
Appendix

PRELIMINARIES

1. THEOREMS OF ALTERNATIVES FOR

SYSTEMS OF LINEAR CONSTRAINTS

Here we consider systems of linear constraints, consisting of equations or inequalities

or both. A feasible solution of a system is a vector which satisfies all the constraints in

the system. If a feasible solution exists, the system is said to be feasible. The system

is said to be infeasible if there exists no feasible solution for it. A typical theorem

of alternatives shows that corresponding to any given system of linear constraints,

system I, there is another associated system of linear constraints, system II, based on

the same data, satisfying the property that one of the systems among I, II is feasible

iff the other is infeasible. These theorems of alternatives are very useful for deriving

optimality conditions for many optimization problems.

First consider systems consisting of linear equations only. The fundamental

inconsistent equation is

0 = 1 (1)

consider the following system of equations

x1 + x2 + x3 = 2

−x1 − x2 − x3 = −1.
(2)

When we add the two equations in (2), the coefficients of all the variables on the

left hand side of the sum are zero, and the right hand side constant is 1. Thus the
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fundamental inconsistent equation (1) can be obtained as a linear combination of the

two equations in (2). This clearly implies that there exists no feasible solution for (2).

Now consider the general system of linear equations Ax = b, written out in full as

n∑
j=1

aijxj = bi, i = 1 to m. (3)

A linear combination of system (3) with coefficients π = (π1, . . . , πm) is

n∑
j=1

( m∑
i=1

πiaij

)
xj =

( m∑
i=1

πibi

)
(4)

(4) is the same as (πA)x = (πb). (4) becomes the fundamental inconsistent equation

(1) if
m∑
i=1

πiaij = 0, j = 1 to n

m∑
i=1

πibi = 1

(5)

and in this case, (3) is clearly infeasible. The system of linear equations (3) is said

to be inconsistent iff the fundamental inconsistent equation (1) can be obtained as

a linear combination of the equations in (3), that is, iff there exists π = (π1, . . . , πm)

satisfying (5). Clearly an inconsistent system of equations is infeasible. The converse

of this statement is also true. So a system of linear equations is infeasible iff it is

inconsistent. This is implied by the following theorem of alternatives for systems of

linear equations.

Theorem 1 Let A = (aij), b = (bi) be given matrices of orders m × n and m × 1.

Let x = (x1, . . . , xn)
T and π = (π1, . . . , πm). Exactly one of the two following systems

(I) and (II) has a solution and the other has no solution.

(I)

Ax = b

(II)

πA = 0

πb = 1

Proof. If (I) has a solution x and (II) has a solution π, then Ax = b, and so πAx = πb,

but (πA)x = 0, πb = 1, so this is impossible. So it is impossible for both (I) and (II)

to have solutions.

Put (I) in detached coefficient tabular form and introduce the unit matrix of order

m on the left hand side of this tableau. The tableau at this stage is

x

I A b
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Perform Gauss-Jordan pivot steps in this tableau to put A into row echelon normal

form. For this, perform Gauss-Jordan pivot steps in rows 1 to m, in that order.

Consider the step in which the rth row is the pivot row. Let the entries in the current

tableau in the rth row at this stage be

βr1 . . . βrm ar1 . . . arn br

Let βr. = (βr1, . . . , βrm). Then, (ar1, . . . , arn) = βr.A and br = βr.b. If (ar1, . . . , arn)

= 0 and br = 0, this row at this stage represents a redundant constraint, erase it from

the tableau and continue. If (ar1, . . . , arn) = 0 and br ̸= 0, define π = βr./br. Then we

have πA = 0, πb = 1, so π is a feasible solution of system (II) and (I) has no feasible

solution, terminate. If (ar1, . . . , arn) ̸= 0, select a j such that arj ̸= 0, and perform a

pivot step with row r as the pivot row and column j as the pivot column, make xj the

basic variable in the rth row, and continue. If the conclusion that (I) is infeasible is

not made at any stage in this process, make the basic variable in each row equal to the

final updated right hand side constant in that row, and set all the nonbasic variables

equal to zero; this is a solution for system (I). Since (II) cannot have a solution when

(I) does, (II) has no solution in this case.

Example 1

Let

A =

 1 −2 2 −1 1
−1 0 4 −7 7
0 −2 6 −8 8

 , b =

− 8
16
6

 .

So, system (I) in Theorem 1 corresponding to this data is

x1 x2 x3 x4 x5 b

1 −2 2 −1 1 − 8

−1 0 4 −7 7 16

0 −2 6 −8 8 6

We introduce the unit matrix of order 3 on the left hand side and apply the Gauss-

Jordan method on the resulting tableau. This leads to the following work. Pivot

elements are inside a box.
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x1 x2 x3 x4 x5

1 0 0 1 −2 2 −1 1 − 8

0 1 0 −1 0 4 −7 7 16

0 0 1 0 −2 6 −8 8 6

1 0 0 1 −2 2 −1 1 − 8

1 1 0 0 −2 6 −8 8 8

0 0 1 0 −2 6 −8 8 6

0 −1 0 1 0 −4 7 −7 −16

− 1
2 − 1

2 0 0 1 −3 4 −4 − 4

−1 −1 1 0 0 0 0 0 − 2

From the last row in the last tableau, we conclude that this system is inconsistent.

Defining π = (−1,−1, 1)/(−2) = (1/2, 1/2,−1/2), we verify that π is a solution for

system (II) in Theorem 1 with data given above.

Now consider a system of linear inequalities. The fundamental inconsistent

inequality is

0 >= 1 (6)

Consider the following system of inequalities.

x1 + x2 + x3 >= 2

−x1 − x2 − x3 >= −1.
(7)

Adding the two inequalities in (7) yields the fundamental inconsistent inequality (6),

this clearly implies that no feasible solution exists for (7).

Given the system of linear inequalities

n∑
j=1

aijxj >= bi, i = 1 to m (8)

a valid linear combination of (8) is a linear combination of the constraints in (8)

with nonnegative coefficients, that is

n∑
j=1

( m∑
i=1

πiaij

)
xj >=

m∑
i=1

πibi (9)



1. Theorems of Alternatives for Systems of Linear Constraints 511

where π = (π1, . . . , πm) >= 0. (9) is the fundamental inconsistent equation (6) iff

n∑
j=1

πiaij = 0, j = 1 to m

m∑
i=1

πibi = 1

(10)

and if (10) has a solution π >= 0, (8) is clearly infeasible. The system of linear inequal-

ities (8) is said to be inconsistent iff the fundamental inconsistent inequality (6) can

be obtained as a valid linear combination of it. We will prove below, that a system of

linear inequalities is infeasible iff it is inconsistent. In fact, given any system of linear

constraints (consisting of equations and/or inequalities) we will prove that it has no

feasible solution iff the fundamental inconsistent inequality (6) can be obtained as a

valid linear combination of it. This leads to a theorem of alternatives for that system.

These theorems of alternatives can be proven in several ways. One way is by using

the duality theorem of linear programming (see [2.26]). Another way is to prove them

directly using a lemma proved by A. W. Tucker. We first discuss this Tucker’s lemma

[see A 10].

Theorem 2 (Tucker’s Lemma). If A is a given m× n real matrix, the systems

Ax >= 0 (11)

πA = 0, π >= 0 (12)

where x = (x1, . . . , xn)
T and π = (π1, . . . , πm), have feasible solutions x, π respectively,

satisfying

(π)T +Ax > 0. (13)

Proof. We will first prove that there exist feasible solutions x1, π1 = (π1
1 , . . . , π

1
m) to

(11), (12) respectively, satisfying

A1.x
1 + π1

1 > 0. (14)

The proof is by induction on m, the number of rows in the matrix A. If m = 1 let

π1 = (π1
1) = (1), x1 = 0, if A1. = 0

π1 = 0, x1 = (A1.)
T , if A1. ̸= 0

and verify that these solutions satisfy (14). So the theorem is true if m = 1. We now

set up an induction hypothesis.

Induction Hypothesis. If D is any real matrix of order (m − 1) × n, there exist

vectors x = (xj) ∈ Rn, u = (u1, . . . , um−1) satisfying: Dx >
= 0; uD = 0, u >

= 0;

u1 +D1.x > 0.
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Under the induction hypothesis we will now prove that this result also holds for

the matrix A of order m×n. Let A′ be the (m−1)×n matrix obtained by deleting the

last row Am. from A. Applying the induction hypothesis on A′, we know that there

exist x′ ∈ Rn, u′ = (u′1, . . . , u
′
m−1) satisfying

A′x′ >= 0; u′A′ = 0, u′ >= 0; u′1 +A1.x
′ > 0. (15)

If Am.x
′ >
= 0, define x1 = x′, π1 = (u′, 0), and verify that x1, π1 are respectively

feasible to (11), (12) and satisfy (14), by (15). On the other hand, suppose Am.x
′ < 0.

We now attempt to find a vector x̃ ∈ Rn and real number α such that

x1 = x̃+ αx′ and vector π1

together satisfy (14). We have to determine x̃, α, π1 so that this will be true. For this

we require
Am.x

1 = Am.x̃+ αAm.x
′ >
= 0 that is

α <= (Am.x̃)/(−Am.x′).

So it suffices if we define α = (Am.x̃)/(−Am.x′). We still have to determine x̃ and π1

appropriately. The vector x1 should also satisfy for i = 1 to m− 1

Ai.x
1 = Ai.x̃+ αAi.x

′ = (Ai. + λiAm.)x̃ >= 0

where λi = (Ai.x
′)/(−Am.x′). Now define Bi. = Ai. + λiAm., for i = 1 to m− 1 and

let B be the (m− 1)× n matrix whose rows are Bi., i = 1 to m− 1. By applying the

induction hypothesis on B, we know that there exists x′′ ∈ Rn, u′′ = (u′′1 , . . . , u
′′
m−1)

satisfying

Bx′′ >= 0, u′′B = 0, u′′ >= 0, u′′1 +B1.x
′′ > 0. (16)

We take this vector x′′ to be the x̃ we are looking for, and therefore define

x1 = x′′ − x′(Am.x
′′)/(Am.x

′)

π1 =
(
u′′,

m∑
i=1

λiu
′′
i

)
.

Using (15), (16) and the fact that Am.x
′ < 0 in this case, verify that x1, π1 are respec-

tively feasible to (11) and (12) and satisfy (14). So under the induction hypothesis,

the result in the induction hypothesis also holds for the matrix A of order m×n. The

result in the induction hypothesis has already been verified to be true for matrices with

1 row only. So, by induction, we conclude that there exist feasible solutions x1, π1 to

(11), (12) respectively, satisfying (14).

For any i = 1 to m, the above argument can be used to show that there exist

feasible solutions xi, πi = (πi1, . . . , π
i
m) to (11) and (12) respectively satisfying

πii +Ai.x
i > 0. (17)

Define x =
∑m
i=1 x

i, π =
∑m
i=1 π

i, and verify that x, π together satisfy (11) and (12)

and (13).
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Corollary 1. Let A, D be matrices of orders m1 × n and m2 × n respectively with

m1 >= 1. Then there exist x = (x1, . . . , xn)
T , π = (π1, . . . , πm1). µ = (µ1, . . . , µm2)

satisfying
(18)

Ax >= 0

Dx = 0

(19)

πA+ µD = 0

π >= 0

(20)

πT +Ax > 0 .

Proof. Applying Tucker’s lemma to the systems

(21)

Ax >
= 0

Dx >= 0

−Dx >= 0

(22)

πA+ γD − νD = 0

π, γ, ν >= 0

we know that there exist x, π, γ, ν feasible to them, satisfying πT + Ax > 0. Verify

that x, π, µ = γ − ν satisfy (18), (19) and (20).

We will now discuss some of the most useful theorems of alternatives for linear

systems of constraints.

Theorem 3 (Farkas’ Theorem). Let A, b be given matrices of orders m×n and m×1

respectively. Let x = (x1, . . . , xn)
T , π = (π1, . . . , πm). Exactly one of the following

two systems (I), (II) is feasible.

(I)

Ax = b

x >= 0

(II)

πA <
= 0

πb > 0.

Proof. Suppose both systems are feasible. Let x be feasible to (I) and π be feasible

to (II). Then (πA)x <= 0 since πA <
= 0 and x >= 0. Also π(Ax) = πb > 0. So there is a

contradiction. So it is impossible for both systems (I) and (II) to be feasible.

Suppose (II) is infeasible. Let y = πT . So this implies that in every solution of bT

−AT
 y >= 0 (23)

the first constraint always holds as an equation. By Tucker’s lemma (Theorem 2) there

exists a y feasible to (23) and (δ, µ1, . . . , µn) >= 0 feasible to

(δ, µ1, . . . , µn)

 bT

−AT
 = 0 (24)

which together satisfy bT y+δ > 0. But since y is feasible to (23) we must have bT y = 0

as discussed above (since (II) is infeasible) and so δ > 0. Define xj = µj/δ for j = 1

to n and let x = (x1, . . . , xn)
T . From (24) we verify that x is feasible to (I). So if (II)

is infeasible, (I) is feasible. Thus exactly one of the two systems (I), (II) is feasible.
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Note 1. Given A, b, the feasibility of system (I) in Farkas’ theorem can be deter-

mined using Phase I of the Simplex Method for linear programming problems. If (I) is

feasible, Phase I terminates with a feasible solution of (I), in this case system (II) has

no feasible solution. If Phase I terminates with the conclusion that (I) is infeasible, the

Phase I dual solution at termination provides a vector π which is feasible to system

(II).

Note 2. Theorem 3, Farkas’ theorem, is often called Farkas’ lemma in the literature.

An Application of Farkas’ Theorem to Derive

Optimality Conditions for LP

To illustrate an application of Farkas’ theorem, we will now show how to derive the

necessary optimality conditions for a linear program using it. Consider the LP

minimize f(x) = cx

subject to Ax >= b
(25)

where A is a matrix of orderm×n. The constraints in (25) include all the conditions in

the problem, including any bound restrictions, lower or upper, on individual variables.

If there are any equality constraints in the problem, each of them can be represented

by the corresponding pair of opposing inequality constraints and expressed in the form

given in (25) (for example, the equality constraint x1 + x2 − x3 = 1 is equivalent to

the pair of inequality constraints x1 + x2 − x3 >= 1, −x1 − x2 + x3 >= −1). Thus every

linear program can be expressed in this form. We now state the necessary optimality

conditions for a feasible solution x to be optimal to this LP, and prove it using Farkas’

theorem.

Theorem 4. If x is a feasible solution for (25), and x is optimal to (25), there must

exist a vector Π = (Π1, . . . ,Πm) which together with x satisfies

c−ΠA = 0

Π >
= 0

Πi(Ai.x− bi) = 0, i = 1 to m.

(26)

Proof. Consider the case c = 0 first. In this case the objective value is a constant,

zero, and hence every feasible solution of (25) is optimal to it. It can be verified that

Π = 0 satisfies (26) together with any feasible solution x for (25).

Now consider the case c ̸= 0. We claim that the fact that x is optimal to (25)

implies that Ax ̸> b in this case. To prove this claim, suppose Ax > b. For any y ∈ Rn,

A(x+ αy) = Ax+ αAy >= b as long as α is sufficiently small, since Ax > b.

Take y = −cT . Then, for α > 0, c(x+ αy) < cx and x+ αy is feasible to (25) as

long as α is positive and sufficiently small, contradicting the optimality of x to (25).

So, if x is optimal to (25) in this case (c ̸= 0) at least one of the constraints in (25)

must hold as an equation at x.
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Rearrange the rows of A, and let A1 be the matrix of order m1 × n consisting of

all the rows in A corresponding to constraints in (25) which hold as equations in (25)

when x = x, and let A2, of order m2×n, be the matrix consisting of all the other rows

of A.

By the above argument A1 is nonempty, that is, m1 >
= 1. Let b1, b2 be the

corresponding partition of b. So

A =

A1

A2

 , b =

 b1

b2

 (27)

and
A1x = b1

A2x > b2.
(28)

We now show that if x is optimal to (25), the system

A1y >= 0

cy < 0
(29)

cannot have a solution y. Suppose not. Let y be a solution for (29). Then for α > 0,

A1(x + αy) = A1x + αA1y >
= b1; and A2(x + αy) = A2x + αA2y >

= b2 as long as

α is sufficiently small, since A2x > b2. So when α is positive but sufficiently small,

x+ αy is feasible to (25) and since c(x+ αy) = cx+ αcy < cx, since cy < 0, we have

a contradiction to the optimality of x for (25).

So, (29) has no solution y. By taking transposes, we can put (29) in the form of

system (II) under Theorem 3 (Farkas’ theorem). Writing the corresponding system (I)

and taking transposes again, we conclude that since (29) has no solution, there exists

a row vector Π1 satisfying
Π1A1 = c

Π1 >
= 0

(30)

Define Π2 = 0 and let Π = (Π1,Π2). From the fact that A1, A2 is a partition of A as

in (27), and using (30), (28), we verify that Π = (Π1,Π2) satisfies (26) together with

x.

Example 2

Consider the LP

minimize f(x) = −3x1+ x2+3x3 +5x5
subject to x1+ x2− x3+2x4 − x5 >= 5

−2x1 +2x3− x4 +3x5 >= −8

x1 >
= 6

−3x2 +3x4 >
= −5

5x3− x4 +7x5 >= 7.

Let x = (6, 0,−1, 0, 2)T . Verify that x satisfies constraints 1,2 and 3 in the problem as

equations and the remaining as strict inequalities. We have
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A1 =

 1 1 −1 2 −1
−2 0 2 −1 3
1 0 0 0 0

 ,

b1 =

 5
−8
6


A2 =

 0 −3 0 3 0
0 0 5 −1 7

 ,

b2 =

−5
7


c = (−3, 1, 3, 0, 5), f(x) = cx

and A1x = b1, A2x > b2. If we take Π1 = (1, 2, 0) then Π1A1 = c, Π1 >
= 0. Let

Π2 = (0, 0), and Π = (Π1,Π2) = (1, 2, 0, 0, 0). These facts imply that Π, x together

satisfy the necessary optimality conditions (26) for this LP.

We leave it to the reader to verify that if x is feasible to (25), and there exists a

vector Π such that x, Π together satisfy (26), then x is in fact optimal to (25), from first

principles. Thus the conditions (26) and feasibility are together necessary and sufficient

optimality conditions for the LP (25). It can also be verified that any Π satisfying (26)

is an optimum dual solution associated with the LP (25); and that (26) are in fact the

dual feasibility and complementary slackness optimality conditions for the LP (25).

See [2.26, A10]. Thus Farkas’ theorem leads directly to the optimality conditions for

the LP (25). Later on, in Appendix 4, we will see that Theorems of alternatives like

Farkas’ theorem and others discussed below are very useful for deriving optimality

conditions in nonlinear programming too. We will now discuss some more theorems of

alternatives.

Some Other Theorems of Alternatives

Theorem 5 (Motzkin’s Theorem of the Alternatives). Let m >
= 1, and let A, B, C be

given matrices of ordersm×n,m1×n,m2×n. Let x = (x1, . . . , xn)
T , π = (π1, . . . , πm),

µ = (µ1, . . . , µm1), γ = (γ1, . . . , γm2). Then exactly one of the following two systems

(I), (II) is feasible.
(I)

Ax > 0

Bx >= 0

Cx = 0

(II)

πA+ µB + γC = 0

π ≥ 0, µ >= 0

Proof. As in the proof of Theorem 3, it can be verified that if both (I), (II) are

feasible, there is a contradiction. Suppose system (I) is infeasible. This implies that
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every feasible solution of
Ax >= 0

Bx >= 0

Cx = 0

(31)

satisfies Ai.x = 0 for at least one i = 1 to m. By Corollary 1, there exists x feasible to

(31) and π, µ, γ feasible to
πA+ µB + γC = 0

π >= 0, µ >= 0
(32)

satisfying (π)T + Ax > 0. But since x is feasible to (31), Ai.x = 0 for at least one i

as discussed above. This implies that for that i, πi > 0, that is, π ≥ 0. So (π, µ, γ)

satisfies (II). So if (I) is infeasible, (II) is feasible. Thus exactly one of the two systems

(I), (II) is feasible.

Theorem 6 (Gordan’s Theorem of the Alternatives). Give a matrix A of orderm×n,
exactly one of the following systems (I) and (II) is feasible.

(I)

Ax > 0

(II)

πA = 0

π ≥ 0

Proof. Follows from Theorem 5 by selecting B, C = 0 there.

Theorem 7 (Tucker’s Theorem of the Alternatives). Let m >
= 1, and let A, B, C be

given matrices of orders m × n, m1 × n, m2 × n respectively. Let x = (x1, . . . , xn)
T ,

π = (π1, . . . , πm), µ = (µ1, . . . , µm1), γ = (γ1, . . . , γm2). Exactly one of the following

systems (I), (II) is feasible.

(I)

Ax ≥ 0

Bx >= 0

Cx = 0

(II)

πA+ µB + γC = 0

π > 0, µ >= 0

Proof. As in the proof of Theorem 3, it can be verified that if both (I), (II) are feasible,

there is a contradiction. Suppose that (I) is infeasible. This implies that every feasible

solution of
Ax >= 0

Bx >= 0

Cx = 0

(33)
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must satisfy Ax = 0. By Corollary 1, there exists x feasible to (33) and π, µ, γ feasible

to
πA+ µB + γC = 0

π >= 0, µ >= 0
(34)

satisfying (π)T +Ax > 0. But since x is feasible to (33), Ax = 0 as discussed above; so

(π)T > 0. So (π, µ, γ) satisfies (II). So if (I) is infeasible, (II) is feasible. Thus exactly

one of the two systems (I), (II) is feasible.

Theorem 8 (Gale’s Theorem of Alternatives). Let A, b be given matrices of orders

m × n, m × 1 respectively. Let x = (x1, . . . , xn)
T , π = (π1, . . . , πm). Exactly one of

the following systems (I), (II) is feasible.

(I)

Ax >= b

(II)

πA = 0

πb = 1

π >
= 0

Proof. System (I) is equivalent to

(A −b )
 x
xn+1

 >
= 0

d

 x
xn+1

 > 0

(35)

where d = (0, 0, . . . , 0, 1) ∈ Rn+1. (I) is equivalent to (35) in the sense that if a solution

of one of these systems is given, then a solution of the other system in the pair can be

constructed from it. For example if x is a feasible solution of (I), then (x, xn+1 = 1) is

a feasible solution of (35). Conversely, if (x̂, x̂n+1) is a feasible solution of (35), then

x̂n+1 > 0 and (1/x̂n+1)x̂ is a feasible solution of (I).

This theorem follows from Theorem 5 applied to (35).

For a complete discussion of several other Theorems of alternatives for linear

systems and their geometric interpretation, see O. L. Mangasarian’s book [A10].

Exercises

1. Let K be the set of feasible solutions of

n∑
j=1

aijxj >= bi, i = 1 to m. (36)
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Assume that K ̸= ∅. Prove that all x ∈ K satisfy

n∑
j=1

cjxj >= d (37)

iff, for some α >
= d, the inequality

∑n
j=1 cjxj >= α is a valid linear combination of

the constraints in (36), that is, iff there exists π = (π1, . . . , πm) >= 0, satisfying cj =∑m
i=1 πiaij , j = 1 to n, and α =

∑m
i=1 πibi.

2. Let M be a square matrix of order n. Prove that for each q ∈ Rn, the system

“Mx + q >= 0, x >= 0” has a solution x ∈ Rn iff the system “My > 0, y >= 0” has a

solution y. (O. L. Mangasarian [3.42])

3. Let M be a square matrix of order n and q ∈ Rn. Prove that the following are

equivalent

i) the system Mx+ q > 0, x >= 0 has a solution x ∈ Rn,

ii) the system Mx+ q > 0, x > 0 has a solution x ∈ Rn,

iii) the system MTu <= 0, qTu <= 0, 0 ≤ u has no solution u ∈ Rn.

