
Chapter �

SEPARATION PROPERTIES�

PRINCIPAL PIVOT TRANSFORMS�

CLASSES OF MATRICES

In this chapter we present the basic mathematical results on the LCP� Many of these

results are used in later chapters to develop algorithms to solve LCPs� and to study

the computational complexity of these algorithms� Here� unless stated otherwise� I

denotes the unit matrix of order n� M is a given square matrix of order n� In tabular

form the LCP �q�M� is

w z q

I �M q

w �
� �� z �� �� wT z � � ���	�

De�nition� Subcomplementary Sets of Column Vectors

A vector �y�� � � � � yi��� yi��� � � � � yn� where yr � fwr� zrg for r � 	� � � � � i�	� i
	� � � � � n

is known as a subcomplementary vector of variables for the LCP ���	�� The com�

plementary pair �wi� zi� is known as the left�out complementary pair of variables

in the subcomplementary vector �y�� � � � � yi��� yi��� � � � � yn�� Let A�j be the column

vector associated with yj in ���	�� The ordered set �A��� � � � � A�i��� A�i��� � � � � A�n� is

known as a subcomplementary set of column vectors for the LCP ���	�� and

�I�i��M�i� is the left�out complementary pair of column vectors in this sub�

complementary set of column vectors�

Sometimes we have to refer to subcomplementary sets which are complementary

sets with several elements missing� For this� we adopt the following notation� Let

J � f	� � � � � ng� J �� �� J a proper subset� The vector �yj � j � J� where yj � fwj � zjg
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for all j � J is said to be a subcomplementary vector of variables for ���	� associated

with the subset J� Let tj be the complement of yj and let A�j be the column vector

associated with yj in ���	�� and let B�j be the complement of A�j � for j � J� Then

fA�j � j � Jg is said to be a subcomplementary set of column vectors associated with

J� and fB�j � j � Jg is its complement� The subcomplementary vector �tj � j � J� is

the complement of the subcomplementary vector �yj � j � J��

��� LCPs ASSOCIATED WITH PRINCIPALLY

NONDEGENERATE MATRICES

If y � �y�� � � � � yn� is a complementary vector of variables for ���	�� de
ne

Z�y� � fj � j such that yj � zjg

W�y� � fj � j such that yj � wjg �
�����

Theorem ��� If y is a complementary vector of variables for ������ it is a com�

plementary basic vector i	 the principal subdeterminant of M corresponding to the

subset Z�y� is nonzero�

Proof� Let the cardinality of Z�y� be r� Let A be the complementary matrix associated

with y� For j �W�y�� A�j � I�j and for j � Z�y�� A�j � �M�j � If r � �� A � I and its

determinant is 	� If r � �� by expanding the determinant of A in terms of its elements

in the jth column for each j �W�y� in some order� we see that the determinant of A

is ��	�r �principal subdeterminant of M corresponding to the subset Z�y��� Since y is

a complementary basic vector i� the determinant of A is nonzero� the result follows�

As an example� let n � �� and consider the LCP �q�M�� Let y � �w�� z�� w�� z��

be a complementary vector of variables for this problem� The corresponding comple�

mentary matrix is ����������
	 �m�� � �m��

� �m�� � �m��

� �m�� 	 �m��

� �m�� � �m��

����������
and its determinant is determinant

����m�� �m��

�m�� �m��

���� which is non�zero i� the princi�
pal subdeterminant ofM corresponding to the subset Z�y� � f�� �g is non�zero� Thus�

in this problem� y is a complementary basic vector i� the principal subdeterminant of

M corresponding to the subset Z�y� is non�zero�

Corollary ��� Every complementary vector of variables is a basic vector for �����

i	 M is a nondegenerate matrix� This follows from Theorem ��� and the de
nition of

nondegeneracy of a matrix�
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Corollary ��	 The complementary cone associated with the complementary vector

of variables y for ����� has a nonempty interior i	 the principal subdeterminant of M

corresponding to the subset Z�y� is nonzero�

Proof� If A is the corresponding complementary matrix� the complementary cone is

Pos�A�� and it has nonempty interior i� the determinant of A is nonzero� So the result

follows from Theorem ��	�

Corollary ��� Every complementary cone in the class C�M� has a nonempty interior

i	 M is a nondegenerate matrix� This follows from Corollary ����

Theorem ��	 The LCP �q�M� has a 
nite number of solutions for each q � Rn i	

M is a nondegenerate matrix�

Proof� Let � �w� �z� be a solution of the LCP �q�M�� Let A�j � �M�j if �zj � �� I�j
otherwise� and �j � �zj if �zj � �� �wj otherwise� Then �A��� � � � � A�n� is a complementary

set of column vectors and q �
Pn

j�� �jA�j � In this manner each solution of the

LCP �q�M� provides an expression of q as a nonnegative linear combination of a

complementary set of column vectors� There are only �n complementary sets of column

vectors� If q � Rn is such that the LCP �q�M� has an in
nite number of distinct

solutions� there must exist a complementary set of column vectors� say �A��� � � � � A�n��

such that q can be expressed as a nonnegative linear combination of it in an in
nite

number of ways� So there exist at least two vectors �t � ��t�� � � � � �
t
n�

T �
� �� t � 	� �

such that �� �� �� and q � A�� � A��� So A��� � ��� � �� and since �� ��

��� fA��� � � � � A�ng is linearly dependent� By Theorem ��	� this implies that M is

degenerate�

Conversely suppose M is degenerate� So� by Theorem ��	� there exists a com�

plementary set of column vectors� say fA��� � � � � A�ng which is linearly dependent� So

there exists a � � ���� � � � � �n� �� � such that
Pn

j�� �jA�j � �� Let � � Maximum

fj�j j � j � 	 to ng� Since � �� �� � � �� De
ne q � �
Pn

j��A�j � Let �y�� � � � � yn� be the

complementary vector associated with �A��� � � � � A�n�� De
ne a solution �w���� z����

by
Complement of yj � �� j � 	 to n

yj � � 
 ��j � j � 	 to n �
�����

Then �w���� z���� is a solution of the LCP �q�M� for each � 	� � 	� 	� and since � �� ��

each of these solutions is distinct� So if M is degenerate� there exist a q � Rn such

that the LCP �q�M� has an in
nite number of distinct solutions�
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Example ���

Consider the following LCP

w� w� z� z�

	 � �	 �	 ��

� 	 �	 �	 ��

w�� w�� z�� z� �� �� w�z� � w�z� � �

We have
q � �������T � ��M��� 
 ��M���

� � ��M���� ��M��� �

These facts imply that �w�� w�� z�� z�� � ��� �� 	

� 	�
�T is a complementary solution

to this LCP for all � 	� 
 	� 	�

The set of q for which the number of complementary solutions for the LCP �q�M�

is in
nite� is always a subset of the union of all degenerate complementary cones�

Also if the LCP �q�M� has an in
nite number of complementary solutions� q must be

degenerate in it �that is� q can be expressed as a linear combination of �m� 	� or less

column vectors of �I � �M���

Result ��� If q is nondegenerate in the LCP �q�M� of order n �that is� if in

every solution to the system of equations w �Mz � q� at least n of the variables in

the system are non�zero�� every complementary solution of the LCP �q�M� must be

a complementary BFS� and so the number of complementary solutions to the LCP

�q�M� is 
nite and 	
� �n�

Proof� In every complementary solution of the LCP �q�M� at most n variables can

be positive by the complementarity constraint� and hence exactly n variables have to

be positive by the nondegeneracy of q� that is one variable from every complementary

pair of variables must be strictly positive� Consider a complementary solution �w� z�

in which the positive variable from the complementary pair fwj � zjg is yj say� for j � 	

to n and suppose yj has value yj � � in the solution� Let A�j � I�j if yj � wj � or

�M�j otherwise� So

q �
nX

j��

yjA�j �

If fA��� � � � � A�ng is linearly dependent� let the linear dependence relation be

� �
nX

j��

�jA�j
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where � � ���� � � � � �n�
T �� �� Suppose �� �� �� Let � � ��y������ then y� 
 ��� � ��

From the above two equations� we have

q �
nX

j��

�yj 
 ��j�A�j �
nX

j��

�yj 
 ��j�A�j

that is� q is expressed as a linear combination of fA��� � � � � A�ng which is a subset of

n� 	 columns of �I
��� �M�� contradicting the nondegeneracy of q� So fA��� � � � � A�ng

must be linearly independent� that is A � �A��
��� ��

��� A�n� is a complementary basis�

and hence the representation of q as a linear combination of the columns of A is unique�

and �w� z� is a complementary BFS� Thus under the nondegeneracy assumption of q�

every complementary solution for the LCP �q�M� must be a complementary BFS�

Since the total number of complementary bases is 	� �n� this implies that there are at

most �n complementary solutions in this case�

��� PRINCIPAL PIVOT TRANSFORMS

Let y � �yj� be a complementary basic vector associated with the complementary

basis A for ���	�� Let tj be the complement of yj for j � 	 to n �i� e�� tj � wj if

yj � zj � tj � zj if yj � wj�� Let B�j be the complement of A�j for j � 	 to n� and

B � �B��� � � � � B�n�� Obtain the canonical tableau of ���	� with respect to the basic

vector y� and after rearranging the variables suppose it is

basic vector y� � � � yn t� � � � tn

y I �D q �����

Then the matrix D is known as the principal pivot transform �PPT in abbrevi�

ation� of M associated with the complementary basic vector y or the corresponding

complementary basis A of ���	�� Clearly D � �A��B� Also ����� can be viewed as the

system of equations of an LCP in which the complementary pairs are �yj � tj�� j � 	 to

n� Remembering that the variables in ����� are just the variables in ���	� arranged in

a di�erent order� we can verify that the canonical tableau of ����� with respect to its

basic vector �w�� � � � � wn� is ���	�� This clearly implies that M is a PPT of D� Hence

the property of being a PPT is a mutual symmetric relationship among square matrices

of the same order�
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Example ��	

Consider the LCP �q�M� where

M �

����������
�	 �� � �	
�	 	 �	 ��
� �	 	 �	
� �� � �

���������� �

The LCP �q�M� is

w� w� w� w� z� z� z� z�

	 � � � 	 � � 	 q�

� 	 � � 	 �	 	 � q�

� � 	 � � 	 �	 	 q�

� � � 	 � � � �� q�

wj � zj �� �� wjzj � � for all j�

�z�� w�� z�� w�� is a complementary basic vector for this problem� The canonical tableau

with respect to it is

z� w� z� w� w� z� w� z�

	 � � � 	 � � 	 q��

� 	 � � �	 �� 	 � q��

� � 	 � � �	 �	 �	 q��

� � � 	 � � � �� q��

Thus the matrix

D �

����������
�	 �� � �	
	 � �	 ��
� 	 	 	
� �� � �

����������
is a PPT of M and vice versa�

Each complementary basic vector for ���	� leads to a PPT of M � We thus get a

class of matrices containing M � such that each matrix in the class is a PPT of each

other matrix in the class� Some of the matrices in the class may be equal to the others

as matrices �for example� it can be veri
ed that every PPT of I is equal to I�� This

class of matrices is known as the principal pivot transform class of M �
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Single and Double Principal Pivot Steps

If y � �y�� � � � � yn� is a complementary basic vector for ���	�� then yr can be replaced in

this basic vector by its complement� to yield another complementary basic vector for

���	�� i� the rth diagonal element in the PPT ofM corresponding to y is nonzero� If this

condition is satis
ed� the pivot operation of replacing yr by its complement� is known

as a single principal pivot step in the rth position in the complementary

basic vector y�

Suppose for r �� s� the rth and sth diagonal elements in M � � �m�
ij�� the PPT of

M corresponding to the complementary basic vector y� are both zero� Then it is not

possible to make a single principal pivot step either in the rth position� or in the sth

position� in the complementary basic vector y� However� supposem�
rs �� � andm�

sr �� ��

In this case we can perform two consecutive pivot steps� in the 
rst one replacing yr
in the basic vector by the complement of ys� and in the second one replacing ys in the

resulting basic vector by the complement of yr� In the canonical tableau obtained at

the end of these two pivot steps� the column vector associated with the complement of

ys is I�r and the column vector associated with the complement of yr is I�s� So� now

interchange rows r and s in the canonical tableau� After this interchange it can be

veri
ed that in the new canonical tableau the column vector associated with the basic

variable from the jth complementary pair� in the new complementary basic vector� is

I�j � for all j �including j � r and s�� This operation �one pivot step in position �r� s�

replacing yr in the basic vector by the complement of ys� followed by another pivot step

in position �s� r� replacing ys in the resulting basic vector by the complement of yr�

followed by an interchange of rows r and s in the resulting canonical tableau� is called

a double principal pivot step in positions r and s in the complementary

basic vector y� Clearly� this double principal pivot step in positions r and s can

only be carried out if the order two determinant

���m�
rr m�

rs

m�
sr m�

ss

��� �� �� If this order two

determinant is nonzero� and one of its diagonal entries� say m�
rr� is nonzero� carrying

out the double principal pivot in positions r and s in the complementary basic vector

y� can be veri
ed to have exactly the same e�ect as carrying out two single principal

pivot steps� 
rst in position r in y� and then in position s in the complementary basic

vector resulting from the 
rst� In general� in the algorithms discussed in the following

chapters� a double principal pivot in positions r and s will only be performed if the

diagonal entry in the PPT of M in at least one of the two positions r and s is zero

�i� e�� either m�
rr � � or m�

ss � � or both��
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Example ���

Consider the following LCP

basic

variable w� w� w� w� z� z� z� z�

w� 	 � � � �	 	 �	 �	 q�

w� � 	 � � �	 � � 	 q�

w� � � 	 � � � �	 �	 q�

w� � � � 	 	 �	 	 � q�

wj � zj �� �� and wjzj � � for all j

In this problem� in the complementary basic vector w� single principal pivot steps

are only possible in positions 	 and �� Carrying out a single principal pivot in the

complementary basic vector w in position 	 leads to the following

basic

variable z� w� w� w� w� z� z� z�

z� 	 � � � �	 �	 	 	 q��

w� � 	 � � �	 �	 	 � q��

w� � � 	 � � � �	 �	 q��

w� � � � 	 	 � � �	 q��

In the above canonical tableau� we have also rearranged the column vectors so that the

basic variables� and the nonbasic variables� appear together and in their proper order�

