Chapter 3

SEPARATION PROPERTIES,
PRINCIPAL PIVOT TRANSFORMS,
CLASSES OF MATRICES

In this chapter we present the basic mathematical results on the LCP. Many of these
results are used in later chapters to develop algorithms to solve LCPs, and to study
the computational complexity of these algorithms. Here, unless stated otherwise, I
denotes the unit matrix of order n. M is a given square matrix of order n. In tabular
form the LCP (¢, M) is

w z q
w >0, z >0, wlz=0 (3.1)

Definition: Subcomplementary Sets of Column Vectors

A vector (Y1, Yi—1,Yit1s---sYn) Where y,. € {w,., 2.} forr=1,...;i—1,i4+1,...,n
is known as a subcomplementary vector of variables for the LCP (3.1). The com-
plementary pair (w;, z;) is known as the left-out complementary pair of variables
in the subcomplementary vector (yi,...,%i—1,%i+1,---,Yn). Let A.; be the column
vector associated with y; in (3.1). The ordered set (A.1,..., Ai—1, Aiy1,...,Ap) is
known as a subcomplementary set of column vectors for the LCP (3.1), and
(I.;,—M.;) is the left-out complementary pair of column vectors in this sub-
complementary set of column vectors.

Sometimes we have to refer to subcomplementary sets which are complementary
sets with several elements missing. For this, we adopt the following notation. Let
Jc{l,...,n}, T #0,J a proper subset. The vector (y; : j € J) where y; € {w;, 2;}
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for all j € J is said to be a subcomplementary vector of variables for (3.1) associated
with the subset J. Let t; be the complement of y; and let A.; be the column vector
associated with y; in (3.1), and let B.; be the complement of A.;, for j € J. Then
{A.; : j € J} is said to be a subcomplementary set of column vectors associated with
J, and {B.; : j € J} is its complement. The subcomplementary vector (¢; : j € J) is
the complement of the subcomplementary vector (y; : j € J).

3.1 LCPs ASSOCIATED WITH PRINCIPALLY
NONDEGENERATE MATRICES

If y = (y1,...,Yn) is & complementary vector of variables for (3.1), define

Z(y) = {j : j such that y; = z;} (3.2)
W (y) = {j : j such that y; = w;}. '
Theorem 3.1 If y is a complementary vector of variables for (3.1), it is a com-
plementary basic vector iff the principal subdeterminant of M corresponding to the
subset Z(y) is nonzero.

Proof. Let the cardinality of Z(y) be r. Let A be the complementary matrix associated
with y. For j € W(y), A.; =1.; and for j € Z(y), A.; = —M.;. If r =0, A =1 and its
determinant is 1. If » > 0, by expanding the determinant of A in terms of its elements
in the jth column for each j € W(y) in some order, we see that the determinant of A
is (—1)" (principal subdeterminant of M corresponding to the subset Z(y)). Since y is
a complementary basic vector iff the determinant of A is nonzero, the result follows.
[]
As an example, let n = 4, and consider the LCP (q, M). Let y = (w1, 22, w3, 24)
be a complementary vector of variables for this problem. The corresponding comple-
mentary matrix is
1 —MmM12 0 —Mi4
0 —MmMoo 0 —1M24
0 —1n32 1 —1N34
0 —My2 0 —My4

—Ma22  —M24
—Myg2  —MM44
pal subdeterminant of M corresponding to the subset Z(y) = {2, 4} is non-zero. Thus,
in this problem, y is a complementary basic vector iff the principal subdeterminant of

and its determinant is determinant [ ] , which is non-zero iff the princi-

M corresponding to the subset Z(y) is non-zero.

Corollary 3.1 Every complementary vector of variables is a basic vector for (3.1)
iff M is a nondegenerate matrix. This follows from Theorem 3.1 and the definition of
nondegeneracy of a matrix.
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Corollary 3.2 The complementary cone associated with the complementary vector
of variables y for (3.1) has a nonempty interior iff the principal subdeterminant of M
corresponding to the subset Z(y) is nonzero.

Proof. If A is the corresponding complementary matrix, the complementary cone is
Pos(A), and it has nonempty interior iff the determinant of A is nonzero. So the result
follows from Theorem 3.1.