(O. L. Mangasarian [3.42])

4. Prove that (36) is infeasible iff it is inconsistent (that is, the fundamental inconsis-

tent inequality (6) can be obtained as a valid linear combination of it) as a corollary

of the result in Exercise 1.

5. Let A be an m × n matrix, and suppose the system: Ax = b, has at least one

solution; and the equation cx = d holds at all solutions of the system Ax = b. Then

prove that the equation cx = d can be obtained as a linear combination of equations

from the system Ax = b. That is, there exists π = (π1, . . . , πm), such that c = πA and

d = πb.

2. CONVEX SETS

A subset K ⊂ Rn is said to be convex if x1, x2 ∈ K implies that αx1 + (1− α)x2 ∈ K

for all 0 <= α <= 1. Thus, a subset of Rn is convex iff given any pair of points in it, the

entire line segment connecting these two points is in the set. See Figures 1, 2.
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(a) (b)

Figure 1 Convex sets. (a) All points inside or on the circle. (b) All points

inside or on the polygon.

(a) (b) (c)

Figure 2 Non-convex sets. (a) All points inside or on the cashew nut. (b)

All points on or between two circles. (c) All points on at least one of the two

polygons.

2.1 Convex Combinations, Convex Hull

Let (x1, . . . , xr} be any finite set of points in Rn. A convex combination of this set is

a point of the form

α1x
1 + . . .+ αrx

r, where α1 + . . .+ αr = 1 and α1, . . . , αr >= 0.

The set of all convex combinations of {x1, . . . , xr} is known as the convex hull of

{x1, . . . , xr}.
Given∆∆∆ ⊂ Rn, the convex hull of ∆∆∆ is the set consisting of all convex combinations

of all finite sets of points from ∆∆∆.
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Figure 3 Convex hull of {x1, . . . , x5} in R2.

The following results can be verified to be true:

1. K ⊂ Rn is convex iff for any finite number r, given x1, . . . , xr ∈ K, α1x
1 + . . .+

αrx
r ∈ K for all α1, . . . , αr satisfying α1 + . . .+ αr = 1, α1 >= 0, . . . , αr >= 0.

2. The intersection of any family of convex subsets of Rn is convex. The union of

two convex sets may not be convex.

3. The set of feasible solutions of a system of linear constraints

Ai.x = bi, i = 1 to m

>
= bi, i = m+ 1 to m+ p

is convex. A convex set like this is known as a convex polyhedron. A bounded

convex polyhedron is called a convex polytope.

4. The set of feasible solutions of a homogeneous system of linear inequalities in

x ∈ Rn,

Ax >= 0 (38)

is known as a convex polyhedral cone. Given a convex polyhedral cone, there

exists a finite number of points x1, . . . , xs such that the cone is {x : x = α1x
1 +

. . . + αsx
s, α1 >= 0, . . . , αs >= 0} = Pos{x1, . . . , xs}. The polyhedral cone which

is the set of feasible solutions of (38) is said to be a simplicial cone if A is a

nonsingular square matrix. Every simplicial cone of dimension n is of the form

Pos{B.1, . . . , B.n} where {B.1, . . . , B.n} is a basis for Rn.

5. Given two convex subsets ofRn, K1, K2, their sum, denoted byK1+K2 = {x+y :

x ∈ K1, y ∈ K2} is also convex.
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Separating Hyperplane Theorems

Given two nonempty subsets K1, K2 of Rn, the hyperplane H = {x : cx = α} is said

to separate K1 and K2 if cx − α has the same sign for all x ∈ K1, say >= 0, and the

opposite sign for all x ∈ K2, that is, if

cx >= α for all x ∈ K1

<
= α for all x ∈ K2.

Here we will prove that if two convex subsets ofRn are disjoint, there exists a separating

hyperplane for them. See Figures 4, 5.
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Figure 4 The hyperplane H separates the two disjoint convex sets K1 and

K2.
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Figure 5 Even though the two cashew nuts (both nonconvex) are disjoint,

they cannot be separated by a hyperplane.

Theorem 9. Let K be a nonempty closed convex subset of Rn and 0 ̸∈ K. Then

there exists a hyperplane containing the origin separating it from K.

Proof. Take any point x̂ ∈ K, and let E = {x : ∥x∥ <= ∥x̂∥}. Since 0 ̸∈ K, x̂ ̸= 0, and

hence E is a nonempty ball. Let ΓΓΓ = E∩K. ΓΓΓ is a bounded closed convex subset of Rn,

not containing the origin. The problem: minimize ∥x∥ over x ∈ ΓΓΓ, has an optimum

solution, since a continuous function attains its minimum on a compact set. We will

show that this problem has a unique optimum solution. Suppose not. Let x1, x2 ∈ ΓΓΓ,

x1 ̸= x2, minimize ∥x∥ over x ∈ ΓΓΓ. Let x3 = (x1 + x2)/2. By Cauchy-Schwartz

inequality |(x1)Tx2| <= ∥x1∥ · ∥x2∥ with equality holding iff x1 = λx2 for some real

number λ. So ∥x3∥2 = (∥x1∥2+∥x2∥2+2|(x1)Tx2|)/4 <= (∥x1∥2+∥x2∥2+2∥x1∥·∥x2∥)/4
by Cauchy-Schwartz inequality. Let ∥x1∥ = γ. So ∥x2∥ = γ also, since both x1, x2

minimize ∥x∥ over x ∈ ΓΓΓ. So, from the above, we have ∥x3∥2 <
= γ2. Since x3 ∈ ΓΓΓ

and γ2 is the minimum of ∥x∥2 over x ∈ ΓΓΓ, ∥x3∥2 <= γ2 implies that ∥x3∥2 = γ2. By

Cauchy-Schwartz inequality, this equality holds iff x1 = λx2 for some scalar λ. But

since ∥x1∥ = ∥x2∥, we must have λ = +1 or −1. If λ = −1, x3 = 0, and this contradicts

the fact that 0 ̸∈ ΓΓΓ. So λ = +1, that is, x1 = x2. So the problem of minimizing ∥x∥
over x ∈ ΓΓΓ, has a unique optimum solution, say x. We will now prove that

(x− x)Tx >= 0 for all x ∈ K. (39)

xminimizes ∥x∥ over x ∈ ΓΓΓ, and from the definition of ΓΓΓ, it is clear that x also minimizes

∥x∥ over x ∈ K. Let x ∈ K. By convexity of K, x+ α(x− x) ∈ K for all 0 <= α <= 1.

So ∥x+ α(x− x)∥2 >= ∥x∥2 for all 0 <= α <= 1. That is, α2∥x− x∥2 + 2α(x− x)Tx >= 0

for all 0 <= α <= 1. So for 0 < α <= 1, we have α∥x− x∥2 + 2(x− x)Tx >= 0. Making α

approach zero through positive values, this implies (39).
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Conversely, if x ∈ K satisfies (39), then for any x ∈ K, ∥x∥2 = ∥(x− x) + x∥2 =

∥x − x∥2 + ∥x∥2 + 2(x − x)Tx >= ∥x∥2 (by (39)), and this implies that x minimizes

∥x∥ over x ∈ K. Thus (39) is a necessary and sufficient optimality condition for the

problem of minimizing ∥x∥ over x ∈ K.

Since 0 ̸∈ K, x ̸= 0. From (39) we have (x)Tx >= ∥x∥2 > 0 for all x ∈ K. So the

hyperplane {x : (x)Tx = 0} through the origin separates K from 0.

Theorem 10. Let K be a nonempty convex subset of Rn, b ̸∈ K. Then K can be

separated from b by a hyperplane.

Proof. IfK is a closed convex subset, by translating the origin to b and using Theorem

9 we conclude that K and b can be separated by a hyperplane.

If K is not closed, let K be the closure of K. If b ̸∈ K, then again by the previous

result b and K can be separated by a hyperplane, which also separates b and K.

So assume that b ∈ K. Since b ∈ K but ̸∈ K, b must be a boundary point of K.

So every open neighborhood of b contains a point not in K. So we can get a sequence

of points {br : r = 1 to ∞} such that br ̸∈ K for all r, and br converges to b as r tends

to ∞. Since br ̸∈ K, by the previous result, there exists cr such that cr(x − br) >= 0

for all x ∈ K, with ∥cr∥ = 1. The sequence of row vectors {cr : r = 1, . . .} all lying on

the unit sphere in Rn (which is a closed bounded set) must have a limit point. Let c

be a limit point of {cr : r = 1, 2, . . .}. So ∥c∥ = 1. Let S be a monotonic increasing

sequence of positive integers such that cr converges to c as r tends to ∞ through r ∈ S.

But cr(x − br) >= 0 for all x ∈ K. Taking the limit in this inequality, as r tends to

∞ through r ∈ S we conclude that c(x − b) >= 0 for all x ∈ K. So the hyperplane

{x : cx = cb} separates K from b.

Corollary 2. Let K be a convex subset of Rn, and let b be a boundary point of

K. Then there exists a row vector c ̸= 0, c ∈ Rn such that cx >= cb for all x ∈ K.

Proof. Follows from the arguments in the proof of Theorem 10.

The hyperplane {x : cx = cb} in Corollary 2 is known as a supporting hyper-

plane for the convex set K at its boundary point b.

Theorem 11. If K1, K2 are two mutually disjoint convex subsets of Rn, there

exists a hyperplane separating K1 from K2.

Proof. Let ΓΓΓ = K1 −K2 = {x− y : x ∈ K1, y ∈ K2}. Since K1, K2 are convex, ΓΓΓ is

a convex subset of Rn. Since K1 ∩K2 = ∅, 0 ̸∈ ΓΓΓ. So by Theorem 10, there exists a

row vector c ̸= 0, c ∈ Rn, satisfying

cz >= 0 for all z ∈ ΓΓΓ. (40)

Let α = Infimum {cx : x ∈ K1}, β = Supremum {cx : x ∈ K2}. By (40), we must
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have α >= β. So if γ = (α+ β)/2, we have

cx >= γ for all x ∈ K1

<
= γ for all x ∈ K2.

So x : {cx = γ} is a hyperplane that separates K1 from K2.

The theorems of alternatives discussed in Appendix 1, can be interpreted as sep-

arating hyperlane theorems about separating a point from a convex polyhedral cone

not containing the point.

Exercises

6. Let K be a closed convex subset of Rn and x ∈ Rn and let y be the nearest point

(in terms of the usual Euclidean distance) in K to x. Prove that (x− y)T (y − z) >= 0

for all z ∈ K. Also prove that ∥y − z∥ <= ∥x− z∥ for all z ∈ K.

7. Given sets ΓΓΓ, ∆∆∆ define αΓΓΓ = {αx : x ∈ ΓΓΓ} and ΓΓΓ +∆∆∆ = {x + y : x ∈ ΓΓΓ, y ∈ ∆∆∆}. Is

ΓΓΓ +ΓΓΓ = 2ΓΓΓ? Also, when ΓΓΓ = {(x1, x2)T : (x1 − 1)2 + (x2 − 1)2 <= 1}, ∆∆∆ = {(x1, x2)T :

(x1 + 4)2 + (x2 + 4)2 <= 4}, find ΓΓΓ +∆∆∆, 2ΓΓΓ, ΓΓΓ +ΓΓΓ and draw a figure in R2 illustrating

each of these sets.

8. Prove that a convex cone in Rn is either equal to Rn or is contained in a half-space

generated by a hyperplane through the origin.

9. Let ∆∆∆1 = {x1, . . . , xr} ⊂ Rn. If y1, y2 ∈ Rn, y1 ̸= y2 are such that

y1 ∈ convex hull of {y2} ∪∆∆∆1

y2 ∈ convex hull of {y1} ∪∆∆∆1

prove that both y1 and y2 must be in the convex hull of ∆∆∆1. Using this and an induction

argument, prove that if {y1, . . . , ym} is a set of distinct points in Rn and for each j = 1

to m

yj ∈ convex hull of ∆∆∆1 ∪ {y1, . . . , yj−1, yj+1, . . . , ym}

then each yj ∈ convex hull of ∆∆∆1.
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On Computing a Separating Hyperplane

Given a nonempty convex subset K ⊂ Rn, and a point b ∈ Rn, b ̸∈ K, Theorem 10

guarantees that there exists a hyperplane H = {x : cx = α, c ̸= 0} which separates b

from K. It is a fundamental result, in mathematics such results are called existence

theorems. This result can be proved in many different ways, and most books on

convexity or optimization would have a proof for it. However, no other book seems to

discuss how such a separating hyperplane can be computed, given b and K in some

form (this essentially boils down to determining the vector c in the definition of the

separating hyperplane H), or how difficult the problem of computing it may be. For

this reason, the following is very important. In preparing this, I benefitted a lot from

discussions with R. Chandrasekaran.

However elegant the proof may be, an existence theorem cannot be put to practical

use unless an efficient algorithm is known for computing the thing whose existence the

theorem establishes. In order to use Theorem 10 in practical applications, we should be

able to compute the separating hyperplane H given b and K. Procedures to be used for

constructing an algorithm to compute H depend very critically on the form in which

the set K is made available to us. In practice, K may be specified either as the set of

feasible solutions of a given system of constraints, or as the set of points satisfying a

well specified set of properties, or as the convex hull of a set of points satisfying certain

specified properties or constraints or those that can be obtained by a well defined

constructive procedure. The difficulty of computing a separating hyperplane depends

on the form in which K is specified.

K Represented by a System of Linear Inequalities

Consider the case, K = {x : Ai.x >= di, i = 1 to m}, where Ai., di are given for all

i = 1 to m. If b ̸∈ K, there must exist an i between 1 to m satisfying Ai.b < di. Find

such an i, suppose it is r. Then the hyperplane {x : Ar.x = dr} separates K from b in

this case.

K Represented by a System of Linear Equations and Inequalities

Consider the case, K = {x : Ai.x = di, i = 1 to m, and Ai.x >= di, i = m+1 to m+ p}
where Ai., di are given for all i = 1 to m+ p. Suppose b ̸∈ K. If one of the inequality

constraints Ai.x >= di, i = m + 1 to m + p, is violated by b, a hyperplane separating

K from b, can be obtained from it as discussed above. If b satisfies all the inequality

constraints in the definition of K, it must violate one of the equality constraints. In

this case, find an i, 1 <= i <= m, satisfying Ai.b ̸= di, suppose it is r, then the hyperplane

{x : Ar.x = dr} separates K from b.
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K Represented as a Nonnegative Hull of a Specified Set of Points

Consider the case, K = nonnegative hull of {A.j : j = 1 to t} ⊂ Rn, t finite. Let A

be the n × t matrix consisting of column vectors A.j , j = 1 to t. Then K = Pos(A),

a convex polyhedral cone, expressed as the nonnegative hull of a given finite set of

points from Rn. In this special case, the separating hyperplane theorem becomes

exactly Farkas’ theorem (Theorem 3). See Section 4.6.7 of [2.26] or [1.28]. Since

b ̸∈ Pos(A), system (I) of Farkas’ theorem, Theorem 3, has no feasible solution, and

hence system (II) has a solution π. Then the hyperplane {x : πx = 0} separates b from

Pos(A). The solution π for system (II) can be computed efficiently using Phase I of

the simplex method, as discussed in Note 1 of Appendix 1. Given any point b ∈ Rn,

this provides an efficient method to check whether b ∈ Pos(A) (which happens when

system (I) of Farkas’ theorem, Theorem 3, with this data, has a feasible solution); and

if not, to compute a hyperplane separating b from Pos(A), as long as the number of

points in the set {A.j : j = 1 to t}, t is not too large. If t is very large, the method

discussed here for computing a separating hyperplane, may not be practically useful,

this is discussed below using some actual examples.

K Represented as the Convex Hull of a Specified Set of Points

Consider the case where K is specified as the convex hull of a given set of points

{A.j : j = 1 to t} ⊂ Rn. So, in this case, b ̸∈ K, iff the system

t∑
j=1

A.jxj = b

t∑
j=1

xj = 1

xj >= 0, j = 1 to t

has no feasible solution x = (xj). This system is exactly in the same form as system

(I) of Farkas’ theorem, Theorem 3, and a separating hyperplane in this case can be

computed using this theorem, as discussed above, as long as t is not too large.

K Represented by a System of “<=” Inequalities

Involving Convex Functions

Now consider the case where K is represented as the set of feasible solutions of a system

of inequalities

fi(x) <= 0, i = 1 to m
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where each fi(x) is a differentiable convex function defined on Rn. See the following

section, Appendix 3, for definitions of convex functions and their properties. In this

case, b ̸∈ K, iff there exists an i satisfying fi(b) > 0. If b ̸∈ K, find such an i, say

r. Then the hyperplane H = {x : fr(b) +∇fr(b)(x − b) = 0} separates b from K, by

Theorem 15 of Appendix 3 (see Exercise 11 in Appendix 3).

K Represented by a System of “<=” Inequalities

Involving General Functions

Now consider the case in which the convex set K is represented by a system of con-

straints

gi(x) <= 0, i = 1 to m

where the functions gi(x) are not all convex functions. It is possible for the set of

feasible solutions of such a system to be convex set. As an example let n = 2, x =

(x1, x2)
T , and consider the system

−x1 −x2+2 <= 0

x1 − 1 <= 0

x2− 1 <= 0

−x41 −x42+2 <= 0.

This system has the unique solution x = (1, 1)T , and yet, not all the functions in the

system are convex functions. As another example, letM be a P -matrix of order n which

is not a PSD matrix, and q ∈ Rn. Consider the system in variables z = (z1, . . . , zn)
T

−z <= 0

−q −Mz <= 0

zT (q +Mz) <= 0.

This system has the unique solution z (z is the point which leads to the unique solution

of the LCP (q,M)), so the set of feasible solutions of this system is convex, being a

singleton set, and yet the constraint function zT (q+Mz) is not convex, since M is not

PSD.

In general, when the functions gi(x), i = 1 to m are not all convex, even though

the set K = {x : gi(x) <= 0, i = 1 to m} may be convex, and b ̸∈ K, there is no efficient

method known for computing a hyperplane separating b from K. See Exercise 40.

Now we consider some cases in which K is the convex hull of a set of points

specified by some properties.

K Is the Convex Hull of the Tours of a Traveling Salesman Problem

Consider the famous traveling salesman problem in cities 1, 2, . . . , n. See [1.28]. In this

problem, a salesman has to start in some city, say city 1, visit each of the other cities
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exactly once in some order, and in the end return to the starting city, city 1. If he

travels to cities in the order i to i + 1, i = 1 to n − 1 and then from city n to city

1, this route can be represented by the order “1, 2, . . . , n; 1”. Such an order is known

as a tour. So, a tour is a circuit spanning all the cities, that leaves each city exactly

once. From the starting city, city 1, he can go to any of the other (n − 1) cities. So

there are (n− 1) different ways in which he can pick the city that he travels from the

starting city, city 1. From that city he can travel to any of the remaining (n−2) cities,

etc. Thus the total number of possible tours in an n city traveling salesman problem

is (n− 1)(n− 2) . . . 1 = (n− 1)! Given a tour, define a 0− 1 matrix x = (xij) by

xij =
{
1 if the salesman goes from city i to city j in the tour
0 otherwise.

Such a matrix x = (xij) is called the tour assignment corresponding to the tour. An

assignment (of order n) is any 0− 1 square matrix x = (xij) of order n satisfying

n∑
j=1

xij = 1, i = 1 to n

n∑
i=1

xij = 1, j = 1 to n

xij = 0 or 1 for all i, j.

Every tour assignment is an assignment, however not all assignments may be tour

assignments. For example, if n = 5

x1 =


0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0


is a tour assignment representing the tour 1, 4, 2, 5, 3; 1 covering all the cities 1 to 5.

But the assignment

x2 =


0 1 0 0 0
0 0 1 0 0
1 0 0 0 0
0 0 0 0 1
0 0 0 1 0


is not a tour assignment, since it consists of two subtours 1, 2, 3; 1 and 4, 5; 4 each

spanning only a proper subset of the original set of cities.

Let KT be the convex hull of all the (n − 1)! tour assignments of order n. KT

is well defined, it is the convex hull of a finite set of points in Rn×n. However, if n

is large (even n >= 10), the number of tour assignments, (n − 1)! is very large. KT is

of course a convex polytope. It can be represented as the set of feasible solutions of a

system of linear constraints, but that system is known to contain a very large number
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of constraints. Deriving a linear constraint representation of KT remains an unsolved

problem. In this case, if b = (bij) is a given square matrix of order n satisfying the

conditions
bii = 0, i = 1 to n

n∑
j=1

bij = 1, i = 1 to n

n∑
i=1

bij = 1, i = 1 to n

0 <= bij <= 1, for all i, j = 1 to n

even to check whether b ∈ KT is a hard problem for which no efficient algorithm is

known. Ideally, given such a b, we would like an algorithm which

either determines that b ∈ KT

or determines that b ̸∈ KT and produces in this case a hyperplane separating

b from KT

and for which the computational effort in the worst case is bounded above by a poly-

nomial in n. No such algorithm is known, and the problem of constructing such an

algorithm, or even establishing whether such an algorithm exists, seems to be a very

hard problem. If such an algorithm exists, using it we can construct efficient algorithms

for solving the traveling salesman problem, which is the problem of finding a minimum

cost tour assignment that minimizes
∑n
i=1

∑n
j=1 cijxij for given cost matrix c = (cij).

K Is the Convex Hull of Feasible Solutions

of an Integer Linear System

Let A, d be given integer matrices of orders m × n and m × 1 respectively. Consider

the following systems: x = (xj) ∈ Rn

Ax = d

x >= 0

x an integer vector

or the system
Ax = d

x >= 0

0 <= xj <= 1, j = 1 to n

xj integer for all j.

Let KI denote the convex hull of all feasible solutions of such a system. Again, KI is a

well defined set, it is the convex hull of integer feasible solutions to a specified system

of linear constraints. Given a point b ∈ Rn, ideally we would like an algorithm which
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either determines that b ∈ KI

or determines that b ̸∈ KI and produces in this case a hyperplane separating

b from KI

and for which the computational effort in the worst case is bounded above by a poly-

nomial in the size of (A, b). No such algorithm is known.

K Is the Convex Hull of Extreme Points

of an Unbounded Convex Polyhedron

Let A, d be given integer matrices of orders m × n and m × 1 respectively, with

rank (A) = m. Let ΓΓΓ be the set of feasible solutions of the system

Ax = d

x >= 0.

Suppose it is known that ΓΓΓ is an unbounded convex polyhedron. ΓΓΓ has a finite set of

extreme points, each of these is a BFS of the above system. Let K be the convex hull

of all these extreme points ΓΓΓ. Here again K is a well defined convex polytope, but

it is the convex hull of extreme points of ΓΓΓ, and the number of these extreme points

may be very large. See Section 3.7 of [2.26]. In general, given a point b ∈ ΓΓΓ, the

problem of determining whether b ∈ K, and the problem of determining a separating

hyperplane separating b and K when b ̸∈ K, are very hard problems for which no

efficient algorithms are known (the special case when n = m + 2 or m + 1 are easy,

because in this case the dimension of ΓΓΓ is at most two).

Summary

This discussion clearly illustrates the fact that even though we have proved the ex-

istence of separating planes, at the moment algorithms for computing one of them

efficiently are only known when K can be represented in very special forms.