We can make a double principal pivot step in the complementary basic vector w� in

positions �� � in this problem� because the determinant of the �� � matrix

��� � 	
�	 �

���
is non�zero� Carrying out this double principal pivot step requires replacing the basic

variable w� in the basic vector �w�� w�� w�� w�� by z�� then replacing the basic variable

w� in the resulting basic vector �w�� z�� w�� w�� by z�� and 
nally interchanging rows �

and � in the resulting canonical tableau� This is carried out below�
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basic

variable w� w� w� w� z� z� z� z�

w� 	 	 � � �� 	 �	 � q��

z� � 	 � � �	 � � 	 q��

w� � 	 	 � �	 � �	 � q��

w� � � � 	 	 �	 	 � q��

w� 	 	 � 	 �	 � � � q���

z� � 	 � � �	 � � 	 q���

w� � 	 	 � �	 � �	 � q���

z� � � � �	 �	 	 �	 � q���

w� 	 	 � 	 �	 � � � q���

z� � � � �	 �	 	 �	 � q���

w� � 	 	 � �	 � �	 � q���

z� � 	 � � �	 � � 	 q���

Block Principal Pivoting

Consider the LCP �q�M�� ���	�� Let J � f	� � � � � ng be such that MJJ� the principal

submatrix of M corresponding to the subset J� is nonsingular� De
ne the complemen�

tary vector y � �yj� by

yj �

�
wj � for j �� J
zj � for j � J

and let A be the complementary matrix corresponding to y� Since MJJ is nonsingular�

A is a basis� Let tj be the complement of yj for each j � 	 to n� and let t � �tj��

Multiplying ���	� on the left by A�� and rearranging the variables leads to the LCP

y t

I �D q�

y� t � �� yT t � �

where
DJJ � �MJJ�

��� D
JJ

� ��MJJ�
��M

JJ

D
JJ

�M
JJ
�MJJ�

��� D
JJ

�M
JJ
�M

JJ
�MJJ�

��M
JJ

q�J � ��MJJ�
��qJ� q

�

J
� q

J
�M

JJ
�MJJ�

��qJ �
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Here J � f	� � � � � ng n J� and M
JJ

is the submatrix �mij � i � J� j � J�� etc�� and

qJ � �qj � j � J�� etc� D is of course the PPT of M corresponding to the complemen�

tary basic vector y� The above LCP �q�� D� is said to have been obtained from the

LCP �q�M� in ���	� by a block principal pivot step in positions J �or by block

principal pivoting on �MJJ� in ���	��

Corollary ��� If M is a nondegenerate matrix� a single principal pivot step in any

position is always possible in every complementary basic vector�

Proof� Follows from Corollary ��	 and the argument used in Theorem ��	�

Corollary ��
 A square matrix M of order n is nondegenerate �that is� principally

nondegenerate to be speci
c� i	 every diagonal entry in every PPT of M is non�zero�

Proof� Follows from Corollary ��	�

Theorem ��� If M is a PD or a P �matrix� or a nondegenerate matrix in general�

starting with a complementary basic vector y� � �y��� � � � � y
�
n�� any other complemen�

tary basic vector y� � �y��� y
�
�� � � � � y

�
n� for ������ can be obtained by performing a

sequence of single principal pivot steps�

Proof� In these cases� by Corollary ��	 every complementary vector of variables is a

complementary basic vector� Hence if y� and y� have n� r common variables� each of

the variables in y� which is not in y�� can be replaced by its complement� to lead to

y� after r single principal pivot steps�

Theorem ��� All PPTs of a nondegenerate matrix are nondegenerate�

Proof� Let M be nondegenerate� Let y� �y be distinct complementary vectors of vari�

ables associated with the complementary matrices A� �A respectively in ���	�� Since M

is nondegenerate� A is a complementary basis� Let ����� be the canonical tableau of

���	� with respect to y� So D is the PPT of M corresponding to y� We will now prove

that D is nondegenerate� Look at ������ The complementary matrix corresponding to

the complementary vector of variables �y in ����� is A�� �A� and this matrix is nonsingu�

lar since both A and �A are� Hence �y is a complementary basic vector for ������ Since �y

is an arbitrary complementary vector of variables� this implies that all complementary

vectors of variables in ����� are basic vectors�

Hence by Corollary ��	� D is nondegenerate�

Theorem ��
 All PPTs of a P �matrix are P �matrices�

Proof� Let M � �mij� be a P �matrix of order n� Consider a single principal pivot

step on ���	� in any position� say position 	� The pivot matrix corresponding to this

pivot step is P � which is the same as the unit matrix of order n� with the exception

that its 
rst column vector is ��	�m����m���m��� � � � ��m�n�m���
T � Let M � be the



���� Principal Pivot Transforms 	�


PPT of M obtained after this pivot step� Let J � fj�� � � � � jrg � f	� � � � � ng� J �� ��

and let � be the principal subdeterminant of M � corresponding to the subset J� We

will now prove that � � �� We consider two cases separately�

Case �� 	 �� J� Let y � �y�� � � � � yn� where yj � wj if j �� J 	 f	g� or zj otherwise�

Let A� A be the complementary bases corresponding to y� in the original LCP ���	�

and in the canonical tableau for ���	� obtained after the single principal pivot step

in position 	� respectively� So A � PA� Let �� be the principal subdeterminant

of M corresponding to the subset f	g 	 J� We have � � ��	�r �determinant of

A� � ��	�r �determinant of PA� � ��	�r �determinant of P � �determinant of A� �

��	�r��	�m�����	�r���� � ����m��� � �� because m�� � � and �� � � since M is

a P �matrix�

Case 	� 	 � J� In this case let y � �y�� � � � � yn� where yj � zj if j � J n f	g�

or wj otherwise� Let A� A be the complementary bases corresponding to y� in the

original LCP ���	�� and in the canonical tableau for ���	� obtained after the single

principal pivot step in position 	� respectively� Then A � PA� Let �� be the prin�

cipal subdeterminant of M determined by the subset J n f	g� As in Case 	� we have

� � ��	�r �determinant of A� � ��	�r �determinant of P � �determinant of A� �

��	�r��	�m�����	�r���� � ����m��� � �� since both ��� m�� are strictly positive

because M is a P �matrix�

Hence the principal subdeterminant ofM � corresponding to the subset J is strictly

positive� This holds for all subsets J � f	� � � � � ng� So M � is itself a P �matrix�

Thus the property of being a P �matrix is preserved in the PPTs of M obtained

after a single principal pivot step on ���	�� By Theorem ��� any PPT of M can be

obtained by making a sequence of single principal pivot steps on ���	�� So� applying

the above result repeatedly after each single principal pivot step� we conclude that

every PPT of M is also a P �matrix�

Theorem ��� If all the diagonal entries in every PPT of M are strictly positive�

M is a P �matrix�

Proof� By the hypothesis of the theorem all principal subdeterminants of M of order

	 are strictly positive�

Induction Hypothesis� Under the hypothesis of the theorem� all principal subde�

terminants of M of order less than or equal to r are strictly positive�

We will now prove that under the hypothesis of the theorem� the induction hy�

pothesis implies that any principal subdeterminant of M of order r
 	 is also strictly

positive� Let �� be the principal subdeterminant of M corresponding to the subset

fj�� � � � � jr� jr��g � f	� �� � � � � ng� Carry out a single principal pivot step in position

jr�� in ���	� and let M
� be the PPT of M obtained after this step� Since M � is a PPT

ofM it also satis
es the hypothesis of the theorem� So by the induction hypothesis� all

principal subdeterminants of M � of order r or less are strictly positive� and so �� the

principal subdeterminant of M � corresponding to the subset fj�� � � � � jrg� is � �� As in



	�� Chapter �� Separation Properties� Principal Pivot Transforms� Classes ���

the proof of Theorem ��� we have � � ���mjr���jr�� � that is �� � mjr���jr���� and

since mjr���jr�� � �� � � �� we have �� � �� So under the hypothesis of the theorem�

the induction hypothesis implies also that all principal subdeterminants of M of order

r
	 are strictly positive� Hence by induction� all principal subdeterminants of M are

strictly positive� and hence M is a P �matrix�

Corollary ��� The following conditions �i� and �ii� are equivalent

�i� all principal subdeterminants of M are strictly positive

�ii� the diagonal entries in every PPT of M are strictly positive�

Proof� Follows from Theorem ���� ����

Corollary ��� If M is a P �matrix� in making any sequence of single principal pivot

steps on ������ the pivot element will always be strictly negative�

Theorem ��� LetM � be a PPT ofM obtained after carrying out exactly one single

principal pivot step� Then M � is PD if M is PD� And M � is PSD if M is PSD�

Proof� Let M � �mij�� Let u � �u�� � � � � un�
T � Rn� De
ne v � �v�� � � � � vn�

T by

v �Mu � � � �����

Suppose M � � �m�
ij� is the PPT of M obtained after making a single principal pivot

step in ����� in position r� So mrr �� �� After this single principal pivot step in position

r� ����� becomes

�v�� � � � � vr��� ur� vr��� � � � � vn�
T �M ��u�� � � � � ur��� vr� ur��� � � � � un�

T � � � �����

For any u � Rn and v de
ned by ������ let � � �u�� � � � � ur��� vr� ur��� � � � � un��


 � �v�� � � � � vr��� ur� vr��� � � � � vn�� Since vr � Mr�u and mrr �� �� as u varies over

all of Rn� � also varies over all of Rn� Also� as u varies over all the nonzero points

in Rn� � does the same� Since ����� is obtained from ����� by a pivot step� they

are equivalent� So for any u � Rn and v de
ned by ������ ����� also holds� Now

uTMu � uT v � �T 
 � �TM ��� These facts imply that �TM �� �� � for all � � Rn i�

uTMu �
� � for all u � Rn and �TM �� � � for all � �� � i� uTMu � � for all u �� ��

Hence M is PD i� M � is PD� And M � is PSD i� M is PSD�

Theorem ��
 Let M �� be a PPT of M obtained after carrying out exactly one

double principal pivot step� Then M �� is PD if M is PD� And M �� is PSD if M is PSD�

Proof� Let M � �mij�� Let u � �u�� � � � � un�
T � Rn� De
ne v � �v�� � � � � vn�

T by

������ Suppose M �� � �m��
ij� is the PPT of M obtained after making a double principal

pivot step in positions r and s� This implies that

� � determinant

����mss �msr

�mrs �mrr

��� �� � �
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as otherwise the double principal pivot step in positions r and s cannot be carried

out on ������ For any u � Rn and v de
ned by ����� de
ne � � �u�� � � � � us��� vs�

us��� � � � � ur��� vr� ur��� � � � � un�
T � 
 � �v�� � � � � vs��� us� vs��� � � � � vr��� ur� vr��� � � � � vn�

T �

Then after this double principal pivot step in positions r and s� ����� gets transformed

into


 �M ��� � � � �����

Since ����� is obtained by performing two pivots on ������ they are equivalent� So for

any u � Rn and v de
ned by ������ ����� holds and we have uTMu � uT v � �T 
 �

�TM ���� Also� since � �� �� as u varies over all of Rn� so does �� and as u varies over

all nonzero points in Rn so does �� These facts imply that �TM ��� �� � for all � � Rn

i� uTMu �� � for all u � Rn and �TM ��� � � for all � �� � i� uTMu � � for all u �� ��

Hence M �� is PD i� M is PD� and M �� is PSD i� M is PSD�

Theorem ��� If M is a PD matrix� all its PPTs are also PD�

Proof� By Theorem ��� when M is PD� every PPT of M can be obtained by carrying

out a sequence of single principal pivot steps on ���	�� By applying the argument

in Theorem ��� repeatedly after each single principal pivot step in the sequence� we

conclude that all PPTs of M are also PD� if M is�

Theorem ���� IfM is PSD� any PPT of M can be obtained by making a sequence

of single or double principal pivot steps on ������ Also� all these PPTs of M are also

PSD�

Proof� Let y � �y�� � � � � yn� be a complementary basic vector of ���	�� Starting with

the complementary basic vector w� perform single principal pivot steps in position j for

as many j � Z�y� as possible in any possible order� If this leads to the complementary

basic vector y� we are done by repeated use of the result in Theorem ��� after each single

principal pivot step� Suppose y has not yet been obtained and no more single principal

pivot steps can be carried out in the remaining positions j � Z�y�� Let u � �u�� � � � � un�

be the complementary basic vector at this stage� Let U � fj � j such that uj �� yjg�

So U �� �� U � Z�y�� And for each j � U� we have uj � wj � yj � zj � Let tj denote

the complement of uj � j � 	 to n� Let the canonical tableau of ���	� at this stage be

basic vector u�� � � � � un t�� � � � � tn q

u I �M � q� �����

M � is the PPT of M corresponding to U� it is PSD by repeated use of Theorem ����

We have �m�
jj � � for each j � U �as single principal pivot steps cannot be carried

out in these positions�� If U is a singleton set� this would imply that the set of column

vectors corresponding to y in ����� is linearly dependent� a contradiction� since y is a

complementary basic vector� So cardinality of U is �� �� Let r � U� Since m�
rr � � and
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M � is PSD� by Result 	�� we have m�
ri
m�

ir � � for all i � 	 to n� Search for an s � U

such that m�
sr �� �� If an s like this does not exist� again the set of column vectors

corresponding to y in ����� is linearly dependent� and y is not a complementary basic

vector� a contradiction� So there always exists an s � U such that m�
sr �� �� Since

m�
rs 
m�

sr � �� m�
rs �� � too� So the determinant���m�

rr m�
rs

m�
sr m�

ss

���
is nonzero� and a double principal pivot step can be carried out in ����� in positions r� s�

The complementary basic vector obtained after this double principal pivot step contains

two more variables in common with y than u does� and the PPT ofM corresponding to

it is also PSD by Theorem ���� Delete r� s from U� In the resulting canonical tableau�

make as many single principal pivot steps in positions j � U as possible� deleting such

j from U after each step� Or make another double principal pivot step in positions

selected from U as above� and continue the same way until U becomes empty� At that

stage we reach the canonical tableau with respect to y� By repeated use of Theorems