[]

Corollary 3.3 Every complementary cone in the class C(M) has a nonempty interior
iff M is a nondegenerate matrix. This follows from Corollary 3.2.

Theorem 3.2  The LCP (q, M) has a finite number of solutions for each ¢ € R" iff
M is a nondegenerate matrix.

Proof. Let (w, %) be a solution of the LCP (¢, M). Let A.; = —M.; if 2; > 0, I;
otherwise; and o; = 2; if Z2; > 0, w; otherwise. Then (A.q,..., A.,,) is a complementary
set of column vectors and ¢ = Z?Zl ajA.j. In this manner each solution of the
LCP (g, M) provides an expression of ¢ as a nonnegative linear combination of a
complementary set of column vectors. There are only 2™ complementary sets of column
vectors. If ¢ € R" is such that the LCP (¢, M) has an infinite number of distinct
solutions, there must exist a complementary set of column vectors, say (A.q,...,A.,),
such that ¢ can be expressed as a nonnegative linear combination of it in an infinite
number of ways. So there exist at least two vectors of = (af,...,af)T > 0,t=1,2
such that a! # a? and ¢ = Aa! = Aa?. So A(a! — a?) = 0, and since ol #
a?, {A.4,...,A.,} is linearly dependent. By Theorem 3.1, this implies that M is
degenerate.

Conversely suppose M is degenerate. So, by Theorem 3.1, there exists a com-
plementary set of column vectors, say {A.1,..., A.,} which is linearly dependent. So
there exists a 3 = (f1,...,0,) # 0 such that Z?Zl BjA.; = 0. Let § = Maximum
{I8;|: 7 =1 ton}. Since 3# 0,5 > 0. Define g = 62?:1 A.j. Let (y1,-..,yn) be the
complementary vector associated with (A.1,..., A.,). Define a solution (w(X), z(A))
by

Complement of y; =0, 7=1ton
Yy =0+ ABj, j=1ton.

Then (w(A),z(A)) is a solution of the LCP (g, M) for each 0 < A < 1, and since 3 # 0,
each of these solutions is distinct. So if M is degenerate, there exist a ¢ € R" such
that the LCP (¢, M) has an infinite number of distinct solutions.

(3.3)

[
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Example 3.1

Consider the following LCP

wy W2 21 z22

1 0 -1 -1 -2
0 1 -1 -1 —2

wi, W, 21,22 2 0, w121 = waze =0

We have

These facts imply that (wy, ws; 21, 22) = (0,0; 14+60,1—0)7T is a complementary solution
to this LCP for all 0 <0 < 1.

The set of ¢ for which the number of complementary solutions for the LCP (¢, M)
is infinite, is always a subset of the union of all degenerate complementary cones.
Also if the LCP (¢, M) has an infinite number of complementary solutions, ¢ must be
degenerate in it (that is, ¢ can be expressed as a linear combination of (m — 1) or less
column vectors of (I : —M)).

Result 3.1 If ¢ is nondegenerate in the LCP (¢, M) of order n (that is, if in
every solution to the system of equations w — Mz = ¢, at least n of the variables in
the system are non-zero), every complementary solution of the LCP (¢, M) must be
a complementary BFS, and so the number of complementary solutions to the LCP
(g, M) is finite and < 2°.

Proof. In every complementary solution of the LCP (g, M) at most n variables can
be positive by the complementarity constraint, and hence exactly n variables have to
be positive by the nondegeneracy of ¢, that is one variable from every complementary
pair of variables must be strictly positive. Consider a complementary solution (w,z)
in which the positive variable from the complementary pair {wj;, z;} is y; say, for j =1
to n and suppose y; has value ; > 0 in the solution. Let A.; = I; if y; = wy, or
—M.; otherwise. So

n
i=1

If {A4,..., A} is linearly dependent, let the linear dependence relation be

0= zn: ajA.j
j=1
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where o = (ay,...,a,)T # 0. Suppose a; # 0. Let A = —(¥;/a1), then 7; + Ay = 0.
From the above two equations, we have

n n
q= Z@J + )\Oéj)A.j = Z@J + )\ozj)A.j
7=1 j=2
that is, ¢ is expressed as a linear combination of {A.q,..., A.,} which is a subset of

n — 1 columns of (I * —M), contradicting the nondegeneracy of q. So {A.1,..., A}

must be linearly independent, that is A = (A.; : -- ¢ A.,) is a complementary basis,
and hence the representation of ¢ as a linear combination of the columns of A is unique,
and (w,z) is a complementary BFS. Thus under the nondegeneracy assumption of g,
every complementary solution for the LCP (¢, M) must be a complementary BFS.
Since the total number of complementary bases is < 2", this implies that there are at
most 2™ complementary solutions in this case.