3. CONVEX, CONCAVE FUNCTIONS,

THEIR PROPERTIES

Let ΓΓΓ be a convex subset of Rn and let f(x) be a real valued function defined on ΓΓΓ.

f(x) is said to be a convex function iff for any x1, x2 ∈ ΓΓΓ, and 0 <= α <= 1, we have

f(αx1 + (1− α)x2) <= αf(x1) + (1− α)f(x2). (41)
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This inequality is called Jensen’s inequality after the Danish mathematician who

first discussed it. The important property of convex functions is that when you join

two points on the surface of the function by a chord, the function itself lies underneath

the chord on the interval joining these points, see Figure 6.

Similarly, if g(x) is a real valued function defined on the convex set ΓΓΓ ⊂ Rn, it is

said to be a concave function iff for any x1, x2 ∈ ΓΓΓ and 0 <= α <= 1, we have

g(αx1 + (1− α)x2) >= αg(x1) + (1− α)g(x2). (42)

(1-   )α (    )

+ )α (1-   )α(f

(    )

α (    )+

α + (1-   )α
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(   )

xf 2

x 1 x 2

f x 1

f x 1
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x 2x 1

x 2f

xf

x
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Figure 6 A convex function defined on the real line.

(   )

x 1
x 2

x

Chord

xg

Figure 7 A concave function defined on the real line.

Clearly, a function is concave iff its negative is convex. Also, a concave function lies

above the chord on any interval, see Figure 7. Convex and concave functions figure

prominently in optimization. In mathematical programming literature, the problem of
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either minimizing a convex function, or maximizing a concave function, on a convex

set, are known as convex programming problems. For a convex programming problem,

a local optimum solution is a global optimum solution (see Theorem 12 below) and

hence any techniques for finding a local optimum will lead to a global optimum on

these problems.

The function f(x) defined above is said to be strictly convex, if (41) holds as

a strict inequality for 0 < α < 1 and for all x1, x2 ∈ ΓΓΓ. Likewise g(x) is said to be a

strictly concave function if (42) holds as a strict inequality for 0 < α < 1 and for

all x1, x2 ∈ ΓΓΓ.

The following results can be verified to be true.

1. A nonnegative combination of convex functions is convex. Likewise a nonnegative

combination of concave functions is concave.

2. If f(x) is a convex function defined on the convex set ΓΓΓ ⊂ Rn, {x : f(x) <= α} is a

convex set for all real numbers α. Likewise, if g(x) is a concave function defined

on the convex set ΓΓΓ ⊂ Rn, {x : g(x) >= α} is a convex set for all real numbers α.

3. If f1(x), . . . , fr(x) are all convex functions defined on the convex set ΓΓΓ ⊂ Rn, the

pointwise supremum function f(x) = maximum {f1(x), . . . , fr(x)} is convex.

4. If g1(x), . . . , gr(x) are all concave functions defined on the convex set ΓΓΓ ⊂ Rn, the

pointwise infimum function g(x) = minimum {g1(x), . . . , gr(x)} is concave.

5. A convex or concave function defined on an open convex subset ofRn is continuous

(see [A10] for a proof of this).

6. Let f(x) be a real valued function defined on a convex subset ΓΓΓ ⊂ Rn. In Rn+1,

plot the objective value of f(x) along the xn+1-axis. The subset of Rn+1, F =

{X = (x1, . . . , xn, xn+1) : x = (x1, . . . , xn) ∈ ΓΓΓ, xn+1 >= f(x)} is known as the

epigraph of the function f(x). It is the set of all points in Rn+1 lying above

(along the xn+1-axis) the surface of f(x). See Figure 8 for an illustration of the

epigraph of a convex function defined on an interval of the real line R1. It can be

shown that f(x) is convex iff its epigraph is a convex set, from the definitions of

convexity of a function and of a set. See Figures 8, 9.

7. Let g(x) be a real valued function defined on a convex subset ΓΓΓ ⊂ Rn. In Rn+1,

plot the objective value of f(x) along the xn+1-axis. The subset of Rn+1, G =

{X = (x1, . . . , xn, xn+1) : x = (x1, . . . , xn) ∈ ΓΓΓ, xn+1 <= g(x)} is known as the

hypograph of the function g(x). It is the set of all points in Rn+1 lying below

(along the xn+1-axis) the surface of g(x). See Figure 10. It can be shown from

the definitions, that g(x) is concave, iff its hypograph is a convex set.
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Figure 8 The epigraph of a convex function defined on the interval a <= x1
<
= b is a convex subset of R2.
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Figure 9 The epigraph of a nonconvex function f(x1) defined on the interval

a <= x1 <= b, is not a convex subset of R2.
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Figure 10 The hypograph of a concave function defined on the interval a <=
x1 <= b is a convex subset of R2.

Theorem 12. For the problem of minimizing a convex function f(x) on a convex

set ΓΓΓ ⊂ Rn, every local minimum is a global minimum.

Proof. Let x1 be a local minimum for this problem. Suppose there exists an x2 ∈ ΓΓΓ

such that f(x2) < f(x1). Then, by convexity, for 0 < α < 1,

f(x1 + α(x2 − x1)) = f(αx2 + (1− α)x1) <= (1− α)f(x1) + αf(x2) < f(x1). (43)

So when α is positive but sufficiently small, the point x1 +α(x2−x1) contained in the

neighborhood of x1 satisfies (43), contradicting the local minimum property of x1. So

we cannot have an x2 ∈ ΓΓΓ satisfying f(x2) < f(x1), that is, x1 is in fact the global

minimum for f(x) in ΓΓΓ.

Theorem 13. Let f be a real valued convex function defined on the convex set

ΓΓΓ ⊂ Rn. The set of optimum solutions for the problem of minimizing f(x) over x ∈ ΓΓΓ

is a convex set.

Proof. Let L denote the set of optimum solutions for the problem: minimize f(x) over

x ∈ ΓΓΓ. Let x1, x2 ∈ L. So f(x1) = f(x2) = λ = minimum value of f(x) over x ∈ ΓΓΓ.

Let 0 <= α <= 1. By convexity of f(x), f(αx1 +(1−α)x2) <= αf(x1)+ (1−α)f(x2) = λ
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and αx1 +(1−α)x2 ∈ ΓΓΓ, since ΓΓΓ is convex. Since λ is the minimum value of f(x) over

x ∈ ΓΓΓ, the above inequality must hold as an equation, that is, f(αx1 +(1−α)x2) = λ,

which implies that αx1 + (1− α)x2 ∈ L also. So L is a convex set.

Theorem 14. For the problem of maximizing a concave function g(x) on a convex

set ΓΓΓ ⊂ Rn, every local maximum is a global maximum.

Proof. Similar to Theorem 12.

A real valued function θ(x) defined on an open set ΓΓΓ ⊂ Rn is said to be differ-

entiable at a point x ∈ ΓΓΓ if the partial derivative vector ∇θ(x) exists, and for each

y ∈ Rn, limit ((θ(x + λy) − θ(x) − λ(∇θ(x))y)/λ) as λ tends to zero is zero. θ(x) is

said to be twice differentiable at x if the Hessian matrix H(θ(x)) exists and for each

y ∈ Rn, limit [(θ(x+ λy)− θ(x)− λ(∇θ(x))y − (λ2/2)yTH(θ(x))y]/λ2) as λ tends to

zero is zero.

The real valued function θ(x) defined on an open set ΓΓΓ ⊂ Rn is said to be continu-

ously differentiable at a point x ∈ ΓΓΓ if it is differentiable at x and the partial derivatives
∂θ(x)
∂xj

are all continuous at x. The function θ(x) is said to continuously differentiable at

a point x ∈ ΓΓΓ if it is twice differentiable at x and the second order partial derivatives
∂2θ(x)
∂xi∂xj

are all continuous at x. The function is said to be differentiable, continuously

differentiable, etc., over the set ΓΓΓ, if it satisfies the corresponding property for each

point in ΓΓΓ.

Theorem 15 (Gradient Support Inequality): Let f(x) be a real valued convex

function defined on an open convex set ΓΓΓ ⊂ Rn. If f(x) is differentiable at x ∈ ΓΓΓ,

f(x)− f(x) >= (∇f(x))(x− x) for all x ∈ ΓΓΓ. (44)

Conversely, if f(x) is a real valued differentiable function defined on ΓΓΓ and (44) holds

for all x, x ∈ ΓΓΓ, f(x) is convex.

Proof. Suppose f(x) is convex. Let x ∈ ΓΓΓ. By convexity of ΓΓΓ, αx + (1 − α)x = x +

α(x−x) ∈ ΓΓΓ for all 0 <= α <= 1. Since f(x) is convex we have f(x+α(x−x)) <= αf(x)+

(1− α)f(x). So for 0 < α <= 1, we have

f(x)− f(x) >= (f(x+ α(x− x))− f(x))/α. (45)

By definition of differentiability, the right hand side of (45) tends to ∇f(x)(x− x) as

α tends to zero through positive values. Since (45) holds for all 0 < α <= 1, this implies

(44) as α tends to zero through positive values in (45).

Conversely, suppose f(x) is a real valued differentiable function defined on ΓΓΓ and

suppose (44) holds for all, x, x ∈ ΓΓΓ. Given x1, x2 ∈ ΓΓΓ, from (44) we have, for 0 < α < 1,

f(x1)− f((1− α)x1 + αx2) >= α(∇f(1− α)x1 + αx2)(x1 − x2)

f(x2)− f((1− α)x1 + αx2) >= −(1− α)(∇f((1− α)x1 + αx2))(x1 − x2).
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Multiply the first inequality by (1− α) and the second by α and add. This leads to

(1− α)f(x1) + αf(x2)− f((1− α)x1 + αx2) >= 0. (46)

Since (46) holds for all x1, x2 ∈ ΓΓΓ and 0 < α < 1, f(x) is convex.

Theorem 16. Let g(x) be a concave function defined on an open convex setΓΓΓ ⊂ Rn.

If g(x) is differentiable at x ∈ ΓΓΓ,

g(x) <= g(x) + (∇g(x))(x− x), for all x ∈ ΓΓΓ. (47)

Conversely, if g(x) is a differentiable function defined on ΓΓΓ and (47) holds for all

x, x ∈ ΓΓΓ, g(x) is concave.

Proof. Similar to the proof of Theorem 15.

Figures 11, 12 provide illustrations of gradient support inequalities for convex and

concave functions.
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Figure 11 f(x) is a differentiable convex function. l(x) = f(x) +

(∇f(x))(x − x), an affine function (since x is a given point), is the first order

Taylor series approximation for f(x) around x. It underestimates f(x) at each

point.
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Figure 12 g(x) is a differentiable concave function. l(x) = g(x) + (∇g(x)
(x − x)) is the first order Taylor series approximation for g(x) around x. It

overestimates g(x) at each point.

Theorem 17. Let f(x) be a real valued convex function defined on an open convex

subset ΓΓΓ ⊂ Rn. If f(x) is twice differentiable at x ∈ ΓΓΓ, H(f(x)) is PSD. Conversely,

if f(x) is a twice differentiable real valued function defined on ΓΓΓ and H(f(x)) is PSD

for all x ∈ ΓΓΓ, f(x) is convex.

Proof. Let x ∈ ΓΓΓ and y ∈ Rn. Suppose f(x) is convex. For α > 0 and sufficiently

small, by Theorem 15 we have

(f(x+ αy)− f(x)− α(∇f(x))y)/α >= 0. (48)

Taking the limit as α tends to zero through positive values, from (48) we have

yTH(f(x))y >= 0, and since this holds for all y ∈ Rn, H(f(x)) is PSD.



3. Convex, Concave Functions, their Properties 539

Suppose f(x) is twice differentiable on ΓΓΓ and H(f(x)) is PSD for all x ∈ ΓΓΓ. By

Taylor’s theorem of calculus we have, for x1, x2 ∈ ΓΓΓ, f(x2)−f(x1)−(∇f(x1))(x2−x1) =
(x2 − x1)TH(f(x1 + α(x2 − x1)))(x2 − x1)/2 for some 0 < α < 1. But the latter

expression is >= 0 since H(f(x)) is PSD for all x ∈ ΓΓΓ. So f(x2)−f(x1)−(∇f(x1))(x2−
x1) >= 0 for all x1, x2 ∈ ΓΓΓ. By Theorem 15, this implies that f(x) is convex.

Given a general twice continuously differentiable real valued function f(x) defined

on Rn, it may be hard to check whether it is convex. For some x ∈ Rn, if H(f(x)) is

PD, we know that in a small convex neighborhood of x, H(f(x)) is PSD, and hence

f(x) is locally convex in this neighborhood.

Theorem 18. Let g(x) be a real valued concave function defined on an open convex

subset ΓΓΓ ⊂ Rn. If g(x) is twice differentiable at x ∈ ΓΓΓ, H(g(x)) is NSD. Conversely, if

g(x) is a twice differentiable real valued function defined on ΓΓΓ and H(g(x)) is NSD for

all x ∈ ΓΓΓ, g(x) is concave.

Proof. Similar to the proof of Theorem 17.

Exercises

10. Let Xr = (xr1, . . . , x
r
n, x

r
n+1)

T r = 1 to m be given points in Rn+1. Let xr = (xr1,

. . . , xrn)
T r = 1 to m. It is required to check whether there exists a convex function

θ(x) defined on Rn (with the objective value plotted along the xn+1-axis in Rn+1)

satisfying the property θ(xr) = xrn+1 for r = 1 to m. Formulate this as a linear

programming problem.

11. Let f(x) be a real valued continuously differentiable convex function defined on

Rn. Let α be a real number and K = {x : f(x) <= α}. Given a point x0 ̸∈ K,

develop an efficient method for finding a separating hyperplane separating x0 from K.

Generalize this to the case where f(x) = (f1(x), . . . , fm(x)), each fi(x) being a real

valued continuously differentiable function defined on Rn, and α ∈ Rm.

12. Let θ(x) be a differentiable convex function defined over a convex set K ⊂ Rn.

Let x be a given point in K. If x satisfies the property that it minimizes the linear

function (∇θ(x))x over x ∈ K, prove that x also minimizes θ(x) over x ∈ K.

Convexity, Concavity of a Vector Function

Let f(x) be the vector (fi(x)) where each fi(x) is a real valued function defined

on the convex set ΓΓΓ ⊂ Rn. f(x) is said to be convex or concave on ΓΓΓ, iff each fi(x)

has the same property.
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Subgradients, and Subdifferential Sets

Let f(x) be a real valued convex function defined on Rn. As defined in Section 2.7.1,

the vector d = (d1, . . . , dn)
T is said to be a subgradient of f(x) at a point x0 ∈ Rn,

if

f(x) >= f(x0) + dT (x− x0), for all x ∈ Rn.

The set of all such vectors d satisfying this condition is known as the subdifferential

set for f(x) at x0, and denoted by the symbol ∂f(x0).

By Theorem 15, if f(x) is differentiable at x0, the gradient vector (∇f(x0))T ∈
∂f(x0), and in fact it can be shown that in this case ∂f(x0) = {∇f(x0)T }. Also,

as mentioned in Section 2.7.1, if f(x) = max{f1(x), . . . , fr(x)} where each fi(x) is a

differentiable convex function defined on Rn, then for any x ∈ Rn,

∂f(x) = convex hull of {∇fi(x) : i such that f(x) = fi(x)}.

See Section 2.7.1 for figures illustrating the subgradient property. The definition implies

that if f(x) is convex and d ∈ ∂f(x), then the affine function l(x) = f(x) + dT (x− x)

is equal to f(x) at x = x, and is an underestimate for f(x) at all points x.

So the error f(x)− l(x) = f(x)− (f(x) + dT (x− x)) >= 0 for all x and d ∈ ∂f(x).

See Section 2.7.1 for figures illustrating this property. The affine function l(x) defined

above is known as a linearization of f(x) at x.

If h(x) is a concave function defined on Rn, the vector d is said to be a subgradient

of h(x) at x if

h(x) <= h(x) + dT (x− x) for all x ∈ Rn

and the set of all subgradients to h(x) at x is denoted by ∂h(x). With this definition,

analogous results to those stated above, can be constructed for concave functions.

Let g(x) be a real valued function defined on Rn which is neither convex nor

concave. If g(x) is differentiable at a point x ∈ Rn, the affine function l(x) = g(x) +

∇g(x)(x − x) is known as the linearization of g(x) at x. However, since g(x) is

neither convex nor concave, it is possible for the error g(x)− l(x) to take both positive

and negative values over Rn. See Figure 13.
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Figure 13 The linearization at x, l(x), of a differentiable function g(x) which

is neither convex nor concave may be > g(x) at some points x, and < g(x) at

other points.

For this general function g(x), if it is differentiable at x, we define ∂g(x) = {∇g(x)}.
If g(x) is not differentiable at x, we let ∂f(x) denote the convex hull of all limits of

sequences of the form {∇g(xr) : {xr} is a sequence converging to x, such that g(x)

is differentiable at each xr in the sequence}. In this case, vectors in the set ∂g(x)

are called generalized gradients or subgradients of g(x) at x. See F. H. Clarke [A1].

With this definition, it can be shown that if g(x) = max{g1(x), . . . , gm(x)}, where each
gi(x) is a continuously differentiable function, then ∂g(x) = convex hull of {∇gi(x) : i
such that g(x) = gi(x)}. If g(x) is convex, the set ∂g(x) defined here equals the

subdifferential set of g(x) at x as defined earlier. Also, it can be shown under fairly

general conditions on g(x) (for example, if g(x) is a locally Lipschitz function, that

is, if there exists an α > 0 such that |g(x) − g(y)| <= α∥x − y∥ for all x, y) that the

following mean value result holds: there exists an x̂ on the line segment joining x and

y and a d̂ ∈ ∂g(x̂), satisfying

g(x)− g(y) = d̂T (x− y).
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This definition of subgradients or generalized gradients for general functions is used

in Section 10.7.9 in constructing an algorithm for constrained line minimization. Also

see N. Z. Shor [A13] for a detailed treatment of various types of generalized gradients,

and their applications in subgradient algorithms for nondifferentiable minimization.

4. OPTIMALITY CONDITIONS FOR

SMOOTH OPTIMIZATION PROBLEMS

Here we briefly survey the known optimality conditions for NLPs in which the objective

and constraint functions are continuously differentiable.

The Principles on Which Optimality Conditions are Based

Let K denote the set of feasible solutions for an optimization problem in which the

objective function θ(x) is to be minimized. Let x ∈ K be a feasible solution. A feasible

direction at x for K is a direction y satisfying the property that beginning at x, you

can move a positive length along a straight line in the direction y, without leaving K.

Necessary optimality conditions for this optimization problem are derived, based on

two very simple principles. These are the following:

1. If x is a local minimum for this optimization problem, then, as you move from x

straight along any feasible direction at x for K, in a small neighborhood of x, the

objective value cannot decrease.

2. Take a one dimensional, nonlinear, differentiable curve in the feasible region K,

passing through x. If x is a local minimum for this optimization problem, then, as you

move from x along this curve, in a small neighborhood of x, the objective value cannot

decrease (in effect this says that if x is a local minimum for θ(x) in K, then x must be

a local minimum for the one dimensional optimization problem of minimizing θ(x) on

the curve).

Of course 1 is a special case of 2, since a straight line is a differentiable curve. These

principles make it possible for us to derive necessary conditions for local minimality

in higher dimensional feasible regions using well known necessary conditions for local

minimality in one-dimensional optimization problems.

All the necessary optimality conditions are derived using the above principles.

Even though the principles are the same, their application leads to optimality condi-

tions which depend on the structure of the problem.

We will now derive optimality conditions for different types of nonlinear program-

ming problems.
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Unconstrained Minimization

First consider the unconstrained minimization problem

minimize θ(x)

over x ∈ Rn.
(49)

Given x ∈ Rn, y ∈ Rn, y ̸= 0, by differentiability of θ(x), we know that limit of

(θ(x + αy) − θ(x) − α(∇θ(x))y)/α as α tends to zero is zero. So, if (∇θ(x))y < 0 by

choosing α positive and sufficiently small, we will have θ(x + αy) < θ(x). Similarly,

if (∇θ(x))y > 0, by choosing α negative with sufficiently small absolute value we will

have again θ(x + αy) < θ(x). So if x is a local minimum for (49), we must have

(∇θ(x))y = 0 for all y ∈ Rn, that is

∇θ(x) = 0 (50)

(50) is the first order necessary condition for x to be a local minimum for (49).

If θ(x) is twice continuously differential at x, we know that the limit of (θ(x+αy)−
θ(x)− α(∇θ(x))y − (α2/2)yTH(θ(x))y)/α2 as α tends to zero is zero, where H(θ(x))

is the Hessian matrix (the matrix of second order partial derivatives) of θ(x) at x. So

if x is such that (50) is satisfied, and y is such that yTH(θ(x))y < 0 then for α ̸= 0

and sufficiently small, we will have θ(x + αy) < θ(x). So, if x is a local minimum for

(49) we must have yTH(θ(x))y >= 0 for all y ∈ Rn, when x satisfies (50), that is

H(θ(x)) must be PSD. (51)

(50) and (51) together are the second order necessary conditions for x to be a

local minimum to (49).

We now state a sufficient optimality condition for (49) in the form of a theorem.

Theorem 19. Suppose θ(x) is twice continuously differentiable, and x is a point

satisfying

∇θ(x) = 0, and H(θ(x))is PD (52)

then x is a local minimum for (49).

Proof. Since H(θ(x)) is PD, all its principal subdeterminants are > 0. Since θ(x) is

twice continuously differentiable, all principal subdeterminants of the Hessian matrix

H(θ(x)) are continuous functions. These facts imply that there exists an ε > 0, such

that if ΓΓΓ = {x : ∥x− x∥ < ε}, all principal subdeterminants of H(θ(x)) are > 0 for all

x ∈ ΓΓΓ. Being a Hessian matrix H(θ(x)) is also symmetric, by Theorem 1.9 of Section

1.3.1, these facts imply that H(θ(x)) is PSD for all x ∈ ΓΓΓ. By Theorem 17 of Appendix

3, this implies that θ(x) is convex over x ∈ ΓΓΓ. So by Theorem 15 of Appendix 3 (the

gradient support inequality)

θ(x)− θ(x) >= (∇θ(x))(x− x) for all x ∈ ΓΓΓ

>
= 0, since ∇θ(x) = 0 by (52).
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This proves that x is a local minimum for θ(x).

Thus a sufficient condition for x to be a local minimum for (49) is (52).

Example 3

Consider the problem

minimize θ(x) = 2x21 + x22 + x23 + x1x2 + x2x3 + x3x1 − 9x1 − 9x2 − 8x3

over x ∈ R3.

From the necessary optimality conditions, we know that every local minimum for this

problem must satisfy

∂θ(x)

∂x1
= 4x1 + x2 + x3 − 9 = 0

∂θ(x)

∂x2
= x1 + 2x2 + x3 − 9 = 0

∂θ(x)

∂x3
= x1 + x2 + 2x3 − 8 = 0.

This system of equations has the unique solution x = (1, 3, 2)T . The Hessian matrix is

H(θ(x)) =

 4 1 1
1 2 1
1 1 2

 .

This matrix is PD. So x satisfies the sufficient conditions for a local minimum. Clearly,

here, θ(x) is convex and hence x is a global minimum for θ(x).

Example 4

Consider the problem

minimize θ(x) = 2x21 + x23 + 2x1x2 + 2x1x3 + 4x2x3 + 4x1 − 8x2 + 2x3

over x ∈ R3.

The first order necessary conditions for a local minimum are

∂θ(x)

∂x1
= 4x1 + 2x2 + 2x3 + 4 = 0

∂θ(x)

∂x2
= 2x1 + 4x3 − 8 = 0

∂θ(x)

∂x3
= 2x1 + 4x2 + 2x3 + 2 = 0.
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This system has the unique solution x̃ = (−2,−1, 3)T . The Hessian matrix is

H(θ(x̃)) = 2

 2 1 1
1 0 2
1 2 1


which is not PSD. So x̃ violates the second order necessary conditions for a local

minimum. So the function θ(x) here does not have a local minimum. It can be verified

that in fact θ(x) is unbounded below on R3.

