for 
 �
�
� � Even 
 �

�
� violates the Armijo inequality

�
��
�� since ��xk � �
�y

k� � l��
�
� � for 
 �

�
� � 
 �

�
� satis�es Armijo inequality �
��
��

because ��xk � �
�y

k� � l��
�
�� for 
 �

�
� in Figure 
���� So the step length chosen by

this procedure in this problem is 
k �
�
� �

It can be veri�ed that there is always a positive integer s satisfying �
��
��� So�

the step length indicated in this procedure is well de�ned and unique�

One thing that should be noted here is that the step length chosen by this pro	

cedure depends on the scaling of yk� Replacing yk by �yk where � � �� does not

change the search direction� or the line search problem� but it could change the step

length chosen by this procedure and the �nal point obtained in the line search by this

procedure� The direction yk is usually selected by a descent direction selection subrou	

tine� using the values of the function ��x� or its gradient vectors or hessian matrices

evaluated at previous points� and this procedure takes the output of that subroutine

as it is�

Second Order Armijo Step Size Procedure

This procedure is useful when using second order methods like Newton�s method dis	

cussed below� Let xk be the current point� Here we will have two directions of

nonascent� yk and hk� If r��xk� �� �� yk should be a descent direction satisfying

�
����� If r��xk� � �� then hk is a direction of negative curvature satisfying �
�����

Let � � 
 � 
 be a predetermined constant� Let s be the smallest nonnegative integer

s satisfying

��xk�� �
�
xk �

yk

�s
�

hk

�s��

�
�
� � 


�s
��r��xk��yk � 


�
�hk�TH���xk��hk� �
��
��

and take the next point to be xk�� � xk � yk

�s �
hk

�s��
� The conditions mentioned

above guarantee that a �nite s satisfying �
��
�� exists� It can be proved that if ��x�

is twice continuously di�erentiable� and a descent algorithm using this second order

Armijo procedure is carried out� then every limit point x of the sequences of points

fxrg generated by this method is a point x satisfying r��x� � � and H���x�� is PSD
�the second order necessary optimality condition for x to be a local minimum of ��x���

See �
��
� 
����� 
������
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������ The Various Methods

Now we present various descent methods for �
����� Since each method has the same

structure �each step consisting of three parts �i�� �ii�� �iii� described under Section


����� we will brie#y describe how the search direction is chosen in each step� what

step size procedures can be used� and a summary of convergence results�

������ The Method of Steepest Descent

In this method� the search direction in the �k � 
�th step is chosen to be the steepest

descent direction at the current point xk� The steepest descent direction at xk is clearly

the direction d � Rn which minimizes

limit
����

��xk � 
d�� ��xk�



� �r��xk��d

subject to kdk � 
� In Rn� kdk� the distance between d and � can be measured by the
general distance function f�d� �

p
dTAd where A is a PD symmetric matrix of order

n� If A � I� f�d� becomes the usual Euclidean distance� The matrix A is known as the

metric matrix in the distance function f�d�� With respect to this metric matrix A� the

steepest descent direction at xk is therefore the d which minimizes �r��xk��d subject
to kdk � dTAd � 
� It can be veri�ed that this direction is given by ��r��xk��A�� if
r��xk� �� ��

The steepest descent method� dating back to Cauchy �
���� takes the metric

matrix to be I in each step� and thus uses the search direction to be yk � ��r��xk��T
when xk is the current point�

It can be shown that the steepest descent method converges when applied with

any of the step length procedures discussed in Section 
����
� Every limit point x of the

sequence fxrg generated satis�es the necessary optimality condition r��x� � �� The
convergence rate for the algorithm is linear �
��
�� 
��
�� 
����� 
������ In practice�

the method has been observed to be notoriously slow and unreliable due to round	o�

e�ects�

������ Newton�s Method

This is a second derivative method that can be used only if ��x� is twice continuously

di�erentiable� At the current point xk� ��x� is approximated by the quadratic function

��xk���r��xk���x�xk�� �
� �x�xk�TH���xk���x�xk�� containing the �rst three terms

of the Taylor series expansion for ��x� around xk� The �rst order necessary condition

for the minimum y � x� xk of this quadratic approximation is that y satis�es

H���xk��y � ��r��xk��T � �
��
��
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A direction y that satis�es �
��
�� is known as the Newton direction for ��x� and

xk� Assuming the H���xk�� is PD �since this matrix is nonsingular� the solution of

�
��
�� is unique�� the unique minimum of the quadratic approximation at xk is

xk�� � xk � �H���xk������r��xk��T �
��
��

the iterative scheme given by �
��
�� is the traditional Newton�s method� When

H���xk�� is PD� �H���xk������r��xk��T is the steepest descent direction at xk using
H���xk�� as the metric matrix� and the formula �
��
�� is based on using a constant

step length of �
 in this direction� When ��x� satis�es the property that H���x�� is

PD for all x �in this case ��x� is strictly convex� Newton�s method uses the steepest

descent direction with the metric matrix H���xk�� in the step in which xk is the cur	

rent point� and since the metric matrix changes in each step� it is called a variable

metric method in this case�

As an illustration of convergence proofs we provide below a theorem on the con	

vergence of Newton�s method�

Theorem ���� Suppose ��x� is twice continuously di�erentiable� Let H�x� �

�hij�x�� � H���x��� So hij�x� �
���
x�
�xi�xj

� Suppose each of the functions hij�x� satis�es

the Lipschitz condition� that is� there exists a positive number 
 satisfying jhij��� �
hij���j �� 
k� � �k for all �� � � Rn� Let x be a point satisfying r��x� � �� H���x��
is PD� If the initial point x� is su�ciently close to x� the sequence of points fxr 
 r �
�� 
� � � �g obtained by Newton�s method converges to x at a second order rate�

Proof� By Taylor expansion of r��x� around xr we have �r��xr����T � �r��xr��T�
H�xr��� f��� where jf���j �� �k�k� for some positive number �� when � is su�ciently
close to zero� Assuming that xr is su�ciently close to x� and substituting � � x� xr�

we get � � �r��x��T � �r��xr��T � H�xr��x � xr� � f�x � xr�� By the continuity

of H�x�� and the hypothesis� when xr is su�ciently close to x� H�xr� is also PD and

so �H�xr���� exists� Multiplying the above equation on both sides by �H�xr���� we

get �since xr�� � xr � �H�xr�����r��xr��T in Newton�s method� � � ��xr�� � xr� �

�x� xr� � �H�xr����f�x� xr� � �x� xr���� �H�xr����f�x� xr�� Since H�x� is PD�

when xr is su�ciently close to x� there exists a constant � such that kH�xr���k �� ��

So from the above equation we conclude that

k�x� xr���k � k � �H�xr����f�x� xr�k �� �kf�x� xr�k �� ��kx� xrk��

Using this inequality for r � �� we conclude that there exists an 	 � � su�ciently

small� such that kx � x�k � 	 implies kx � x�k � �kx � x�k � �	 where � � 
�

Repeating this argument we conclude that kx � xrk 
 � as r 
 �� that is� the
sequence fxrg converges to x� That the convergence is of second order follows from
the above inequality�
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�����
 Modi	ed Newton�s Methods

When H���xk�� is PD� ��H���xk������r��xk��T is a descent direction for ��x� at xk�
but there is no guarantee that ��xk��� �� ��xk� when xk�� is determined by �
��
���

because the step length is a constant� 
� independent of the data� The sequence can be

made into a descent sequence by modifying Newton�s method into Newton�s method

with line search� in which the direction of search is �yk satisfying �
��
��� the sign
determined �when H���xk�� is not PD� so as to ensure that the direction is a descent

direction� and any of the step length procedures discussed earlier are used for the line

search�

The major di�culty with Newton�s method arises when H���xk�� is not PD� If

H���xk�� is singular� �
��
�� may not have a solution� and even if it has a solution�

when H���xk�� is not PD� solutions of �
��
�� are not necessarily descent directions�

and methods based on using them may not converge� In the case when H���xk�� is not

even PSD� it is possible to modify Newton�s method by using directions of negative

curvature together with step size procedures such as the second order Armijo step�

One modi�cation suggested to guarantee that the search directions are descent

directions is to replace H���xk�� in �
��
�� by 
kQk �H���xk�� where Qk is either I

or a positive diagonal matrix and 
k is a positive number to ensure that the resulting

matrix is PD� and then solve the modi�ed equation to give the search direction to be

used at xk�

For other modi�ed versions of Newton�s method see �
���� 
��
�� 
����� A���

One main di�culty in using Newton�s method �or modi�ed Newton methods� is

that the Hessian matrix has to be evaluated in each step� If subroutines for directly

computing each element of the Hessian matrix are not available� they can be approx	

imated by �nite di�erences of the gradient vector� For this� select a positive number


� the �nite di�erence interval� To approximate the Hessian at the point xk� compute

H�i �





�r��xk � 
I�i��r��xk��T �

Let H be the matrix with columns H�i� i � 
 to n� Then �H � HT ��� can be used

as an approximation for H���xk�� in executing Newton�s or the appropriate modi�ed