���� ���� the PPT of M with respect to y is also PSD�

����� Principal Rearrangements of a Square Matrix

Let M be a given square matrix of order n� Let p � �i�� � � � � in� be a permutation of

�	� � � � � n�� The square matrix P of order n whose rows are Ii��� Ii��� � � � � Iin� in that

order� is the permutation matrix corresponding to the permutation p� P is obtained

essentially by permuting the rows of the unit matrix I of order n using the permutation

p� The matrix M � � PMPT is known as the principal rearrangement of M according

to the permutation p� Clearly M � is obtained by 
rst rearranging the rows of M

according to the permutation p� and in the resulting matrix� rearranging the columns

again according to the same permutation p�

As an example let n � �� and

p � ��� 	� �� � M �

�������
m�� m�� m��

m�� m�� m��

m�� m�� m��

������� � P �

�������
� � 	
	 � �
� 	 �

�������
then

PM �

�������
m�� m�� m��

m�� m�� m��

m�� m�� m��

������� � M � � PMPT �

�������
m�� m�� m��

m�� m�� m��

m�� m�� m��

�������
and M � here is the principal rearrangement of M according to the permutation p�

The following results can be obtained directly using the de
nition� Let M � be

the principal rearrangement of M according to the permutation p associated with the

permutation matrix P � Then M � is a P �matrix� i� M is� For all y � Rn� yTMy �

�Py�TM ��Py�� So M � is a PSD� or PD� or NSD� or ND matrix i� M has the same

property� Also� M � is principally degenerate �or nondegenerate� i� M has the same

property�
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��� LCPs ASSOCIATED WITH P �MATRICES

Properties of P �Matrices

The following Theorems ��		� ��	� are important properties of P �matrices due to

D� Gale and H� Nikaido �see reference ��������

Theorem ���� Let F � �fij� be a P �matrix of order n� Then the system of linear

inequalities

Fx 	� �

x �� �
�����

has 
x � �� as its unique solution�

Proof� The theorem is easily veri
ed to be true for n � 	� We will prove the theorem

for all n by induction�

Induction Hypothesis� If T is a P �matrix of order r 	� n� 	� then the system of

inequalities T� 	� �� � �� �� � � Rr has �� � �� as its unique solution�

Under the induction hypothesis we will now prove that the statement of the the�

orem holds for the matrix F which is a P �matrix of order n� Since F is a P �matrix�

it is nonsingular� and hence F�� exists� Let B � F�� � �bij�� From standard results

in the theory of determinants �for example� see Chapter � in F� E� Hohn� Elementary

Matrix Algebra� Macmillan� �nd edition� 	���� it is known that bii � �principal sub�

determinant of F corresponding to the subset f	� � � � � i� 	� i
 	� � � � � ng��determinant

of F � So bii � � for all i� since F is a P �matrix� Thus each column of B has at least

one positive entry� Let x � Rn satisfy ������ Select a column of B� say B��� Let


 � minimumfxi�bi� � i such that bi� � �g� and suppose this minimum is attained by

i � s� So 
 � xs�bs� �� �� and �xj�bj�� �� 
� for all j such that bj� � �� From this

and the fact that x �
� �� we have 
 � �
�� � � � � 
n�

T � x� 
B�� �� � and 
s � �� Also

F
 � Fx � 
FB�� � Fx � 
I�� 	
� �� Let T be the matrix of order n � 	 obtained

by striking o� the sth row and the sth column from F � Since F is a P �matrix� its

principal submatrix T is also a P �matrix� Let � � �
�� � � � � 
s��� 
s��� � � � � 
n�
T � Since


s � � and F
 	� �� we have T� 	� �� Also since 
 �� �� � �� � too� So T� 	� �� � �� ��

Since T is a P �matrix of order n�	� by the induction hypothesis� � � �� � � �� 
s � �

together imply that 
 � �� So F
 � �� that is F �x� 
I��� � �� Then Fx � 
I�� �� ��

However from ������ Fx 	� �� So Fx � �� and since F is nonsingular� x � ��

Thus under the induction hypothesis the statement of the theorem also holds for

F which is a P �matrix of order n� The statement of the theorem is easily veri
ed for

n � 	� Hence� by induction� the statement of the theorem is true for all n�
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Theorem ���	 The Sign Nonreversal Property� Let F be a square matrix of

order n� For x � Rn let y � Fx� Then F is said to reverse the sign of x if xiyi 	� � for

all i� If F is a P �matrix it reverses the sign of no vector except zero�

Proof� For this proof we need only to consider the case x � �� For if F reverses the

sign of an x ��� �� let J � fj � xj 	 �g� let D be the diagonal matrix obtained from

the unit matrix by multiplying its jth column by �	 for each j � J� The matrix

F � � DFD is again a P �matrix� since F � is obtained by simply changing the signs of

rows and columns in F for each j � J� And F � reverses the sign of �x � Dx� where

�x �� ��

Now suppose that x �� � and that F reverses the sign of x� Let P � fj � xj � �g�

Assume that P �� �� Let A be the principal submatrix of F corresponding to P� Let

� be the vector of xj for j � P� The fact that F reverses the sign of x implies that A

reverses the sign of �� Since � � �� this implies that A� 	
� �� Since A is a P �matrix

A� 	
� �� � �

� � implies � � � by Theorem ��		� a contradiction� So x must be zero�

Unique Solution Property of LCPs

Associated with P �Matrices

Theorem ���� Let M be a P �matrix� The LCP �q�M� has a unique solution for

each q � Rn� Also� when the complementary pivot algorithm of Section ��� is applied

on the LCP �q�M�� it 
nds the solution�

Proof� Suppose when the complementary pivot algorithm is applied on the LCP

�q�M� it ends in ray termination� As in the proof of Theorem ��	 this implies that

there exists a zh � �� wh �
� �� zh� �

� � satisfying wh � Mzh 
 enz
h
� � w

h
i z

h
i � � for

all i� So zhi �Mi�z
h� 
 zhi z

h
� � �� This implies that zhi �Mi�z

h� � �zhi z
�
h
	
� � for all

i� So M reverses the sign of zh � �� which is a contradiction to Theorem ��	�� So�

when the complementary pivot method is applied on the LCP �q�M� associated with

a P �matrix� it cannot end in ray termination� it has to terminate with a solution of

the LCP� This also proves that every P �matrix is a Q�matrix�

Now we will prove that if M is a P �matrix� for any q � Rn� the LCP �q�M� has

exactly one solution� by induction on n� the order of the problem�

Suppose n � 	� M � �m��� is a P �matrix� i� m�� � �� In this case q � �q���

If q� �� �� �w � �w�� � �q��� z � �z�� � ���� is the only solution to the LCP �q�M��

If q� 	 �� �w � �w�� � ���� z � �z�� � ��q��m���� is the only solution to the LCP

�q�M�� Hence the theorem is true for n � 	�

Induction Hypothesis� Suppose any LCP of order �n� 	� or less� associated with

a P �matrix� has a unique solution for each of its right hand side constant vectors�

Now we will prove that under the induction hypothesis� the LCP �q�M� where

M is a P �matrix of order n� has a unique solution for any q � Rn� We have shown

above that it has at least one solution� say � �w� �z�� For each j � 	 to n let uj � zj � if
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�zj � �� or wj otherwise� and let vj be the complement of uj � Then u � �u�� � � � � un�

is a complementary feasible basic vector of variables associated with the BFS � �w� �z�

for ���	�� Obtain the canonical tableau for ���	� with respect to the complementary

feasible basic vector u� and suppose it is

u�� � � � � un v�� � � � � vn q

I �fM �q ���	��

�q �
� � by our assumptions here� ���	�� can itself be viewed as the LCP ��q�fM�� one

solution of this LCP is �u � �u � �q� v � �v � ��� fM is a PPT of M � by Theorem ���� fM
is also a P �matrix� So all the principal submatrices of fM are also P �matrices� So the

principal subproblem of the LCP ��q�fM� in the variables �u�� � � � � ui��� ui��� � � � � un��

�v�� � � � � vi��� vi��� � � � � vn� is an LCP of order �n�	� associated with a P �matrix� and by

the induction hypothesis this principal subproblem has a unique solution� One solution

of this principal subproblem is ��u�� � � � � �ui��� �ui��� � � � � �un� �v�� � � � � �vi��� �vi��� � � � � �vn� �

��q�� � � � � �qi��� �qi��� � � � � �qn� �� � � � � �� �� � � � � ��� If the LCP ��q�fM�� ���	��� has an alternate

solution ��u� �v� �� ��u� �v� in which �vi � �� its principal subproblem in the variables

�u�� � � � � ui��� ui��� � � � � un�� �v�� � � � � vi��� vi��� � � � � vn� will have an alternate solution

��u�� � � � � �ui��� �ui��� � � � � �un� �v�� � � � � �vi��� �vi��� � � � � �vn�� a contradiction� So� if the LCP

��q�fM� has an alternate solution ��u� �v� �� ��u� �v�� then �vi must be strictly positive in it�

and by complementarity �ui must be zero� Since this holds for each i � 	 to n� �v � ��

�u � �� So �u � fM�v � �q� �u � �� �v � �� Since �q �� �� this implies that fM�v � ��q 	� ��

�v � �� a contradiction to Theorem ��		� since fM is a P �matrix� Hence under the

induction hypothesis the LCP ��q�fM� has a unique solution� which implies that the

equivalent LCP �q�M� has a unique solution also� Since this holds for any q � Rn�

under the induction hypothesis� the LCP �q�M� of order n has a unique solution for

each q � Rn when M is a P �matrix� Hence� by induction the theorem is true�

Theorem ���� Let M be a given square matrix of order n� Suppose the LCP

�q�M� has at most one solution for each q � Rn� Then M is a P �matrix�

Proof� So� the number of solutions of the LCP �q�M� is either 	 or � and hence is 
nite

for all q� which implies that M is nondegenerate by Theorem ���� So the determinant

of M is nonzero� and hence M�� exists�

Proof is by induction on n� the order of the matrix M � We 
rst verify that the

theorem is true if n � 	� In this case q � �q��� M � �m���� Since M is shown to

be nondegenerate under the hypothesis of the theorem� m�� �� �� If m�� 	 �� when

q� � �� �w � �q��� z � ��� �w � �� z � q���jm��j�� are two distinct solutions of the

LCP �q�M�� Hence under the hypothesis of the theorem m�� �	 �� So� m�� � �� which

implies that the theorem is true when n � 	�

Induction Hypothesis� If F is a square matrix of order r 	� n� 	� such that the

LCP ��� F � has at most one solution for each � � Rr� then F is a P �matrix�
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Under the hypothesis of the theorem� and the induction hypothesis� we will now

prove that M has to be a P �matrix too�

Consider the principal subproblem of the LCP �q�M� in the variables � � �w��

� � � � wn�� � � �z�� � � � � zn�� This is an LCP of order n� 	 associated with the principal

submatrix ofM determined by the subset f�� � � � � ng� If there exists a �q � ��q�� � � � � �qn�
T

for which this principal subproblem has two distinct solutions� namely� ��� �� and

���� ���� choose �q� to satisfy �q� �Maximumfj
Pn

j�� zjm�j j� j
Pn

j�� �zjm�j jg� and let w� �

�q� 

Pn

j�� zjm�j � z� � �� �w� � �q� 

Pn

j�� �zjm�j � �z� � �� w � �w�� w�� � � � � wn��

z � �z�� z�� � � � � zn�� �w � � �w�� �w�� � � � � �wn�� �z � ��z�� �z�� � � � � �zn�� �q � ��q�� �q�� � � � � �qn�
T �

Then �w� z�� � �w� �z� are two distinct solutions of the LCP ��q�M�� contradicting the

hypothesis of the theorem� So the principal subproblem of the LCP �q�M� in the

variables �� � has at most one solution for each of its right hand side constant vectors�

By the induction hypothesis this implies that the principal submatrix ofM determined

by the subset f�� � � � � ng is a P �matrix�

A similar argument can be made for each principal subproblem of the LCP �q�M�

of order �n� 	�� and this implies that all principal submatrices of M of order �n� 	�

are P �matrices� by the induction hypothesis� Hence all the principal subdeterminants

of M of order 	� �n� 	� are strictly positive� In particular� the diagonal entries of M

are strictly positive� It only remains to be proved that the determinant of M itself

is strictly positive� We have already seen that M�� exists� The canonical tableau of

���	� with respect to the complementary basic vector �z�� � � � � zn� is

z w

I �M q ���		�

whereM �M�� and q � �M��q� The LCP in ���		� has at most one solution for each

q � Rn� So by the previous arguments all diagonal entries in the matrixM have to be

strictly positive� However since M � �mij� �M��� m�� � �principal subdeterminant

of M corresponding to the subset f�� � � � � ng���determinant of M�� Since the principal

subdeterminant of M corresponding by the subset f�� � � � � ng has been shown to be

strictly positive� m�� � � implies that the determinant ofM is strictly positive� Hence

under the hypothesis of the theorem� and the induction hypothesis� the matrix M of

order n has to be a P �matrix� So� by induction the theorem is true in general�

Corollary ��
 Let M be a given square matrix of order n� If the LCP �q�M� has

at most one solution for each q � Rn� then it has exactly one solution for each q � Rn�

This follows from Theorems ����� �����

Theorem ���
 Let M be a given square matrix of order n� The LCP �q�M� has

a unique solution for each q � Rn i	 M is a P �matrix�

Proof� Follows from Theorems ��	�� ��	��
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Strict Separation Property