Example 5

Let θ(x) = −2x21 − x22 + x1x2 − 10x1 + 6x2 and consider the problem of minimizing

θ(x) over x ∈ R2. The first order necessary conditions for a local minimum are

∂θ(x)

∂x1
= −4x1 + x2 − 10 = 0

∂θ(x)

∂x2
= x1 − 2x2 + 6 = 0

which has the unique solution x̂ = (−2, 2)T . The Hessian matrix is

H(θ(x̂)) =

−4 1
1 −2

 .

Since H(θ(x̂)) is not PSD, x̂ violates the second order necessary conditions for being

a local minimum of θ(x). So θ(x) has no local minimum. In fact, it can be verified

that the Hessian matrix is ND, so x̂ satisfies the sufficient condition for being a local

maximum for θ(x) (a local maximum for θ(x) is a local minimum for −θ(x)). Actually,

θ(x) here is concave and x̂ is a global maximum point for θ(x). It can be verified that

θ(x) is unbounded below on R2.

An Important Caution for NLP Users

These examples point out one important aspect of using nonlinear programming al-

gorithms in practical applications. One should not blindly accept any solution of the

first order necessary optimality conditions as a solution to the problem, if it is a non-

convex programming problem (this caution can be ignored if the problem being solved

is a linear or other convex programming problem). An effort should be made to check

whether the solution is at least a local minimum by using second order necessary op-

timality conditions, or the sufficient optimality conditions, or at least through a local

search in the neighborhood of the point.
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Stationary Point Necessary Optimality Conditions

for Constrained Minima

Consider the problem
minimize θ(x)

subject to x ∈ ΓΓΓ
(53)

where ΓΓΓ is a specified subset of Rn, and θ(x) is a real valued continuously differentiable

function defined on Rn.

Given x ∈ ΓΓΓ, y ̸= 0, y ∈ Rn is said to be a feasible direction for ΓΓΓ at x if

x + αy ∈ ΓΓΓ for all 0 <= α <
= λ for some positive λ. As an example, if ΓΓΓ = {x : x =

(x1, x2)
T , x1 >= 0, x2 >= 0} and x = (1, 0)T , then {y : y = (y1, y2), y2 >= 0} is the set of

feasible directions at x.

Using the definition of differentiability, it follows that if x ∈ ΓΓΓ is a local minimum

for (53), and θ(x) is continuously differentiable at x, then we must have

(∇θ(x))y >= 0 for all feasible directions y at x to ΓΓΓ. (54)

(54) are the first order necessary conditions for x to be a local minimum for (53).

If θ(x) is twice continuously differentiable at x ∈ ΓΓΓ, and x is a local minimum for (53),

we must have

(54), and yTH(θ(x))y >= 0 for all feasible directions y satisfying (∇θ(x))y = 0. (55)

The conditions (54), (55) become simplified if ΓΓΓ is a convex set. In this case, a feasible

direction y at x to ΓΓΓ is y = x− x for any x ∈ ΓΓΓ. See Figure 14. So in case ΓΓΓ is convex,

the necessary conditions for x ∈ ΓΓΓ to be a local minimum is that (54), (55) hold for all

y = x− x, x ∈ ΓΓΓ.

x

Γ
x

Figure 14 If ΓΓΓ is a convex set, feasible directions at x to ΓΓΓ are of the form

x− x for any x ∈ ΓΓΓ, x ̸= x.
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Example 6

Consider the problem

minimize θ(x)= 3x1x2−x1 − x2
subject to x1 >

= 1

x2 >
= 1.

The set of feasible solutions, K, is marked in Figure 15.

x1

(2,1)

(1,1)

x2

Figure 15

We have
∇θ(x) = (3x2 − 1, 3x1 − 1)

H(θ(x)) =

 0 3
3 0

 .

Let x = (2, 1)T . The set of feasible directions at x to K is clearly {y : y = (y1, y2)
T ,

y2 >
= 0}. ∇θ(x) = (2, 5). y = (−1, 0)T is a feasible direction to K at x, and yet

(∇θ(x))y = −2 < 0 and hence the necessary condition (54) is violated at x.

Let x̂ = (1, 1)T . The set of feasible directions to K at x̂ is clearly {y : y >= 0}.
∇θ(x̂) = (2, 2) and we verify that both the necessary optimality conditions (54) and

(55) are satisfied at x̂. Acutally, x̂ is the global minimum for this problem.

The conditions (54), (55) are respectively the first and second order stationary

point necessary optimality conditions for the NLP (53).

Variational Inequality Problem

The stationary point necessary optimality conditions discussed above, lead to a problem

commonly known as the variational inequality problem. In this problem we are given a
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real vector function f(x) = (f1(x), . . . , fn(x))
T defined over Rn, and a subset K ⊂ Rn.

The variational inequality problem with this data, is to find a point x∗ ∈ K satisfying

(x− x∗)T f(x∗) >= 0 for all x ∈ K.

Suppose K = {x : Ax >
= b, x >

= 0} where A, b are given matrices of orders m × n

and m × 1, the above variational inequality problem is equivalent to the nonlinear

complementarity problem: find z ∈ Rn+m satisfying

z >= 0, g(z) >= 0, zT g(z) = 0

where z = (x1, . . . , xn; y1, . . . , ym)T , y = (y1, . . . , ym)T and

g(z) =

 f(x) −AT y
Ax −b

 .

Optimality Conditions for Equality Constrained Minimization

Consider the NLP
minimize θ(x)

subject to hi(x) = 0, i = 1 to m
(56)

where θ(x), hi(x) are all real valued continuously differentiable functions defined on

Rn. Let h(x) = (h1(x), . . . , hm(x))T . The set of feasible solutions is a surface in Rn,

and it is smooth if each hi(x) is a smooth function (i. e., continuously differentiable).

If x is a feasible point, when some of the hi(x) are nonlinear, there may be no feasible

direction at x. In order to retain feasibility while moving from x, one has to follow a

nonlinear curve through x which lies on the feasible surface. See Figure 16.

x

Figure 16 Feasible surface ΓΓΓ = {x : h1(x) = 0} satisfying a nonlinear equa-

tion. At x ∈ ΓΓΓ, the direction marked by the arrow is not a feasible direction,

since any move of positive length in that direction takes the point out of ΓΓΓ. To

move from x and remain inside ΓΓΓ one has to follow a curve like the dashed curve.

A curve in Rn is the locus of a point x(λ) = (xj(λ)), where each xj(λ) is a real valued

function of the real parameter λ, as the parameter varies over some interval of the real

line. See Figure 17.
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1-1

Figure 17 A curve in R2. {x(λ) = (λ, λ2) : −1 <= λ <= 1} is a piece of a curve

(parabola) in R2 through the origin x = (0, 0)T .

The curve x(λ) = (xj(λ) is said to be differentiable at λ if
dxj(λ)
dλ exists for all j, and

twice differentiable if
d2xj(λ)
dλ2 exists for all j. The curve x(λ) is said to pass through

the point x if x = x(λ) for some λ.

If the curve x(λ) defined over a < λ < b is differentiable at λ, a < λ < b, then the

line {x = x(λ) + δ dxdλ (λ) : δ real} is the tangent line to the curve at the point x(λ) on

it. See Figure 18.

(  )λx
(  )λx

curve at

a bλ

Tangent line to the

Figure 18

The tangent plane at a feasible point x to (56) is defined to be the set of all directions

(dx(λ)dλ )λ=0, where x(λ) is a differential curve in the feasible region with x(0) = x. See

Figure 19.
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xplane at

x

xTangent plane to surface at

Translate of tangent

0

Figure 19 The tangent plane to surface {x : h1(x) = 0} at a point x on it

is the collection of all directions of tangent lines to differentiable curves lying in

surface and passing through x.

We need the following results to study these tangent planes.
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The Implicit Function Theorem

Consider the system of m equations in n variables x1, . . . , xn

fi(x1, . . . , xn) = 0, i = 1 to m (57)

where each fi(x) is continuously differentiable in some open subset D ⊂ Rn. Let

x ∈ D be feasible to (57) and let the subset of m variables, x1, . . . , xm, say, be such

that the m × m Jacobian (∂fi(x)∂xj
: i = 1 to m, j = 1 to m) is nonsingular. Then

in a neighborhood of x, we can use the equations in (57) to express x1, . . . , xm as

functions of xm+1, . . . , xn on the set of feasible solutions of (57). That is, there exists

a neighborhood D of (xm+1, . . . , xn) in Rn−m and real valued differentiable functions

ψi(xm+1, . . . , xn), i = 1 to m; such that for (xm+1, . . . , xn) ∈ D, (57) is equivalent to

xi = ψi(xm+1, . . . , xn), i = 1 to m

i. e.,

fi(ψ1(xm+1, . . . , xn), . . . , ψm(xm+1, . . . , xn), xm+1, . . . , xn) = 0, i = 1 to m (58)

holds for all (xm+1, . . . , xn) ∈ D. Further, the partial derivatives ∂ψi(xm+1,...,xn)
∂xj

, i = 1

to m, j = m+ 1 to n, are obtained by solving the system of equations

m∑
r=1

∂fi(x)

∂xr

∂ψr(xm+1, . . . , xn)

∂xj
+
∂fi(x)

∂xj
= 0, j = m+ 1 to n, i = 1 to m. (59)

It can be verified that (59) is just obtained by setting the derivative of the identity

(58) at x with respect to xj to zero for each j = m + 1 to n and i = 1 to m. See

references [10.33] for a proof of the implicit function theorem.

Example 7: An Illustration of the Implicit Function Theorem.

Here we provide a simple example to illustrate the implicit function theorem using

a linear system of constraints. Consider the following system in the variables x =

(x1, x2, x3, x4, x5)
T .

f1(x) = x1 + x2 + x3 + x4 − x5 − 12 = 0

f2(x) = −x1 + x2 − 2x3 − x4 + 4x5 − 2 = 0.

Let x = (5, 7, 0, 0, 0)T . x is a feasible solution, and[ ∂f1(x)
∂x1

∂f1(x)
∂x2

∂f2(x)
∂x1

∂f2(x)
∂x2

]
=

[
1 1

−1 1

]
is nonsingular. Therefore, by the implicit function theorem, it is possible to express

x1, x2 as functions of the remaining variables x3, x4, x5 in a neighborhood of x in the
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feasible region. Since the constraints are linear, we can do this explicitly by solving for

x1, x2 in terms of x3, x4, x5 using these two equations, and this leads to

x1(x3, x4, x5) = −3

2
x3 − x4 −

5

2
x5 + 10

x2(x3, x4, x5) =
1

2
x3 − 3

2
x5 + 7

where x1(x3, x4, x5) and x2(x3, x4, x5) are the expressions for x1, x2 as functions of

x3, x4, x5, on the feasible region for this system. When the equations are nonlinear,

it may not be possible to obtain these expressions explicitly, but the implicit function

theorem guarantees the existence of them in a neighborhood of x in the feasible region.

We verify that the partial derivatives are[ ∂x1

∂x3
, ∂x1

∂x4
, ∂x1

∂x5

∂x2

∂x3
, ∂x2

∂x4
, ∂x2

∂x5

]
=

[
−3

2 , −1, −5
2

1
2 , 0, −3

2

]
.

The equations corresponding to (59) for this system for j = 3 are

∂f1
∂x1

∂x1
∂x3

+
∂f1
∂x2

∂x2
∂x3

+
∂f1
∂x3

=
∂x1
∂x3

+
∂x2
∂x3

+ 1 = 0

∂f2
∂x1

∂x1
∂x3

+
∂f2
∂x2

∂x2
∂x3

+
∂f2
∂x3

= −∂x1
∂x3

+
∂x2
∂x3

− 2 = 0

which together yield ∂x1

∂x3
= −3

2 ,
∂x2

∂x3
= 1

2 , same as the values obtained above. In a

similar manner, writing the equations corresponding to (59) for this system for j = 4, 5,

we can compute the values ∂xi

∂xj
for i = 1, 2, j = 4, 5, and verify that they are the same

as those obtained above.

Constraint Qualifications

In general, determining the tangent plane for (56) at the feasible point x is hard.

However, if the constraint functions hi(x) satisfy ceratin conditions at x, it becomes

possible to obtain a simple characterization of the tangent plane for (56) at x. So

these conditions are called constraint qualifications because these conditions are

specifically on the constraints in (56), not so much on the set of feasible solutions of

(56). Several constraint qualifications have been developed, but for most of them, it is

very hard to verify whether they hold in any given problem. We will only discuss one

constraint qualification, which can be checked efficiently. It is called the regularity

condition.

The regularity condition is said to hold for (56) at the feasible point x if the

Jacobian matrix (∂hi(x)
∂xj

: i = 1 to m, j = 1 to n) has rank m, in this case the feasible

point x is called a regular point for (56).

Definition. We denote by ∇h(x) = (∂hi(x)
∂xj

: i = 1 to m, j = 1 to n), the Jacobian

matrix of order m × n; the ith row vector of ∇h(x) is the gradient vector of hi(x)

written as a row vector.
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Tangent Planes at Regular Points

Theorem 20. If x is a regular point for (56), the tangent plane for (56) at x is

{y : (∇h(x))y = 0}.

Proof. Let x(α) be a differentiable curve lying in the feasible region for α lying in an

interval around zero, with x(0) = x and dx(0)
dα = y. So h(x(α)) = 0 for all values of α

lying in an interval around zero, and hence (dh(x(α))dα )α=0 = 0, that is (∇h(x))y = 0.

This implies that the tangent plane is a subset of {y : (∇h(x))y} = 0.

Suppose y ∈ {y : (∇h(x))y = 0} and y ̸= 0. Define new variables u = (u1, . . . ,

um)T . Consider the following system of m equations in m+ 1 variables u1, . . . , um, α.

gi(u, α) = hi(x+ αy + (∇h(x))Tu) = 0, i = 1 to m. (60)

It can be verified that g(0, 0) = 0 and the Jacobian matrix of g(u, α) with respect to

u is nonsigular at u = 0, α = 0 (since x is a regular point of (56)). So by applying

the implicit function theorem on (60), we can express u as a differentiable function of

α, say u(α), in an interval around α = 0, and that (60) holds as an identity in this

interval when u in (60) is replaced by u(α), and that u(0) = 0, and du(0)
dα is obtained

by solving ( d

dα
h(x+ αy + (∇h(x))Tu(α))

)
α=0

= 0

which leads to d
dαu(0) = 0 since ∇h(x) has rank m. So if we define

x(α) = x+ αy + (∇h(x))Tu(α)

this defines a differentiable curve lying in the feasible region for (56) for values of α in

an interval around α = 0, and that dx
dα (0) = y, which implies that y is in the tangent

plane for (56) at x.

Example 8

Consider the system
h(x1, x2) = x1 = 0

x = (x1, x2)
T ∈ R2.

The set of feasible solutions is the x2-axis in R2, since ∇h(x) = (1, 0) every feasible

point is a regular point, and the tangent plane at any feasible point x is again the

x2-axis = {y : (∇h(x))y = 0} = {y : y = (y1, y2), y1 = 0}. On the other hand the

system
g(x1, x2) = x31 = 0

x = (x1, x2)
T ∈ R2

has the same set of feasible solutions, namely the x2-axis in R2. Since ∇g(x) = (3x21 , 0)

is zero whenever x is feasible, no feasible point is regular. The tangent plane at every

feasible solution is again the x2-axis in R2, but {y : ∇g(x)y = 0} = R2 for every

feasible solution x.
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Optimality Conditions

Using Theorem 20 we can now derive optimality conditions for (56). If x is a feasible

regular point for (56), and it is a local minimum, clearly along every differentiable

curve x(α) lying in the feasible region for (56) for values of α in an interval around

α = 0, satisfying x(0) = x; α = 0 must be a local minimum for θ(x) on this curve.

That is, for the problem of minimizing θ(x(α)) over this interval for α, α = 0 must

be a local minimum. Since α = 0 is an interior point of this interval this implies that
dθ
dα (x(0)) must be zero. Applying this to all such curves and using Theorem 20 we

conclude that (∇θ(x))y = 0 for all y satisfying (∇h(x))y = 0. By Theorem 1 (see

Exercise 5) this implies that there must exist µ = (µ1, . . . , µm) such that

∇θ(x)−
m∑
i=1

µi∇hi(x) = 0

and by feasibility h(x) = 0

(61)

the conditions (61) are the first order necessary optimality conditions for (56),

the vector µ is the vector of Lagrange multipliers. (61) is a system of (n + m)

equations in (n +m) unknowns (including x and µ) and it may be possible to solve

(61) using algorithms for solving nonlinear equations. If we define the Lagrangian for

(56) to be L(x, µ) = θ(x)−µh(x) where µ = (µ1, . . . , µm), h(x) = (h1(x), . . . , hm(x))T ,

(61) becomes: (x, µ) satisfies
h(x) = 0

∇xL(x, µ) = 0.
(62)

We will now derive the second order necessary optimality conditions for (56).

Suppose the functions θ(x), hi(x) are all twice continuously differentiable. Let x be

a feasible solution for (56) which is a regular point. If x is a local minimum for (56),

by the first order necessary optimality conditions (61), there must exist a row vector

of Lagrange multipliers, µ = (µ1, . . . , µm) such that ∇x(L(x, µ)) = 0, where L(x, µ) =

θ(x)−µh(x) is the Lagrangian. Since x is a regular point, the tangent plane to (56) at x

is T = {y : (∇h(x))y = 0}. Suppose there exists a y ∈ T satisfying yTHx(L(x, µ))y <

0. Since y ∈ T, and all the functions are twice continuously differentiable, there exists

a twice differentiable curve x(λ) through x lying in the feasible region (i. e., x(0) = x,

and the curve is defined in an interval of λ with 0 as an interior point, with h(x(λ)) = 0

for all λ in this interval), such that (dx(λ)dλ )λ=0 = y. Now,

d

dλ
L(x(λ), µ) = (∇xL(x(λ), µ))

(dx(λ)
dλ

)
d2

dλ2
L(x(λ), µ) =

(dx(λ)
dλ

)T
Hx(L(x(λ), µ))

dx(λ)

dλ
+ (∇xL(x(λ), µ))

(d2x(λ)
dλ2

)
where ∇x(L(x, µ)), Hx(L(x, µ)) are the row vector of partial derivatives with respect

to x, and the Hessian matrix with respect to x of L(x, µ) at x = x respectively. At
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λ = 0, we have ∇xL(x(0), µ) = ∇xL(x, µ) = 0 by the first order necessary optimality

conditions.

So, from the above

( d
dλ
L(x(λ), µ)

)
λ=0

= 0

( d2
dλ2

L(x(λ), µ)
)
λ=0

= yTHx(L(x, µ))y.

Using these in a Taylor series expansion for f(λ) = L(x(λ), µ) up to second order

around λ = 0 leads to

f(λ) = L(x(λ), µ) = L(x, µ) +
λ2

2
yTHx(L(x, µ))y + 0(λ)

where 0(λ) is a function of λ satisfying the property that limit of (0(λ))/λ2 as λ tends

to zero, is zero. Since h(x(λ)) = 0 for every point on the curve, we have f(λ) =

L(x(λ), µ) = θ(x(λ)) for all λ in the interval of λ on which the curve is defined. So in

the neighborhood of λ = 0 on the curve we have from the above

2(θ(x(λ))− θ(x))

λ2
=

2(f(λ)− f(0))

λ2
= yTHx(L(x, µ))y +

2(0(λ))

λ2

and since yTHx(L(x, µ))y < 0 and limit of (0(λ)/λ2) as λ tends to zero is zero, for all

λ sufficiently small θ(x(λ)) − θ(x) < 0. For all these λ, x(λ) is a point on the curve

in the feasible region in the neighborhood of x, and this is a contradiction to the fact

that x is a local minimum for (56).

In fact it can be verified that yTHx(L(x, µ))y = (d
2f(λ)
dλ2 )λ=0, and if this quantity

is < 0, λ = 0 cannot be a local minimum for the one variable minimization problem

of minimizing f(λ) = θ(x(λ)) over λ; or equivalently, that x = x(0) is not a local

minimum for θ(x) along the curve x(λ).

These facts imply that if θ(x), hi(x) are all twice continuously differentiable, and

x is a regular point which is a feasible solution and a local minimum for (56), there

must exist a Lagrange multiplier vector µ such that the following conditions hold.

h(x) = 0

∇xL(x, µ) = ∇θ(x)− µ∇h(x) = 0

yTHx(L(x, µ))y >= 0 for all y ∈ T = {y : (∇h(x))y = 0},
that is Hx(L(x, µ)) is PSD on the subspace T.

(63)

These are the second order necessary optimality conditions for a regular feasible

point x to be a local minimum for (56).

We now state a sufficient optimality condition for (56) in the form of a theorem.
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Theorem 21. Suppose θ(x), hi(x), i = 1 to m are all twice continuously differen-

tiable functions, and x is a feasible point such that there exists a Lagrange multiplier

vector µ = (µ1, . . . , µm) which together satisfy

h(x) = 0

∇θ(x)− µ∇h(x) = 0

yTHx(L(x, µ))y > 0 for all y ∈ {y : (∇h(x))y = 0}, y ̸= 0

(64)

where L(x, µ) = θ(x) − µh(x) is the Lagrangian for (56). Then x is a local minimum

for (56).

Proof. Suppose x is not a local minimum for (56). There must exist a sequence of

distinct feasible points {xr : r = 1, 2, . . .} converging to x such that θ(xr) < θ(x) for

all r. Let δr = ∥x− xr∥, yr = (xr − x)/δr. Then ∥yr∥ = 1 for all r and xr = x+ δry
r.

Thus δr → 0+ as r → ∞. Since the sequence of points {yr : r = 1, 2, . . .) all lie on the

surface of the unit sphere in Rn, a compact set, the sequence has at least one limit

point. Let y be a limit point of {yr : r = 1, 2, . . .}. There must exist a subsequence

of {yr : r = 1, 2, . . .} which converges to y, eliminate all points other than those in

this subsequence, and for simplicity call the remaining sequence by the same notation

{yr : r = 1, 2, . . .}. So now we have a sequence of points xr = x + δry
r all of them

feasible, such that ∥yr∥ = 1 for all r, yr → y and δr → 0 as r → ∞. By feasibility

h(x+ δry
r) = 0 for all r, and by the differentiability of h(x) we have

0 = h(x+ δry
r) = h(x) + δr∇h(x)yr + 0(δr)

= δr∇h(x)yr + 0(δr)

Dividing by δr > 0, and taking the limit as r → ∞ we see that ∇h(x)y = 0.

Since L(x, µ) is a twice continuously differentiable function in x, applying Taylor’s

theorem to it, we conclude that for each r, there exists a 0 <= αr <= δr such that

L(x+ δry
r, µ) = L(x, µ) + δr∇xL(x, µ)y

r + (1/2)δ2r(y
r)THx(L(x+ αry

r, µ))yr.

From the fact that x + δry
r = xr and x are feasible, we have L(xr, µ) = θ(xr) and

L(x, µ) = θ(x). Also, from (64), ∇xL(x, µ) = 0. So, from the above equation, we have

θ(xr)− θ(x) = (1/2)δ2r(y
r)THx(L(x+ αry

r, µ))yr. (65)

Since 0 <= αr <= δr, and δr → 0 as r → ∞, and by continuity, we know that Hx(L(x+

αry
r, µ)) converges to Hx(L(x, µ)) as r → ∞. Since yr → y as r → ∞, and ∇h(x)y =

0, from the last condition in (64) and continuity we conclude that when r is sufficiently

large, the right-hand side of (65) is ≥ 0, while the left-hand side is < 0, a contradiction.