[]

3.2 PRINCIPAL PIVOT TRANSFORMS

Let y = (y;) be a complementary basic vector associated with the complementary
basis A for (3.1). Let ¢; be the complement of y; for j = 1 to n (i. e., t; = wj if
y; = zj, t; = zj if y; = w;). Let B.; be the complement of A.; for j = 1 to n, and
B = (B.,...,B.;). Obtain the canonical tableau of (3.1) with respect to the basic
vector y, and after rearranging the variables suppose it is

basic vector Y1---Yn t1...t,

y 1 —D a (3.4)

Then the matrix D is known as the principal pivot transform (PPT in abbrevi-
ation) of M associated with the complementary basic vector y or the corresponding
complementary basis A of (3.1). Clearly D = —A~1B. Also (3.4) can be viewed as the
system of equations of an LCP in which the complementary pairs are (y;,t;), j =1 to
n. Remembering that the variables in (3.4) are just the variables in (3.1) arranged in
a different order, we can verify that the canonical tableau of (3.4) with respect to its
basic vector (wq,...,wy) is (3.1). This clearly implies that M is a PPT of D. Hence
the property of being a PPT is a mutual symmetric relationship among square matrices
of the same order.
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Example 3.2
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Consider the LCP (¢, M) where

-1 -2 0 —1
L A
0 —2 0 2
The LCP (¢, M) is
w1 ws W3 W4 21 Zz 23 24
1 0o o0 o 1 2 0 1 |q@
o 1 o0 o0 1 -1 1 2 | g
o o 1 o0 0 1 -1 1 | g3
0o 0 O 1 0 2 0 -2 |q
wj, z; 2 0, wjz; =0 for all j.

(21, wa, 23, wy4) is a complementary basic vector for this problem. The canonical tableau
with respect to it is

Z1 W2 23 W4 W1 Z2 W3 Z4

S S =]
o=}
—_
o=}
S
|
—_
|
—_

Thus the matrix

-1 -2 0 -1

1 2 -1 =2

D= 0 1 1 1
0 -2 0 2

is a PPT of M and vice versa.

Each complementary basic vector for (3.1) leads to a PPT of M. We thus get a
class of matrices containing M, such that each matrix in the class is a PPT of each
other matrix in the class. Some of the matrices in the class may be equal to the others
as matrices (for example, it can be verified that every PPT of I is equal to I). This
class of matrices is known as the principal pivot transform class of M.
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Single and Double Principal Pivot Steps

Ify = (y1,-..,yn) is a complementary basic vector for (3.1), then y,. can be replaced in
this basic vector by its complement, to yield another complementary basic vector for
(3.1), iff the rth diagonal element in the PPT of M corresponding to y is nonzero. If this
condition is satisfied, the pivot operation of replacing ¥, by its complement, is known
as a single principal pivot step in the rth position in the complementary
basic vector y.

Suppose for r # s, the rth and sth diagonal elements in M" = (m;;), the PPT of
M corresponding to the complementary basic vector y, are both zero. Then it is not
possible to make a single principal pivot step either in the rth position, or in the sth
position, in the complementary basic vector y. However, suppose m!.. # 0 and m/, # 0.
In this case we can perform two consecutive pivot steps, in the first one replacing ¥,
in the basic vector by the complement of ¥y, and in the second one replacing y in the
resulting basic vector by the complement of y,. In the canonical tableau obtained at
the end of these two pivot steps, the column vector associated with the complement of
ys 18 1., and the column vector associated with the complement of ¥, is I.5. So, now
interchange rows r and s in the canonical tableau. After this interchange it can be
verified that in the new canonical tableau the column vector associated with the basic
variable from the jth complementary pair, in the new complementary basic vector, is
I.;, for all j (including j = r and s). This operation (one pivot step in position (7, s)
replacing y,- in the basic vector by the complement of y,, followed by another pivot step
in position (s,r) replacing ys in the resulting basic vector by the complement of y,.,
followed by an interchange of rows r and s in the resulting canonical tableau) is called
a double principal pivot step in positions r and s in the complementary

basic vector y. Clearly, this double principal pivot step in positions r and s can