The strict separation property is a property of the matrix M � and does not depend

on the right hand side constants vector q� An LCP associated with the matrix M

�or the class of complementary cones C�M�� is said to satisfy the strict separation

property if the following conditions are satis
ed�

�i� Every subcomplementary set of column vectors is linearly independent�

�ii� If �A��� � � � � A�i��� A�i��� � � � � A�n� is any subcomplementary set of column vectors�

the hyperplane which is its linear hull strictly separates the points represented by

the left out complementary pair of column vectors �I�i��M�i��

From �i� and �ii�� it is clear that every complementary set of column vectors has

to be linearly independent for the strict separation property to be satis
ed�

Example ���

Let M �

��� 	 �
�	 	

���� Here n � �� The points representing the column vectors of I�

�M are plotted in Figure ��	�

Since n � � here� in this case each subcomplementary set consists of exactly one

of the column vectors from fI��� I����M����M��g� The linear hull of any subcomple�

mentary set of vectors in this example is the straight line through the vector in that

subcomplementary set and the origin�

Consider the subcomplementary set of column vectors fI��g� The left out com�

plementary pair of column vectors in this set is �I����M���� The linear hull of fI��g�

which is the horizontal axis in Figure ��	� strictly separates the points I����M��� since

neither of these points is on this straight line and they are on opposite sides of it� In

a similar manner it can be veri
ed that both properties �i� and �ii� discussed above

are satis
ed in this example� Hence any LCP associated with the matrix M in this

example satis
es the strict separation property�

Example ��


Let M �

��� 	 �
� 	

���� Here again� n � �� The points representing the column vectors of

I� �M in this case are plotted in Figure 	��� Consider the subcomplementary set of

column vectors fI��g in this example� Its linear hull is the vertical axis in Figure 	���

and it strictly separates the left�out complementary pair of column vectors �I����M����

In a similar manner� it can be veri
ed that the strict separation property holds in this

case�
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2I

1I

M 2

M 1

Figure ��� Illustration of Strict Separation

1I

2I

M 1

M 2

Figure ��	 Violation of the Strict Separation Property
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1I

M 2

2I

M 1

Figure ��� Another Example of Violation of the Strict Separation Property�

Example ���

Let M �

��� 	 �
	 	

���� Here n � �� and the column vectors of I� �M are plotted in

Figure ���� Consider the subcomplementary set of column vectors f�M��g here� Both

the points in the left�out complementary pair �I����M��� are on the same side of the

linear hull of f�M��g here� and hence the strict separation property is not satis
ed by

the LCPs associated with the matrix M here�

Example ���

LetM �

��� 	 �
	 �

���� See Figure ���� Consider the subcomplementary set of column vec�
tors f�M��g here� The point �M�� from the left�out complementary pair �I����M���

lies on the straight line which is the linear hull of the subcomplementary set of column

vectors f�M��g� So the strict separation property is not satis
ed in this example�

Corollary ��� If an LCP associated with the matrixM satis
es the strict separation

property� M is nondegenerate� This follows from the de
nitions�



	�� Chapter �� Separation Properties� Principal Pivot Transforms� Classes ���

Theorem ���� The LCP associated with a matrixM satis
es the strict separation

property i	 M is a P �matrix�

Proof� Suppose M is a P �matrix� Property �i� required for strict separation property

is obviously satis
ed because M is nondegenerate �Corollary ��	��

Let �A��� � � � � A�i��� A�i��� � � � � A�n� be any subcomplementary set of column vec�

tors where A�j � fI�j ��M�jg for each j �� i� Let H be the hyperplane which is the

linear hull of fA��� � � � � A�i��� A�i��� � � � � A�ng� By Corollary ��	� the complementary

sets of column vectors �A��� � � � � A�i��� I�i� A�i��� � � � � A�n� and �A��� � � � � A�i����M�i�

A�i��� � � � � A�n� are both linearly independent� and hence neither I�i nor �M�i lie on

the hyperplane H� Suppose both I�i and �M�i are on the same side of the hyper�

plane H in Rn� See Figure ���� In this case the interiors of the complementary

cones Pos�A��� � � � � A�i��� I�i� A�i��� � � � � A�n� and Pos�A��� � � � � A�i����M�i� A�i��� � � � �

A�n� have a nonempty intersection� and if q is a point in the intersection� then q is in

the interior of two complementary cones� and the LCP �q�M� has two distinct solu�

tions� a contradiction to Theorem ��	�� sinceM is a P �matrix� So I�i and �M�i cannot

be on the same side of the hyperplane H� Since neither of these points is on H� and

they are not on the same side of H� these points are on either side of H� that is H

separates them strictly� Since this holds for any subcomplementary set of column vec�

tors and the corresponding left�out complementary pair of column vectors� the strict

separation property holds when M is a P �matrix�

Suppose the strict separation property is satis
ed� By Corollary ��� M is non�

degenerate� So all the principal subdeterminants of M are nonzero� It remains to be

proved that they are all positive� Let y � �y�� � � � � yn� be any complementary vector of

variables for the LCP �q�M�� Let tj be the complement of yj for j � 	 to n� SinceM is

nondegenerate� �y�� � � � � yn� is a complementary basic vector of variables by Corollary

��	� Obtain the canonical tableau of ���	�� with respect to the complementary basic

vector y� Suppose it is

y� � � � yn t� � � � tn q

I �M � q� ���	��

where M � � �m�
ij� is the PPT of M corresponding to the complementary basic vector

y� Now look at the subcomplementary vector of variables �y�� � � � � yi��� yi��� � � � � yn��

The column corresponding to yj in ���	�� is I�j � for j � 	 to n� For convenience�

call the coordinates along the axis of coordinates� as x�� � � � � xn� Since the column of

yj in ���	�� is I�j � the hyperplane in R
n which contains the columns of yj in ���	�� for

all j � 	� � � � � i� 	� i
 	� � � � � n� is the coordinate hyperplane H � fx � xi � �g�
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A 1

nA

iI

nAiA -1 , . . . , }

A 1 iA +1{ , . . . , ,

0 = origin

H = linear hull of

q

M i

Figure ��� I�i and �M�i are both on the same side of H� Interiors of the com�

plementary cones Pos�A��� � � � � A�i��� I�iA�i��� � � � � A�n� and Pos�A��� � � � � A�i���

�M�iA�i��� � � � � A�n� have a nonempty intersection�

Among the left�out complementary pair of column vectors �I�i��M �
�i�� since the ith

component in the column vector I�i is 
	� it is on the side on H corresponding to the

inequality xi � �� So by the strict separation property� the point �M �
�i is on the side

of H corresponding to the inequality xi 	 �� which implies that �m�
ii 	 �� or M �

ii � ��

Thus the ith diagonal element in M � is strictly positive� In a similar manner we see

that if the strict separation property holds� then all the diagonal elements in all PPTs

of M are strictly positive� By Theorem ��� this implies that M is a P �matrix�

A class of convex polyhedral cones in Rn is said to partition Rn if

a� Every cone in the class has a nonempty interior�
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b� The union of the cones in the class is Rn�

c� The interiors of any pair of cones in the class are disjoint�

Theorem ���� Let M be a given square matrix of order n� The class of comple�

mentary cones C�M� partitions Rn i	 M is a P �matrix�

Proof� If M is a P �matrix� the result that the class of complementary cones C�M�

partitions Rn follows from Corollary ��	 and Theorem ��	��

To prove the converse� suppose that C�M� partitions Rn� Since every comple�

mentary cone in C�M� has a nonempty interior� by Corollary ���� M must be nonde�

generate� Hence all complementary sets of column vectors are linearly independent�

If the strict separation property is not satis
ed� there exists a subcomplementary set

of column vectors� say �A��� � � � � A�i��� A�i��� � � � � A�n� such that the hyperplane H

which is its linear hull contains both the points in the left out complementary pair

�I�i��M�i� on the same side of it� As in the proof of Theorem ��	�� this implies that

the interiors of the complementary cones Pos�A��� � � � � A�i��� I�i� A�i��� � � � � A�n� and

Pos�A��� � � � � A�i����M�i� A�i��� � � � � A�n� have a nonempty intersection� a contradic�

tion� since C�M� partitions Rn� Hence� if C�M� partitions Rn� the strict separation

property is satis
ed� and by Theorem ��	� this implies that M is a P �matrix�

Hence the class of complementary cones C�M� partitions Rn i�M is a P �matrix�

Example ��


Let M �

��� 	 �
� 	

���� The complementary cones are the quadrants in R�� drawn in

Figure 	��� and obviously this class of complementary cones partitions Rn� For any n

in general C�I� is the class of orthants of Rn� and these obviously partition Rn� As

mentioned earlier the class of complementary cones is a generalization of the class of

orthants of Rn �orthants of Rn are the special class of complementary cones obtained

by taking M � I�� and C�M� possesses the property of partitioning Rn as long as M

is a P �matrix� This was 
rst proved by Samelson� Thrall and Wesler in �������

Corollary ���� LetM be a given square matrix of order n� The following conditions

are mutually equivalent�

i� All principal subdeterminants of M are strictly positive�

ii� The LCP �q�M� has a unique solution for each q � Rn�

iii� The LCP �q�M� has at most one solution for each q � Rn�

iv� The diagonal entries in all PPTs of M are strictly positive�

v� LCPs associated with M satisfy the strict separation property�

vi� The class of complementary cones C�M� forms a partition of Rn�

Proof� Follows from Theorems ��	�� ��	�� ��	�� ��� and Corollaries ���� ����
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Theorem ���
 Consider the LCP ����� in which M is a P �matrix� Suppose �w� z�

is the unique solution of the LCP with z� � �� Let � � �w�� � � � � wn�� � � �z�� � � � � zn��

If �y�� � � � � yn�� with yj � fwj � zjg for j � � to n� is a complementary feasible basic

vector for the principal subproblem of ����� in �� �� �w�� y�� � � � � yn� is a complementary

feasible basic vector for ������

Proof� By Result ��� and Theorem ��	�� � � �w�� � � � � wn�� � � �z�� � � � � zn� is the

unique solution of the principal subproblem in �� �� Since w� z is the unique solution

of ���	�� and z� � �� we have
Pn

j��m�jzj 
 q� � w� �� �� Under degeneracy� there

may be several complementary feasible basic vectors �all di�ering in the zero valued

basic variables� for the principal subproblem in �� �� but the BFS corresponding to

each of them must be �� � by the uniqueness of the solution� Also� the column vector

of w� in ���	� is I��� So� when we compute the basic solution of ���	� corresponding

to the basic vector �w�� y�� � � � � yn�� we get wj � wj � zj � zj for j � � to n� z� � �

and w� �
Pn

j��m�jzj 
 q� � w� �
� �� which is the solution �w� z� of ���	�� So�

�w�� y�� � � � � yn� is a complementary feasible basic vector for ���	��

Higher Order Separation Theorems

Theorem ���� Let M be a P �matrix of order n and let J� J be a partition of

f	� � � � � ng with J� J both being nonempty� Let fA�j � j � Jg� fA�j � j � Jg be the

corresponding partition of a complementary set of vectors� Let fB�j � j � Jg be the

complement of the subcomplementary set fA�j � j � Jg� If H is a hyperplane in Rn

satisfying

i� H contains the origin � and all the vectors in the subcomplementary sets fA�j �

j � Jg�

ii� All the vectors in the subcomplementary set fA�j � j � Jg lie in one of the closed

half�spaces� H
�
�� de
ned by H� then at least one of the vectors in fB�j � j � Jg

lies strictly on the other side of H in the other open half�space H� de
ned by H�

Proof� Consider the system ���	��

w �Mz � � � ���	��

Perform principal pivot steps in ���	�� to transform the complementary set of vectors

fA�j � j � J	Jg into the set of unit vectors� This is a nonsingular linear transformation

that preserves separation properties� If uj denotes the variable in ���	�� associated with

A�j � and vj denotes its complement� this transforms ���	�� into

u�Mv � � ���	��

where M is also a P �matrix because it is a principal pivot transform of the P �matrix

M � Let M
JJ

denote the principal submatrix of M corresponding to the subset J� Let
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H � fx �
Pn

j�� ajxj � �g be the transform of H� Since A�j is transformed into I�j �

by �i� we have aj � � for each j � J� and by �ii� we have a
J
� �aj � j � J� �� �� So

the row vector a � �aj� �� � and since H is a hyperplane a � �� that is a
J
� �� �A

vector y � �yj� � � means that each yj is nonnegative and at least one yj is strictly

positive�� For j � J� B�j is now transformed into �M �j � The vector �a��M �j� � j �

J� � �a
J
M

JJ
� Since M

JJ
is itself a P �matrix and a

J
� �� by Theorem ��		 at least

one of the components of a
J
M

JJ
is strictly positive� that is a��M �j� 	 � for at least

one j � J� That is� at least one of the �M �j for j � J lies in the open half�space

H
�
� fx �

Pm

j�� ajxj 	 �g not containing the unit vectors� In terms of the original

space this implies that at least one of the B�j � j � J is contained in the open half�space

H� de
ned by H not containing the complementary set of vectors fA�j � j � J 	 Jg�

Theorem ��	� Let M be a P �matrix of order n� J a nonempty proper subset of

f	� � � � � ng and let fA�j � j � Jg be a subcomplementary set of vectors� Let H be a

hyperplane in Rn that contains the origin � and all the vectors in the set fA�j � j � Jg�

Then H strictly separates at least one pair of the left out complementary pairs of

vectors fI�j ��M�jg for j � J � f	� � � � � ng n J�

Proof� Choose the subcomplementary set fA�j � j � Jg arbitrarily and transform the

system ���	�� into ���	�� as in the proof of Theorem ��	�� Using the notation in the

proof of Theorem ��	�� suppose this transforms H into H � fx �
Pn

j�� ajxj � �g�

Since A�j is transformed into I�j and H contains A�j for j � J� H must contain I�j
for j � J� that is aj � � for all j � J� Since H is a hyperplane� we must have a �� ��

that is a
J
� �aj � j � J� �� �� De
ne M

JJ
as in the proof of Theorem ��	�� it is a

P �matrix as noted there� By the sign nonreversal theorem for P �matrices of D� Gale

and H� Nikaido� Theorem ��	�� if �yj � j � J� � a
J
M

JJ
� ajyj � � for at least one j � J�

Since aj � � for j � J� these facts imply that there exists at least one j � J satisfying

the property that aI�j and a��M �j� have strictly opposite signs� that is H separates

the complementary pair of vectors fI�j ��M �jg strictly� In terms of the original space�

this implies that H strictly separates the complementary pair of vectors fI�j ��M�jg

for that j � J�

Comment ��� Theorem ��� is from K� G� Murty ������ ������ Theorem ��� is due

to A� W� Tucker ������� The proofs of Theorems ���� ��� given here are attributed to