So, x must be a local minimum for (56).

Thus, (64) provides a sufficient condition for a feasible point x to be a local

minimum for (56).
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Example 9

Consider the problem
minimize θ(x) = x1x2
subject to x1 + x2 = 2.

The Lagrangian is L(x, λ) = x1x2 − λ(x1 + x2 − 2). So, the first order necessary

optimality conditions are

∂L(x, λ)

∂x
= (x2 − λ, x1 − λ) = 0

which together with the feasibility conditions lead to x = (1, 1)T . x is the unique

solution for the first order necessary optimality conditions. x, λ = 1 together satisfy

the first order necessary conditions for a local minimum. The Hessian of the Lagrangian

is

Hx(L(x, λ)) =

 0 1
1 0

 .

The tangent plane at x is {y : y1 + y2 = 0}. So on the tangent plane, yTHx((x, λ))y =

2y1y2 = −2y22 < 0, whenever y ̸= 0. So the second order necessary optimality condi-

tions for a local minimum are violated at x. In fact it can be verified that x satisfies the

sufficient conditions for being a local maximum for θ(x) in the feasible region. θ(x) has

no local minimum in the feasible region, it is unbounded below in the feasible region.

Example 10

Consider the problem
minimize −x1 − x2
subject to x21 + x22 − 8 = 0.

The Lagrangian is L(x, λ) = −x1 − x2 − λ(x21 + x22 − 8). The first order necessary

optimality conditions are

∂L(x, λ)

∂x
=

−1 −2x1λ
−1 −2x2λ

T

= 0

together with the constraint on the variables, this leads to the unique solution x =

(2, 2)T , λ = −1/4. The Hessian of the Lagrangian is

Hx(L(x, λ)) =

 1/2 0
0 1/2


which is PD. Hence the point x satisfies the sufficient condition for being a local

minimum in this problem.
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Example 11

Consider the problem

minimize θ(x) = 2x31 + (1/2)x22 + x1x2 + (1/24)x1
subject to x1 + x2 = 2.

The Lagrangian is L(x, λ) = 2x31 + (1/2)x22 + x1x2 + (1/24)x1 − λ(x1 + x2 − 2). The

first order necessary optimality conditions are

∂L(x, λ)

∂x
=

 6x21 + x2 + (1/24)− λ

x2 + x1 − λ

T

= 0.

Combining this with the constraints on the variables, we have λ = 2, 6x21+x2+(1/24)−
2 = 6x21 + (2 − x1) − 2 + (1/24) = 6x21 − x1 + (1/24) = 0. This leads to the unique

solution satisfying the first order necessary optimality conditions (x = (1/12, 23/12)T ,

λ = 2). The tangent hyperplane at any feasible solution is {y : y1 + y2 = 0}. The

Hessian of the Lagrangian is

Hx(L(x, λ)) =

 12x1 1
1 1

 =

 1 1
1 1

 .

So, on the tangent hyperplane to the feasible region at x we have yTHx(L(x, λ))y =

(y1 + y2)
2 = 0. Thus the second order necessary conditions for a local minimum are

also satisfied. However, the point x does not satisfy the sufficient conditions for being

a local minimum in this problem, (64), discussed above.

Optimality Conditions for the Inequality

Constrained Minimization Problems

Consider the general NLP

minimize θ(x)

subject to hi(x) = 0, i = 1 to m

gp(x) >= 0, p = 1 to t
(66)

where θ(x), hi(x), gp(x) are all real valued continuously differentiable functions defined

on Rn. Let h(x) = (h1(x), . . . , hm(x))T and g(x) = (g1(x), . . . , gt(x))
T .

Let x be a feasible solution for (66). The active constraints at x are all the equality

constraints in (66) and all the inequality constraints which hold as equations at x (i. e.,

gp(x) for p such that gp(x) = 0). Let P(x) = {p : p = 1 to t, gp(x) = 0}. The feasible

solution x is said to be a regular point for (66) if {∇hi(x) : i = 1 to m} ∪ {∇gp(x) :
p ∈ P(x)} is linearly independent. This is a constraint qualification known as the

regularity condition for (66). As mentioned earlier, this is a condition on the active
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constraints at x, and not on the set of feasible solutions. As an example, consider the

system of constraints
(x1 − 1)2 + (x2 − 1)2 = 0

x41 + x42 = 2
x1 <

= 1
x2 <

= 1
x1 + x2 >

= 2 .

This system has the unique solution (x1, x2)
T = (1, 1)T , all the constraints are active

and it can be verified that the regularity condition does not hold at this point. On the

other hand, if this singleton set is represented by the system of constraints

x1 = 1
x2 = 1

then the regularity condition holds at the point. Thus, whether regularity conditions

hold or not could depend on the system of constraints chosen to represent the set of fea-

sible solutions. This points out the importance of exercising great care in constructing

the model for the problem.

Since the inequality constraints “gi(x) >= 0” for i ̸∈ P(x) are inactive at x, the local

feasible region around x remains unchanged if these inactive inequality constraints are

ignored. See Figure 20.

x

Figure 20 The region which lies on the side of the arrow of each nonlinear

surface is the feasible region. The inequality constraint corresponding to the

dashed surface is inactive at x, and it can be ignored for the purpose of deriving

optimality conditions for x to be a local minimum in the feasible region.

Thus for the purpose of deriving optimality conditions for x to be a local minimum

for (66), we can ignore the inactive inequality constraints at x. Also, when all the active
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constraints at x are treated as equality constraints, the local feasible region around x

becomes smaller, and hence, if x is a local minimum for (66), it must be a local

minimum for the problem obtained by treating all active constraints at x as equality

constraints.

Let x, a feasible regular point for (66), be a local minimum for (66). By the above

arguments, it must be a local minimum for the problem,

minimize θ(x)

subject to hi(x) = 0, i = 1 to m

gp(x) = 0, p ∈ P(x).

(67)

So by previous results, there exists (µ1, . . . , µm) and πp for p ∈ P(x) satisfying

∇θ(x)−
m∑
i=1

µi∇hi(x)−
∑

p∈P(x)

πp∇gp(x) = 0. (68)

We will now prove that if x is a local minimum for (66), then πp >= 0 for all p ∈ P(x).

Suppose in (68), πp < 0 for some p ∈ P(x), say for p = r. By the regularity

condition, the set {∇hi(x) : i = 1 to m}∪{∇gp(x) : p ∈ P(x)} is linearly independent,

and by our assumption r ∈ P(x). So there exists a y ∈ Rn satisfying

(∇hi(x))y = 0, i = 1 to m

(∇gp(x))y = 0, p ∈ P(x), p ̸= r

(∇gr(x))y = 1.

(69)

By Theorem 20 there exists a differentiable curve x(α) with x(0) = x, defined for

values of α in an interval around α = 0, lying on the set of feasible solutions of

hi(x) = 0, i = 1 to m

gp(x) = 0, p ∈ P(x), p ̸= r
(70)

with dx(0)
dα = y. Since (dgr(x(α))dα )α=0 = (∇gr(x))y = 1 > 0, by Taylor’s theorem we

know that there exists a λ > 0 such that for all 0 <= α <= λ, points on the curve x(α)

satisfy gr(x) >= 0. Using this, it can be verified that when α is positive but sufficiently

small, x(α) remains feasible to (66) and since (dθ(x(α))dα )α=0 = πr(∇gr(x))y (by (68))

< 0, it is a better feasible solution for (66) than x, contradicting the local minimum

property of x. Thus if x is a local minimum for (66) and is a regular point, there

must exist µ = (µ1, . . . , µm), and πp for p ∈ P(x) satisfying (68), and πp >= 0 for all

p ∈ P(x). Define πp = 0 for all p = 1 to t, p ̸∈ P(x) and let π = (π1, . . . , πt). Let

L(x, µ, π) = θ(x)− µh(x)− πg(x). L(x, µ, π) is the Lagrangian for (66) and (µ, π) are

the Lagrange multipliers. These facts imply that if x is a regular point local minimum

for (66), there exist µ, π satisfying

∇xL(x, µ, π) = 0

π >= 0

πpgp(x) = 0 for all p = 1 to t

(71)
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and the feasible conditions

h(x) = 0, g(x) >= 0.

(71) are known as the first order necessary optimality conditions for the regular

feasible point x to be a local minimum for (66). They are also known as the Karush-

Kuhn-Tucker (or KKT) necessary conditions for optimality.

Let T = {y : (∇hi(x))y = 0, i = 1 to m, and (∇gp(x))y = 0, p ∈ P(x)}. If

all the functions θ(x), hi(x), gp(x) are twice continuously differentiable, and x is a

regular feasible point for (66), using similar arguments as before, it can be shown that

a necessary condition for x to be a local minimum for (66) is that there exist Lagrange

multiplier vectors µ, π such that

(71) holds, and yTHx(L(x, µ, π))y >= 0 for all y ∈ T. (72)

(72) are known as second order necessary conditions for x to be a local minimum

for (66).

We now state a sufficient optimality condition for (66) in the form of a theorem.

Theorem 22. Suppose θ(x), hi(x), gp(x) are all twice continuously differentiable

functions, and x is a feasible point such that there exists Lagrange multiplier vectors

µ = (µ1, . . . , µm), π = (π1, . . . , πt) which together satisfy

h(x) = 0, g(x) >= 0

∇xL(x, µ, π) = 0

π >= 0, πg(x) = 0

(73)

yTHx(L(x, µ, π))y > 0, for all y ∈ T1, y ̸= 0

where T1 = {y : (∇hi(x))y = 0, i = 1 to m and (∇gp(x))y = 0 for p ∈ P(x) ∩ {p :

πp > 0}, (∇gp(x))y >= 0 for p ∈ P(x) ∩ {p : πp = 0}}, then x is a local minimum for

(66).

Proof. Suppose x is not a local minimum for (66). As in the proof of Theorem 21,

there must exist a sequence of distinct feasible solutions xr = x + δry
r, r = 1, 2, . . .

converging to x as r → 0+, where ∥yr∥ = 1 for all r; yr → y and δr → 0+; such that

θ(xr) < θ(x) for all r. By feasibility, as in the proof of Theorem 21, we have

(∇hi(x))y = 0, i = 1 to m. (74)

For each p ∈ P(x), we have gp(x) = 0, and gp(x
r) >= 0 by feasibility. So

0 <= gp(x+ δry
r)− gp(x) = δr(∇gp(x))yr + 0(δr)

Dividing by δr > 0, and taking the limit as r → ∞, we conclude that

(∇gp(x))y >= 0 for all p ∈ P(x). (75)



562 Appendix 4

Also, 0 > θ(x+ δry
r)− θ(x) = δr(∇θ(x))yr +0(δr), and again dividing by δr > 0, and

taking the limit as r → ∞ we conclude that (∇θ(x))y <= 0.

Suppose (∇gp(x))y > 0 for some p ∈ J = {p : πp > 0}. Then

0 >= (∇θ(x))y = µ(∇h(x))y + π(∇g(x))y, by (73)

=
∑
p∈J

πp(∇gp(x))y, by (73), (74).

> 0, by (73), (75) and the assumption that

(∇gp(x))y > 0 for some p ∈ J

a contradiction. So y satisfies

(∇gp(x))y = 0 for all p ∈ P(x) ∩ {p : πp > 0}. (76)

By (74), (75), (76), we see that y ∈ T1. From (73) and feasibility we have

θ(xr)− θ(x) = L(x+ δry
r, µ, π)− L(x, µ, π) =

(1/2)δ2r (y
r)THx(L(x+ αry

r, µ, π))yr
(77)

where 0 <= αr <= δr, by using (73) on the expression given by Taylor’s theorem. When

r is sufficiently large, from the continuity, and the conditions satisfied by y proved

above, and (73), we conclude that the right-hand side of (77) is >= 0, while θ(xr)−θ(x)
is < 0, a contradiction. So, x must be local minimum for (66).

Thus (73) provides a sufficient local minimality condition for (66). See refer-

ences [A8, A10, 10.2, 10.12, 10.13, 10.17, 10.27] for a complete discussion of optimality

conditions for nonlinear programs.

In inequality constrained problems, we notice that the gap between known second

order necessary optimality conditions and sufficient optimality conditions, is quite wide.

The NLP (66) is said to be a convex programming problem if θ(x) is convex,

hi(x) is affine for all i, and gp(x) is concave for all p. In this case the set of feasible

solutions is a convex set. For convex programming problems, we will now show that

(71) are both necessary and sufficient conditions for global optimality.

Theorem 23. Suppose (66) is a convex program. The feasible regular point x is a

global minimum for (66) iff there exists a Lagrange multiplier vector (µ, π) such that

x, µ, π together satisfy (71).

Proof. The necessity of (71) for optimality has already been established above. We

will now prove the sufficiency. Suppose x is a feasible solution of (66) satisfying (71).
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Let x be any other feasible solution for (66). By Theorem 15

θ(x)− θ(x) >= (∇θ(x))(x− x)

=
( m∑
i=1

µi∇hi(x) +
∑

p∈P(x)

πp∇gp(x)
)
(x− x) by (71)

=
∑

p∈P(x)

πp∇gp(x)(x− x), since h(x) is affine

>
=

∑
p∈P(x)

πp(gp(x)− gp(x)) by Theorem 16, since gp(x) is concave.

=
∑

p∈P(x)

πpgp(x), since gp(x) = 0 for p ∈ P(x).

>
= 0, since π >= 0 and g(x) >= 0 for feasibility.

So x is a global minimum for (66).

Example 12

Consider the problem of determining the electrical current flows in the following elec-

trical network.

1

23
1

1/2

1

1/2

9 units 4 units

5 units

x1

x2

x3

x4

Figure 21

Assume that the current flows on each arc in the direction indicated. A total of 5,

4 units of current enters the system at nodes 1, 2 respectively per unit time. The

numbers given on the arcs are the resistences of the arcs. Let x1, x2, x3, x4 denote

the current flows on the arcs as indicated. If rj denotes the resistence associated with

xj it is known that the power loss is
∑4
j=1 rjx

2
j . It is required to find out the current

flows, under the assumption that the flows would occur so as to minimize the power



564 Appendix 4

loss. Hence the x-vector is the optimum solution of the problem

minimize x21 +(1/2)x22 +x23+(1/2)x24
subject to x1 +x2 = 5

−x2 +x3+ x4 = 4

xj >= 0, j = 1 to 4.

(78)

So, the Lagrangian is L(x, µ, π) = x21 + (1/2)x22 + x23 + (1/2)x24 − µ1(x1 + x2 − 5) −
µ2(−x2 + x3 + x4 − 4)−

∑4
j=1 πjxj .

So, the first order necessary optimality conditions are

∂L

∂x1
= 2x1 −µ1 −π1 = 0

∂L

∂x2
= x2 −µ1 +µ2 −π2 = 0

∂L

∂x3
= 2x3 −µ2 −π3 = 0

∂L

∂x4
= x4 −µ2 −π4 = 0

(79)

π1, π2, π3, π4 >= 0 (80)

π1x1 = π2x2 = π3x3 = π4x4 = 0 (81)

and the constraints (78) on the x-variables for feasibility.

The complementary slackness conditions (81) imply that for each j, either the

Lagrange multiplier πj is zero, or the inequality constraint xj >= 0 holds as an equality

constraint (i. e., it is active) at the optimum. One technique to find a solution to

the first order necessary optimality conditions here is to guess the subset of inequality

constraints in (78) which will be active at the optimum, called the active set. Treat

each of the inequality constraints in (78) in this active set as an equation, ignore the

inequality constraints in (78) outside the active set (we are assuming that they will

be inactive at the optimum). Set the Lagrange multiplier πj corresponding to each

inequality constraint in (78), not in the active set to zero. What remains among (78),

(79) is a system of equations, which is solved. If the solution of this system satisfies

(80) and the ignored inequality constraints in (78) not in the active set, we are done,

this solution solves the first order necessary optimality conditions. If some of these

conditions are violated, repeat this process with a different active set. This process,

therefore, involves a combinatorial search, which may eventually involve solving 2t

systems where t is the number of inequality constraints in the original NLP (t = 4 here),

not efficient if t is large. Efficient algorithms for solving NLP’s involving inequality

constraints either carry out this combinatorial search very efficiently; or do not use

it at all, but operate with other efficient methods to find a solution to the first order

necessary optimality conditions (see Chapters 2, 10).
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We first try treating the inequality constraint x3 >= 0 as active, and all the other

inequality constraints xj >= 0, j = 1, 2, 4 as inactive. Ignoring these inactive inequality

constraints, and setting πj = 0, j = 1, 2, 4 leads to the system of equations:

x1 +x2 = 5

−x2 +x4 = 4

2x1 −µ1 = 0

x2 −µ1 −µ2 = 0

−µ2 −π3 = 0

x4 −µ2 = 0.

This system has the unique solution (x1, x2, x4) = (−2, 7, 11), (µ1, µ2) = (−4, 11),

π3 = −11. This solution violates the constraints “x1 >= 0, π3 >= 0”, so this choice of

active set did not lead to a solution of the first order necessary optimality conditions

in this problem.

Let us now try treating all the constraints “xj >= 0, j = 1 to 4” as inactive.

Ignoring all these inactive constraints, and setting πj = 0, j = 1 to 4 leads to the

system of equations
2x1 −µ1 = 0

x2 −µ1 +µ2 = 0

2x3 −µ2 = 0

x4 −µ2 = 0

x1 +x2 = 5

−x2 +x3 +x4 = 4.

This system has the unique solution x = (3, 2, 2, 4)T , µ = (6, 4). This solution also

satisfies the inequality constraints, on the xj which were ignored. So (x, µ, π = 0)

satisfies the first order necessary optimality conditions for this problem. It can be

verified that x also satisfies the second order necessary optimality conditions, as well

as the sufficient conditions for being a local minimum for this problem. Since θ(x) is

convex here, x is in fact a global minimum for this problem.

Optimality Conditions for Linearly Constrained Optimization Problems

Consider the nonlinear program,

minimize θ(x)

subject to Ax = b

Dx >= d
(82)

where A, b, D, d are given matrices of ordersm×n,m×1, t×n and t×1 respectively, and

θ(x) is continuously differentiable. Since the constraints are linear, for this problem,

we can establish first order necessary optimality conditions of the form in (71) without

requiring a regularity type of constraint qualification.
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Theorem 24. If x is a local minimum for (82), there exist Lagrange multiplier

vectors µ = (µ1, . . . , µm), π = (π1, . . . , πt) such that

∇xL(x, µ, π) = ∇θ(x)− µA− πD = 0

Ax = b, Dx >= d

π >= 0, π(Dx− d) = 0

(83)

where L(x, µ, π) = θ(x)− µ(Ax− b)− π(Dx− d) is the Lagrangian for (82).

Proof. Let P(x) = {p : 1 <
= p <

= t and Dp.x = dp}, it is the index set of active

inequality constraints in (82) at the feasible point x. Since the constraints are linear,

the tangent plane to the system determined by the active constraints in (82) at x is

T = {y : Ai.y = 0, i = 1 to m, and Dp.y = 0, p ∈ P(x)} (84)

whether x satisfies the regularity condition for (82) or not. Let

ΓΓΓ1 = {y : y ∈ Rn, Ai.y = 0, i = 1 to m and Dp.y >= 0 for all p ∈ P(x)}
ΓΓΓ2 = {y : y ∈ Rn, (∇θ(x))y < 0}.

We will now show that the fact that x is a local minimum for (82) implies that ΓΓΓ1∩ΓΓΓ2 =

∅. Suppose not. Let y ∈ ΓΓΓ1 ∩ ΓΓΓ2. Since Dp.x > dp for p ̸∈ P(x), and y ∈ ΓΓΓ1, it can

be verified that x+αy is feasible to (82) when α is positive and sufficiently small, and

since y ∈ ΓΓΓ2, we have θ(x+αy) < θ(x), contradicting the local minimality of x to (82).

So ΓΓΓ1 ∩ΓΓΓ2 = ∅.
ΓΓΓ1 ∩ ΓΓΓ2 = ∅ implies by Farkas’ theorem (Theorem 3 of Appendix 1) that there

exist µ = (µ1, . . . , µm) and πp for p ∈ P(x) satisfying

∇θ(x) =
m∑
i=1

µiAi. +
∑

p∈P(x)

πpDp.

πp >= 0 for all p ∈ P(x).

Now define πp = 0 for p ̸∈ P(x), and let π = (π1, . . . , πt). From the above, we verify

that x, µ, π together satisfy (83).

The conditions (83) are the first order necessary optimality conditions for

the linearly constrained optimization problem (82).

If θ(x) is twice continuously differentiable in (82), since the constraints are linear

in (82), it can be verified that the Hessian matrix of the Lagrangian is the same as

the Hessian matrix of θ(x). Using the Taylor series approximation up to the second

order, it can be shown that if x is a local minimum for (82), there must exist Lagrange

multiplier vectors µ, π such that

(83) holds and yTH(θ(x))y >= 0 for all y ∈ T of (84). (85)

The conditions (85) correspond to (72), they are the second order necessary opti-

mality conditions for (82).
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5. Summary of Some Optimality Conditions

All the functions (objective and constraint function) are assumed to be continuously

differentiable. They are assumed to be twice continuously differentiable, if the Hessian

matrix, appears in the expressions.

Problem necessary optimality sufficient optimality

conditions for point x̄ conditions for point x̄

to be a local minimum to be a local miminum

Unconstrained First order conditions

minimization.

minimize θ(x) ∇θ(x̄) = 0

over x ∈ Rn

Second order conditions

∇θ(x̄) = 0 and ∇θ(x̄) = 0 and

H(θ(x̄)) is PSD. H(θ(x̄)) is PD.
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Problem necessary optimality conditions for sufficient optimality conditions

point x̄ to be a local minimum for point x̄ to be a local miminum

Equality constrained Denote h(x)=(h1(x), ..., hm(x))T .

minimization. µ=(µ1, ..., µm) is the row vector

minimize θ(x) of Lagrange multipliers.

subject to hi(x) = 0, The Largrangian is L(x,µ)=θ(x)−

i = 1 to m. µh(x)=θ(x)−
∑m

i=1
µihi(x).

Conditions given here hold under Feasibility, h(x̄)=0 and there ex-

the constraint qualifications that ists a Lagrange multiplier vector

x̄ is a regular point (i.e., {∇hi(x̄): µ̄, which together with x̄ satisfies

i = 1 to m} is a linearly

independent set) or under weaker ∇x(L(x̄,µ̄)) = 0 and

constraint qualifications, for yTHx(L(x̄,µ̄))y > 0

which see references [A8, A10,

A12, 10.12, 10.13, 10.26], or if for all y ∈ {y: (∇hi(x̄))y = 0,

the constraints are all linear. i = 1 to m, y ̸= 0}.

First order conditions

Feasibility, h(x̄)=0 and there

exists a Lagrange multiplier vector

µ̄, which together with x̄ satisfies

∇xL(x̄,µ̄) = ∇θ(x̄)−µ̄∇h(x̄) = 0

(i.e., objective gradient is a

linear combination of the

constraint gradients).