/ m/

only be carried out if the order two determinant [ ZZ“’" e ] # 0. If this order two

sr S8

determinant is nonzero, and one of its diagonal entries, say m/

rrs 1S IONZETO; carrying

out the double principal pivot in positions r and s in the complementary basic vector
y, can be verified to have exactly the same effect as carrying out two single principal
pivot steps, first in position 7 in y, and then in position s in the complementary basic
vector resulting from the first. In general, in the algorithms discussed in the following
chapters, a double principal pivot in positions r and s will only be performed if the
diagonal entry in the PPT of M in at least one of the two positions r and s is zero
(i. e., either m,, = 0 or m/, = 0 or both).
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Example 3.3

Consider the following LCP

basic
variable wy W W3 W4 21 29 X3 24
w1 1 0 0 0 -1 1 -1 -1 |1
wa 0o 1 0 0 -1 0 0 1 |agq
w3 o 0 1 0 0 0 -1 -1 |gs
wy 0 0 0 1 1 -1 1 0 | q
wj,2; 2 0, and w;z; = 0 for all j

In this problem, in the complementary basic vector w, single principal pivot steps
are only possible in positions 1 and 3. Carrying out a single principal pivot in the
complementary basic vector w in position 1 leads to the following

basic
variable Z1 Wy W3 W4 Wi 29 X3 24
Z1 1 0 0 0 -1 -1 1 1 |¢
wa o 1 0 0 -1 -1 1 2 | q
w3 o 0 1 0 0 0 -1 -1 |dq
wy 0 0 0 1 1 0 0 -1 |q

In the above canonical tableau, we have also rearranged the column vectors so that the
basic variables, and the nonbasic variables, appear together and in their proper order.
We can make a double principal pivot step in the complementary basic vector w, in

positions 2, 4 in this problem, because the determinant of the 2 x 2 matrix [ _(1) (1) ]

is non-zero. Carrying out this double principal pivot step requires replacing the basic
variable ws in the basic vector (wy, ws, w3, w4) by z4, then replacing the basic variable
wy in the resulting basic vector (wy, z4, w3, w4) by 22, and finally interchanging rows 2
and 4 in the resulting canonical tableau. This is carried out below.
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basic
variable wy Ws W3 Wg4 21 Zy 23 24
w1 1 1 0 0 -2 1 -1 0 |q¢
24 o 1 0 0 -1 0 0 1 |d
w3 0 1 1 0 -1 0 =1 0 | g4
Wy o 0 o0 1 1 -1 1 0 | q
w1 1 1 0 1 -1 0 0 0 |dqf
24 o 1 0 0 -1 0 0 1 |44
w3 0 1 1 0 -1 0 -1 0 |d¢
22 o o0 0 -1 -1 1 -1 0 |gqf
w1 1 1 0o 1 -1 0 0 0 |dqf
22 o o o0 -1 -1 1 -1 0 |gqf
w3 0 1 1 0 -1 0 -1 0 |qg4
24 o 1 0 0 -1 0 0 1 |4

Block Principal Pivoting

Consider the LCP (¢, M), (3.1). Let J C {1,...,n} be such that Mjyz, the principal
submatrix of M corresponding to the subset J, is nonsingular. Define the complemen-
tary vector y = (y;) by

- Jwj, forj¢Jd
Yi = zj, forjed

and let A be the complementary matrix corresponding to y. Since Myy is nonsingular,
A is a basis. Let t; be the complement of y; for each j = 1 to n, and let t = (t;).
Multiplying (3.1) on the left by A=! and rearranging the variables leads to the LCP

Y t
I -D q

y,t >0, yTt=0

where 1 1
DJJ = (MJJ)_ 7DJj — _(MJJ)_ MJj
Dyy = Mgy (Mys)™", Dy = Mgz — M5y (Maz) ™" My3
CI./] = _(MJJ)_IQJ,q./]— =q7 — MjJ(MJJ)_qu .
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Here J = {1,...,n}\ J, and M,5 is the submatrix (m;; : i € J,j € J), etc.; and
g5 = (gj : j € J), etc. D is of course the PPT of M corresponding to the complemen-
tary basic vector y. The above LCP (¢’, D) is said to have been obtained from the
LCP (¢, M) in (3.1) by a block principal pivot step in positions J (or by block
principal pivoting on —Mjy) in (3.1).