P� Wolfe� The fact that the LCP �q�M� of order n has a unique solution for all q � Rn

is originally established ������� The inductive proof of Theorem ��	� given here� and

Theorems ��	�� Corollary ��� are from K� G� Murty ������ ������

A Variant of the LCP

We now discuss some results from K� G� Murty ����	�� LetM be a given square matrix

of order n and q a given column vector of order n� Let J be a given subset of f	� � � � � ng�
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The generalized LCP with data q� M � J is the problem of 
nding column vectors

w � Rn� z � Rn satisfying�

w �Mz � q

wjzj � � for all j � 	 to n

wj � zj �� � for all j �� J

wj � zj 	� � for all j � J �

���	��

We will use the notation �q�M�J� to denote this generalized LCP� Notice that if J � ��

the generalized LCP �q�M� �� is the same as the usual LCP �q�M� that we have been

discussing so far� We will now prove some results about the uniqueness of the solution

to this generalized LCP�

Theorem ��	� Let M be a given square matrix of order n� and J a given subset

of f	� � � � � ng� With M � J 
xed� the generalized LCP �q�M�J� has a unique solution

for each q � Rn i	 M is a P �matrix�

Proof� In ���	��� make the following transformation of variables� wi � ui for i �� J�

�ui for i � J� zi � vi for i �� J� �vi for i � J� After making these substitutions�

multiply both sides of the ith equation in it by �	 for each i � J� Let u � �u�� � � � � un�
T �

v � �v�� � � � � vn�
T � After these transformation the problem becomes�

u�Mv � q

u �� �� v �� �

uT v � �

���	��

where M is the matrix obtained from M by multiplying each entry in the ith row of

M by �	 for each i � J� and then multiplying each entry in the ith column of the

resulting matrix by �	 for each i � J� So the value of a principal subdeterminant of

M is exactly equal to the corresponding principal subdeterminant of M � Thus M is a

P �matrix� i� M is� The column vector q is obtained by multiplying the ith entry in q

by �	 for each i � J� ���	�� is equivalent to ���	��� If � �w� �z� is a solution of ���	��� then

the corresponding �u� v� obtained as above is a solution of ���	�� and vice versa� But

���	�� is the usual LCP �q�M�� and hence by Theorem ��	� it has a unique solution

for each q � Rn i� M is a P �matrix� Consequently ���	�� has a unique solution for

each q � Rn i� M is a P �matrix�

Now let M be a given square matrix of order n� and consider the usual LCP

�q�M�� ���	�� again� The column vector q is nondegenerate in ���	�� if q is not in

the linear hull of any set of �n� 	� columns of �I��M�� There are �n complementary

sets of column vectors in the LCP �q�M�� and number these sets in some order� from

l � 	 to �n� Let Al denote the matrix whose columns are the columns in the lth

complementary set of column vectors �in that order�� for l � 	 to �n� If M is a P �

matrix� by Corollary ��	� Al is nonsingular and hence is a complementary basis for



			 Chapter �� Separation Properties� Principal Pivot Transforms� Classes ���

���	�� for each l � 	 to �n� Let A denote the set of all these complementary bases�

that is A � fAl � l � 	� �� � � � � �ng�

It is clear from the de
nitions� that if q is nondegenerate in the LCP �q�M� and

A is a complementary basis for the LCP �q�M� and �q � ��qj� � A��q� then �qj �� �

for each j � 	 to n� �Since �q � A��q� we have q � A�q �
Pn

j�� �qj A�j � If �qj � � for

some j� then q can be expressed as a linear combination of �n� 	� column vectors of

�I
��� �M�� contradicting the hypothesis that q is nondegenerate in ���	���

We will now discuss some important results on the LCP �q�M� when M is a

P �matrix and q is nondegenerate� from ����	��

Theorem ��		 Let M be a given P �matrix of order n� and let q be nondegenerate

in the LCP �q�M�� Then for each subset J � f	� � � � � ng� there exists a unique com�

plementary basis A � A satisfying the property that if �q � ��qj� � A��q� then �qj 	 �

for all j � J and �qj � � for all j �� J�

Proof� Since q is nondegenerate� for any A � A all the components in A��q are

nonzero� Suppose �q � A��q is such that �qj 	 � for all j � J and �qj � � for all

j �� J� Let �y�� � � � � yn� be the complementary vector of variables corresponding to the

complementary basis A� Let � �w� �z� be the solution de
ned by�

yj � �qj � for j � 	 to n

Complement of yj � �� for j � 	 to n �

Then � �w� �z� is a solution of the generalized LCP �q�M�J�� However� by Theorem ���	�

the generalized LCP �q�M�J� has a unique solution� since M is a P �matrix� This

implies that there exists a unique complementary basis A � A such that if �q � A��q�

then �qj 	 � for all j � J and �qj � � for all j �� J�

Example ���

Let

fM��� �

�������
	 � �
� 	 �
� � 	

������� q �

�������
�	
�	
�	

������� �

Here n � �� and there are eight complementary bases� Verify that fM��� is a P �matrix�

The LCP �q�fM���� corresponding to this data will be discussed in Example ��	 of

Chapter �� From there� we see that for A � A� q � A��q� the updated right hand side

constants vector is as tabulated below�
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Complementary Basic Vector qT � Transpose of the Updated

Corresponding to the Right Hand side Constants Vector

Complementary Basis

�w�� w�� w�� ��	��	��	�

�w�� w�� z�� ��	��	� 	�

�w�� z�� z�� ��	� 	��	�

�w�� z�� w�� ��	� 	� 	�

�z�� z�� w�� � 	��	��	�

�z�� z�� z�� � 	��	� 	�

�z�� w�� z�� � 	� 	��	�

�z�� w�� w�� � 	� 	� 	�

As an example let J � f�g� We verify that the complementary basis corresponding

to the complementary basic vector �z�� z�� z�� is the unique complementary basis in

this problem satisfying the property that the jth updated right hand side constant

is negative for j � J and positive for j �� J� In a similar manner� the statement of

Theorem ���� can be veri
ed to be true in this example for all subsets J � f	� �� �g�

����� One�to�One Correspondence Between Complementary

Bases and Sign Vectors

Given any vector of �
� and ��� sign symbols in Rn� Theorem ���� states that if M

is a P �matrix of order n and q is nondegenerate in the LCP �q�M�� then there exists a

unique complementary basis for the LCP �q�M� satisfying the property that the signs

of the components in the updated right hand sides constants vector with respect to

that complementary basis� are exactly the given vector of signs�

Corollary ���� Let M be a given P �matrix of order n� and let q be a given column

vector which is nondegenerate for the LCP �q�M�� The number of complementary

basis A � A such that if �q � ��qi� � A��q� then exactly r of the qi are strictly negative�

is
�
n
r

�
� This follows from Theorem �����

Corollary ���	 Let M be a given P �matrix of order n� and let q be a given column

vector which is nondegenerate for the LCP �q�M�� There is a one�to�one correspon�

dence between the �n complementary basic vectors for this problem� and the �n sign

vectors for the components in the updated q� This follows from Theorem �����
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The result in Theorem ���� and Corollary ���� displays the nice combinatorial

structure of the LCP �q�M� whenM is a P �matrix and q is nondegenerate� As we move

from one complementary basic vector to another� the sign pattern of the components in

the updated q vector changes distinctly� The problem of solving the LCP �q�M� in this

case� is the same as that of 
nding the complementary basic vector that corresponds

to the sign vector consisting of all 
 signs under this one�to�one correspondence�

��� OTHER CLASSES OF MATRICES IN

THE STUDY OF THE LCP

In this section we provide a brief summary of some of the other classes of matrices

used by many researchers in the study of the LCP�

The Weak Separation Property

This is a property of the matrix M � and does not depend on the right hand side

constants vector q� An LCP associated with the matrix M �or the class of comple�

mentary cones C�M�� is said to satisfy the weak separation property if� given any

subcomplementary set of column vectors �A��� � � � � A�i��� A�i��� � � � � A�n�� there exists

a hyperplane H in Rn which contains the points �� and A�t� t � 	� � � � � i�	� i
	� � � � � n�

and separates �not necessarily strictly� the points represented by the left out comple�

mentary pair of column vectors I�i� �M�i� See reference ������� As an example let

M �

��� � 	
	 �

���� The corresponding complementary cones are drawn in Figure ����

verify that the weak separation property holds� but not the strict separation property�

Also see Figure ����
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Figure ��
 The Complementary Cones when M �

��� � 	
	 �

���� The Complementary
Cones PosfI����M��g� Posf�M��� I��g are both degenerate� they are the coordinate

lines� The Weak Separation Property Holds�
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Figure ��� The Complementary Cones when M �

��� � 	
� �

���� The Cones

Pos�I����M���� Pos��M����M���� Pos��M��� I��� are all degenerate and their

Union is the Horizontal Coordinate Line� and the Nonnegative Half of the Ver�

tical Coordinate Line�

The square matrixM of order n is said to be a weak separation matrix if it satis
es

the weak separation property� Using arguments similar to those in the proof of Theorem

��	�� it can be veri
ed that M is a weak separation matrix i� the diagonal entries in

M and all the PPTs of M are nonnegative� See reference ������� and also Exercise ��	�

P��Matrices� A square matrix M of order n belongs to this class i� all its principal

subdeterminants are �� ��

The union of all the complementary cones in C�M� may not even be convex when

M is a P��matrix� For example� consider M �

��� � 	
� �

���� The complementary cones
for this case are plotted in Figure ���� The complementary pivot algorithm may not

be able to process the LCP �q�M� when M is a P��matrix� For example� on the LCP

in which M is the matrix given above� and q � ��	� ��T � the complementary pivot

algorithm ends up in ray termination� even though the LCP has a solution�

Z�Matrices� A square matrix M � �mij� of order n is said to be a Z�matrix i�

mij 	� � for every i �� j� A very e�cient special algorithm for solving the LCP �q�M�

whenM is a Z�matrix has been developed by R� Chandrasekaran� and this is discussed

in Section ��	�
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Matrices with Dominant Principal Diagonal� A square matrix M � �mij� of

order n belongs to this class if jmiij �
Pn

j��
j ��i

jmij j for each i � 	 to n�

Generalized Diagonally Dominant� A square matrixM is said to be a generalized

diagonally dominant if there exists a positive diagonal matrix T such that AT is strictly

diagonally dominant�

M�Matrices� A square matrix M of order n is said to be an M �matrix if it is a

Z�matrix which is also a P��matrix� In the literature these matrices are also called

K��matrices in some references �see S� R� Mohan �������� Nonsingular M �matrices are

precisely Z�matrices which are also P �matrices �in the literature these are also known

as Minkowski�matrices or K�matrices and some authors refer to these as M �matrices�

See the paper ������ by M� Fiedler and V� Ptak for the properties of these matrices� If

M is a nonsingular M �matrix� then its inverse M�� �
� ���

Comparison Matrix� Given a square matrix M � �mij�� its comparison matrix is

A � �aij� where aii � jmiij for i � 	 to n and aij � �jmij j for all i �� j� i� j � 	 to n�

H�Matrix� A square matrix M is said to be a H�matrix if its comparison matrix

�which is a Z�matrix� is a P �matrix�

Semi�Monotone Matrices �E��Matrices�� The square matrix M of order n is

said to be semi�monotone i� for all x � Rn� x � �� there exists an index i such that

xi � � and Mi�x �
� �� This class of matrices has also been called the class of L��

matrices� The matrixM belongs to this class i� the LCP �q�M� has a unique solution

whenever q � �� If M is symmetric� then it is semi�monotone i� it is copositive�

Strictly Semi�Monotone Matrices� The square matrix M of order n belongs to

this class if for every x � Rn� x � �� there exists an index i such that xi � � and

Mi�x � �� Equivalently� let fM refer to any nonempty principal submatrix of M � or M

itself� Then M is strictly semi�monotone� i� the system

fM �z 	 �

�z � �

has no solution �z� for all such fM � B� C� Eaves ����	� calls this class of matrices L��

See also the papers �	��� of R� W� Cottle and G� B� Dantzig� �	�	�� by S� Karamardian�

and ������ of C� E� Lemke �Lemke calls this class of matrices E��

If M is symmetric� M is strictly semi�monotone i� it is strictly copositive� A

matrixM is strictly semi�monotone if the LCP �q�M� has a unique solution whenever

q �� �� This class is the same as the class of Q or completely Q�matrices�

Fully Semi�Monotone� A square matrix of M of order n belongs to this class if

M and all its PPTs are semi�monotone� See R� W� Cottle and R� E� Stone ���	���

The square matrixM is fully semi�monotone i� the LCP �q�M� has a unique solution

whenever q is in the interior of any nondegenerate complementary cone�
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S�Matrix� A matrix M � not necessarily square� belongs to this class if the system

Mx � �� x � �

has a solution x� See ������ by C� E� Lemke�

Q� or Completely Q�Matrices� A square matrix of order n belongs to this class

if the matrix� and all its principal submatrices are Q�matrices� In ����� R� W� Cottle

has proved that this class is exactly the same as the class of strictly semi�monotone

matrices� See Exercises ��	�� ��		�

V �Matrices� The square matrixM of order n belongs to this class if every principal

submatrix fM of M has the property that there is no positive column vector z such

that the last coordinate of fM �z is nonpositive and the remaining ones are zero� In

������ L� Van der Heyden constructed a new algorithm for the LCP and showed that

it will always obtain a solution to the LCP �q�M�� provided M is a V �matrix� In �����

R� W� Cottle has proved that this class of matrices is the same as the class of strictly

semi�monotone matrices� or the class of Q�matrices� See Exercises ��	�� ��		�

Q��Matrices� A square matrix M of order n belongs to this class if the union of all

the complementary cones in C�M� is convex� In some early papers on the LCP this

class was denoted by K� We have the following theorem on this class of matrices�

Theorem ��	� If M is a Q��matrix� the union of all the complementary cones in

C�M� is Pos�I��M��

Proof� Let K�M� denote the union of all the complementary cones in C�M�� Every

solution of the LCP �q�M� is a �w� z� satisfying w � Mz 
 q� w� z �� � and wT z � ��

and hence �w� z� give the coe�cients in an expression for q as a nonnegative linear

combination of the columns of �I
��� �M�� So if q � K�M�� then q � Pos�I

��� �M��

that is� K�M� � Pos�I
��� �M�� Now� let    � fI�j ��M�j � j � 	 to ng� For any j � 	 to

n� if q � I�j � �w � I�j � z � �� is a solution of the LCP �q�M�� and if q � �M�j � �w � ��

z � I�j� is a solution of the LCP �q�M�� So    � K�M�� Since M is a Q��matrix by

hypothesis    � K�M� implies that Pos�   � � K�M�� that is� Pos�I
��� �M� � K�M��

All these facts together imply that K�M� � Pos�I
��� �M��

Q��Matrices� The square matrix M of order n belongs to this class if it� and all its

principal subdeterminants are Q��matrices�

Adequate Matrices� A square matrix of order n belongs to this class if it is

a P��matrix� and whenever a principal submatrix of M corresponding to a subset

fi�� � � � � irg � f	� � � � � ng is singular� the sets of vectors fMi� � i � fi�� � � � � irgg�

fM�i � i � fi�� � � � � irgg are both linearly dependent� This class of matrices has been

de
ned by A� W� Ingleton ����	�� He proved that if M is adequate� for any q � Rn�

there exists at most one w such that �w� z� is a solution of the LCP �q�M�� Also� if M

is invertible and adequate� it is a P �matrix�
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L��Matrices� A square matrix of order n is said to be an L��matrix if for each z � �

satisfying w � Mz �� � and wT z � �� there exists a �z �� � satisfying �w � ���zTM�T �

w �
� �w �

� �� z �� �z �� ��

E��d��Matrices� Let d � Rn be given� The square matrix M of order n belongs to

this class if z � � in every solution of the LCP �d�M�� Thus if M is an E��d� matrix�

the LCP �d�M� has the unique solution �w � d� z � �� if d �� �� and no solutions if

d ��� ��

E�d��Matrices� Let d � Rn be given� The square matrix M of order n belongs to

this class� if whenever �w� z� is a solution of the LCP �d�M� with z �� �� there exists

an x �� � such that y � �MTx �� �� and z �� x� w �
� y�

L�d��Matrices� Let d � Rn be given� The square matrix M of order n belongs to

this class if it is both an E�d��matrix and also an E����matrix�

L��d��Matrices� Let d � Rn be given� The square matrix M of order n belongs to

this class if it is both an E��d��matrix and also an E�����matrix�

The classes of matrices E�d�� E��d�� L�d�� L��d� have been de
ned by C� B� Garcia

������� He has shown that if d � �� and M is an L�d� matrix� then the LCP �q�M�

can be processed by the variant of the complementary pivot algorithm in which the

original column of the arti
cial variable z� is taken to be �d�

Regular Matrices� The square matrix M of order n is said to be a regular matrix

�denoted by R�matrix� if there exists no z � Rn� t � R� satisfying

z �� �� t �� �

Mi�z 
 t � � if i is such that zi � �

Mi�z 
 t �� � if i is such that zi � ��

So the matrix M is a regular matrix i� for all � �
� �� the only solution to the LCP

��e�M� is �w � �e� z � ��� S� Karmardian �	�	�� introduced this class of matrices and

proved that all regular matrices are Q�matrices�

R��Matrices� These are matricesM for which the LCP ���M� has a unique solution�

This is exactly the class E���� de
ned earlier� These matrices have also been called

superregular matrices� If M belongs to this class there exists no z � Rn satisfying

z � �

Mi�z � � for i is such that zi � �

Mi�z �� � for i is such that zi � ��

This class includes all regular matrices� In particular the matrix M �

����	 �	
�	 �	

��� is

an R��matrix� but not regular�

A degenerate complementary cone Pos�A��� � � � � A�n� is said to be strongly de�

generate if there exists � � ���� � � � � ��n� � � satisfying
Pn

j�� �jA�j � �� weakly
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degenerate if no such � exists� As an example� let

M �

�������
	 �	 �	
	 �	 �	

�	 	 �

������� �

For this matrixM � the degenerate complementary cone Pos��M����M��� I��� is strong�

ly degenerate because � � ��M��� 
 ��M���� The degenerate complementary cone

Pos�I��� I����M���� is weakly degenerate since it is impossible to express � as ��I�� 


��I�� 
 ����M��� with ��� ��� �� �� � and at least one of ��� ��� �� strictly � ��

Clearly� a square matrixM is an R��matrix i� there exists no strongly degenerate

complementary cone inC�M��

N�Matrix� A square matrix of order n belongs to this class if all its nonempty

principal subdeterminants are strictly negative� See M� Kojima and R� Saigal ������ in

which they prove that if M is an N �matrix� then the LCP �q�M� has either �� 	� � or

� solutions for any q�

U�Matrix� A square matrix of order n belongs to this class i� the LCP �q�M� has a

unique solution whenever q is in the interior ofK�M� � the union of all complementary

cones in C�M�� See R� W� Cottle and R� E� Stone ���	���

INS�Matrices� A square matrixM of order n is said to be an INS�Matrix �Invariant

Number of Solutions� i� the number of solutions of the LCP �q�M� is the same for

all q contained in the interior of K�M�� See R� W� Cottle and R� E� Stone ���	���

R� E� Stone ������ ���	��

INSk�Matrices� A square matrixM of order n is called an INSk�Matrix if for every

q in the interior of K�M�� the LCP �q�M� has exactly k distinct solutions�

W �Matrices� LetM be a given real square matrix of order n� For any J � f	� � � � � ng

de
ne the complementary matrix A�J� associated with the subset J to be the square

matrix of order n in which

�A�J���j �

�
�M�j � if j � J
I�j � if j �� J �

The matrix M is said to be a W �matrix i�

Pos�A�J�� 
 Pos�A�J�� � f�g

for every J � f	� � � � � ng and J � f	� � � � � ng n J� This de
nition is due to M� W� Jeter

and W� C� Pye� they have shown that every W �matrix is a U �matrix�
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��� Exercises

��� Let M be a given square matrix of order n� Let    � f	� � � � � ng� If S �    de
ne

f�S� � 	� if S � �

� principal subdeterminant of M corresponding to S� if S �� ��

Prove that M is a weak separation matrix i� there exists no nonempty subset S �    

satisfying the property that for some j � S� f�S� and f�Snfjg� are both non�zero and

have strictly opposite signs� Using it� prove that a square matrix is a weak separation

matrix i� the diagonal entries of all its PPTs are �� ��

Prove that every nondegenerate weak separation matrix is a P �matrix and that

every square matrix which is not a weak separation matrix must have a negative

principal subdeterminant� Show that all P��matrices are weak separation matrices�

Prove that if the LCP �q�M� has more than one solution� and M is a weak

separation matrix� then q �� � �K� G� Murty ������ 	������

��	 Prove that the two de
nitions given for strictly semi�monotone matrices are equiv�

alent�

��� Prove that every copositive plus matrix which contains a strictly positive column

vector� is a Q�matrix�

��� Prove that all PPTs of a P��matrix are P��matrices�

��
 Prove that the square matrixM of order n is a P��matrix i� for all y � R
n� y �� ��

there exists an i such that yi �� � and yi�Mi�y� �� � �Fiedler and Ptak ��������

��� If M is a P��matrix� prove that there exists an x � � such that Mx �
� �

�B� C� Eaves ����	���

��� If M is a P��matrix and x � � satis
es Mx � �� prove that there exists a y � �

such that yTM � ��

��
 If M is a P��matrix and �q�M� has a nondegenerate complementary BFS� then

prove that it is the unique complementary feasible solution� Construct a numerical

example to show that the converse could be false �B� C� Eaves ����	���

��� Prove that every Q�matrix is an S�matrix �C� E� Lemke ��������
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���� Prove that if M is a square matrix of order n which is an S�matrix� and every

�n � 	� � �n � 	� principal submatrix of M is strictly semi�monotone then M itself

is strictly semi�monotone� using this prove that the class of strictly semi�monotone

matrices is the same as the class of completely Q�matrices �R� W� Cottle �������

���� Prove that the classes of matrices� strictly semi�monotone� Q� V � are the same

�R� W� Cottle �������

���	 IfM is a square symmetric matrix of order n� prove that the following conditions

are equivalent�

�i� M is strictly copositive�

�ii� M is strictly semi�monotone�

�iii� for all q �� �� the LCP �q�M� has a unique solution �F� Pereira ��������

���� If M is a square matrix of order n which is principally nondegenerate� prove

that the number of complementary feasible solutions for the LCP �q�M� has the same

parity �odd or even� for all q � Rn which are nondegenerate� As an example� when

M �

�������
�	 � �
� �	 �
� � �	

�������
show that the number of complementary feasible solutions for the LCP �q�M� is always

an even number �� � whenever q is nondegenerate �K� G� Murty �	���� �������

���� Prove that if the number of complementary feasible solutions for the LCP �q�M�

is a constant for all q which are nondegenerate� then that constant must be equal to

	� and M must be a P �matrix� �K� G� Murty �	���� �������

���
 If yT q
yTMy is bounded below on the set y �� �� then prove that the LCP �q�M�

has a solution and it can be computed by using the complementary pivot algorithm

�B� C� Eaves ����	���

���� Let q� M be matrices of orders n � 	� n � n respectively� If there exists an

x � Rn� x � � such that qTx 	 �� MTx 	
� �� prove that the LCP �q�M� has no

solution �C� B� Garcia ��������

���� Prove that the classes of matrices E�d� and E��d� are the same whenever either

d � �� or d 	 � �C� B� Garcia ��������

���
 Prove that the semi�monotone class of matrices is
T
d�� E�d�� Also� prove that
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the class L of matrices is
T
d�� L�d�� Verify that the matrix

M �

�������
	 	 	
� �	 	

�	 �	 �

�������
is an L�d� matrix for d � ��� �� 	�T � but not an L�matrix �C� B� Garcia ��������

���� Let d � � and suppose M is an L��d� matrix� For any q � Rn� prove that when

the variant of the complementary pivot algorithm in which the original column of the

arti
cial variable z� is taken to be �d� is applied on the LCP �q�M�� it terminates

with a solution of the LCP �S� Karamardian� �	�	��� C� B� Garcia ��������

��	� Let M be a copositive plus matrix� Prove that the set of solutions of the LCP

�q�M� is nonempty and bounded i� the optimum objective value in the following LP

is zero

Maximize eTu

Subject to MTu 	� �

qTu 	� �

u �� � �

In particular� prove that if M is copositive plus and the LCP �q�M� has a nonde�

generate complementary BFS� then the set of solutions of the LCP �q�M� is bounded

�O� L� Mangasarian ��������

��	� Let M be a copositive plus matrix� If the system� Mx � �� x �� � has a solution

x � Rn� prove that the set of solutions of the LCP �q�M� is nonempty and bounded�

for every q � Rn �O� L� Mangasarian ������� J� Parida and K� L� Roy ��������

��		 Prove that every regular matrix is a Q�matrix �S� Karamardian �	�	����

��	� Prove that if M is a P��matrix then the following are equivalent

�i� M is an R��matrix�

�ii� M is a regular matrix�

�iii� M is a Q�matrix�

�M� Aganagic and R� W� Cottle �������

��	� IfM is a P �matrix� prove that the systemMx � �� x � � has a feasible solution�
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��	
 LetM be a P �matrix of order n and let q � Rn� Consider the quadratic program�

minimize zT �Mz 
 q�

subject to Mz 
 q �� �

z �� � �
���	��

Prove the following

�i� ���	�� has a unique local minimum z which is the global minimum with objective

value �� In this case �w �Mz 
 q� z� is the unique solution of the LCP �q�M��

�ii� If z is the unique local minimum for ���	��� let � � zT � � � �Mz 
 q�T � Then

�z� �� �� is the unique KKT point for ���	�� �Y� C� Chang �������

��	� The square matrix M of order n is a nonsingular M �matrix i� the following

property holds� Let �w� z� be the solution of the LCP �q�M�� Then z is the unique

vector in the region X � fz � Mz 
 q �� �� z �� �g satisfying z � X and z �� z for any

z � X �R� W� Cottle and A� F� Veinott� Jr� ���	����

��	� Let M be a Z�matrix which is also a P �matrix of order n� and q�� q� � Rn

satisfying q� �� q�� If �wi� zi� is a solution of the LCP �qi�M� for i � 	� �� prove that

z� �� z� �R� W� Cottle� G� H� Golub� and R� S� Sacher ���		���

��	
 Let M be an N �matrix� Then prove that either M 	 � or there exists a d � �

such that Md � �� Also prove that a square matrix M is an N �matrix i� all proper

principal subdeterminants of M�� are positive and the determinant of M�� is 	 �

�M� Kojima and R� Saigal ��������

��	� Let M be an N �matrix� Prove the following� If M 	 �� �q�M� has no solutions

for q ��� � and exactly two solutions for q � �� If M �	 �� and q �� �� the LCP �q�M�

has a unique solution� If M �	 �� and q � �� the LCP �q�M� has � or � solutions� If

M �	 �� q � � and qi � � for at least one i� the LCP �q�M� has exactly two solutions

�M� Kojima and R� Saigal ��������

���� If M is an M �matrix prove that the union of all the degenerate complementary

cones is the set of all q � Rn for which the LCP �q�M� has an in
nite number of

solutions� Also� in this case� prove that the LCP �q�M� has in
nitely many solutions

i� q is in the boundary of K�M�� which is the union of all complementary cones in

C�M� �S� R� Mohan ��������

���� Prove that every U �matrix is a fully semi�monotone matrix �R� W� Cottle and

R� E� Stone ���	����
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���	 Prove that the LCP �q�M� has an even number of solutions for each q � Rn

which is nondegenerate� if there exists a z � � such that zM 	 �� or equivalently if