Second order conditions

h(x̄)=0

and there exists a Lagrange

multiplier vector µ̄, which

together with x̄ satisfies

∇x(L(x̄,µ̄)) = 0 and

yTHx(L(x̄,µ̄))y >= 0

for all y ∈ {y: (∇xhi(x̄))y = 0,

i=1 to m}.
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Problem necessary optimality conditions for sufficient optimality

point x̄ to be a local minimum conditions for point x̄

to be a local miminum

Constrained Let h(x)=(h1(x), ..., hm(x))T . g(x) =

minimization. (g1(x), ..., gt(x))
T
. Let µ=(µ1, ..., µm),

minimize θ(x) π=(π1, ..., πt) be row vectors of La-

subject to grange multipliers. The Largrangian is

hi(x)=0, i=1 L(x,µ,π)= θ(x)−µh(x)−πg(x)=θ(x)

to m; gp(x) >= 0, −
∑m

i=1
µihi(x)−

∑t

p=1
πpgp(x).

p=1 to t.

Conditions given here hold under the con- Feasibility, h(x̄) = 0

straint qualification that x̄ is a regular g(x̄) >= 0

point (i.e., if P (x̄)={p: gp(x̄)=0}, and there exists Lagrange

then {∇hi(x̄): i=1 to m}∪{∇gp(x̄): multiplier vectors µ̄, π̄ which

p∈P (x̄)} is a linearly independent set), together with x̄ satisfy

or under weaker constraint qualifications,

for which see references cited above, or if ∇xL(x̄,µ̄,π̄) = 0

the constraints are all linear. π̄ >= 0

π̄g(x̄) = 0

First order conditions (KKT conditions)

Feasibility, h(x̄)=0, g(x̄) >= 0 and yTHx(L(x̄,µ̄,π̄))y>0 for

and there exists Lagrange multiplier vec- all y∈T1={y: (∇hi(x̄))y=0,

tors µ̄, π̄ which together with x̄ satisfy i=1 to m, and (∇gp(x̄))y=0

∇xL(x̄,µ̄,π̄)=∇θ(x̄)−
∑m

i=1
µ̄i∇hi(x̄) for p∈P (x̄)∩{p: π̄p>0} and

−
∑t

p=1
π̄p∇gp(x̄) = 0 (∇gp(x̄))y>=0, for p∈P (x̄)∩{p:

π̄ >= 0 π̄p=0}, y ̸=0.

π̄pgp(x̄) = 0 for all p.

The last set of conditions here are the

complementary slackness conditions. For convex programming

It is equivalent to π̄g(x̄)=0. problem, that is, when

θ(x) is convex, h(x) is

Second order conditions affine and g(x) is concave,

h(x̄)=0, g(x̄) >= 0 the First order conditions

and there exists Lagrange multiplier vec- (KKT conditions) are both

tors µ̄, π̄, which together with x̄ satisfy necessary and sufficient

∇xL(x̄,µ̄,π̄) = 0 for x̄ to be a global

π̄ >= 0 minimum.

π̄g(x̄) = 0

and yTHx(L(x̄,µ̄,π̄))y >= 0 for all y ∈

{y: (∇hi(x̄))y=0, i=1 to m and

(∇gp(x̄))y=0, p∈P (x̄)}.
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6. Exercises

13. Consider the quadratic program

minimize cx +(1/2)xTDx

subject to Ax >= b

x >= 0

where D is a general symmetric matrix of order n. Prove that the necessary and

sufficient conditions for x∗ to be a local minimum to this general quadratic program is

that there exist vectors y∗, u∗, v∗, such thatu∗

v∗

 =

D −AT
A 0

x∗

y∗

+

 cT

−b

u∗

v∗

 >
= 0,

x∗

y∗

 >
= 0,

u∗

v∗

T x∗

y∗

 = 0

hold, and for every vector ξ ∈ Rn satisfying

Ai.ξ = 0 if y∗i > 0

Ai.ξ >= 0 if v∗i = y∗i = 0

ξj = 0 if u∗j > 0

ξj >= 0 if x∗j = u∗j = 0

we have ξTDξ >= 0. (A. Majthay [A9])

14. Consider the quadratic programming problem

minimize cx+ (1/2)xTDx

subject to 0 <= x <= u

where

D =

−2 −3 −3
−3 −5 −1
−3 −1 −4

 , c =

 4
3
5


T

, u =

 10
10
10


and identify the global optimum solution of this problem. (W. P. Hallman and

I. Kaneko [2.15])

15. Let f(x) be a real valued differentiable function defined on R1. Let x0 ∈ R1.

Is the following statement true? “For x0 to be a local minimum for f(x) in R1, it is
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necessary that the derivative f ′(x0) = 0; and there must exist an open interval (a, b)

around x0 such that f ′(x) < 0 for all x in the open interval (a, x0), and f ′(x) > 0

for all x in the open interval (x0, b)”. Is this condition sufficient for x0 to be a local

minimum of f(x)? Use the function defined by

f(x) = x2(2 + sin(1/x)), when x ̸= 0

f(0) = 0

and x0 = 0, as an example. (K. Sydsaeter [A14])

16. Let f(x) be a real valued function defined on R1. Let x0 ∈ R1, and suppose

f(x) has continuous nth derivative. A sufficient condition for x0 to be a strict local

minimum for f(x) in R1, is that f (1)(x0) = f (2)(x0) = . . . = f (n−1)(x0) = 0, and

f (n)(x0) > 0 for n even, where, f (r)(x0) is the rth derivative of f(x) at x0. Is this

condition necessary for x0 to be a local minimum for f(x)? Use the function defined

by

f(x) = e−(1/x2), x ̸= 0

f(0) = 0

and x0 = 0, as an example. (K. Sydsaeter [A14])

17. It is sometimes stated that minimizing a function subject to constraints is equiv-

alent to finding the unconstrained minimum of the Lagrangian function. Examine

whether this statement is true, using the example

minimize −x1x2
subject to x1 + x2 = 2

and the point x = (1, 1)T which is optimal for it. (K. Sydsaeter [A14])

18. Consider the equality constrained optimization problem (56) and the Lagrangian

L(x, µ) = θ(x)− µh(x) for it. If (x, µ) is an unconstrained local minimum for L(x, µ)

over x ∈ Rn, µ ∈ Rm, prove that the point x must be feasible to (56) and in fact

it must be a local minimum for (56). However, show that the converse may not be

true, that is, even if x̂ is a local minimum for (56), there may not exist a Lagrange

multiplier vector µ̂ such that (x̂, µ̂) is an unconstrained local minimum for L(x, µ). See

Exercise 17 above. Develop general conditions on the NLP (56) and the point x which

can guarantee that if x is a local minimum for (56), there exists a Lagrange multiplier

vector µ such that (x, µ) is a local minimum for L(x, µ) over x ∈ Rn, µ ∈ Rm.

19. Consider the NLP (66) and the Lagrangian L(x, µ, π) = θ(x)− µh(x)− πg(x). If

(x, µ, π) is a local minimum for the problem

minimize L(x, µ, π)

subject to x ∈ Rn, µ ∈ Rm

and π >= 0
(86)
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prove that x must be feasible to (66) and in fact must be a local minimum for (66).

However, show that the converse may not be true, that is even if x̂ is a local minimum

for (66), there may not exist a µ̂ ∈ Rm and π̂ ∈ Rt, π̂ >= 0, such that (x̂, µ̂, π̂) is a local

minimum for (86).

Develop general conditions on the NLP (66) and the point x, which can guarantee

that if x is a local minimum for (66), there exist Lagrange multiplier vectors µ, π such

that (x, µ, π) is a local minimum for (86).

20. Let θ(x) be a real valued function defined on Rn and let x ∈ Rn. Examine the

following statement “If x is a local minimum along each straight line through x in

Rn, then x is a local minimum for θ(x) in Rn”, and mark whether it is true or false.

Use θ(x1, x2) = (x2 − x21)(x2 − 2x21) defined on R2 and x = (0, 0)T as an example.

(K. Sydsaeter [A14])

21. Let A, D be given PD matrices of order n. Solve the following two optimization

problems.

(i) minimize cx

subject to (x− x)TA(x− x) <= 1

(ii) minimize cx+ (1/2)xTDx

subject to (x− x)TA(x− x) <= 1.

Discuss what happens if A is PD but D is either PSD or not even PSD.

22. Consider the following quadratic programming problem

f(b) = minimum value of Q(x) = cx+ (1/2)xTDx

subject to Ax >= b

x >= 0

where D is a symmetric PSD matrix of order n, f(b) denotes the optimum objective

value in this problem as a function of the vector b, and A, b are given matrices of orders

m× n and m× 1 respectively. In this problem, assume that A, c, d remain fixed, but

b may vary.

(i) If f(b) is finite for some b, prove that f(b) is finite for all b for which the problem

is feasible.

(ii) If f(b) is finite for some b, prove that f(b) is convex over b ∈ Pos(A,−Im).

(iii) What is ∂f(b)?

Note: The result in (i) above could be false if D is not PSD. Consider the following
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example from B. C. Eaves [2.9]

minimize Q(x) =−4x1 + x21 − x22
subject to − x1 + x2 >

= b1
− x1 + x2 >

= b2
x1, x2 >

= 0.

Let b = (b1, b2)
T . If b = b1 = (−2,−4), or if b = b2 = (−4,−2), verify that the

problem is feasible and that Q(x) is bounded below on the set of feasible solution. If

b = (b1 + b2)/2 = (−3,−3)T , verify that Q(x) becomes unbounded below on the set of

feasible solutions.

23. Let K ⊂ Rn be a closed convex set. For x ∈ Rn, define

f(x) = Minimum {∥y − x∥ : y ∈ K}.

Prove that f(x) is convex.

24. Let θ(x) = (2x2 − x21)
2. Check whether θ(x) is convex, or concave, or neither, on

−1 <= x1 <= 1, −1 <= x2 <= 1.

25. Consider the linear program in standard form

minimize cx

subject to Ax= b

x>= 0.

This problem can be written as the following NLP in which the constraints are all

equalities, but there are new variables uj .

minimize cx

subject to Ax = b

u2j − xj = 0, for all j.

Write down the necessary optimality conditions for this equality constrained NLP, and

show that they are equivalent to the duality-complementary slackness conditions for

optimality in the above LP.

26. Consider the NLP

minimize θ(x)

subject to hi(x) = 0, i = 1 to m

gp(x) >= 0, p = 1 to t
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where all the functions θ(x), hi(x), gp(x) are continuously differentiable. If x is a local

minimum for this problem, and

(a) {∇hi(x) : i = 1 to m} is linearly independent,

(b) there exists a y ∈ Rn satisfying

∇hi(x)y = 0, i = 1 to m

∇gp(x)y > 0, p ∈ P(x)

where P(x) = {p : gp(x) = 0}.
Prove that there must exist µ = (µ1, . . . , µm), π = (π1, . . . , πt) such that

∇θ(x)− µ∇h(x)− π∇g(x) = 0

π >= 0 and πpgp(x) = 0 for all p = 1 to t.

27. Consider the NLP
minimize θ(x) = x21 + x22
subject to (x1 − 1)3 − x22 = 0.

i) If x = (x1, x2)
T is a feasible solution to this problem, prove that x1 must be >= 1.

Using this information, prove that x̂ = (1, 0)T is the global minimum for this

problem.

ii) Write down the first order necessary optimality conditions for this problem. Does

x̂ satisfy these conditions? Why? Explain clearly. (R. Fletcher [10.13])

28. Consider the NLP
minimize θ(x) = x2
subject to (1− x1)

3 −x2 >= 0

x1 >
= 0

x2 >= 0.

Verify that x = (1, 0)T is a global optimum solution to this problem. Is x a regular

point? Do the first order necessary optimality conditions hold at x?

If the problem is to minimize: −x1, subject to the constraints given above, verify

that x is again the global optimum. Do the first order necessary optimality conditions

hold at x for this problem? Why?

29. In each of the following NLPs, find out the global optimum and check whether

the first order necessary optimality conditions hold at it. Explain the reasons for it.

(87)

minimize −x1
subject to −x21 >= 0

x1 >= 0

(88)

minimize −x1
subject to −x21 + x2 >= 0

−x2 >= 0.
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30. Find an optimum solution to the following NLP, using a combinatorial search for

the set of active constraints at the optimum

minimize θ(x) = 2x21 + 2x1x2 + x22 − 10x1 − 10x2
subject to x21 + x22 <= 5

3x1 + x2 <= 6.

31. Consider the following NLP

minimize −x41 − x42
subject to x21 + (x2 − 1)2 − 1 = 0.

Verify that x = (0, 2)T is a global minimum for this problem. Do the first order

necessary optimality conditions hold at x? Is there a µ such that (x, µ) is a local

minimum for the Lagrangian in this problem?

32. Consider the general NLP

minimize θ(x)

subject to hi(x) = 0, i = 1 to m

gp(x) >= 0, p = 1 to t

where θ(x), hi(x), gp(x) are all continuously differentiable functions defined on Rn.

One of the hard unsolved problems in NLP is to develop a computationally viable

method or characterization to determine whether θ(x) is bounded below on the feasible

solution set for this problem, or diverges −∞ on this set; and when θ(x) is bounded on

the solution set, to determine whether θ(x) attains its minimum at some finite feasible

solution (θ(x) may only have an infimum in this problem, it may not be an attained

minimum).

Another hard problem is to develop optimality conditions for a feasible solution

x of this problem to be a global minimum for it. In the absence of convexity of θ(x),

concavity of g(x) and affineness of h(x), at present we do not have any conditions

for distinguishing the global minimum for this problem, from other local minima that

may exist (the only known condition for the global minimum is its definition, that is,

x is a global minimum iff θ(x) >= θ(x) for all feasible solutions x, this condition is not

computationally useful, since checking it directly may require computing the function

value at uncountably many points).

33. Let A be a given matrix of order m×n. Prove that the following three conditions

are equivalent

(i) there exists no x ∈ Rn satisfying Ax <= 0, x ≥ 0,

(ii) for every b ∈ Rm, the set {x : Ax <= b, x >= 0} is bounded,

(iii) there exists a π >= 0 satisfying πA > 0.
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34. If θ(x) is a continuous real valued function defined over Rn with the monotonicity

property (that is for every 0 <
= x <

= y we have θ(x) <= θ(y)), then prove that the

problem
minimize θ(x)

subject to Ax >= b

x >= 0

has an optimum solution, if it is feasible. (B. C. Eaves [2.8])

35. Let Q(x) = cx + ( 12 )x
TDx where D is a symmetric matrix. Let α > 0 be given.

Prove that the point x∗ solves the problem

minimize Q(x)

subject to ∥x∥ <= α

iff it is feasible and there exists a λ >= 0 satisfying

(x∗)T (D + λI) = −c
λ(α− ∥x∗∥) = 0

(D + λI) is a PSD matrix.

36. Consider the following NLPs in each of which the variables are x ∈ Rn.

(89)

minimize cx

subject to xTx <= 1

Ax >
= 0

(90)

minimize xTx

subject to −cx >
= 1

Ax >
= 0.

The data in both the problems, the matrices A, c of order m×n and 1×n respectively,

are the same. Prove that these two problems are equivalent.

37. Let f(λ) : R1 → R1 be a real valued convex function defined on R1. For any λ,

the limit of f(λ+ε)−f(λ)ε as ε→ 0 through positive values is called the right derivative of

f(λ) at λ, and denoted by f ′+(λ), the limit of the same as ε→ 0 through negative values

is called the left derivative of f(λ) at λ and denoted by f ′−(λ). Prove the following

i) If λ < γ, then f ′−(λ) <= f ′+(λ) <= f ′−(γ) <= f ′+(γ).

ii) A necessary and sufficient condition for λ∗ to minimize f(λ) over λ ∈ R1 is:

f ′−(λ∗) <= 0 <= f ′+(λ∗).

iii) The subdifferential ∂f(λ) is the line segment [f ′−(λ), f
′
+(λ)].

iv) For each λ, let g(λ) ∈ ∂f(λ). Prove that
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(a) P (λ, γ) = f(λ)− [f(γ) + g(γ)(λ− γ)] >= 0 for all λ, γ.

(b) If f(λ) <= f(γ), then P (λ, γ) <= |g(γ)| · |γ − λ|.
(c) If g(λ)g(γ) < 0, then

P (λ, γ) >= |g(γ)| · |λ− λ∗| where λ∗ is the minimizer of f(λ).

(C. Lemarechal and R. Mifflin [10.23])

38. Consider the problem
minimize cx

subject to Ax <= 0

∥x∥= 1

where A is of order m× n.

Let K = {y : y =
∑m
i=1 µiAi., µi >= 0 for all i}. Prove the following

i) If c ∈ K, the maximum objective value in this problem, is <= 0.

ii) If c ̸∈ K, let b ∈ K be the point in K that is closest to c. Then (c − b)/∥b − c∥
is the optimum solution of this problem, and the optimum objective value in the

problem is ∥c− b∥.

39. Let K ⊂ Rn be a closed convex polyhedral set partitioned into closed convex

polyhedral regions as
∪
t=1to rKt. So if u ̸= v, the interiors of Ku and Kv have an

empty intersection, and Ku ∩ Kv is itself either empty or is either a face of lower

dimension or a subset of a face of lower dimension of each of Ku and Kv. Assume that

each Kt has a nonempty interior. Suppose the real-valued function f(x) is defined on

K by the following

f(x) = ft(x) = ct0 +

n∑
j=1

ctjxj , if x ∈ Kt

where ct0 and ctj are all given constants. The definition assumes that if Ku ∩Kv ̸= ∅,
then fu(x) = fv(x) for all x ∈ Ku ∩ Kv. So f(x) is a continuous piecewise linear

function defined on K.

Derive necessary and sufficient conditions for the continuous piecewise linear func-

tion f(x) to be convex on K, and develop an efficient algorithm to check whether these

conditions hold.

As a numerical example, let K = {x = (x1, x2)
T : −1 <= x1 <= 1,−1 <= x2 <= 1}.

Consider the partition of K given in Figure 22. Two piecewise linear functions f(x),

g(x) defined on K are provided in Figure 22. Check whether they are convex on K.

(See Section 8.14 in K. G. Murty [2.26].)
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40. (Research Problem) For i = 1 to m, gi(x) is a real valued continuously dif-

ferentiable function defined on Rn, but g(x) = (g1(x), . . . , gm(x))T is not convex.

Let α = (α1, . . . , αm)T ∈ Rm. Let K(α) = {x : gi(x) <= αi, i = 1 to m}. Let

b = (b1, . . . , bn) ∈ Rn be a given point.

(i) Assuming that K(0) ̸= ∅ is a convex set, develop an efficient algorithm to check

whether K(α) is convex for given α. Is this problem easier to solve if either α >= 0

or α <= 0?
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(ii) Assuming that K(0) ̸= ∅ is a convex set, and that b is a boundary point of K(0),

(that is, there exists an i such that gi(b) = 0), develop an efficient algorithm

to find a c = (c1, . . . , cn) ̸= 0 satisfying c(x − b) >= 0 for all x ∈ K(0) (then

H = {x : c(x− b) = 0} is a supporting hyperplane for the convex set K(0) at its

boundary point b).

(iii) Assuming that K(0) ̸= ∅ is a convex set and that b ̸∈ K(0), develop an efficient

algorithm to determine a hyperplane separating b from K(0).

(iv) Consider the special cases of the above problems when all gi(x) are affine functions,

excepting one which is quadratic and nonconvex.

41. Let θ(x) be a continuously differentiable real valued function defined onRn. LetK

be a subspace of Rn. If x ∈ K minimizes θ(x) over K, prove that ∇θ(x) is orthogonal
to every vector in K.

42. Let θ(x); gi(x), i = 1 to m, be continuously differentiable convex functions defined

on Rn. Let θ be the optimum objective value; and π, an optimum Lagrange multiplier

vector associated with the NLP

minimize θ(x)

subject to −gi(x) >= 0, i = 1 to m.

Then prove that θ = Infimum {θ(x) + πg(x) : x ∈ Rn}.

43. Arithmetic Mean — Geometric Mean Inequality:

Let x1, . . . , xn be positive real numbers. Let δ1, . . . , δn be positive real numbers satis-

fying δ1 + . . .+ δn = 1. Prove that

n∏
i=1

(xi)
δi <

=

n∑
i=1

δixi

with equality holding iff x1 = x2 = . . . = xn, where “
∏
” indicates the product sign.

44. Young’s Inequality:

Let x, y, p, q be all positive real numbers, and p > 1, q > 1 satisfying 1
p +

1
q = 1. Prove

that

xy <=
xp

p
+
yq

q

with equality holding only when xp = yq.
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45. Holder’s Inequality:

Let p, q, be positive real numbers > 1 satisfying 1
p + 1

q = 1. Let x = (x1, . . . , xn),

y = (y1, . . . , yn) be real vectors. Prove that

n∑
i=1

xiyi <=

(
n∑
i=1

|xi|p
)1/p( n∑

i=1

|yi|q
)1/q

.

46. Minkowski’s Inequality:

Let x = (x1, . . . , xn), y = (y1, . . . , yn) be real vectors and p >= 1. Prove that

(
n∑
i=1

|xi + yi|p
)1/p

<
=

(
n∑
i=1

|xi|p
)1/p

+

(
n∑
i=1

|yi|p
)1/p

.

47. Let f(λ) denote a smooth real valued function defined over R1. A classical

sufficient condition for λ ∈ R1 to be a local minimum for f(λ) over R1 states “λ is a

local minimum for f(λ) over R1 if the first nonzero derivative of f(λ) at λ is of even

order, and this derivative is > 0”. Develop a generalization of this result to Rn, n > 1.

48. Given a vector y = (yj) ∈ Rn, define

∥y∥1 =
n∑
j=1

|yj |

∥y∥∞ = maximum {|yj | : j = 1 to n}

∥y∥2 =

√√√√ n∑
j=1

y2j

y+ = (y+j ) where y
+
j = maximum {0, yj}

∥y∥1, ∥y∥∞, ∥y∥2 are called the 1-norm, ∞-norm, 2-norm, respectively, of the vector

y.

Consider the system

Ax <= b

Bx = d
(91)

where A, B are fixed matrices of orders m×n, p×n respectively; and b, d are column

vectors of appropriate dimensions. Assume that each row vector of A contains at least

one nonzero entry, and if equality constraints do exist, then B is of full row rank (B
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could be vacuous, that is, there may be no equality constraints in (91)). Let K(b, d)

denote the set of feasible solutions of (91). Define

µ(A,B) = supremum ∥u, v∥2
subject to, u, v are row vectors in Rm, Rp,

∥uA+ vB∥1 = 1

u >
= 0

and the set of rows of

A
B

 corresponding to

nonzero elements of (u, v) is linearly independent.

(92)

(i) Prove that µ(A,B) is finite.

(ii) If

 b1

d1

,

 b2

d2

 are such, that K(b1, d1) and K(b2, d2) are both nonempty;

for each x1 ∈ K(b1, d1), prove that there exists an x2 ∈ K(b2, d2) satisfying

∥x1 − x2∥∞ <
= µ(A,B)

∥∥∥∥ b1

d1

−
 b2

d2

∥∥∥∥
2

.

This result can be interpreted as implying that feasible solutions of (91) are

Lipschitz continuous with respect to right hand side constants vector pertur-

bations, with Lipschitz constant µ(A,B) depending only on the coefficient

matrix

A
B

.

(iii) In (91), if B is of full row rank and the system “Ay < 0, By = 0” has a

solution y, prove that K(b, d) ̸= ∅ for all

 b
d

 ∈ Rm+p, and that for any b1

d1

 ,

 b2

d2

 ∈ Rm+p, and x1 ∈ K(b1, d1), there exists an x2 ∈ K(b2, d2)

satisfying

∥x1 − x2∥∞ <
= µ(A,B)

∥∥∥∥ b1

d1

−
 b2

d2

∥∥∥∥
2

where

µ(A,B) = maximum ∥u, v∥2

subject to, u, v are row vectors in Rm, Rp,

∥uA+ vB∥1 = 1

u >= 0.
(93)

(iv) Suppose

 b1

d1

 is such that K(b1, d1) ̸= ∅. For any x ∈ Rn, prove that there

exists an x1 ∈ K(b1, d1) satisfying

∥x− x1∥∞ <
= µ(A,B)

∥∥∥∥∥ (Ax− b1)+

(Bx− d1)

∥∥∥∥∥
2

.
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If the Lipschitz constant µ(A,B) is available, this inequality provides an error

bound on how far x is from a feasible solution of (91).