Newton�s method� With this change� the method is usually called a discrete �or

	nite di�erence�Newton ormodi	ed Newton method� These methods are very

worthwhile when the Hessian matrix has a known sparsity pattern�

������ Quasi Newton Methods

Newton�s method is di�cult to implement because of the computational burden in	

volved in calculating the Hessian matrix in each step �even if we decide to use a �nite

di�erence approximation for it�� The Quasi	Newton methods try to build up informa	

tion on the Hessian through various steps of the descent method using the computed
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values of r��x� and ��x�� In these methods �H���xk����� is approximated by a sym	
metric positive de�nite matrix� Dk� which is updated in each iteration� Thus in these

methods� the �k � 
�th step consists of the following�

�a� Initiate this step with the point xk obtained in the previous step �if k � �� initiate

this step with x�� some initial point with which the method is started��

�b� Compute the search direction at xk� denoted by yk � �Dk�r��xk��T �
�c� Compute step length in the search direction� 
k � �� by doing a line search�

leading to the new point xk�� � xk � 
ky
k�

�d� Check whether termination criteria �see Section 
������ are satis�ed by the new

point xk��� in which case accept xk�� as the solution of �
���� and terminate�

Otherwise update Dk giving Dk�� and go to the next step�

The methods start out with an initial solution x�� and a symmetric positive de�nite

matrix D� �usually D� � I�� Dk is an approximation to the inverse Hessian at a

local minimum to which the sequence of points generated is presumed to converge�

Di�erent algorithms use di�erent formula for updating Dk from step to step� The

advantages are that these methods only need the computation of the gradient vector

r��x� at one point in each step� When the matricesDk are all PD� the search directions

yk � �Dk�r��xk��T are descent directions� In some quasi	Newton methods Dk may

not always be PD� but the important methods do maintain this property� When Dk

is PD� the search direction yk is the steepest descent direction at xk using D��k as the

metric matrix� and since this metric matrix changes from iteration to iteration� these

methods are also known as variable metric methods�

The updating formula which gives Dk�� as a function of Dk attempts to take into

account the second derivative information obtained during the �k � 
�th step� The

formula is derived to ensure that Dk becomes a good approximation of �H���x
k�����

as the method progresses� This is done through the use of an equation known as the

quasi�Newton condition� which we will now derive� By taking the Taylor series

expansion of r��x� around the point xk and neglecting higher order terms� we get

�r��xk����T 	 �r��xk��T �H���xk���xk�� � xk��

So� if H���xk�� is invertible� we have

�H���xk������r��xk����r��xk��T 	 �xk�� � xk�� �
��
��

Since the quantities xk�� and r��xk��� are not available until the k � 
th step is
completed� we cannot expect the matrixDk to satisfy �
��
�� in place of �H���x

k������

but we could require Dk�� to satisfy

Dk���r��xk����r��xk��T � �xk�� � xk�� �
��
��

This condition is the quasi	Newton condition� and the updating formulae for the

matrices Dk in quasi	Newton methods are usually formulated so that this condi	

tion holds for all k� If the updating formulae are such that this condition is satis	

�ed� and satis�es certain other prior conditions �sometimes it is also required that
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Dk���r��xj��� � r��xj��T � �xj�� � xj� hold for all j �
� k� it can be shown that

when the algorithm is applied to minimize �
�x

TAx� cx where A is PD and symmetric�

using exact line searches� then the search directions generated are conjugate directions

�see Section 
����� for the de�nition of conjugate directions�� that Dn � A��� and that

the method terminates after at most n steps with the minimum�

The three basic considerations in constructing updating formulae for Dk in quasi	

Newton methods are �i� the quasi	Newton condition �
��
��� �ii� hereditary symmetry

�i� e�� if Dk is symmetric� the updating formula should guarantee that Dk�� is also

symmetric�� and �iii� hereditary positive de�niteness� Not all the quasi	Newton meth	

ods satisfy all these properties� In some of them� these properties may only hold if the

line searches are carried out to a high degree of precision in each iteration�

The updating formula usually has the form Dk�� � Dk�Ck where Ck is a matrix

known as the correction term� Usually Ck has rank 
 or �� and depending on its rank�

the methods are classi�ed either as rank	one or rank	two methods�

Now we will present the updating formulas used by some important quasi	Newton

methods� The remaining details are the same as discussed above� for each method�

For k �� 
� we de�ne

�k � xk � xk��

�k � �r��xk��r��xk����T �
��
��

The Davidon�Fletcher�Powell �DFP� Method

Here the updating formula is

Dk�� � Dk �
�k����k���T

��k���T �k��
� �Dk�

k����Dk�
k���T

��k���TDk�k��

where �k��� �k�� are column vectors de�ned as in �
��
��� The method has the hered	

itary symmetry property� It also has the hereditary PD property if ��k���T �k�� � �

for all k� Notice that this condition will hold if the search direction yk is a descent

direction and the line search is carried out optimally or to a local minimum� The

method has superlinear rate of convergence� When applied to minimize a strictly con	

vex quadratic function �
�x

TAx � cx with exact line searches� the method preserves

the condition Dk���
j�� � �j�� for all j �� k� for all k� it generates conjugate search

directions and terminates after n steps with Dn�� � A�� and the optimum solution�

See �
���� 
��
�� 
����� A�� for proofs of these results�

The Broyden�Fletcher�Goldfarb�Shanno �BFGS� Method

Here the updating formula is

Dk�� �Dk �

�

 �

��k���TDk�
k��

��k���T �k��

	�
�k����k���T

��k���T �k��

	
�

�k����k���TDk �Dk�
k����k���T

��k���T �k��
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where �k��� �k�� are column vectors de�ned as in �
��
��� The method has the hered	

itary symmetry and hereditary PD properties� satis�es the quasi	Newton conditions

�Dk���
j�� � �j�� for all j �

� k�� and has the quadratic termination property� At

present this is considered the best quasi	Newton method� The method has been shown

to converge even with inexact line searches �using several of the line search termination

criteria discussed in Section 
�������

Resetting in Quasi�Newton Methods

In quasi	Newton methods� the steps can continue until termination� However� in some

implementations the method is reset by setting the matrix Dk to some positive de�nite

matrix �usually the same as D�� or I� after every n steps� If implemented this way�

the method goes through cycles� Each cycle begins with the point obtained at the end

of the last step in the previous cycle �the initial cycle begins with the initial point x�

with which the method is initiated� and the initial step of each cycle begins with the

matrix D� �usually I or some other PD symmetric matrix� and the cycle consists of n

steps�

Also in each step one should check that the search direction yk satis�es �r��xk��yk
� �� as otherwise the direction is not a descent direction� Usually the method is also

reset whenever this descent condition is violated�

See references �
���� 
���� 
���� 
��
�� 
����� 
����� 
����� A�� for a discussion of

various other quasi	Newton methods� their best computer implementations� and the

convergence results established about them�

������ Conjugate Direction Methods

These are a class of methods that use only �rst order derivatives� which obtain search

directions without the need for storing or updating a square matrix of order n� Conju	

gate direction methods were developed with the aim of solving strictly convex quadratic

programming problems with an e�ort of at most n line searches� For this� the search di	

rections have to be chosen to satisfy the conjugancy property� Let f�x� � cx� �
�x

TAx

where A is a PD symmetric matrix of order n� Consider the linear transformation

x � Pz where P is a nonsingular square matrix of order n� This transforms f�x� into

F �z� � cPz � �
�z

TPTAPz� F �z� can be minimized with an e�ort of at most n line

searches in the z	space if it is separable� that is� if PTAP � Q is a diagonal matrix

with positive diagonal entries Q��� � � � � Qnn� and

�P�i�
TAP�j � � for each i �� j� �
�����

In this case F �z� is equal to
Pn

j�� Fj�zj� where Fj�zj� involves only one variable� and

hence minimizing F �z� over z � Rn can be achieved by n one dimensional problems

of minimizing Fj�zj� over zj � R� for each j � 
 to n separately� that is� n line
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searches� The set of nonzero vectors fP��� � � � � P�ng is said to be conjugate with

respect to the PD symmetric matrix A if �
����� holds� Let � � ���� � � � � �n� �

cP � So F �z� �
Pn

j�� �jzj �
�
�

Pn
j��Qjjz

�
j � Hence� the point which minimizes F �z�

is z � �zj� � ���j�Qjj� and so the point which minimizes f�x� in the x	space is

x � �xj� � Pz� Since F �z� is separable� we can visualize the minimum of F �z� as

being obtained by starting at an arbitrary point z� in the z	space and doing n line

searches exactly� once in each direction I�j � j � 
 to n �the alternating variables

method�� Let zj be the point obtained at the end of the jth line search in this scheme�

So zj�� is the minimizer of F �zj � 
I�j��� over 
 � R�� j � � to n� 
� Then zn � z�

If xj � Pzj � j � � to n� it can be veri�ed that xj�� is the minimizer of f�xj �
P�j���

over 
 � R�� j � � to n � 
 and that xn � x� the point which minimizes f�x�� The

following properties can be veri�ed to hold


� the conjugacy condition �
����� implies that fP��� � � � � P�ng is linearly independent�
�� �rf�xk����P�j � �� for j � 
 to k�
�� Let 
j be the minimizer of f�x

j � 
P�j��� over 
 � R�� for j � � to n� 
� Then
xj�� � xj � 
jP�j��� So �rf�xj����rf�xj��T � A�xj�� � xj� � 
jAP�j��� So

�rf�xi����rf�xi��P�j � � for i �� j�

The conjugate gradient methods for minimizing f�x� construct the conjugate di	

rections one after the other using information collected from earlier line searches� Each

direction will be a descent direction at the point which is the current point in the step

in which this direction is generated� We now describe these methods�

Step 
 is initiated with an arbitrary initial point x�� The search direction in

step 
 is the steepest descent one� y� � ��rf�x���T � Do a line search to minimize
f�x� � 
y��� 
 �

� ��

The general �k�
�th step for k �� 
 begins with the point x
k obtained at the end

of the line search in the kth step� The search direction in this step is

yk � ��rf�xk��T � �ky
k��

where �k is a scalar� The various conjugate gradient algorithms use di�erent formula

for �k� They are

�k � krf�xk�k��krf�xk���k� �
���
�

in Fletcher and Reeves method �
��
���

� �rf�xk��rf�xk�����rf�xk��T�krf�xk���k� �
�����

in Polak and Ribiere and Polyak�s method �
��
�� 
��
�� 
������

� � krf�xk�k���rf�xk����yk �
�����

in conjugate descent method �
��
���

It can be veri�ed that �rf�xk��yk � �krf�xk�k� if the line search in the previous
step is carried out exactly� and in this case yk is therefore a descent direction at xk�

Now do a line search to minimize f�xk�
yk�� 
 �
� �� If 
k is the optimum step length�
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xk�� � xk � 
ky
k� If rf�xk��� � �� xk�� minimizes f�x�� terminate� Otherwise� go

to the next step�

The method terminates after at most n steps� It can be veri�ed that the search

directions generated are conjugate with respect to the Hessian matrix A� and they are

all descent directions if the line search is carried out exactly in each step� Since f�x�

is quadratic� it can be veri�ed that �k obtained in �
���
� or �
����� or �
����� are

exactly the same if all the line searches are carried out exactly�

To solve the problem of minimizing ��x�� which is in general not quadratic� we

apply the method exactly as above� replacing f�x� by ��x� wherever it appears� In

this general problem� the search directions generated will be descent directions as long

as line searches are carried out exactly in each step� In this general problem� the

values for �k obtained from �
���
�� �
������ �
����� may be di�erent� In numerical

experiments the method using �
����� seemed to perform better� particularly when

n is large� The application of the method can be continued until some termination

condition is satis�ed �see Section 
������� In practical implementations to minimize

general non	quadratic functions ��x�� the method is usually restarted �or reset� after

every n steps� If this is done� the method goes through several cycles� Each cycle

consists of n steps� Step 
 of each cycle begins with the point obtained at the end of

the previous cycle �or x�� the initial point� for the �rst cycle� and uses the negative

gradient search direction� In the general non	quadratic case� if inexact line searches are

used� the directions generated� yk� may not be descent directions �that is� �r��xk��T yk
may not be � ��� The method based on updating using �
����� �the conjugate descent

method� produces descent directions even when line searches are not very exact� If the

search direction in a step is not descent� we can carry out the line search in that step

over the entire line �instead of the half	line with step length 
 �
� � as is done usually�

that is� allow step length to be negative�� but usually the cycle is terminated in such a

step and the method is reset to begin the next cycle with the steepest descent direction

in step 
� It can be shown that these methods have superlinear convergence in terms

of cycles� See �
���� 
��
�� 
��
�� 
����� 
������

������ Practical Termination Conditions for

Unconstrained Minimization Algorithms

When the descent algorithm generates the sequence of points fxr 
 r � �� 
� � � �g in
practical implementations for minimizing ��x�� the method can be terminated when

some or all of the following conditions are met

j��xk�� ��xk���j � 	�

kxk � xk��k � 	�

kr��xk�k � 	�

where the 	�s are suitably chosen tolerances�
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���
 SURVEY OF SOME METHODS FOR

LINEAR EQUALITY CONSTRAINED

MINIMIZATION IN Rn

Here we consider the NLP
minimize ��x�

subject to Ax � b
�
�����

where A is a matrix of order m�n and rank m� and ��x� is a real valued continuously

di�erentiable function� Given a feasible point x for this problem� the �rst order neces	

sary conditions for it to be a local minimum are that there exist a Lagrange multiplier

vector � � ���� � � � � �m� satisfying

�r��x�� � �A� �
�����

Suppose �
����� is feasible� and let x be any feasible solution for it� Then every feasible

solution for �
����� is of the form "x� z where z satis�es

Az � �� �
�����

There exists a matrix Z of order n� �n�m� and rank n�m� such that every column

vector of Z is a solution of �
����� and conversely every solution of �
����� is a linear

combination of the column vectors of Z� To obtain a matrix like Z� �nd a basis B for

�
������ B is a square nonsingular submatrix of A of order m� Rearrange the variables

and their columns in A so that A can be partitioned into basic and nonbasic parts as

�B�D� where D is the m � �n �m� matrix of nonbasic columns� Then the matrix Z

can be taken to be

Z �

��B��D
In�m

	
�
�����

where In�m is the unit matrix of order n � m� It is not necessary to compute Z

explicitly� All the computations in the algorithms discussed below can be carried out

using a factorization for B���

Since any solution for �
����� is of the form x � "x � Z� where "x is a solution

of �
����� and � � Rn�m� �
����� is equivalent to the problem of minimizing f��� �

��"x�Z�� over � � Rn�m� that is the unconstrained minimum of f��� over � � Rn�m�

It can be veri�ed that rf��� � �rx��"x � Z���Z� Also if ��x� is twice continuously

di�erentiable� H�f���� � ZTHx���"x � Z���Z� For x feasible to �
����� the vector

�r��x��Z is known as the projected gradient or the reduced gradient vector of

��x� at x� and the matrix ZTH���x��Z of order �n �m� � �n �m� is known as the

reduced or projected Hessian matrix of ��x� at x� The condition �
����� implies

�r��x��Z � �� �
�����
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If ��x� is twice continuously di�erentiable� a second order necessary condition for

the feasible solution x of �
����� to be a local minimum for it is that the matrix

ZTH���x��Z is PSD�

The algorithms discussed in this section generate a sequence of feasible points

fx�� x�� � � �g beginning with the initial feasible point x�� If xk is feasible� the search
direction at xk in step k � 
 must satisfy Ayk � �� that is� yk � Z�k for some

�k � Rn�m� such directions are called feasible search directions� because a move of any

length in such a direction� starting from a feasible point� remains in the feasible region

for �
������ Step k � 
 of the algorithm consists of the following tasks



� Compute a feasible search direction
 First compute �k and then compute the

search direction yk � Z�k�

�� Determine step length
 Compute the positive step length 
k�

�� Compute the new point xk�� � xk � 
ky
k�

�� Check whether xk�� satis�es the conditions for termination� if so� accept xk�� as

the solution of �
����� and terminate� Otherwise go to the next step�

The feasible search direction yk selected in 
� above is a descent direction at xk if

��r��xk��Z��k � �r��xk��yk � �� �
�����

The method of steepest descent uses ��k�T � ��r��xk��Z to determine the feasible
search direction at xk� which is therefore yk � �ZZT �r��xk��T � and uses step length
procedures exactly as in the unconstrained case� However� this method has slow linear

rate of convergence�

Newton�s method is based on minimizing the second order Taylor approximation

for f��� � ��xk�Z�� around � � �� that is ��xk�� �r��xk��Z�� �
��

TZTH���xk��Z��

So� Newton�s method uses the search direction yk � Z�k� where �k solves

�ZTH���xk��Z�� � �ZT �r��xk��T �
�����

and uses �xed step lengths of 
k � 
� Modi�ed Newton methods replace the matrix

ZTH���xk��Z in �
����� �when this matrix is not PD� by a PD approximation to

it such as ZTH���xk��Z � �I for some � � �� and step lengths determined by line

searches�

When the second derivatives are not available� the matrix ZTH���xk��Z can be

approximated by �nite di�erence approximation� For this� let 	i be an appropriate

�nite di�erence interval� and for i � 
 to n�m let

W�i �



	i
�r��xk � 	iZ�i��r��xk��T

and let W be the n� �n�m� matrix with column vectors W�i� i � 
 to n�m� Then

a symmetric approximation for ZTH���xk��Z is �
����ZTW �WTZ��

Quasi	Newton methods can be developed for �
����� by looking at the corre	

sponding unconstrained minimization problem of minimizing f��� � ��xk � Z��� but
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carrying out all the operations in the x	space� In this case the search direction in step

k � 
 will be yk � Z�k� where �k � �DkZ
T �r��xk��T � The matrix Dk is of order

�n�m�� �n�m�� We choose D� � In�m� and in updating Dk from step to step� we

use the updating formulas discussed in Section 
����� with �k � ZT �xk�� � xk�� and

�k � ZT �r��xk����r��xk��T instead of �
��
���
Another approach for solving �
����� is to use a conjugate gradient method on

the corresponding reduced problem of minimizing f��� � ��xk�Z��� but doing all the

computations in the x	space� The search directions used are

y� � �Z�r��x��Z�T
yk � �Z�r��xk�Z�T � �ky

k��

where �k � k�r��xk��Zk��k�r��xk����Zk� or �r��xk��r��xk����ZZT �r��xk��T�
kr��xk���Zk�� or �kr��xk�Zk���r��xk���Z��k �here �k is the unique solution of
Z�k � yk�� as in �
���
�� �
������ �
������ depending on the method used� Statements

made in Section 
����� about resetting the algorithm remain valid here also �here

resetting is done after every n�m steps or whenever the search direction generated is

not a descent direction��

���
�� Computing the Lagrange Multiplier Vector

Let x be the terminal point obtained in the algorithm for solving �
������ The corre	

sponding Lagrange multiplier vector is the vector � which satis�es �
������ Given x�

�
����� is a system of n equations in the m unknowns ��� � � � � �m� and since n � m�

this is an overdetermined system of equations� We can determine � as the row vector

in Rm which minimizes k�r��x��T ��Ak� over � � Rm� for which the solution is given

by

� � �AAT ���Ar��x�� �
���
�

If x is a local minimum for �
������ the vector � given by �
���
� is an exact solution for

�
������ If x is an approximation to a local minimum �obtained when the algorithms

discussed above are terminated using some practical termination criteria discussed in

Section 
���� there is no � satisfying �
����� exactly� however� the � obtained from

�
���
� is a corresponding approximation to the Lagrange multiplier vector for �
������

For other approximating estimates to the Lagrange multiplier vector see references

�
��
�� 
��
���
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����� SURVEY OF OPTIMIZATION SUBJECT

TO GENERAL LINEAR CONSTRAINTS

������� The Use of Lagrange Multipliers to

Identify Active Inequality Constraints

For the purpose of this discussion� consider the following NLP


minimize ��x�

subject to Ax �� b
�
�����

where A is a matrix of order m� n� say� If x is feasible� the ith constraint in �
�����

is said to be active or tight or binding at x if it holds as an equation at x� that is� if

Ai�x � bi� inactive if Ai�x � bi� For x feasible to �
������ let I�x� � fi 
 i such that
Ai�x � big � index set of active constraints in �
����� at x� Let y � Rn� y �� �� y

is said to be a feasible direction at x� if x � 
y remains feasible for �
����� for all

� �� 
 �� 
� for some positive 
� Clearly y is a feasible direction at x i�

Ai�y �� �� for each i � I�x�� �
�����

The direction y is said to be a binding direction or a non�binding direction at x

with respect to the ith constraint for i � I�x�� depending on whether Ai�y � � or Ai�y �

� respectively� A move in a binding direction continues to keep the constraint active�

while any move of positive length in a non	binding direction makes the constraint

inactive� that is� moves o� the constraint�

Now consider the corresponding equality constrained NLP


minimize ��x�

subject to Ax � b
�
�����

and further assume that the set of row vectors of A is linearly independent� Suppose

x is a KKT point for �
����� with the associated Lagrange multiplier vector � �

���� � � � � �m�� So x� � together satisfy the �rst order necessary optimality conditions

r��x� � �A� �
�����

Since the set of feasible solutions of �
����� is a subset of the set of feasible solutions

of �
������ an optimum solution for �
����� may not be optimal for �
����� in general�

The point x is of course feasible to �
����� and clearly it is also a KKT point for �
�����

if � �
� ��
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Suppose there is a t such that �t � �� we will now show that there exists a descent

feasible direction at x for �
����� which moves o� the tth constraint� Since the set of

row vectors of A is assumed to be linearly independent� by standard results in linear

algebra� there exists a y � Rn satisfying

Ai�y � 
 for i � t

� � for i �� t�
�
�����

Let y be a solution for �
������ From �
����� and �
������ we have �r��x��y � �Ay �

�t � �� and hence y is a descent feasible direction for �
����� at x�

Thus a necessary condition for a KKT point of �
����� to be a KKT point for

�
����� is that all the Lagrange multipliers be nonnegative� Otherwise we can construct

a descent feasible direction for �
����� at such a point� These results are used in some of

the algorithms discussed below� to solve NLP�s involving linear inequality constraints

using techniques for solving NLP�s involving linear equality constraints only� They try

to guess the set of active inequality constraints at the optimum� and apply the equality

constraint techniques to the problem treating these active constraints as equations�

Modi�cations are made in the active set using Lagrange mulitplier information gathered

over each step�

������� The General Problem

Here we consider the NLP

minimize ��x�

subject to Ai�x � bi� i � 
 to m
�
� bi� i � m� 
 to m� p

�
�����

where x � Rn� and ��x� is a real valued continuously di�erentiable function� Given

a feasible point x� the �rst order necessary conditions for x to be a local minimum

for this problem are that there exists a Lagrange multiplier vector � � ���� � � � � �m�p�

satisfying

r��x� �
m�pX
i��

�iAi�

�i �� �� i � m� 
 to m� p

�i�Ai�x� bi� � �� i � m� 
 to m� p�

�
�����

Without any loss of generality we assume that fAi� 
 i � 
 to mg is linearly inde	
pendent� Let K denote the set of feasible solutions of �
������ Given x � K� all the

equality constraints for i � 
 tom are active at x in �
������ Form�
 �� i �� m�p� the

ith constraint in �
����� is active at x �also said to be an active inequality constraint

at x� if Ai�x � bi� inactive otherwise� Let I�x� � fi 
 Ai�x � big� the index set of active
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constraints at x� The point y � Rn� y �� �� is a feasible direction at x if x � 
y � K

for � �� 
 �
� 
� for some positive 
� Clearly y is a feasible direction at x i�

Ai�y � �� i � 
 to m

�
� �� i � I�x� � fm� 
� � � � �m� pg�

If y is a feasible direction at x and Ai�y � � for some i � I�x� � fm� 
� � � � �m� pg� a
move in the direction y from x is said to move o� the ith constraint in �
������

We will now discuss some algorithms for solving �
������

������� The Frank�Wolfe Method

To solve �
������ this method generates a descent sequence of feasible points fxr 
 r �
�� 
� � � �g beginning with an initial feasible solution x�� satisfying ��xr��� � ��xr� for

all r�

For k �
� �� in step k � 
� the initial point is xk� the feasible point obtained at

the end of the previous step if k � �� or the feasible point with which the method is

initiated� if k � �� In this step the search direction yk is of the form zk � xk where zk

is a feasible point satisfying �r��xk���zk � xk� � �� and so yk is a descent direction at

xk� To �nd a point like zk� we solve the LP in variables x

minimize �r��xk��x
subject to x � K�

�
�����

If zk is an optimum solution obtained when the LP is solved and �r��xk��T zk �
�r��xk��Txk� then xk is also optimal to the LP �
������ By the duality theorem of

linear programming� there exists a vector �k such that xk� �k together satisfy the �rst

order necessary optimality conditions �
����� for �
������ and so we terminate with xk

as the solution for �
������ Otherwise� since xk � K� we must have �r��xk���zk�xk� �
�� and so yk � zk � xk is a feasible descent direction at xk� Now do a line search to

�nd the minimum of ��xk � 
yk� subject to � �� 
 �
� 
� If 
k is the minimum for this

line search problem� the next point in the sequence is xk�� � xk � 
ky
k� continue�

We have the following results about the convergence properties of this method�

Theorem ���
 Suppose K �� � and that the linear function in x� �r��"x��x� is
bounded below on x � K for each "x � K� Assume that K has at least one extreme

point� and that for each k� the optimum solution zk for the LP �	
���
 obtained in

the method is an extreme point of K� If the method does not terminate after a �nite

number of steps� the sequence fxr 
 r � �� 
� � � �g generated by the above method has

at least one limit point� and every limit point of this sequence is a KKT point for

�	
���
� if the line searches are carried out exactly in each step�

Proof� Since r��"x�x is bounded below for x � K for each "x � K� the LP �
����� has

an optimum solution always� The LP �
����� may have alternate optima� and we are
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assuming that zk is an optimum solution for �
����� which is an extreme point of K

�this will be the case� for example� if K has at least one extreme point and �
����� is

solved by the simplex method�� Since K is a convex polyhedron� it has a �nite number

of extreme points� and let K� be the convex hull of these extreme points� Because of

the descent property ��xr� is monotonic decreasing as r increases� and by the manner

in which the algorithm is carried out� it is clear that every point in the in�nite sequence

fxrg lies in the convex hull of K� and x�� a compact set� So the sequence fxrg has at
least one limit point� Let x be a limit point of the sequence fxrg� Let S be an in�nite
set of positive integers such that xk 
 x as k 
� with all k � S� For each k � S we

have an associated extreme point of K� zk� which is an optimum solution of �
������

Since there are only a �nite number of extreme points of K� there must exist at least

one extreme point of K� say z� which is equal to zk for k � S an in�nite number of

times� Let S� 
 S such that for each k � S�� z
k � z� So �r��xk��T �z � xk� � � for

each k � S�� xk 
 x as k 
 � through k � S�� so taking the limit in the above

inequality as k 
� through k � S�� we get

�r��x���z � x� �� �� �
�����

By our hypothesis� the line searches are carried out exactly in each step� Let S� � frt 

t � 
 to �g� with the elements in S� arranged in increasing order� So limit xrt � x as

t
�� In step k � 
� rt� the optimal step length is 
��rt � and so we must have� for

� �� 
 �
� 
�

��xrt � 
�z � xrt�� �� ��x��rt� �� ��xrt���� �
���
�

This follows because x��rt is the point on the line segment fxrt�
�z�xrt� 
 � �� 
 �
� 
g

which minimizes ��x� on this line segment� Also� since rt is an increasing sequence�

we have rt�� �
� 
 � rt� and since f��x��� ��x��� � � �g is a descent sequence we have

��x��rt� �� ��xrt���� In �
���
� let t
�� This leads to

��x� 
�z � x��� ��x� �� � �
�����

for all � �� 
 �
� 
� When 
 is su�ciently small and positive� by the mean value theorem

of calculus� �
����� implies that 
�r��x���z � x� �� �� that is� �r��x���z � x� �� ��

Combining this with �
����� we have

r��x��z � x� � �� �
�����

Since z is an optimum solution of �
����� whenever k � S�� and since x
k 
 x as

k 
� with all k � S�� by �
����� we conclude that x is a feasible solution for �
�����

satisfying the property that x � x is an optimum solution of the LP

minimize �r��x��x
subject to Ai�x � bi� i � 
 to m

�
� bi� i � m� 
 to m� p�

�
�����
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Let � � ���� � � � � �m�p� be an optimum dual solution associated with �
������ then

by the duality and complementary slackness theorems of linear programming� x� �

together satisfy �
������ and hence x is a KKT point for �
������

If ��x� is convex� and xk is a point obtained during the Frank	Wolfe method�

and satis�es �r��xk���xk � zk� �� 	� where zk is an optimum solution of �
������ then

��xk� �� 	� minimum value of ��x� in �
������ To see this� since ��x� is convex� we

have for x � K� ��x�� ��xk� �� �r��xk���x� xk� �� �r��xk���zk � xk� �� �	� and so
��x� �� ��xk�� 	 for all x � K� So if ��x� is convex and xk satis�es �r��xk���xk � zk�

� 	� where 	 is small� we can conclude that xk is near optimum and terminate�

In each step of this method� an LP and a line search problem have to be solved�

Even though the system of constraints in the LP to be solved in all the steps is the

same� the objective function changes from step to step� The line search problem in

each step has to be solved either optimally or at least to guarantee a su�cient decrease

in the objective value� Since there is a considerable amount of work to be done in

each step� the method tends to be slow� It is practical to use the method only on

such problems for which the structure of the problem allows the solution of the LP in

each step by an e�cient special algorithm� One such application arises in the study of

tra�c #ow along a city�s street network using a tra�c assignment model� We discuss

this application brie#y here�

The Tra�c Assignment Problem

Let G � �N �A� be a city�s street network� N is a set of points which are the various

centers in the city or street intersections� A is a set of arcs or street segments� each
arc joining a pair of points� The prupose of the study is to determine how the tra�c

will be distributed over alternate routes� Each driver makes his own choice of the

route to take� but tra�c #ow on road network exhibits certain patterns� One broad

principle for the analysis of tra�c movement enunciates that tra�c distributes itself

over alternative routes so that the average journey time is a minimum�

The cost associated with an arc �i� j� in the network is a measure of the journey

time from node i to node j along that arc� Journey time is in#uenced by tra�c

congestion� and tends to increase with tra�c #ow� Let fij denote the tra�c #ow on

this arc �i� e�� the number of cars entering this arc at node i per unit time� and let

cij�fij� denote the journey time as a function of the #ow fij � This function has the

shape given in Figure 
��
�� and so is a monotone increasing convex function�



��
 Chapter ��� Survey of Descent Based Methods

f i jtraffic flow

(      )f i jc i j

journey

time

Figure �����

Tra�c modelers construct these functions cij�fij� by actually collecting data� They

also have data on the volumes of tra�c �i� e�� how many people travel and from where�

to where� for di�erent periods of the day� For example� during a particular peak

period� suppose we know that V u vehicles will be travelling from node su �origin� to

node tu �destination� in the network� u � 
 to g� Let fuij be the number of these

vehicles �with origin su and destination tu� travelling along arc �i� j� in the network�

For u � 
 to g let fu � �fuij� be the vector of arc #ows of the su to tu vehicle #ows�

The problem is to determine these vectors fu� The tra�c assignment model states

that the �fu 
 u � 
 to g� form an optimum solution to the following nonlinear �#ow

dependent cost� multicommodity #ow problem

minimize
X


i	j��A

cij�fij�

subject to fij� #ow on arc �i� j� �

gX
u��

fuijP
�fuij 
 j such that �i� j� � A��

X
�fuji 
 j such that �j� i� � A�

� �� if i �� su or tu
� V u� if i � su
� �V u� if i � tu

fuij �� �� u � 
 to g� �i� j� � A�

�
�����
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In this model it is quite reasonable to make the simplifying assumption that the #ow

variables are continuous variables rather than discrete integer variables� Also� since the

cost function cij�fij� is constructed to re#ect the journey time as a function of the #ow

fij � there is no need to include a constraint in the model corresponding to the capacity

for #ow of this arc� So� �
����� is an uncapacitated� convex� multicommodity #ow

problem� and this can be solved e�ciently using the Frank	Wolfe method� It begins

with a feasible #ow ��fu�� 
 u � 
 to g�� which can be generated by standard network

#ow methods� and generates a sequence of feasible #ow vectors ��fu�r 
 u � 
 to g 


r � �� 
� � � �� converging to the optimum solution of �
������ In the �k�
�th step of this

method� the initial #ow vectors are ��fu�k� u � 
 to g�� Let �fij�
k �

Pg
u���f

u
ij�

k� the

total #ow on arc �i� j� in these #ow vectors� Let cij �
�dcij
fij�

dfij

 evaluated at fij �

�fij�
k
�
� Then the LP to be solved in this step is

minimize

gX
u��

X

i	j��A

cijf
u
ij

subject to
X
�fuij
 j such that �i� j� � A��

X
�fuji 
 j such that �j� i� � A�

� �� if i �� su or tu
� V u� if i � su
� �V u� if i � tu

fuij �� �� u � 
 to g� �i� j� � A�

�
�����

Clearly� �
����� can be broken up into g separate network #ow problems one for each

u � 
 to g� Also� the uth problem becomes the shortest chain problem from su to tu
in the network G � �N �A� with �cij� as the vector of arc lengths� for which there are
very e�cient special algorithms�

Let Pu be the shortest chain from su to tu in G with �cij� as the vector of arc

costs� De�ne the #ow vector zu � �zij�
u where

zuij � V u if �i� j� is on Pu
� � otherwise�

Then the #ow vectors �zu 
 u � 
 to g� are an optimum solution of the LP �
������ to

be solved in this step�

Since the objective function in �
����� is separable in the arcs� even the line search

problem to be solved in this step� which is that of minimizing
P


i	j��A cij�f
�
ij�� � ��f

g
ij�

over the line segment ffu � 
�fu�k � �
 � 
�zu� u � 
 to g� � �
� 
 �

� 
g� can be
simpli�ed�

Thus the Frank	Wolfe method provides a reasonable approach for solving the

tra�c assignment problem �
������ The main reason for this is the fact that the LP

to be solved in each step of the method breaks down into g separate shortest chain

problems� for which very e�cient special algorithms are available�
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������� Reduced Gradient Methods

The name reduced gradient method refers to a method which uses the equality con	

straints to eliminate some variables �the dependent or basic variables� from the prob	

lem� and treats the remaining problem in the space of the independent �or nonbasic�

variables only� either explicitly or implicitly� The gradient of the objective function in

the space of independent variables is the reduced gradient de�ned in Section 
���� the

search direction is usually the steepest descent vector in the space of the independent

variables �the negative reduced gradient vector�� or the Newton search direction in

the space of the independent variables� determined using the reduced Hessian or an

approximation for it�

We will consider the problem in the following form

minimize ��x�

subject to Ax � b

l �� x �� u
�
�����

where A is a matrix of order m � n and rank m� As discussed in Chapter 
� the

problem �
����� can be put in this form� Here l� u are the lower and upper bound

vectors for x in �
������ Let B be a basis for A �i� e�� a square nonsingular submatrix

of A of order m� and partition A as �B�D�� and let x � �xB� xD� be the corresponding

partition of the vector x� xD is the vector of independent �nonbasic� variables and xB
is the vector of dependent �basic� variables� Let x � �xB � xD� be a feasible solution

for �
������ So xB � B���b�DxD�� The problem can be transformed into one in the

space of independent variables xD only� by eliminating the dependent variables xB �

The reduced gradient at x is cD � �rxD��x��� �rxB��x��B
��D� De�ne yD � �yj� by

yj � �cj if xj is a nonbasic variable in xD and either cj � � and
xj � uj or cj � � and xj � lj

� � if xj is a nonbasic variable in xD�

and the above conditions not met�

If yD � �� x satis�es the �rst order necessary optimality condition for being a local

minimum for �
������ and the method terminates� Otherwise verify that cDyD � �� so

yD is a descent direction in the space of independent variables xD� It is the steepest

descent �negative reduced gradient� direction� De�ne yB � �B��DyD and let y �
�yB � yD�� Then y is the search direction at x� Since Ay � �� the equality constraints

in �
����� continue to be satis�ed when we move in this direction� De�ne


� � minimum f�xj � lj����yj� 
 j such that yj � �g�

� � minimum f�uj � xj���yj� 
 j such that yj � �g�

 � minimum f
�� 
�g�

Do a line search for minimizing ��x�
y� over � �� 
 �� 
� and repeat the whole process

with the optimum point in this line segment�
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Let lB � uB denote the bound vectors for the dependent variables xB � If lB � xB �

uB � from the de�nition of the search direction y� it can be veri�ed that 
 � �� If

however� �
����� is degenerate� given a feasible solution x for it� it may not be possible

to �nd a basis B for �
����� for which lB � xB � uB holds� In this degenerate case�

it may so happen that 
 � �� In this case y is not a feasible direction at x� and the

line search problem does not make any sense� since any move of positive length in

the direction y results in infeasibility� In this case the method can be continued by

identifying the active constraints at x� and moving from x in the direction of yp� the

orthogonal projection of y in the subspace of active constraints at x �this will be a

gradient projection step� see the next section� Section 
��
����� This is equivalent to

carrying out the line search problem exactly as above after replacing y by yp�

For convergence and rate of convergence results in this method see �
���� 
��
��


��
�� 
��
�� 
������

This method has been generalized very directly into the Generalized Reduced

Gradient method �GRG� for solving NLPs involving nonlinear constraints� See �
����


��
�� 
��
�� 
��
�� 
����� 
������

������
 The Gradient Projection Method

When applied to solve the NLP �
������ this method generates a descent sequence

fxr 
 r � �� 
� � � �g beginning with a feasible point x�� all the points in which are
feasible� Step 
 begins with x�� and in general for k �

� 
 step k � 
 begins with the

point xk at the end of step k�

For any feasible solution x of �
����� de�ne I�x� � fi 
 Ai�x � big� Clearly�
f
� � � � �mg 
 I�x� for all feasible solutions x�

In step k � 
� if there are no equality constraints in the problem and if I�xk� �

�� choose the search direction at xk to be yk � ��r��xk��T � If I�xk� �� �� the
search direction in this step is determined by projecting the negative gradient of the

objective function at xk� onto the subspace parallel to the a�ne space of currently

active constraints treated as equations� Let Ak denote the matrix whose rows are Ai�
for i � I�xk�� So Ak is of order jI�xk�j � n� Assume that the set of rows of Ak is

linearly independent� otherwise delete some dependent row vectors of Ak from it until

this property holds� The projection matrix corresponding to the active subspace is

Pk � I � AT
k �AkA

T
k �
��Ak� The projection of ��r��xk��T onto the active subspace is

�Pk�r��xk��T � It can be veri�ed that this vector �Pk�r��xk��T is a positive multiple
of the vector which minimizes �r��xk��y subject to Aky � � and y

T y �� 
�

If �Pk�r��xk��T � �� de�ne �k � �AkA
T
k �
��Ak�r��xk��T � Then r��xk� �

��k�TAk � �� ��
k�T is a row vector of dimension jI�xk�j� Augment ��k�T into a vector

of dimension m � p� by inserting ��s for all i �� I�xk�� and let the vector obtained be

called �k� Then r��xk� � �kA where A is the �m�p��n coe�cient matrix in �
������
So if �ki �� � for all i � m�
 to m� p� xk� �k together satisfy the �rst order necessary

optimality conditions �
����� and the method terminates with xk as the KKT point
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for �
������ On the other hand if �ki � � for some i between m� 
 to m � p� identify

the i for which �ki is the most negative� say r� delete the rth constraint from the active

set �that is� eliminate Ar� from the matrix Ak� update the projection matrix� and the

projection of ��r��xk��T on the new active subspace� and repeat the whole process�
If �Pk�r��xk��T �� �� de�ne yk � �Pk�r��xk��T � yk is the search direction at

xk� It can be veri�ed that Pk is symmetric and PT
k Pk � Pk� so Pk is PSD� Also

r��xk�yk � �kykk� � �� So yk is a descent direction� Now �nd 
 from


 � minimum
nAi�x

k � bi
�Ai�yk


 i such that i �� I�xk� and Ai�y
k � �

o
� �� if Ai�y

k �
� � for all i �� I�xk��

Do a line search to minimize ��xk� 
yk�� � �� 
 �� 
� If 
k is the optimum step length

in this line search problem� xk�� � xk � 
ky
k is the new point� go to the next step�

Methods for Updating the Projection Matrices

The periodic updating of the projection matrix is a considerable computational prob	

lem� However� the matrix Ak usually changes by one row� say Ar�� which is either

dropped from the set of active constraint rows� or is added to it� Here we discuss how

to e�ciently update �AkA
T
k �
�� when a change like this takes place�

To Delete a Row From Ak

Let Ar� be the sth row in Ak at the moment and suppose we want to delete it from

Ak� After deletion suppose Ak becomes �A� of order �q � 
�� n�

Interchange the last row and the sth row in �AkA
T
k �
��� In the resulting matrix

interchange the sth column and the last column� After these interchanges suppose this

matrix �AkA
T
k �
�� is written down in partitioned form as
�� E u

uT �


��
where E is of order �q� 
�� �q� 
�� Then it can be shown that � �A �AT ��� � E� uuT


 �

To Add a Row to Ak

Suppose the row Ar� has to be added to Ak� We will make Ar� as the last row of the

resulting matrix� which is "A �


�� Ak

Ar�


��� Let P be the projection matrix corresponding
to Ak� which is I � AT

k �AkA
T
k �
��Ak� Compute c � kP �Ar��

Tk� � Ar�P �Ar��
T � w �

�AkA
T
k �
��Ak�Ar��

T � u � ��w�c�� F � �AkA
T
k �
�� � wwT

c � Then

� "A "AT ��� �


�� F u
uT 
�c


�� �
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In the process of this updating� if c turns out to be zero� i� e�� PAr� � �� then the

new active constraint row� Ar�� is linearly dependent on the previous active constraint

rows� and the updating cannot be carried out� In this case the new active constraint

row is ignored and the method can be continued with the same set of active constraint

rows as before�

The updating procedure can also be used recursively to obtain the inverse �AkA
T
k �
��

in the �rst step of the algorithm� from the set of active constraints at that stage� by

introducing them one at a time� An advantage of this recursion is that it selects the

largest set of linearly independent active constraint rows among the set of all active

constraint rows at this stage�

������� The Active Set Methods

We consider the NLP �
������ These methods begin with a feasible solution x� and

obtain a descent sequence fxr 
 r � �� 
� � � �g� where each point in the sequence is
feasible�

If x is an optimum solution for �
������ and I�x� � fi 
 Ai�x � bi� i � 
 to m� pg�
then x is also an optimum solution of the equality constrained NLP

minimize ��x�

subject to Ai�x � bi� i � I�x��
�
�����

If we can guess the correct active set I�x�� we could solve �
����� by methods for solving

equality constrained NLPs discussed in Section 
����

In these methods� a guess is built up over the steps� on the likely set of active

constraint indices at the optimum� This set is known as the working active set� The

working active set in step k � 
 is denoted by Ik� Clearly f
� � � � �mg 
 Ik for all k�

Changes are made in the set Ik using information gathered in each step� Ik always

satis�es the property
 fAi� 
 i � Ikg is linearly independent� The initial point in step

 is x�� in initial feasible solution with which the method is initiated� For k �

� 
� the

initial point in step k�
 is xk� the feasible point obtained at the end of step k� Usually

we have Ik 
 I�xk��

In step k � 
� we carry a step for the equality constrained minimization problem

minimize ��x�

subject to Ai�x � bi� i � Ik
�
�����

as discussed in Section 
���� The search direction at xk is the direction determined

using the projected gradient� the projected Hessian or some quasi	Newton search di	

rection at xk for �
����� as discussed in Section 
����

If xk satis�es the termination criteria for �
������ let Ak denote the matrix with

rows Ai�� i � Ik� The corresponding Lagrange multiplier vector for �
����� is �
k �

�AkA
T
k �
��Ak�r��xk��T from �
���
�� If �ki �� � for all i � Ik � fm� 
� � � � �m� pg� as
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discussed in Section 
����
� xk is a KKT point for �
������ terminate� If �ki � � for

some i � Ik � fm� 
� � � � �m� pg� select the most negative among these� say �kr � then
delete r from the working active set� and repeat the whole process�

If xk does not satisfy the termination criteria for �
������ let yk be the search

direction generated at xk for solving �
������ Find out 
 from


 � minimum
nAi�x

k � bi
�Ai�yk


 i such that i �� Ik and Ai�y
k � �

o
�� if Ai�y

k �
� � for all i �� Ik�

Do a line search to minimize ��xk � 
yk� over � �� 
 �
� 
� Let 
k be the optimum

step length for this line search problem� If 
k � 
� leave the working active set Ik
unchanged� and with xk�� � xk � 
ky

k go to the next step� If 
k � 
� all the i which

tie for the minimum in the de�nition of 
 join the active set� select one of these and

include it in Ik� Then go to the next step�

To carry out a step of the algorithm discussed in Section 
��� for the equality

constrained minimization problem �
������ we need the corresponding matrix Z� which

we denote by Zk here� as discussed in Section 
���� Whenever we change the working

active set Ik by dropping an element from it� or including a new element in it� it is

necessary to make the corresponding changes in Zk� Suppose Zk is computed as in

�
����� using a basis Bk for Ak� and maintained by storing Bk either explicitly or in

some factored form� Whenever Ik changes by one element� Bk changes by one row and

one column� and B��k can be updated by using the standard pivot methods of LP�

Several practical strategies have been developed to decide when to include a con	

straint in the working active set� and when to drop a constraint from it� Software pack	

ages for linearly constrained nonlinear programming based on such active set strategies

seem to give the most satisfactory performance� Many of the commercially available

packages usually include a combination of several of the strategies discussed above� in

order to satisfactorily solve the widest class of problems�

All these methods become considerably simpli�ed when applied to solve a qua	

dratic programming problem� because of the special nature of the objective function�

����� Exercises

���
 Fermat�s Problem

Let A�j � �a�j� � � � � amj�
T � j � 
 to n be given distinct points in Rm� Let

wj be a given positive weight associated with point A�j � For any x � Rm de�ne

f�x� �
Pn

j��wjkx�A�jk�
�i� If no three points among fA��� � � � � A�ng are collinear� prove that f�x� is positive
and strictly convex on Rm�
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�ii� Assuming that no three points in the set fA�j 
 j � 
 to ng are collinear prove
that the problem of minimizing f�x� over Rn has a unique solution� call it x� and

prove that x lies in the convex hull of fA��� � � � � A�ng�
�iii� De�ne

g�x� �
nX

j��

�wj�A�j � x�

kx�A�jk
�
� if x �� A�j � for each j � 
 to n�

For such points� g�x� � �rf�x�� This function g�x� given above� is not de�ned if
x � A�j for some j� By analogy� de�ne for j � 
 to n�

h�A�j� �
nX
i��
i��j

�wi�A�i �A�j�

kA�i � A�jk
�

g�A�j� � maximum fkh�A�j�k � wj � �g
� h�A�j�

kh�A�j�k
�
�

Prove that a given point x is x �whether x is one of the points in the set fA�j 

j � 
 to ng or not� i� g�x� � �� with g�x� de�ned as above�

�iv� Assume that no three points in the set fA�j 
 j � 
 to ng are collinear�
De�ne


T �x� �
� nX
j��

wjA�j
kx�A�jk

�
�
� nX
j��

wj

kx�A�jk
�
� if x �� A�j for each j � 
 to n

T �A�j� � A�j � for each j � 
 to n�

Prove that T �x� � x� Also prove that if x is such that x �� A�j for each j � 
 to

n and T �x� � x� then x � x�

Prove that if x � Rm satis�es x �� T �x�� then f�T �x�� � f�x��

Consider the interative method x� � initial point in Rm choosen so that

x� �� A�j for each j � 
 to n

xr�� � T �xr�� r � �� 
� � � � �

If xr �� fA�j 
 j � 
 to ng for all r� prove that the sequence fxr 
 r � �� 
� � � �g
converges to x�

�v� Let A�j be the jth column vector of the following matrix for j � 
 to ��
���� �
 
 � � �
� � � � 
 �



�� �

Let wj � 
 for all j � 
 to �� In this case prove that x � ��� ��
T �

Show that there is an x�� �approximately 
���� such that for x
� � �x��� ��

T we have

T �x�� � A��� which is not optimal� This shows that the iterative method discussed in

�iv� may not always converge to x even if the initial point x� �� fA�j 
 j � 
 to ng�
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However� prove that there exists a countable set $$$ of points in Rm such that if x� ��
$$$� then the sequence of points generated by the iterative method discussed in �iv�

converges to x�

�H� W� Kuhn �
���
��

���� Consider the NLP
minimize ��x�

subject to f�x� � �

where ��x� and f�x� are both continuously di�erentiable real valued functions de�ned

over Rn� Using the ideas of the reduced gradient method and the results given by the

implicit function theorem� develop an e�cient algorithm for solving this problem�

���� De�ne the diameter of a convex hexagon �convex polytope with six extreme

points in R�� K to be maximum fkx � z 
 x� z � Kg� Formulate the problem of

�nding a maximum area convex hexagon of diameter �� 
� as an NLP� Is this a convex

programming problem% Find a solution to this problem using some of the algorithms

discussed in this book�

���� D � �dij� is a square symmetric matrix of order n satisfying� dii � � for all i�

the triangle inequality �dij � djk �� dik for all i� j� k�� and dij � � for all i �� j� It is the

matrix of Euclidean distances between pairs of points among a set of n points in R��

We are given the matrix D� but not the actual points from which D was calculated�

It is required to �nd the coordinates �xi� yi�� i � 
 to n� of n points in R
�� for which

the pairwise distance matrix is D� Formulate this as an NLP and discuss an e�cient

approach for solving it�

The rectilinear or L�	distance between two points �x�� y��� �x�� y�� inR
� is de�ned

to be jx� � x�j � jy� � y�j� Consider the version of the above problem of �nding the
coordinates of n points in R�� for which the matrix of pairwise rectilinear distances is

a given matrix D� Formulate this problem� Is this easier or harder to solve than the

version for the Euclidean distances% Why%

�S� M� Pollock�

���
 Let n � 
� x � �x�� � � � � xn�
T � Sk �

Pn
j�� x

k
j � Consider the NLP

minimize S�� � S�S�
subject to � �� xj �� 
� j � 
 to n�

Prove that the vector x � �xj� is a strict local minimum for this problem if m of the xj
are equal to 
� and p of the xj are equal to 
��� where m�p � n and n � m � �
���n�

Also� prove that x is a global minimum for this problem if it is of the above form and

either m or p is b�
���nc�
�P� Wolfe �
���
��
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���� Automatic Voltage Regulator Control Panel �AVR� Design Problem�

AVR�s are used to stabilize voltage in electrical power systems� AVR contains many

circuits� each circuit may consist of several components like resistors� transistors� ca	

pacitors� zener diodes etc� Each component is characterized by some variables �e� g� the

resistence of a resistor measured in ohms� the gain value of a transistor measured in

hFE� the capacitance of a capacitor measured in microfared �MF� etc��� The problem

is to �nd an optimum design �i� e�� �nd the optimal values of all the variables� which

stabilizes the output voltage as far as possible� while the input voltage may #uctuate

uncontrollably in some speci�ed range� Here we provide a simpli�ed example relating

to the triggering circuit design in the AVR control panel for a diesel �MW AC gen	

erator� to illustrate the basic principles involved in modelling and solving this class

of problems �the general problem may have many more variables� and the functions

involved are more complicated and may have many more terms� but the basic features

remain identical�� The functional form for the output voltage as a function of the input

voltage and the design variables is available from electrical engineering theory� Given

this function� and the range of #uctuation of the input voltage� the problem is to �nd

optimal values for the design variables that stabilizes the output voltage as much as

possible� In our example� the positive and negative voltages are denoted by v�� v��

each of these #uctuates between 
���� to 
���� and we have no way of controlling it�

There are � design variables� x�� x�� x�� x�� x�� The functional form for the output

voltage v is the following


v� � v��
� e�
����x�x���
v� � �x��x� � 
��� � 
��v����x� � ����

v � �v� � v��e
�
���x�x���

The constraints on the variables are� 
 �
� x� �

� 
�� �
�
� x� �

� 
�� 
�
�
� x� �

� ����


�� �� x� �� ����� 

�
� x� �� 
���� Formulate the problem as a nonlinear program and

discuss an algorithm for solving it�

�Kirloskar Electricals Ltd�� India�

���� The variable y represents the yield in a chemical process� There are n process

variables x�� x�� � � � � xn �such as temperature� #ow rate� etc�� which in#uence the yield

y� Data was collected to observe the yield y for various values of the process variable

vector x � �x�� � � � � xn�� This leads to k data points� t � 
 to k�

Process variable vector xt � �xt�� � � � � x
t
n�� corresponding yield yt�

In the vectors xt� t � 
 to k� each process variable takes several values spanning

its possible range of variation� and each combination of process variables takes several

values in the combined range of variation of the vector of these process variables� It is

believed that y can be approximated reasonably well by a convex quadratic function

of the form Q�x� � cx � � �� �x
TDx� It is required to �nd the best convex quadratic

�t Q�x� for y� using the available data� Formulate this problem of �nding the best

convex quadratic approximation Q�x� for y using the available data as a nonlinear

programming problem� and discuss how this problem can be solved�
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If lj � uj are known lower and upper bounds for the process variable xj for j � 


to n� and you are asked to design an experiment for collecting the necessary data

in the above problem� outline how you will determine the process variable vectors

xt � �xt�� � � � � x
t
n� at which the yield has to be observed� in order to obtain the best �t�

���� Let ��x� be a continuously di�erentiable real valued function de�ned on Rn� It

is required to �nd the unconstrained minimum of ��x� over Rn� Beginning with an

initial point x� � Rn� the sequence of points fxr 
 r � �� 
� �� � � �g was obtained by
using Cauchy�s Method of steepest descent with optimal step lengths in each step �the

metric matrix for determining the steepest descent direction is always the unit matrix

I�� Prove that �xr�� � xr���T �xr�� � xr� � � for all r�

����� Let c be a given row vector in Rn� Write down explicitly� an optimum solution

for the following problem
minimize cx

subject to xTx � 


x �� ��

����� Let ��x� be a continuously di�erentiable real valued convex function de�ned

on a bounded convex set K 
 Rn� that attains its minimum over K at x� � K�

fxr 
 r � 
� �� � � �g� fyr 
 r � 
� �� � � �g are sequences of points in K satisfying the

following conditions

r��xr��yr � xr� �� In�mum f	r �r��xr��x� xr� 
 x � Kg
r��xr��yr � xr�
 � as r 
�

where 	r �
� � for all r and 	r 
 � as r 
 �� Then� prove that ��xr� 
 ��x�� as

r
��

����
 We are given a set of n points in R�� say� at � �at�� a
t
��� t � 
 to n� It is required

to �t a circle to these points� The objective function to be minimized is
P
��r�	square

of the Euclidean distance between at and the center�� 
 t � 
 to n�� where r is the

radius of the circle� Formulate this problem as an NLP and discuss an e�cient method

for solving it�

�R� Chandrasekaran�

����� We are given row vectors c�� � � � � cr in Rn and real numbers d�� � � � � dr� De�ne