�x � �� y � �� is the only solution to the system

Ix�My � �

x� y �� �

�R� Saigal ��������

���� Consider the LCP �q�M� where M is an adequate matrix� If �w� z�� � �w� �z� are

any two solutions of this LCP� prove that w � �w �A� W� Ingleton ����	���

���� Let M be a square nondegenerate matrix of order n� For some q� � Rn� if the

LCP �q��M� has a unique solution �w�� z�� and w� 
 z� � �� then prove that M is a

Q�matrix �A� W� Ingleton ����	���

���
 If M is an L�matrix and an R��matrix prove that it must also be an R�matrix

and a Q�matrix�

Prove that if M is R��matrix which is copositive� then it must be an R�matrix

and a Q�matrix�

If M is an L��matrix and a Q�matrix� prove that it must be an R��matrix�

If M is an L�matrix� prove that the following are equivalent�

�i� M is a Q�matrix�

�ii� M is an R�matrix�

�iii� M is an R��matrix� and

�iv� M is an S�matrix�

Is every Q�matrix which is an L��matrix� also an R��matrix! �J� S� Pang ��������

���� Prove that copositive plus and strictly copositive matrices are L�matrices�

���� Prove that every P��matrix is semi�monotone� and that every Q�matrix is an

S�matrix�

���
 IfM is an L�matrix� prove that it is a Q�matrix i� it is an S�matrix �B� C� Eaves

����	���

���� Prove that the system� Mx � �� x � �� is inconsistent if eitherM is an L��matrix

and a Q�matrix� or M is a Q�matrix which is copositive�

If M is an L��matrix and a Q�matrix� prove that every nonzero z that leads to

solution of the LCP ���M� must have at least two nonzero components�
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IfM is a Q�matrix which is copositive� prove that any vector z satisfying zTMz �

� and �M 
MT �z � �� and leads to a solution of the LCP ���M� must be the zero

vector�

If M is a Q�matrix which is symmetric and copositive� prove x � � is the only

feasible solution to the system� Mx � �� x �� ��

If M is a Q�matrix which is symmetric and copositive plus� prove that it must be

strictly copositive�

If M is a copositive plus matrix prove that the following are equivalent�

�i� M is a Q�matrix�

�ii� M is a R�matrix�

�iii� M is a R��matrix�

�iv� M is an S�matrix�

In addition� if M is also symmetric� then prove that each of the above is equivalent to

�v� M is strictly copositive�

�vi� x � � is the only feasible solution of the system� Mx � �� x �� �

�J� S� Pang ��������

���� Let M be a nondegenerate Q�matrix of order n� Prove that the number of

distinct solutions of the LCP �q�M� is 	� �n � 	 for any q � Rn �A� Tamir ��������

���� If M is a square matrix all of whose principle subdeterminants are negative and

there exists an x � � such that Mx � �� then M is a Q�matrix �R� Saigal ��������

���	 Prove that any square matrix of order � with all diagonal entries zero cannot be

a Q�matrix� Show that this result is not true for higher order matrices by considering

M �

����������
� � �	 �
� � � �	

�	 �	 � 	
�	 �	 	 �

����������
which is a Q�matrix since M�� � � �M� Jetter and W� Pye ��������

���� If M is a square matrix of order n such that there exists a z � � satisfying

zTM 	 � then the LCP �q�M� has an even number of solutions for all nondegenerate

q �R� Saigal ��������

���� If M is copositive plus and the LCP �q�M� has a solution �w� z� which is a

nondegenerate BFS of �w�MZ � q� w �
� �� z �� ��� prove that the set of solutions of

the LCP �q�M� is a bounded set� However� show that the existence of a nondegenerate
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BFS solution is not necessary for the set of solutions of the LCP �q�M� to be bounded�

�Hint� try q �

����	
�	

���� M �

��� 	 	
	 	

��� �O� L� Mangasarian ��������

���
 If M is a copositive plus matrix of order n� for any q � Rn� the set of solutions

of the LCP �q�M� is nonempty and bounded if the following system has a solution

x � Rn�

Mx
 q � �� x �� � ���	��

�O� L� Mangasarian ��������

���� If M is a copositive Q�matrix� prove that the system

Mx � �

x � �

is inconsistent�

���� If M is a symmetric� copositive plus Q�matrix� prove that M must be strictly

copositive �J� S� Pang ��������

���
 If M is a copositive plus matrix of order n� the solution set of the LCP �q�M�

is nonempty and bounded for each q � Rn i� M is a Q�matrix� This happens i� the

system �Mx � �� x �� �� has a solution x � Rn �O� L� Mangasarian ��������

���� If the nondegenerate matrix M is the limit of a convergent sequence of non�

degenerate Q�matrices� prove that M is a Q�matrix �M� Aganagic and R� W� Cottle

�������

��
� Suppose M is a Q�matrix of order n� Let J � f	� � � � � ng be such that Mj� �� �

for a j � J� Then the principal submatrix ofM determined by the subset f	� � � � � ngnJ

must be a Q�matrix�

��
� Let M be a Q�matrix of order n� If fA��� � � � � A�j��� A�j��� � � � � A�ng is a sub�

complementary set� there exists a hyperplane H in Rn containing � and all the vectors

in this subcomplementary set such that I�j and �M�j do not lie in the same open half�

space corresponding to this hyperplane H� Also� if M is a nondegenerate Q�matrix�

there exists a hyperplane H of the type described above� which strictly separates I�j
and �M�j �M� Aganagic and R� W� Cottle �������

��
	 If M is a Q��matrix satisfying the property that the LCP �q�M� has a unique

solution for each q in the interior of K�M�� prove that M must be a P��matrix� Also�
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if M is a P��matrix with only one zero principal subdeterminant and has the property

that K�M� �� Rn� then prove that K�M� is a closed half�space and that the LCP

�q�M� has a unique solution whenever q is in the interior of K�M� �R� W� Cottle and

R� E� Stone ���	����

��
� If M is a symmetric matrix of order n satisfying

mii � � for all i

mij 	� � for all j �� i

prove that M is copositive i� it is PSD�

��
� Prove that the LCP �q�M� has a unique solution for all q � � i� for all x � �

there exists an i such that xi � �� y � �y�� � � � � yn�
T �Mx and yi �� ��

��

 If M is a symmetric matrix of order n� the following are equivalent

�i� M is copositive�

�ii� for all x � � there exists an i such that xi � � and y � �y�� � � � � yn�
T � Mx�

yi �� ��

�iii� �q�M� has a unique solution for all q � ��

��
� If M is a symmetric matrix of order n� the following are equivalent

�i� M is strictly copositive�

�ii� M is a Q�matrix and the LCP �q�M� has a unique solution for all q � fI��� � � � � I�ng

�F� J� Pereira ��������

��
� Prove that a H�matrix with positive diagonals is a P �matrix �J� S� Pang ��������

��

 Prove that M �matrices and generalized diagonally dominant matrices are H�

matrices�

��
� Prove that if M is a strictly semi�monotone matrix and q is nondegenerate in

the LCP �q�M�� then the LCP �q�M� has an odd number of solutions �B� C� Eaves

����	���

���� Prove that a square matrix M of order n is a Z�matrix i� for each q � Rn

for which the set X�q�M� � fx � Mx 
 q �
� �� x �

� �g �� �� there exists a least

element �x � X�q�M� �given K � Rn� an element x � K is said to be a least element

in K if x 	
� x for all x � K� If a least element exists� it is clearly unique� satisfying

�xT �M �x
 q� � � �A� Tamir ��������
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���� Prove that a square matrix M of order n is a nonsingular M �matrix �i� e�� a

Z�matrix which is also a P �matrix� i� for each q � Rn� the set X�q�M� � fx �Mx
 q
�
� �� x �

� �g has a least element �x which is the only vector in X�q�M� satisfying

xT �Mx
 q� � � �R� W� Cottle and A� F� Veinott� Jr� ���	����

���	 Prove that a square matrix which has either a zero row or a zero column cannot

be a Q�matrix�

���� IfM is a Q�matrix and PSD� isMT also a Q�matrix! �Hint� Check

��� 	 �	
	 �

�����
���� Let M be a PSD matrix and A a PD matrix of order n� Let �w���� z���� denote

the solution of the LCP �q�M 
 �A� for some q � Rn and � � �� If the LCP �q�M�

has a solution� prove that the limit����z��� exists� and if this limit is z� it is the point

that minimizes the norm kAzk in the set fz � �w � Mz 
 q� z� is a solution of the

LCP �q�M�g� If the LCP �q�M� has no solution� prove that limit����kz���k � 
�

�A� Gana �������

���
 Let �M be a Z matrix� A well�known theorem states that if there exists an

x �
� � such that xTM 	 � in this case� then M�� exists and �M�� �

� �� Using this

theorem� prove the following�

�a� If M satis
es all the above properties� there exist yij �� � for all i� j such that

I�j �
nX
i��

��yij�M�i� for all j �

�Hint� Use the fact that M�� 	
� ���

�b� Under the same conditions on M � Pos�I
��� �M� � Pos��M��

�c� Under the same conditions on M the LCP �q�M� has a solution i� �M��q �
�

�� Also� if �M��q �
� �� then a solution to the LCP is �w� z� � ����M��q�

�R� Saigal��

���� Let M be a square matrix of order n satisfying the property �if Mx 	
� �� then

x must be nonnegative�� Prove the following�

�a� M�� must exist�

�b� �M�� �
� �� �Hint� Use the fact that �M�M�����j � I�j �� ���

�c� In this case Pos��M� � Pos�I��

���� LetM be an arbitrary square matrix of order n� Consider the LCP �q�M�� Prove

that the following property �the LCP has a solution whenever q is such that the system
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w �Mz � q� w �
� �� z �

� � has a feasible solution and for all such q the LCP has a

solution in which w � �� holds i� Pos��M� � Pos�I� �i� e�� Pos�I
��� �M� � Pos��M���

Also prove that this property holds i� for all x such that Mx 	
� �� x must be

nonnegative �A� K� Rao��

���
 Let M be a square matrix of order n with non�positive o��diagonal elements�

If M is a P �matrix� prove that it has a nonnegative inverse �M� Fiedler and V� Ptak

��������

���� Let M be a square matrix of order n� Let q � Rn� The matrix M is said to

be a Q��matrix if the LCP �q�M� has a complementary feasible solution whenever the

system
w �Mz � q

w �
� �� z �� �

has a feasible solution�

i� Prove thatM is a Q��matrix i� the union of all the complementary cones in C�M�

is a convex set�

ii� Prove that the matrixM is aQ��matrix i� the LCP �q�M� satis
es� �if q�� q� � Rn

are such that �q��M� has a complementary feasible solution� and q� �� q�� then

�q��M� also has a complementary feasible solution� �A� K� Rao��

���� If M is a square matrix which is positive semide
nite� and q is nondegenerate in

the LCP �q�M�� prove that the number of solutions of the LCP �q�M� is either � or 	�

���� If M is a square matrix of order n which is positive semide
nite� prove that the

intersection of the interiors of any pair of complementary cones in C�M� is empty�

���	 If M is a square matrix of order n which is positive semide
nite� and q lies in

the interior of a complementary cone in C�M�� prove that the LCP �q�M� has a unique

solution�

���� Let M be a M �matrix �i� e�� a Z�matrix which is also a P��matrix�� Let w����

z��� be the solution of the LCP �q�M 
 �I�� If the LCP �q�M� has a solution� prove

that limit����z��� exists� and if this limit is z� it is the least element of fz � z �
�

��Mz 
 q �� �g �i� e�� z 	� z for all z in this set�� If the LCP �q�M� does not have a

solution� then limit����kz���k is 
� �A� Gana �������

���� Consider the LCP �q�M� of order n� Suppose the matrix M is not a P �matrix�

but its principal submatrix of order n � 	 obtained by deleting row i and column i
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from it is a P �matrix for a given i� Discuss an e�cient algorithm for computing all the

solutions of this LCP �V� C� Prasad and P� K� Sinha ��������

���
 Let M be a square nondegenerate matrix� Prove that the number of com�

plementary feasible solutions for the LCP �q�M�� is either even for all q that are

nondegenerate� or odd for all q that are nondegenerate �K� G� Murty ��������

���� Given q � Rn and a square matrixM of order n� q is said to be nondegenerate

with respect to M � if q does not lie in the linear hull of any set of n�	 or less column

vectors of �I
��� �M��

Let M be a nondegenerate Q�matrix of order n satisfying the property for some

q � Rn which is nondegenerate with respect toM � the LCP �q�M� has an odd number

of solutions� Prove that small perturbations in the entries of M still leave it as a

nondegenerate Q�matrix �A� Tamir��

���� Let M be a square matrix of order � and let I be the identity matrix of order

�� Prove that M is a Q�matrix i� the LCPs ��I���M� and ��I���M� both have

complementary feasible solutions �L� M� Kelly and L� T� Watson ��������

���
 Let

M �

�������
	 �	 �
� �� 	
	 ��� ���	

������� � �q �

�������
�
	

�	

�������
and let I be the identity matrix of order �� Show that the LCPs ��I���M�� ��I���M��

��I���M� all have complementary feasible solutions� but the LCP ��q�M� does not have

a complementary feasible solution� This clearly shows that the result in Exercise ����

cannot be generalized for n � � �L� M� Kelly and L� T� Watson ��������

���� Consider the following matrix

M��� �

����������
�	 �� ��� ���� �
� � � � �� 
 �
	� 	� ��� �
� � � � � �

����������
and let I be the identity matrix of order ��

�a� Show that M��� is a nondegenerate matrix for all � 	� � 	 	�

�b� Show that M��� is a Q�matrix�

�c� Show that M��� is not a Q�matrix for � 	 � 	 	� In particular� let q��� �

�	 � ����I�� 
 ������������� �����������T � Show that the LCP �q����M���� has

no complementary feasible solution when � 	 � 	 	�
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These results clearly establish that small perturbations in its elements might

change a nondegenerate Q�matrix into a nondegenerate non Q�matrix �L� M� Kelly

and L� T� Watson ��������

��
� LetM be a given square matrix of order n� Prove that the set of complementary

feasible solutions for the LCP �q�M� is a bounded set for every q � Rn� i� �w� z� �

��� �� is the unique solution of the LCP ���M��

��
� The set of nondegenerate Q�matrices is closed in the relative topology of the set

of nondegenerate matrices�

Let M be a given nondegenerate Q�matrix of order n� Let � � �� and let �M be

a square matrix of order n satisfying the properties that

a� M 
 ��M is a nondegenerate Q�matrix for all � 	� � 	 ��

b� M 
 ��M is nondegenerate�

Then prove that M 
 ��M is also a Q�matrix�

Using the same arguments� prove the following� Suppose M��M�� � � � is a given

in
nite sequence of nondegenerate Q�matrices satisfying the property that it converges

to a limit� M � If M is also nondegenerate� prove that M is a Q�matrix �L� T� Watson

������� and M� Aganagic and R� W� Cottle �������

��
	 Let M be a square matrix of order n satisfying the following properties�

a� mij �� � for all i �� j� and mii 	� ��

b� There exists a row vector � � Rn satisfying � � � and �M 	 ��

Property b� is easily satis
ed by � � e� if a� holds and jmiij �
P

j ��imij for each i�

Prove the following�

i� If M satis
es properties a�� b� above� then Pos�I� � Pos��M��

ii� If M satis
es properties a�� b� above� then either the LCP �q�M� has a

solution in which w � �� or it has no solution at all�

iii� If M satis
es properties a�� b� above� the LCP �q�M� has a solution i�

�Mz � q

z �� �

has a solution� And if z is a feasible solution of the above system then

�w � �� z� is a solution of the LCP �q�M��

iv� If M satis
es conditions a�� b� above� and if q � �� the the LCP �q�M� has

�n distinct solutions �R� Saigal ��������

��
� Consider the LCP �q�M� where M is a square matrix of order n all of whose

nonempty principal subdeterminants are strictly negative� Prove the following�
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i� The matrix ����������������

�	 � �� � � � �
� �	 � �� � � �

�� � �	 � � � �
� �� � �	 � � �
���

���
���

��� �	

����������������
satis
es the property that all its nonempty principal subdeterminants are strictly

negative�

ii� If all the nonempty principal subdeterminants of M are strictly negative� either

M 	 � or there exists an x � � satisfying Mx � ��

�iii� All the nonempty principal subdeterminants of M are strictly negative i� all the

proper principal subdeterminants ofM�� are strictly positive and the determinant

of M�� is strictly negative�

�iv� If all the nonempty principal subdeterminants of M are strictly negative and

M 	 �� then the LCP �q�M� has a solution whenever q �
� �� and no solution

whenever q ��� �� Also when q � �� it has exactly two solutions�

v� If all the nonemtpy principal subdeterminants of M are strictly negative and

M �	 �� then the LCP �q�M�

a� has a unique solution whenever q ��� ��

b� has exactly three solutions whenever q � ��

c� has exactly two solutions� with one solution degenerate� whenever q �� � with

at least one qi � ��

Hence establish that any matrix M �	 � whose nonempty principal subdetermi�

nants are strictly negative� is a Q�matrix�

Also prove that in this case� if q � �� and wi � � in some solution of the LCP �q�M��

then that wi � � in all other solutions of the LCP �q�M��

vi� Whenever M is such that all the nonempty principal subdeterminants of M are

strictly negative� the LCP �q�M� has either �� 	� � or � solutions for any q � Rn

�M� Kojima and R� Saigal ��������

��
� If M is a Q�matrix� prove that the system

Mz � �

z �� �

has a solution z�

��

 LetM be a given square matrix of order n� For j � 	 to n� let A�j � fI�j ��M�jg�

Then �A��� � � � � A�n� is a complementary set of column vectors for the LCP �q�M� and

we call the matrix with A��� � � � � A�n as its columns in this order� a complementary

submatrix of �I
��� �M�� Obviously there are �n such matrices� and let these be

A�� � � � � A�
n

� On these� some may be nonsingular and some singular� Let there be



	�� Chapter �� Separation Properties� Principal Pivot Transforms� Classes ���

l nonsingular complementary submatrices� and let all the �n � l remaining comple�

mentary submatrices be singular� Rearrange the complementary submatrices in the

sequence A�� � � � � A�
n

� so that the 
rst l of these are nonsingular� and all the remaining

are singular� So the complemenatry cone Pos�At� has a nonempty interior i� 	 	� t 	� l�

and has an empty interior if l
 	 	� t 	� �n�

Prove that M is a Q�matrix i�

l	
t��

Pos�At� � Rn

that is� i� the union of all the complementary cones with a nonempty interior is Rn�

��
� Using the same notation as in Exercise ���� for any 
xed i between 	 to n�

the subcomplementary set of column vectors �At
��� � � � � A

t
�i��� A

t
�i��� � � � � A

t
�n� is linearly

independent for 	 	
� t 	� l� and let Ht

i denote the hyperplane in Rn which is the

subspace of Rn containing all the column vectors in this subcomplementary set�

If there exists an i between 	 to n such that I�i and �M�i are both in one of the

open half�spaces determined by Ht
i� for each t � 	 to l� then prove that M is not a

Q�matrix�

��
� A Finite Procedure for Checking Whether a Given Square Matrix M

of Order n is a Q�Matrix

Using the same notation as in Exercise ����� let Dt be �At��� for t � 	 to l� For

each t � 	 to l� select one of the rows of Dt� for example the itth for t � 	 to l� leading

to the set of row vectors fDt
it� � t � 	 to lg� For each t� it can be chosen in n di�erent

ways� and hence there are nl di�erent sets of row vectors fDt
it� � t � 	 to lg obtained

in this manner� For each such sets de
ne the following system of linear inequalities in

the variables q � �q�� � � � � qn�
T

Dt
it�q 	 �� t � 	 to l � ���	��

So there are nl di�erent systems of inequalities of the form ���	�� depending on the

choice of the rows from the matrices Dt�

�i� ���	�� is a system of l strict linear inequalities in n variables q�� � � � � qn� Prove

that the system ���	�� has a feasible solution q� i� the following system ������ is

infeasible�
lX

t��

�tD
t
it� � �

lX
t��

�t � 	

�t �
� � for all t � 	 to l

������
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that is� it has no feasible solution � � ��t��

�ii� Prove thatM is aQ�matrix i� each of the nl systems of the form ���	�� is infeasible�

that is� none of them has a feasible solution q�

�iii� Remembering that l 	� �n� construct a 
nite procedure for checking whether a

given square matrixM of order n is a Q�matrix� using the above results� Comment

on the practical usefulness of such a procedure �D� Gale� see �������

��

 A square matrixM is called a Q��matrix if the union of all complementary cones

in C�M� is a convex set�

�i� Prove that M is a Q��matrix i� w�Mz � q� w �
� �� z �� � has a feasible solution

implies that the LCP �q�M� has a complementary feasible solution�

�ii� Prove that M is a Q��matrix i�

�q��M� has a complemenatry feasible solution

implies

�q�M� has a complemenatry feasible solution for all q �� q� �

�iii� Prove that every 	�	�matrix is a Q� matrix� Also develop necessary and su�cient

condition for a �� � matrix to be a Q��matrix�

�iv� Consider the matrices

M �

�������
�	 	 	
	 �	 	
	 	 �	

������� � q �

�������
�	�

�
�

������� �

Show that w � Mz � q� w �
� �� z �

� � has a feasible solution� but the LCP

�q�M� has no complementary feasible solution� Also� in this case verify that all

the proper principal submatrices of M are Q��matrices �by �i�� this implies that

there are matrices which are not Q��matrices� but all of whose proper submatrices

are Q��matrices��

��
� A Finite Characterization for Q��Matrices

Given a square matrix M of order n� using the notation and results in Exercises

����� ����� prove that M is a Q��matrix i�

Pos�I
��� �M� �

l	
t��

Pos�At� �

Using this� show that M is a Q��matrix� i� each of the following n
l systems

lX
t��

�tD
t
it� �� � �

��M �
� �

lX
t��

�t � 	

� �
� �� � �

� �
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are infeasible �i� e�� none of them have a feasible solution ��� ���� This provides a

method for checking whether a given square matrix of order n� is a Q��matrix or not�

using at most a 
nite amount of computation�

���� Prove that every PPT of a Q�matrix is a Q�matrix�

���� Let M be a square matrix of order n� Prove that all nonempty principal sub�

matrices of M are Q�matrices i� any of the following three equivalent conditions hold�

i� For all nonempty principal submatrices M of M �including M itself�� the system

My 	� �

y � �

has no solution�

ii� For every vector x � �� there exists an index j such that xj � � and �Mx�j � ��

iii� For every q �
� � the LCP �q�M� admits the unique solution �w� z� � �q� ��

�R� W� Cottle �������

���	 Row and Column Scalings of Matrices

Given a square matrix of order n� multiply its rows by positive numbers ��� � � � �

�n respectively� Multiply the columns of the resulting matrix by positive numbers

��� � � � � �n respectively� The 
nal matrix M �� is said to have been obtained from M

by row scaling using the positive vector of scales � � ���� � � � � �n�� and column scaling

using the positive vector of scales � � ���� ��� � � � � �n��

�i� Prove that� to every LCP associated with the matrix M � there is a correspond�

ing LCP associated with the matrix M �� that can be obtained by dividing each

constraint by a suitable positive number and appropriate scaling of the variables

�i� e�� choose appropriate units for measuring it�� and vice versa�

�ii� Prove that M is a P �matrix i� M � is�

�iii� Assume thatM is an asymmetric P �matrix which is not a PD matrix� It is possible

that M � is PD �e� g�� let M �

��� 	 �
�	� 	

���� Obtain M � using � � �	��� 	��

� � �	� 	� and verify that the resulting matrix is PD�� If M is either a lower

triangular or an upper triangular P �matrix� show that positive scale vectors �� �

exists� such that the resulting matrix is PD�

�iv� Let

M �

�������
	 �	 ��
	 	 	
	 �� �

�������
where � is a positive number� Verify that M is a P �matrix� When � is su�ciently

small� prove that there exist no positive scale vectors �� � which will transform

this matrix into a PD matrix by scaling�
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If M is a P �matrix which is not PSD� the LCP �q�M� is equivalent to the

nonconvex quadratic program

Minimize zT �Mz 
 q�

Subject to z �� �

Mz 
 q �� � �

And yet� if we can 
nd positive row and column scale vectors �� � that will

convert M into a PD matrixM � by scaling� this problem can be transformed

into an equivalent convex quadratic programming problem� For this reason�

the study of scalings of P �matrices that transform them into PD matrices is

of interest� Prove that every P �matrix of order � can be scaled into a PD�

matrix� Characterize the class of P �matrices which can be transformed into

PD matrices by scaling �R� Chandrasekaran and K� G� Murty��

���� Let D be a given square matrix of order n and let I be the unit matrix of order

n� Let c� b be given column vectors in Rn� Let

q �

��� c
b

��� � M �

��� D I
�I �

��� �

With this data� prove that LCP �q�M� always has a solution� and that the solution is

unique if D is a P �matrix �B� H� Ahn �������

���� LetM be a Z�matrix of order n� Prove thatM is a P �matrix if the LCPs ���M�

and �en�M� have unique solutions�

���
 Let M be a given square matrix of order n� and let D be an arbitrary diagonal

matrix with positive diagonal elements� Prove that the following are equivalent�

i� M is a P �matrix�

ii� �I � E�D 
 EM is a P �matrix for all diagonal matrices E � �Eij� of order n

satisfying � 	� Eii 	� 	 for all i�

iii� �I � E�D 
 EM is nonsingular for all diagonal matrices E � �Eij� of order n

satisfying � 	� Eii 	� 	 for all i �M� Aganagic ���	���

���� Develop an e�cient method based on the complementary pivot algorithm to

check whether a given square matrix is an M �matrix �K� G� Ramamurthy ����	���

���� Prove that a Z�matrix which is also a Q�matrix must be a P �matrix� Also prove

that every M �matrix is a U �matrix�

���
 Prove that a symmetric matrix is semi�monotone i� it is copositive� Prove that

a symmetric matrix M is strictly semi�monotone i� it is strictly copositive�



	�
 Chapter �� Separation Properties� Principal Pivot Transforms� Classes ���

���� If M is a fully semi�monotone matrix and �w� z� is a solution of the LCP �q�M�

and w 
 z � �� prove that �w� z� is the unique solution of this LCP�

����� �Research Problem� Given a square matrix M of order n� develop 
nite sets

of points    � and    � in R
n� constructed using the data in M � satisfying the properties

�i� M is a Q�matrix if the LCP �q�M� has a solution for each q �    ��

�ii� M is a Q��matrix if the LCP �q�M� has a solution for each q �    ��

����� Let M be a P �matrix of order n� Let J � f	� �� � � � � ng� J � f	� �� � � � � ng n J�

Let �A�j � j � J� be a subcomplementary vector corresponding to J� For each j � J�

let fA�j � B�jg � fI�j ��M�jg� Is the following conjecture " �there exists a hyperplane

containing the linear hull of �A�j � j � J� which separates the convex hull of fA�j � j �

Jg from the convex hull of fB�j � j � Jg�� " true!

����	 Let M be a square matrix of order n� M is said to be totally principally

degenerate i� all its principal subdeterminants are zero� Prove that M is totally

principally degenerate i� it is a principal rearrangement of an upper triangular matrix

with zero diagonal elements� Use this to develop an e�cient algorithm to check whether

a matrix is totally principally degenerate �T� D� Parsons ���	����

����� Let M be a square matrix of order n which is not an R��matrix �i� e�� the LCP

���M� has �w � �� z � �� as the unique solution�� Show that there exists a square

matrix �M � � �mij� of order n� satisfying

�mnn � � and

�min � � or 	 for all i � 	 to n� 	

such that for any q � Rn� the LCP �q�M� can be transformed into an equivalent LCP

��q� �M�� by performing a block principal pivot step� some principal rearrangements� and

row scalings�

Use this to show the following

a� Every Q�matrix of order � must be an R��matrix�

b� Every Q�matrix which is also a PSD matrix� must be an R��matrix�

Verify that the result in �a� does not generalize to n � �� using the matrix

M �

�������
� 	 � 	

� � 	 	
	� 	� �

������� �
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