(v) Consider the LP
minimize cx

subject to Ax <= b

Bx = d

(94)

with A, B fixed, let ΓΓΓ(b, d) denote the set of optimum solutions of (94). If it is

known that ΓΓΓ(b1, d1) and ΓΓΓ(b2, d2) are both nonempty; for any x1 ∈ ΓΓΓ(b1, d1)

prove that there exists an x2 ∈ ΓΓΓ(b2, d2) satisfying

∥x1 − x2∥∞ <
= µ(A,B)

∥∥∥∥ b1

d1

−
 b2

d2

∥∥∥∥
2

where µ(A,B) is the Lipschitz constant defined in (92). This result can be in-

terpreted as implying that optimum solutions of LPs are Lipschitz continuous

with respect to right hand side constants vector perturbations.

(vi) Consider the LP
minimize −(1 + δ)x1−x2
subject to x1+x2 <= 1

x1, x2 >
= 0

(95)

where δ is a real parameter. Show that when δ > −1 and δ ̸= 0, this problem

has a unique optimum solution x(δ) given by

x(δ) =

{
(1, 0)T , if δ > 0
(0, 1)T , if −1 < δ < 0.

By showing that

limit
δ→0+

∥x(δ)− x(−δ)∥
2δ

= +∞

prove that x(δ) is not Lipschitzian with respect to δ.

This shows that in general, optimum solutions of linear programs are not Lips-

chitzian with respect to perturbations in the objective function coefficients.

(vii) Consider the LCP (q,M) of order n. Let J ⊂ {1, . . . , n}. Consider the system

Mi.z + qi >= 0, zi = 0, for all i ∈ J

Mi.z + qi = 0, zi >= 0, for all i ̸∈ J.
(96)

If z is any solution of (96) then z leads to a solution of the LCP (q,M) (that

is, (w =Mz+q, z) is a solution of the LCP (q,M)). Using this fact, Lipschitz

continuity of solutions with respect to the right hand side constants vector

perturbations, can be established for certain classes of LCPs.

For any J ⊂ {1, . . . , n}, define A(J) to be the square matrix of order n such that

(A(J))i. =

{
−Mi. for i ∈ J
Ii. for i ̸∈ J.
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Similarly, define the square matrix B(J) of order n by

(B(J))i. =

{
Ii. for i ∈ J.

−Mi. for i ̸∈ J.

Now define

σ(M) = maximum {µ(A(J), B(J)) : J ⊂ {1, . . . , n}}

where µ(A(J), B(J)) is µ(A,B) of (92) with A = A(J), B = B(J).

Suppose M is a P -matrix and (wr, zr) is the unique solution of the LCP (q,M)

when q = qr, r = 1, 2. Prove that

∥z1 − z2∥∞ <
= σ(M)∥q1 − q2∥2.

This establishes that when M is a P -matrix and fixed, the solution of the LCP (q,M)

is Lipschitz continuous in q with Lipschitz constant σ(M) defined above.

(viii) Let M =

 0 1
−1 0

, q1 =

−ε
1

, q2 =

 ε
1

 where ε > 0. Show that if

z1 = (1, ε)T , z2 = (0, 0)T , the solution of the LCP (qr,M) is (wr = Mzr +

q, zr), r = 1, 2. Verify that

limit
ε→0+

∥z1 − z2∥∞
2ε

= +∞.

This shows that the solution of the LCP (q,M) may not be Lipschitzian in q for fixed

M , when M is positive semidefinite but not a P -matrix. (O. L. Mangasarian and

T. H. Shiau [A11])

49. Let A, b be given real matrices of orders m× n and m× 1 respectively. Consider

the system of equations

Ax = b. (97)

This system may or may not have a solution. It is required to find a vector x that

satisfies (97) as closely as possible using the least squares measure of deviation. For-

mulate this as a nonlinear program and write down the optimality conditions for it.

Prove that this system of optimality conditions always has a solution.

Now consider the problem of finding a vector x satisfying (97) as closely as possible,

subject to the additional constraints ∥x∥ = 1, which is required to be satisfied. This

leads to the nonlinear program

minimize ∥Ax− b∥2
subject to ∥x∥2 = 1.

(98)

Discuss how (98) can be solved to optimality efficiently.
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50. Let f(x) be a real valued function defined on Rn which is thrice continuously

differentiable. Consider the NLP

minimize f(x)

subject to x >= 0.

i) Prove that the first order necessary optimality conditions for this NLP can be

posed as a nonlinear complementarity problem.

ii) Let fi(x) =
∂f(x)
∂xi

, i = 1 to n. Define g(x) = (gi(x) : i = 1 to n)T where

gi(x) = −|xi − fi(x)|3 + x3i + (fi(x))
3.

Prove that solving he NLCP described in (i) above, is equivalent to solving the

system of n equations in n unknowns

g(x) = 0.

Show that g(x) is twice continuously differentiable. (L. Watson [A15])

51. We have received a large shipment of an engineering item. A random sample of

10 items selected from this lot had the following lifetimes in time units.

1.600 1.506 0.501 1.118
0.295 0.070 1.821
0.055 0.499 3.102

Assume that the lifetime, x, of items from the lot follows a Weibull distribution with

the following probability density function

f(x) = αθxθ−1e(−αx
θ), x >= 0.

Formulate the problem of obtaining the maximum liklihood estimators for the param-

eters α, θ as an NLP. Write down the optimality conditions for this NLP, and solve

this NLP using them.

52. Consider the convex polyhedra K1, K2, which are the sets of feasible solutions of

the systems given below
K1

Ax = b

x >= 0

K2

Dy = d

y >= 0.

It is required to find a pair of points (x; y), x ∈ K1, y ∈ K2, which are closest in terms

of the Euclidean distance, among all such pairs. Does this problem have a unique

optimum solution? Why?
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Formulate this problem as an NLP and write down the necessary optimality con-

ditions for it. Are these conditions also sufficient for optimality for this problem?

53. Write down the necessary optimality conditions for Sylvester’s problem, Exercise

1.25, and determine whether these conditions are also sufficient for optimality.

54. We are given smooth real valued functions θ1(x), . . . , θr(x), g1(x), . . . , gm(x), all

defined over Rn. Consider the following optimization problem:

minimize v(x)

subject to gi(x) >= 0, i = 1 to m

where for each x ∈ Rn, v(x) = maximum {θ1(x), . . . , θr(x)}. Transform this problem

into a smooth NLP with a linear objective function, but with additional constraints

than those in this problem. Write down the necessary optimality conditions for the

transformed problem and simplify them. State some general conditions on the data in

the problem under which these conditions are also sufficient for optimality. Show that

this technique can be used to transform any NLP into an NLP in which the objective

function is linear.

55. The army has n types of weapons available. Using them, they want to destroy m

targets. The following data is given:

pij = probability that a weapon of type j shot at target type i will destroy it,

vi = value in $ of target i,

bj = number of weapons of type j available.

Assume that a weapon shot at a target either destroys it, or leaves it absolutely unaf-

fected.

Formulate the problem of determining the number of weapons of each type to

be shot at each of the targets, so as to maximize the expected value destroyed, as

an NLP. Neglecting the integer requirements on the decision variables in this problem,

write down the necessary optimality conditions for it. Specialize these for the numerical

example with the following data.

n = 2, m = 3

p = (pij) =

 .25 .05
.35 .08
.15 .17

 , v = (vi) =

 150
95
375

 , b = (bi) =

 6
10

 .

56. Let B, A be matrices of order n×n and m×n respectively. Suppose rank(A) = m

and B is symmetric and PD on the subspace {x : Ax = 0}. Then prove that the matrixB AT

A O

 is nonsigular.
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57. Let f(x) be a real valued convex function defined on Rn. Assume that f(x) is

twice continuously differentiable at a given point x ∈ Rn. Define

l(x) = f(x) +∇f(x)(x− x)

Q(x) = f(x) +∇f(x)(x− x) + 1
2 (x− x)TH(f(x))(x− x).

The functions l(x), Q(x) are respectively the first and second order Taylor approxi-

mations for f(x) around x. In Theorem 15 we established that f(x)− l(x) always has

the same sign (>= 0) for all x ∈ Rn. Discuss whether f(x)−Q(x) always has the same

sign for all x ∈ Rn. If so, what is that sign? Why? (Richard Hughes)

58. Let K denote the set of feasible solutions of

Ax >= b (99)

where A is an m× n matrix. We know that K ̸= ∅ and dimension of K is n. θ(x) is a

strictly convex function defined on Rn, with a unique unconstrained minimum in Rn,

x. We know that x satisfies all but one constraint in (99). Suppose Ai.x >= bi for i = 2

to m, but A1.x < b1. Prove that if the problem

minimize θ(x)

x ∈ K

has an optimum solution, the first constraint in (99) must be active at it. What is the

appropriate generalization of this result when x violates more than one constraint in

(99)? (M. Q. Zaman, S. U. Khan, and A. Bari, private communication).

59. Let f(λ) : R1 → R1 be a continuously differentiable strictly increasing function

of the real parameter λ.

Let θ(x) : Rn → R1, g(x) : Rn → Rm, h(x) : Rn → Rt be continuously

differentiable functions.

Consider the constraint system

g(x) >= 0

h(x) = 0
(100)

and the two optimization problems

Problem 1: Minimize θ(x), subject to (100)

Problem 2: Minimize f(θ(x)), subject to (100).

Rigorously prove that both the problems have the same set of stationary points.

(H. L. Li, private communication.)
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60. Consider the following separable NLP

minimize

n∑
j=1

fj(xj)

subject to
n∑
j=1

xj >= 1

xj >= 0, j = 1 to n

where fj(xj) is a differentiable function for all j. If x = (xj) solves this problem, prove

that there must exist a nonnegative scalar k such that

dfj(xj)

dxj
>
= k for all j,

and for all j such that xj > 0 ,
dfj(xj)

dxj
= k.

61. Let A be a given matrix of order m× n. Prove that at least one of the following

systems
(I)

Ax >= 0

x >= 0

(II)

πA <
= 0

π >
= 0

has a nonzero feasible solution.

62. Consider the following LP

minimize cx

subject to Ax >= b

x >= 0.

Let K, ΓΓΓ denote the set of feasible solutions of the LP, and its dual respectivley. Prove

that either both K and ΓΓΓ are empty, or at least one of K, ΓΓΓ is an unbounded set.

63. Let D be the diagonal matrix diag(λ1, . . . , λn), where λ1 >= λ2 >= . . . >= λn > 0.

Consider the following NLP

minimize (yTDy)(yTD−1y)

subject to yT y = 1.

(i) Transform this NLP into another problem in new variables x1, . . . , xn in which the

objective function to be optimized is a product of two linear functions, g(x) and h(x),

say, and the constraints are all linear. Call this transformed problem (P).
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(ii) Show that (P) must have a global optimum solution.

Assume that x∗ is an optimum solution of (P). Let h(x∗) = δ. Show that x∗ must

also be an optimum solution of the LP in the variables x = (x1, . . . , xn) in which the

objective function to be optimized is g(x), and the constraints are the same as those

in (P) plus the additional constraint h(x) = δ. Conversely, show that every optimum

solution of this LP must also be optimal to (P). Using this, show that (P) has an

optimum solution in which two variables among x1, . . . , xn are positive, and the others

are all zero.

(iii) Consider the problem (P) again. In this problem, substitute xi = 0 for all i ̸= p, q,

for some selected p, q between 1 to n. Show that in the optimum solution of this

reduced problem, both xp and xq are equal.

(iv) Use the above results to prove Kantorovich’s inequality which states the following:

Let A be a symmetric PD matrix of order n with eigen values λ1 >= λ2 >= . . . >= λn > 0.

Then

(yTAy)(yTA−1y) <=
(λ1 + λn)

2

4λ1λn
for all y such that ∥y∥ = 1.

(M. Raghavachari, “A linear programming proof of Kantorovich’s inequality”, The

American Statistician, 40 (1986) 136–137.)

64. f(x) is a real valued differentiable function defined on Rn. Prove that f(x) is a

convex function iff

(∇f(x2)−∇f(x1))(x2 − x1) >= 0,

for all x1, x2 ∈ Rn. Similarly, prove that a real valued differentiable function g(x)

defined on Rn is concave iff

(∇g(x2)−∇g(x1))(x2 − x1) <= 0,

for all x1, x2 ∈ Rn.

65. Let f(x) be a real valued convex function defined on Rn. For each x ∈ Rn

let f+(x) and f−(x) denote the positive and negative parts of f(x), that is, f+(x)

and f−(x) satisfy for all x ∈ Rn, f+(x) >= 0, f−(x) >= 0, f(x) = f+(x) − f−(x),

(f+(x))(f−(x)) = 0. Are f+(x) and f−(x) both convex functions over Rn? Why?

66. Consider the linearly constrained NLP

minimize θ(x)

subject to Ax = b

where θ(x) is a real valued continuously differentiable convex function defined on Rn,

and A is an m × n matrix of rank m. If x∗ is a feasible solution for this problem

satisfying
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∇θ(x∗)(I −AT (AAT )−1A) = 0

prove that x∗ is an optimum solution of the NLP.

67. Consider the NLP

minimize cx

subject to gi(x) >= 0, i = 1 to m

where c = (c1, . . . , cn) ̸= 0, and gi(x) is a continuously differentiable real valued

function defined over Rn for each i = 1 to m. Suppose x∗ is a local minimum for

this problem, and is a regular point. Prove that there exists at least one i such that

gi(x
∗) = 0.

68. i) On the x1, x2-Cartesian plane, find the nearest point on the parabola {x =

(x1, x2)
T : x22 = 4x1} to (1, 0)T in terms of the Euclidean distance.

ii) For the following NLP, check whether either of x1 = (1, 12 )
T or x2 = ( 13 ,−

1
6 )
T are

optimum solutions
minimize x21 + 2x22
subject to x21 + x22 <= 5

2x1 − 2x2 = 1.

69. Let f(x) be a real valued continuously differentiable convex function defined over

Rn and let K be a closed convex subset of Rn. Suppose x ∈ K is such that it is the

nearest point (in terms of the Euclidean distance) in K to x−λ∇f(x) for some λ > 0.

Prove that x minimizes f(x) over x ∈ K. Construct the converse of this statement

and prove it too.

70. Consider the following NLP

minimize θ(x)

subject to l <= x <= k

where θ(x) is a real valued twice continuously differentiable function defined on Rn,

and l, k are two bound vectors in Rn satisfying l < k. Develop an algorithm for

solving this problem, which takes advantage of the special structure of the problem.

Write down the termination criteria that you would use, and provide a justification for

them. Also, mention what type of a solution the algorithm is guaranteed to obtain at

termination.

71. Consider the following NLP

minimize θ(x)

subject to ai <= gi(x) <= bi(x), i = 1 to m

and l <= x <= k
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where θ(x), gi(x), . . . , gn(x) are all real valued twice continuously differentiable func-

tions defined over Rn, and a = (ai), b = (bi), l, k satisfy a <= b, l < k. Discuss how

you can solve this problem using the algorithm developed in Exercise 70.

72. θ(x) is a real valued continuously differentiable convex function defined over Rn.

K is a closed convex subset of Rn. If x ∈ K is the global maximum for θ(x) over

x ∈ K, prove that

∇θ(x)x <= ∇θ(x)x, for all x ∈ K.

Is the converse of this statement also true? Why?

Would the above inequality hold for all x ∈ K if x is only a local maximum for

θ(x) over K and not a global maximum? Why?

73. If M is a P -matrix of order n (not necessarily PD) prove that the system

πM > 0

π >
= 0

has a solution π.

74. Write down the first order necessary optimality conditions for the following NLP,

and find an optimum solution for it.

minimize (x1 − 4)2 + (x2 + 1)2

subject to 7 <= x1 <= 14

10 <= x2 <= 22.

75. Consider the following linear program

minimize z(x) = = cx

subject to Ax = b

Dx >= d.

Let K denote the set of feasible solutions for this problem. Show that the primal

simplex algorithm for this problem, is exactly the gradient projection method (Section

10.10.5) applied on this problem, beginning with a feasible point x0 which is an extreme

point of K.

76. θ(x); hi(x), i = 1 to m; gp(x), p = 1 to t are all real valued twice continuously

differentiable functions defined over Rn.

i) Consider the NLP
minimize θ(x)

subject to hi(x) = 0, i = 1 to m,

gp(x) >= 0, p = 1 to t.
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Let L(x, µ, π) = θ(x) −
∑m
i=1 µihi(x) −

∑t
p=1 πpgp(x) be the Lagrangian. Suppose

we have a feasible solution x to this NLP and Lagrange multiplier vectors µ, π such

that (x, µ, π) satisfy the first order necessary optimality conditions for this NLP, and

the additional condition that L(x, µ, π) is a convex function in x over Rn (notice that

L(x, µ, π) could be a convex function, even though θ(x), −gp(x), hi(x) and −hi(x) are
not all convex functions). Then prove that x must be a global minimum for this NLP.

ii) Consider the numerical example

minimize (x1 − α)2 + (x2 − α)2

subject to x21 − 1 = 0

1− x22 <= 0

where α is any real number satisfying ∥α∥ <= 1. Let x = (x1, x2)
T = (1, 1)T , µ = (α−1),

π = (1−α). Verify that x is a global minimum for this problem using the result in (i).

(P. Mereau and J. A. Paquet, “A sufficient condition for global constrained extrema”,

Int. J. Control, 17 (1973) 1065–1071).

77. θ(x); gi(x), i = 1 to m are all real valued convex functions defined over Rn.

Consider the NLP
minimize θ(x)

subject to gi(x) <= 0, i = 1 to m.

i) Prove that the set of all optimum solutions of this problem is a convex set.

ii) A real valued function defined on Rn is said to be a symmetric function if f(x) =

f(Px), for all x ∈ Rn, and P any permutation matrix of order n. If all the functions

θ(x), gi(x), i = 1 to m, are symmetric functions, and the above problem has an

optimum solution, prove that it has one in which all the variables are equal.

Exercises 78 to 98 have been suggested to me by Vasant A. Ubhaya.

78. Let J be an interval of the real line. f(x) is a real valued function defined on J.

Prove that f(x) is convex iff for any three point x, y, z in J with x < y < z,

determinant

∣∣∣∣∣∣
x f(x) 1
y f(y) 1
z f(z) 1

∣∣∣∣∣∣ >= 0.

79. Let a1 >= a2 >= . . . >= an >= 0 and let f(x) be a real valued convex function defined

on the interval [0, a1] with f(0) = 0. Show that

n∑
k=1

(−1)k−1f(ak) >= f
( n∑
k=1

(−1)k−1ak
)
. (contd.)
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(E. F. Beckenbach and R. Bellman, “Inequalities”, Springer-Verlag, New York, 1983,

and E. M. Wright, “An inequality for convex functions”, American Mathematical

Monthly, 61 (1984) 620-622.)

80. Let J be a closed interval of the real line. A real valued function f(x) defined on

J is said to be midconvex or Jensen-convex if

f
(x+ y

2

)
<
=

1

2
(f(x) + f(y))

for all x, y ∈ J. Prove that if f(x) is midconvex, then

f(λx+ (1− λ)y) <= λf(x) + (1− λ)f(y)

for all x, y ∈ J and all rational numbers λ between 0 and 1. Hence conclude that a

continuous function is midconvex iff it is convex. (A. W. Roberts and D. E. Varberg,

“Convex Functions”, Academic Press, New York, 1973.)

81. Let ΓΓΓ ⊂ Rn be a convex set, and let f(x) be a real valued convex function defined

on ΓΓΓ. Let g(λ) be a nondecreasing convex function defined on a real interval J where

the range of f(x) is contained in J. Prove that h(x) = g(f(x)) is convex. Use this to

show the following:

a) If f(x) is a positive concave function defined on ΓΓΓ, then 1/f(x) is convex.

b) If f(x) is a nonnegative convex function defined on ΓΓΓ, then (f(x))r is convex for

r >= 1.

c) If f(x) is a convex function defined on ΓΓΓ, then exp(f(x)) is convex.

82. Let y = (y1, . . . , yn−1)
T , and ΓΓΓ = {y : 0 = y0 < y1 < . . . < yn−1 < yn = 1}.

Define, for j = 0, 1, . . . , n

Dj(y) =
∏

(|yi − yj | : over 0 <= i <= n, i ̸= j)

= (−1)j
∏

((yi − yj) : over 0 <= i <= n, i ̸= j)

where
∏

denotes the product sign. Define

F (y) =
∑

((Dn−1−2j(y))
−1 : over 0 <= j <= ⌊(n− 1)/2⌋).

Show that F (y) is a strictly convex function of y over ΓΓΓ. Prove that y∗ = ((sin(π/2n)2,

(sin(2π/2n))2, . . . , (sin((n− 1)π/2n))2)T is the unique optimum solution for the prob-

lem of minimizing F (y) over ΓΓΓ, and that F (y∗) = 22n−2. Prove the following inequal-

ities for all y ∈ ΓΓΓ.

(i)
∑

((Dj(y))
−1 : over j odd, 1 <= j <= n− 1) >

= 22n−2, if n is even.

(ii)
∑

((Dj(y))
−1 : over j even, 0 <= j <= n− 1) >

= 22n−2, if n is odd.

(iii)
∑

((Dj(y))
−1 : over j odd, 1 <= j <= n ) >

= 22n−2, if n is odd.

(iv)
∑

((Dj(y))
−1 : over 0 <= j <= n ) >

= 22n−1, if n is odd.
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Furthermore prove that each of the above inequalities holds as an equation iff y = y∗

defined above. (V. A. Ubhaya “Nonlinear programming, approximation and opti-

mization on infinitely differentiable functions”, Journal of Optimization Theory and

Applications, 29 (1979), 199-213.)

83. Let S ⊂ Rn+1 be a convex set. Define a set ΓΓΓ ⊂ Rn and a real valued function

f(x) on ΓΓΓ as follows.

ΓΓΓ = {x ∈ Rn : u ∈ R1, (x, u) ∈ S}.
f(x) = inf{u : x ∈ ΓΓΓ, (x, u) ∈ S}.

Show that ΓΓΓ is convex and f(x) is a convex function on ΓΓΓ.

84. Let ΓΓΓ ⊂ Rn and f(x) be any real valued function defined on ΓΓΓ. The epigraph

E(f) of f(x) is a subset of Rn+1 defined as in Appendix 3. Assume that ΓΓΓ is closed,

and show that E(f) is closed iff f(x) is lower semi-continuous. In particular, E(f) is

closed if ΓΓΓ is closed and f(x) is continuous.

85. Let ΓΓΓ ⊂ Rn be a convex set and f(x) be a real valued bounded function defined

on ΓΓΓ. The greatest convex minorant f(x) of f(x) is the largest convex function which

does not exceed f(x) at any point in ΓΓΓ, viz.,

f(x) = sup{h(x) : h(y) is convex and h(y) <= f(y) for all y in ΓΓΓ}, x ∈ ΓΓΓ.

Show that f(x) defined in this way is, indeed, convex. If E(f) is the epigraph of f(x)

then show that

f(x) = inf{u : x ∈ ΓΓΓ, (x, u) ∈ co(E(f))},

where co(E(f)) is the convex hull of E(f), i. e., the smallest convex subset of Rn+1

containing E(f).