��x� � Maximum fjctx� dtj 
 t � 
 to rg�
It is required to �nd the unconstrained minimum of ��x� over x � Rn� Discuss an

e�cient method for computing it�
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����� Let d�� � � � � dn be given positive integers� The partition problem with this data�

is to check whether there exists a subset S 
 f
� � � � � ng such that
X
i�S

di �
X
i�S

di

where S � f
� � � � � ng n S� This is a well known NP	complete problem �see ���
����

Formulate this problem as a special case of

minimize kxkp
subject to x � K � fx 
 Ax �� bg �
�����

where kxkp � �
Pn

i�� jxijp���p� and A� b are integer matrices of orders m�n and m�

respectively� p a positive integer �� 
� and K is known to be nonempty and bounded�

kxkp is known as the p	norm of the vector x� Thereby establish that the problem of
maximizing the p	norm on a convex polytope speci�ed in terms of linear inequalities

with integer data� is an NP	hard problem�
Show that an upper bound on the optimum objective value in �
����� can be

obtained by solving a relaxed linear program�

The �	norm of the vector x � �xi� � Rn� denoted by kxk� is de�ned to be

maximum fjxij 
 i � 
 to ng� Show that when p ��� �
����� can be solved by solving
at most �n linear programs�

�O� L� Mangasarian and T�	H� Shiau� �A variable	complexity norm maximization prob	

lem�� Technical Report ����� Mathematics Research Center� University of Wisconsin�

Madison� 
����

����� Optimal Betting in a Race Track

The �market� at a race track in North America typically convenes for about �� minutes�

during which participants make bets on any number of � to 
� horses in the following

race� To keep the discussion simple� we consider a race in which participants can bet

on each horse either to win or place� All participants who have bet on a horse to

win� realize a positive return on that bet only if that horse comes �rst� while a place

bet realizes a positive return if that horse comes �rst or second� Consider a race with

the following data declared at the time we are ready to bet�

n � number of horses running in the race�

Wi � total amount bet by public �all participants so far� on horse i to win�

W �
Pn

i��Wi � win pool�

Q � track payback proportion �typically ���� it is the proportion of pool given

away� the remaining proportion �
� is kept by the race track company��

Pj � total amount bet by public �all participants so far� on horse j to place�

P �
Pn

j�� Pj � place pool�
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qi � probability that horse i �nishes �rst in the race�

qij �
qiqj
��qi

� probability that horse i �nishes �rst and horse j �nishes second in

the race�

payo� per dollar bet

on horse i to win
�

�
WQ
Wi

� i� horse i comes in �rst place
� otherwise�

payo� per dollar bet

on horse j to place
�


����
����

 �

PQ�Pi�Pj
�Pj

� if horses i� j are �rst

two winners in any order

�� if horse j did not �nish in the �rst
two places in the race�

Thus the payo� on horse j to place is independent of whether j �nishes �rst or second�

but dependent on which horse �nishes with it in �rst two places�

We assume that qi � Wi�W � that is that the crowd is good at picking a winner�

or that the relative amount bet on a horse to win corresponds closely to its actual

chances of winning�

The Wi� Pi are the public�s bets in the race� are known� Consider the problem

of determining the place bets to make optimally� given all the above data and the

assumptions� subject to a budget of b �� The Kelly criterion determines the optimal

bets to maximize the expected logarithm of �nal wealth� The decision vector in this

problem is x � �x�� � � � � xn�
T � where xi is the place bet on the ith horse� i � 
 to n�

De�ne

fij�x� �
�Q�P �Pn

l�� xl
�� xi � xj � Pi � Pj

�

�� xi
xi � Pi

�
xj

xj � Pj

�
�

Then the problem for determining the optimal x is

minimize

nX
i��

nX
j��
j ��i

qij log
�
fij�x� � b�

nX
l��
l��i	j

xl

�

subject to
nX
l��

xl �� b

xl �� �� for all l � 
 to n�

Discuss an e�cient approach for solving this problem� Solve the numerical problem

using this approach� when the data is

n � �� Q � ����� b � ����

i 
 � � � � � � �

Wi 
�� ��� 
�� ��� �� ��� ��� ��� �� ��� 
�� ��� 
�� ��� 
�� ���

Pi �� ��� �� ��� �� ��� �� ��� �� ��� �� ��� 
�� ��� �� ���
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�See the delightful book� W� T� Ziemba and D� B� Hausch �
����� for a complete

treatment of this problem��

����
 Consider the following LP

minimize cx

subject to x � K � fx 
 Ax �� bg
where A� b are given matrices of orders m�n� m�
 respectively� Assume that K �� ��
For 
 �

� �� let x�
� denote the nearest point in K to 
c in terms of the usual Euclidean

distance�

If the above LP has an optimum solution� prove that there exists a 
 � � such that

x�
� is constant for all 
 �
� 
 and that x�
� is the least �Euclidean� norm optimum

solution for the LP�

If the objective value is unbounded below on K in the above LP� prove that

kx�
�k 
 � as 

��
�O� L� Mangasarian�

����� Consider the following NLP

minimize ��x�

subject to Ax �� b

where ��x� is a strictly convex function de�ned over Rn with a unique unconstrained

minimum� x� in Rn� and A is a matrix of order m� n� Suppose x satis�es

Ai�x� bi

�
� �� i � 
 to r
�
� �� for i � r � 
 to m�

Let xi denote the point which minimizes ��x� subject to one constraint only �Ai�x �
�

bi�� for i � 
 to r� Suppose there is a unique k � f
� � � � � rg such that xk is feasible to
the original NLP� Then prove that xk is an optimum solution for the original NLP�

����� A Curve Fitting Application in High Voltage Coil Insulation Testing
 The

life of the insulation system on high voltage coils used in rotating electrical machines�

depends on it�s DLA �dielectric loss analyzer� value� The DLA value for a coil is

expected to depend on it�s  tan � �increase in tan � or dissipation factor expressed

as a percentage� with increase in test voltage� and  C �inrease in capacitance with

increase in test voltage� values� The DLA value is hard to measure� but the  tan �

and  C values can be measured easily� Given below are the DLA�  tan � and  C

values for a sample of �� test coils� Use this data to determine if the DLA value of

a coil can be estimated reliably from it�s  tan � and  C values� and if so� determine

the appropriate functional form� Using this analysis� design a scheme for checking the

acceptability of coils �acceptable if DLA value is �� ��� units� using measurements of

their  tan � and  C values as far as possible�
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 C and  tan � with their corresponding DLA values for �� test coils�

 tan ��  tan ��

Sample ��� KV  C� ��� DLA at Sample ��� KV  C� ��� DLA at

coil No� to 

 KV to 

 KV coil No� to 

 KV to 

 KV

KV 

 KV KV 

 KV


 ���

 ��� ��� �� ����� ��� ���

� ���
� ��� ��� �� ����� ��� 
��

� ����� 
�� 
�� �� ����
 ��� ���

� ���
� 
�� ��� �� ����� ��� ���

� ����� 
�� ��� �� ����� ��� 
��

� ����� 
�� 
�
 �
 ����� ��� 
��

� ����� 
�� 
�� �� ����� ��� 
��

� ����� 
�� 
�� �� ����� ��� 
��

� ����� 
�� 
�� �� ����
 ��� ���


� ����� 
�� 
�� �� ����� ��� ���



 ����� 
�� 
�� �� ����� ��� ���


� ����� 
�� 
�� �� ����� ��� ��



� ����� 
�� ��
 �� ����� ��� ���


� ����� 
�� 
�� �� ����� ��� ���


� ����� ��� 
�� �� ����� ��� ���


� ����� ��� 
�� �
 ����� ��� ���


� ����
 ��� ��� �� ����� ��� ���


� ����
 ��� ��� �� ����� ��� ���


� ����� ��
 ��� �� ����� ��� ���

�� ����� ��
 ��
 �� ����� ��� ���

�
 ����
 ��
 
�� �� ����� ��� ���

�� ����� ��� 
�� �� ����� ��
 ���

�� ����
 ��� 
�� �� ����� ��� ���

�� ����� ��� 
�� �� ����� ��� ���

�� ����� ��� 
�
 �� ����� ��� ���
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 tan ��  tan ��

Sample ��� KV  C� ��� DLA at Sample ��� KV  C� ��� DLA at

coil No� to 

 KV to 

 KV coil No� to 

 KV to 

 KV

KV 

 KV KV 

 KV

�
 ����� ��� ��� �
 ����� ��� ��


�� ����� ��� ��� �� ����� ��� ���

�� ����� ��� ��� �� ����� ��� ���

�� ����� ��� ��� �� ����� ��� ���

�� ����� ��� ��� �� ����� ��� ���

�� ����� ��� ��
 �� ����� ��� ���

�� ����� ��� ��� �� ����� ��� ���

�� ����� ��� ��� �� ����� ��� ���

�� ����� ��� ��� �� ����
 ��� ���

�� ����� ��� ��
 �� ��
�� ��� ���

�
 ����� ��� ��� �
 ��
�� ��� ���

�� ����� ��� ��� �� ����� ��� ���

�� ����� ��� ��� �� ����� ��
 ���

�� ����� ��� ��� �� ��
�� ��
 ���

�� ����� ��� ��� �� ����� ��� ���

�� ����� ��� ��� �� ��
�� 
��� ���

�� ����� ��� ��
 �� ��
�
 
��� 
���
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