86. Let ΓΓΓ ⊂ Rn be convex and f(x) be a real valued convex function defined on ΓΓΓ.

Assume 0 <= f(x) < 1. Show that (1+f(x))1/2 and (1−f(x))−1/2 are convex functions

on ΓΓΓ. Is ((1 + f(x))/(1− f(x)))1/2 convex?

87. Let f(x) be a real homogeneous polynomial of degree 2 defined on Rn, i. e.,

f(x) =
∑
i

aix
2
i +

∑
i<j

bijxixj ,

where x = (x1, x2, . . . , xn); and ai, bij are given numbers. Show that f(x) is convex iff

f(x) is nonnegative on Rn.
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88. Let f(x) be a real valued function defined on the interval J = [0, 1]. The nth

(n >= 1) Bernstein polynomial for f(x) is defined by

Bn(f, x) =
n∑
k=0

f
(k
n

)(n
k

)
xk(1− x)n−k.

Note that Bn(f, 0) = f(0) and Bn(f, 1) = f(1). Show the following:

(a) If f(x) is nondecreasing on J, then Bn(f, x) is nondecreasing on J.

(b) If f(x) is convex on J, then Bn(f, x) is convex on J. In this case, Bn−1(f, x) >=
Bn(f, x) for 0 < x < 1 and n >= 2.

(c) If f(x) is bounded on J, then Bn(f, x) → f(x) as n → ∞ at any point x in

J at which f(x) is continuous. Furthermore, if f(x) is continuous on J, then

this convergence is uniform on J. Hence conclude that the class of nondecreasing

(convex) polynomials on J are dense in the class of continuous nondecreasing

(convex) functions on J when the uniform norm ∥f∥ = max{|f(x)| : x ∈ J} is

used to generate a metric for the set of continuous functions f(x).

(P. J. Davis, “Interpolation and Approximation”, Dover, New York, 1975).

89. Let ΓΓΓ be a convex subset of Rn and f(x) a real valued function defined on ΓΓΓ. f(x)

is said to be a quasiconvex function if {x ∈ ΓΓΓ : f(x) <= α} is a convex set for all real α.

A real valued function g(x), defined on a convex set is said to be quasiconcave, if

−g(x) is quasiconvex.
Show that f(x) is quasi-convex on ΓΓΓ iff

f(λx+ (1− λ)y) <= max{f(x), f(y)}

holds for all x, y ∈ ΓΓΓ, all 0 <= λ <= 1.

90. The following result is well known:

Let ΓΓΓ ⊂ Rn and ∆∆∆ ⊂ Rm be compact convex subsets. Let h(x, y) be a continuous

real valued function defined on ΓΓΓ × ∆∆∆ be such that, for each y ∈ ∆∆∆, h(x, y) is a

quasiconcave function of x; and for each x ∈ ΓΓΓ, h(x, y) is a quasiconvex function of y.

Then,

min
y∈∆

max
x∈Γ

h(x, y) = max
x∈Γ

min
y∈∆

h(x, y).

(See, e. g., H. Nikaidô, “On Von Neumann’s minimax theorem”, Pacific Journal of

Mathematics, 4 (1954), 65–72, for the above result and M. Sion, “On general mini-

max theorems”, Pacific Journal of Mathematics, 8 (1958), 171–176, for more general

versions.) Using the above result, derive the following:

Let K, P be bounded subsets of R2 with the property that there exists a δ > 0

such that u1 >= δ for all u = (u1, u2)
T ∈ K and v1 >= δ for all v = (v1, v2)

T ∈ P. Then,

inf
v∈P

{
supu∈K

{u2 + v2
u1 + v1

}}
= supu∈K

{
inf
v∈P

{u2 + v2
u1 + v1

}}
(contd.)
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(V. A. Ubhaya, “Almost monotone approximation in L∞”, Journal of Mathematical

Analysis and Applications, 49 (1975), 659–679).

91. A metric on Rn is a real valued function d(x, y) defined over ordered pairs of

points in Rn satisfying the following properties.

d(x, y) >= 0, for all x, y ∈ Rn

d(x, y) = 0, iff x = y

d(x, y) > 0, iff x ̸= y

d(x, y) = d(y, x), for all x, y ∈ Rn

d(x, y) + d(y, z) >= d(x, z), for all x, y, z ∈ Rn.

Let d(x, y) be a metric on Rn and F be a nonempty subset of Rn. For each x in Rn,

let f(x) denote the minimum distance between x and F, viz.,

f(x) = inf{d(x, u) : u ∈ F}.

Show that

|f(x)− f(y)| <= d(x, y)

for all x, y in Rn. Thus f is nonexpansive.

92. Let

d′(f, g) = max{wi|fi − gi| : 1 <= i <= n},

denote the distance between two vectors f = (f1, f2, . . . , fn) and g = (g1, g2, . . . , gn),

where w = (w1, w2, . . . , wn) > 0 is a given weight vector. A vector g is called isotonic

if gi <= gi+1, 1 <= i < n. Given a vector f , the problem is to find an isotonic vector g

which minimizes d′(f, g). Such a g, called an optimal vector, is not unique in general.

Denote the minimum of d′(f, g) over isotonic vectors g, for given f , by ∆.

Define the following quantities:

θ = max
{ wiwj
wi + wj

(fi − fj) : 1 <= i <= j <= n
}
,

g
i
= max{fj − θ/wj : 1 <= j <= i}, 1 <= i <= n,

gi = min{fj + θ/wj : 1 <= j <= n}, 1 <= i <= n.

Show the following: (a) Duality: ∆ = θ, (b) Optimality: g and g are optimal vec-

tors with g <
= g. Furthermore, an isotonic g is an optimal vector iff g <

= g <
= g.

(V. A. Ubhaya, “Isotone optimization, I, II”, Journal of Approximation Theory, 12

(1974), 146–159 and 315–331).

93. Consider Exercise 92 with wi = 1 for all i and define

d(f, g) = max{|fi − gi| : 1 <= i <= n}.
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hi = max{fj : 1 <= j <= i}, 1 <= i <= n,

hi = min{fj : i <= j <= n}, 1 <= i <= n.

Show the following:

θ = max{(hi − fi) : 1 <= i <= n} = max{(fi − hi) : 1 <= i <= n}

and

g
i
= hi − θ, gi = hi + θ.

Construct an O(n) algorithm for computing optimal vectors g and g.

94. Let d(f, g), as defined in Exercise 93, denote the distance between two vectors f

and g. A vector g is called convex if it satisfies

gi−1 − 2gi + gi+1 >= 0, 1 < i < n,

or more generally,

ai−1gi−1 − (ai−1 + ai)gi + aigi+1 >= 0, 1 < i < n,

where ai, 1 <= i < n, are given positive numbers. Given a vector f , the problem is

to find a convex vector g, called an optimal vector, which minimizes d(f, g). Let ∆

denote the minimum of d(f, g) over convex vectors g, for given f .

The greatest convex minorant h = (h1, h2, . . . , hn) of f is the largest convex vector

(i. e. satisfying the above condition) which does not exceed f . (See Exercise 85). Show

the following: ∆ = (1/2)d(f, h) and g = h + e∆ is the maximal optimal vector, i. e.,

for all optimal vectors g it is true that g >
= g. Construct an O(n) algorithm for

computing h and then g. (V. A. Ubhaya, “An O(n) algorithm for discrete n-point

convex approximation with applications to continuous case”, Journal of Mathematical

Analysis and Applications, 72 (1979), 338–354.)

95. In connection with Exercise 94 consider the following LP.

minimize
∑n
i=1 xi

subject to −xi−1 + 2xi − xi+1 >= −fi−1 + 2fi − fi+1, 1 < i < n

xi >= 0, 1 <= i <= n.

Show that the LP has a unique optimal solution x∗ and the quantities defined in

Exercise 94 for the first convexity constraint are given by

∆ = (1/2)max{x∗i : 1 <= i <= n},
gi = ∆− x∗i + fi, 1 <= i <= n.

Devise a special pivoting strategy in conjunction with the Dual Simplex Algorithm of

linear programming to solve the above LP in O(n) computing time. (V. A. Ubhaya,
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“Linear time algorithms for convex and monotone approximation”, Computers and

Mathematics with Applications, An International Journal, 9 (1983), 633–643.)

96. A vector g = (g1, g2, . . . , gn) is called quasiconvex if

gj <= max{gp, gq},

for all j with p <= j <= q and for all 1 <= p <= q <= n. Show that g is quasiconvex iff there

exists 1 <= r <= n such that gi >= gi+1 for 1 <= i < r and gi <= gi+1 for r <= i < n. Show

that the set of all quasiconvex vectors is a closed nonconvex cone, but the set of all

isotonic or convex vectors is a closed convex cone.

Let d(f, g) be as defined in Exercise 93. Given a vector f , consider the problem

of finding a quasiconvex vector g, called an optimal vector, which minimizes d(f, g).

Show that there exist two optimal vectors g and g with g <= g so that any quasiconvex

vector g with g <= g <= g is also an optimal vector. Furthermore, g is the maximal

optimal vector, i. e., for all optimal vectors g it is true that g >= g. Construct an O(n)

algorithm to compute g and g. (V. A. Ubhaya, “Quasi-convex optimization”, Journal

of Mathematical Analysis and Applications, 116 (1986), 439–449.)

97. Exercise 93 to 96 involved finding an isotonic, convex or quasiconvex vector g

minimizing d(f, g) given the vector f . Such an optimal vector g is not unique in

general. For each f it is of interest to select an optimal vector f ′ (in each of three

cases) so that f ′ is least sensitive to perturbations in f . Specifically, the following two

conditions may be imposed on the selection f ′ for f .

(i) d(f ′, h′) <= C d(f, h) holds for all vectors f , h for some least number C. This

makes the mapping T defined by T (f) = f ′ Lipschitzian with constant C.

(ii) The selection f ′ is such that the number C is smallest among all selections of

optimal vectors for f . This makes T optimal.

Thus a mapping T satisfying (i) and (ii) may be called an optimal Lipschitzian

selection operator.

Show that optimal Lipschitzian selections are possible for the three problems as

shown below. Here g and g are as defined in Exercises 93, 94 and 96.

(a) Isotonic problem: T (f) = f ′ = (1/2)(g + g) and C = 1.

(b) Convex problem: T (f) = f ′ = g and C = 2.

(c) Quasiconvex problem: T (f) = f ′ = g and C = 2.

(V. A. Ubhaya, “Lipschitz condition on minimum norm problems on bounded

functions”, Journal of Approximation Theory, 45 (1985), 201–218, also “Optimal Lip-

schitzian selection operator in quasi-convex optimization”, Journal of Mathematical

Analysis and Applications, to appear).

98. Prove that the functions logx and xlogx are respectively concave and convex on

the interval 0 < x <∞. Using this, eastablish the following inequality: if x > 0, y > 0,
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both x, y ∈ R1, then

log
x+ y

2
<
=
xlogx+ ylogy

x+ y
<
= log

x2 + y2

x+ y
.

99. (i) Let θ(x), hi(x), i = 1 to m be continuously differentiable real valued functions

defined over Rn. Consider the nonlinear program.

minimize θ(x)

subject to hi(x) = 0, i = 1 to m.

Prove that if x̂ is a feasible solution to this nonlinear program which is a local minimum

for this NLP, then the set of vectors {∇θ(x̂);∇hi(x̂), i = 1 to m} must be a linearly

dependent set.

(ii) Consider the following NLP

minimize θ(x)

subject to hi(x) = 0, i = 1 to m

gp(x) >= 0, p = 1 to t

where θ(x), hi(x), gp(x) are all continuously differentiable real valued functions defined

over Rn. Let x be a feasible solution to this NLP. Define P(x) = {p : p = 1 to t, gp(x)

= 0}. If x is a local minimum for this NLP, prove that the set of vectors

{∇θ(x)} ∪ {∇hi(x) : i = 1 to m} ∪ {∇gp(x) : p ∈ P(x)}

must be a linearly dependent set. In addition, prove that there must exist a linear

dependence relation for this set of vectors of the form

δ0∇θ(x)−
m∑
i=1

µi∇hi(x)−
∑

p∈P(x)

πpgp(x) = 0

where (δ0, µi for i = 1 to m; πp to p ∈ P(x)) ̸= 0 and (δ0, πp : p ∈ P(x)) >= 0.

100. Consider the following general QP

minimize Q(x) = cx+ (1/2)xTDx

subject to Ax >
= b

x >
= 0.

Define the following:

K = Set of feasible solutions of this problem.

L = Set of all local minima for this problem.

G = Set of all global minima for this problem.
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If K is bounded, prove that each of the sets L and G, is a union of a finite number of

convex polyhedra. Is this result also true when K is not bounded?

101. Maximum Area Hexagon of Diameter One: A problem which has long

intrigued mathematicians if finding the maximum area convex polygon in R2 with an

even number of sides, and an upper bound on its diameter. The diameter of a convex

polygon is defined to be the maximum distance between any pair of points in it. When

the number of sides is odd, the regular polygon has the maximum area; but this may

not be true when the number of sides is even.

Consider the special case of this problem, of finding the maximum area hexagon

of diameter one. Clearly, without any loss of generality, one can assume that two of

the vertices of the hexagon are (0, 0) and (0, x1); and that the other vertices have

coordinates and positions as entered in the following figure,

(0,    )

(    ,    )

(    ,    )

(    ,    )

(    ,    )

(0,0)

x
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x
6

x
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x
5

x
4

x
3

x
2

x
8

x
9

Figure 23

where x2, x4, x6, x8 are all >= 0. Formulate the problem of finding the maximum

area hexagon of diameter one, as a nonlinear program in terms of the variables x1
to x9. Check whether your model is a convex or nonconvex NLP. Write down the

necessary optimality conditions for your problem. Solve it on a computer using one of

the algorithms discussed in this text.
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102. Let gi(x) be a differentiable convex function defined on Rn for i = 1 to m. Let

x be a feasible solution of the system

gi(x) <= 0, i = 1 to m

and let J(x) = {i : gi(x) = 0}. Prove that the system: gi(x) < 0, i = 1 to m, has a

feasible solution iff the objective value in the following LP, in which the variables are

λ, d = (d1, . . . , dn)
T , is unbounded above.

minimize λ

subject to ∇gi(x)d+ λ <= 0, i ∈ J(x).

103. Let gi(x) be a differentiable convex function defined on Rn for i = 1 to m. Let

x be a feasible solution of the system

gi(x) <= 0, i = 1 to m.

Prove that the system: gi(x) < 0, i = 1 to m, has a feasible solution, iff the following

system has no feasible solution π = (π1, . . . , πm).

m∑
i=1

πi∇gi(x) = 0

π ≥ 0.

104. Let A(m × n), B(m × p), a(1 × n), b(1 × p) be given matrices. Prove that

exactly one of the following two systems (I), (II) has a feasible solution, and the other

is infeasible.
(I)

Ax+By = 0

ax+ by < 0

x >= 0

(II)

πA <
= a

πB = b

105. Let A(m× n), B(m× p), a(1× n), b(1× p) be given matrices where b is in the

linear hull of the row vectors of B. Prove that exactly one of the following systems (I),

(II) has a feasible solution, and the other is infeasible.

(I)

Ax+By = 0

ax+ by <= 0

x ≥ 0

(II)

πA < a

πB = b
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106. Consider the following NLP involving the vectors of decision variables x ∈ Rn1 ,

and y ∈ Rn2

minimize h(x, y) = θ(x) + cy

subject to g(x) + ay = b1 (m1 constraints)

Bx+Dy = b2 (m2 constraints)

l1 <= x <= u1

l2 <= y <= u2

where θ(x), g(x) are continuously differentiable functions. Given x ∈ Rn1 , y ∈ Rn2

satisfying the bound constraints in the NLP, define the following LP, which comes from

a linearization of the NLP around (x, y).

minimize ∇θ(x)d+ cy

subject to ∇g(x)d+Ay = b1 − g(x)

Bd+Dy = b2 −Bx

max{l1j − xj , sj} <= dj <= min{u1j − xj , sj}, j = 1 to n1

l2 <= y <= u2

where d = x − x, s = (sj) ∈ Rn1 , s > 0 is a vector of small positive numbers used to

bound d in the LP to keep the linearization reasonably accurate. Prove the following

i) If (x, y) is feasible to the NLP, (d, y) = (0, y) is feasible to the above LP for any

s > 0.

ii) If the constraint matrix of the LP has full row rank, and (x, y) is a feasible solution

of the NLP, then (0, y) is an optimum solution of the above LP iff (x, y) is a KKT

point for the NLP.

iii) Let (x, y) be a feasible solution for the NLP, and suppose (0, y) is not an opti-

mum solution for the above LP. If (d0, y0) is an optimum solution for the LP, then

∇θ(x)d0 + c(y0 − y) < 0, that is, (d0, y0 − y) is a descent direction for the NLP

at the point (x, y). (See F. Palacios-Gomez, L. Lasdon and M. Engquist, “Non-

linear optimization by successive linear programming”, Management Science, 28,

10 (October 1982) 1106–1120.)

107. Consider the following NLP

minimize Q(x) = cx+ 1
2x

TDx

subject to ∥x∥ <= δ

where D is a PD symmetric matrix of order n and δ > 0. Write down the KKT opti-

mality conditions for this problem. Prove that the optimum solution of this problem is

x(λ) = −(D + λl)−1cT for the unique λ >= 0 such that ∥x(λ)∥ = δ; unless ∥x(0)∥ <= δ,

in which case, x(0) is the optimum solution.
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108. Let f(x) = f1(x), . . . , fn(x))
T where each fj(x) is a continuous function defined

ofer Rn. Let K be a closed convex cone in Rn. Define the polar cone of K to be

K∗ = {y : y ∈ Rn, yTx >
= 0 for all x ∈ K}. (For example, if K is the nonnegative

orthant, K∗ is tha same. Let J ⊂ {1, . . . , n}. If K is the orthant {x : x = (xj) ∈
Rn, xj >= 0 for j ̸∈ J, xj <= 0 for j ∈ J}, then K∗ is again K itself.)

The generalized complementary problem corresponding to f(x) and K is to find

x satisfying

x ∈ K, f(x) ∈ K∗, xT f(x) = 0 (101)

using the hypothesis that K is a closed convex cone, prove that the generalized com-

plementarity problem (101) is equivalent to the variational inequality problem: find

x∗ ∈ K satisfying

(x− x∗)T f(x∗) >= 0 for all x ∈ K (102)

(see Karamardian [1.14]).

109. Let K, K∗, f(x) be defined as in the previous Exercise 108. For any x ∈ Rn

define PK(x) to be the projection of x into K (i. e., the nearest point in K to x, in

terms of the usual Euclidean distance). Prove that a solution x∗ ∈ K to the variational

inequality problem (102), can be characterized by the relation

x∗ = PK(x∗ − ρf(x∗))

where ρ is a positive constant. Using this, show that the generalized complementarity

problem (101) can be formulated as the fixed point problem of finding x ∈ K satisfying

x = g(x) (103)

where g(x) = λPK(x− ρf(x)) + (1− λ)x, with a constant ρ > 0 and 0 < λ <= 1. Here

λ is known as the relaxation factor used after the projection.

Study the application of the successive substitution method for solving (103).

This method will begin with a given x0 ∈ K, and generate the sequence of points

{xr : r = 0, 1, . . .} using the iteration, xr+1 = g(xr). The iterative methods discussed

in Sections 9.3, 9.4, 9.5 are special cases of this general approach. Study the con-

vergence properties of the sequence of points generated under this method (M. Aslam

Noor, and K. Inayat Noor, “Iterative methods for variational inequalities and nonlinear

programming”, Operations Research Verf., 31 (1979) 455–463).

110. Let K ⊂ Rn be convex and let f(x) = (f1(x), . . . , fn(x))
T , where each fi(x) is a

continuous real valued function defined over K. Define a point x ∈ K to be a critical

point for the pair (f,K) if y = x minimizes (f(x))T y over y ∈ K. Let ΓΓΓ(f,K) denote

the set of all critical points for the pair (f,K).

Let ∆∆∆(f,K) denote the set of all points x ∈ K such that y = x minimizes ∥y −
x+ f(x)∥ over y ∈ K. Prove that ∆∆∆(f,K) ⊂ ΓΓΓ(f,K).
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Let θ(x) be a real valued continuously differentiable function defined over K.

Consider the NLP
minimize θ(x)

over x ∈ K.

Prove that every stationary point for this NLP is a critical point for the pair (∇θ(x),K).

If K = Rn
+ = {x : x ∈ Rn, x >= 0}, prove that the problem of finding a critical point

for the pair (f,Rn
+) is equivalent to the nonlinear complementarity problem (NLCP):

find x ∈ Rn satisfying

x >= 0, f(x) >= 0, xT f(x) = 0.

Let d ∈ Rn, d > 0 be a given vector. Let D(α) = {x : x ∈ Rn, x >= 0, and dTx <= α},
for each α >= 0. If K = D(α) for some α >= 0, prove that x ∈ D(α) is a critical point

for the pair (f,D(α)), iff there is a w ∈ Rn
+ and z0 >= 0 such that,

f(x) = w − dz0, x
Tw = 0

z0(α− dTx) = 0.

Also, prove that if x is a critical point of (f,D(α)) and dTx < α, then x is a critical

point of (f,Rn
+). Conversely if x ∈ ΓΓΓ(f,Rn

+) and d
Tx <= α, then x ∈ ΓΓΓ(f,D(α)).

Consider the case where K is nonempty, compact and convex. In this case, for

each x ∈ K, define h(x) to be the y that minimizes ∥y − x+ f(x)∥ over y ∈ K. Using

h(x) and Brower’s fixed point theorem show that (f,K) has a critical point.

(B. C. Eaves [3.20])

111. Let f(x) = (f1(x), . . . , fn(x))
T where each fi(x) is a continuous real valued

function defined over Rn. Consider the NLCP: find x satisfying

x >= 0, f(x) >= 0, xT f(x) = 0.

For each x >= 0, define h(x) to be the y that minimizes ∥y − x + f(x)∥ over y >= 0. If

h(x) = (hi(x)), show that

hi(x) =

{
0, if fi(x)− xi >= 0
xi − fi(x), if fi(x)− xi <= 0

Prove that the following conditions are equivalent

i) x solves the NLCP given above,

ii) x >= 0 and h(x) = x,

iii) x >= 0 and x ∈ ΓΓΓ(f,Rn
+)

where ΓΓΓ(f,Rn
+) is defined in the previous Exercise 110.

Suppose there is a compact convex set S ⊂ Rn such that for each x ∈ Rn
+ \ S,

there is a y ∈ S satisfying (y − x)T f(x) < 0. Under this condition, prove that every

fixed point of h(x) lies in the set S.

(R. Saigal and C. Simon [3.67], B. C. Eaves [3.20])
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112. (Research Problem): In Section 11.4.1, subsection 5, we described a special

direct procedure for obtaining a true optimum solution for an LP, from a given near

optimum solution for it. Consider the QP (1.11). Assuming that D is PSD, and that

a near optimum feasible solution, x, is given for it, develop a special direct procedure

to obtain a true optimum solution for the QP (1.11), from x.

113. An economic model leads to the following optimization problem. The decision

variables in this problem are x ∈ Rn, y ∈ Rn and z ∈ Rp. The problem is

minimize cx+ dy + az

subject to A1x+A2y +A3z = b

x, y, z >= 0

and xT y = 0

where A1, A2, A3 are given matrices of order m× n, m× n, m× p respectively, and c,

d, a, b are given vectors of appropriate dimensions. Formulate this as a mixed integer

linear programming problem.

114. Let x ∈ R1. Define F(x) = {x3 + 3x2 − 9x − 24}. Compute a Kakutani fixed

point of F(x) using the algorithm discussed in Section 2.7.8.
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