Corollary 3.4 If M is a nondegenerate matrix, a single principal pivot step in any
position is always possible in every complementary basic vector.

Proof. Follows from Corollary 3.1 and the argument used in Theorem 3.1.

[]

Corollary 3.5 A square matrix M of order n is nondegenerate (that is, principally
nondegenerate to be specific) iff every diagonal entry in every PPT of M is non-zero.

Proof. Follows from Corollary 3.1.
[]

Theorem 3.3  If M is a PD or a P-matrix, or a nondegenerate matrix in general;
starting with a complementary basic vector y' = (y1,...,yl), any other complemen-
tary basic vector y*> = (y?,y3,...,y2) for (3.1), can be obtained by performing a
sequence of single principal pivot steps.

Proof. In these cases, by Corollary 3.1 every complementary vector of variables is a
complementary basic vector. Hence if y! and y? have n — r common variables; each of
the variables in y! which is not in 2, can be replaced by its complement, to lead to
y? after r single principal pivot steps.

[]

Theorem 3.4  All PPTs of a nondegenerate matrix are nondegenerate.

Proof. Let M be nondegenerate. Let y, y be distinct complementary vectors of vari-
ables associated with the complementary matrices A, A respectively in (3.1). Since M
is nondegenerate, A is a complementary basis. Let (3.4) be the canonical tableau of
(3.1) with respect to y. So D is the PPT of M corresponding to y. We will now prove
that D is nondegenerate. Look at (3.4). The complementary matrix corresponding to
the complementary vector of variables g in (3.4) is A_lfl, and this matrix is nonsingu-
lar since both A and A are. Hence ¢ is a complementary basic vector for (3.4). Since §
is an arbitrary complementary vector of variables, this implies that all complementary
vectors of variables in (3.4) are basic vectors.

Hence by Corollary 3.1, D is nondegenerate.

Theorem 3.5 All PPTs of a P-matrix are P-matrices.

Proof. Let M = (m;;) be a P-matrix of order n. Consider a single principal pivot
step on (3.1) in any position, say position 1. The pivot matrix corresponding to this
pivot step is P, which is the same as the unit matrix of order n, with the exception
that its first column vector is (—1/my1, —mia/mi1, ..., —min/mi1)T. Let M’ be the
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PPT of M obtained after this pivot step. Let J = {j1,...,5.} € {1,...,n}, I # 0,
and let A be the principal subdeterminant of M’ corresponding to the subset J. We
will now prove that A > 0. We consider two cases separately.

Case 1: 1 ¢ J. Let y = (y1,...,yn) where y; = w; if j ¢ JU {1}, or z; otherwise.
Let A, A be the complementary bases corresponding to y, in the original LCP (3.1)
and in the canonical tableau for (3.1) obtained after the single principal pivot step
in position 1, respectively. So A = PA. Let A; be the principal subdeterminant
of M corresponding to the subset {1} UJ. We have A = (—1)" (determinant of
A) = (=1)" (determinant of PA) = (—1)" (determinant of P) (determinant of A) =
(=) (=1/my1)(—=1)" A = (A1/mq1) > 0, because my; > 0 and Ay > 0 since M is
a P-matrix.

Case 2: 1 € J. In this case let y = (y1,...,yn) where y; = z; if j € J\ {1},
or w; otherwise. Let A, A be the complementary bases corresponding to y, in the
original LCP (3.1), and in the canonical tableau for (3.1) obtained after the single
principal pivot step in position 1, respectively. Then A = PA. Let A, be the prin-
cipal subdeterminant of M determined by the subset J\ {1}. As in Case 1, we have
A = (=1)" (determinant of A) = (—1)" (determinant of P) (determinant of A) =
(=1)"(=1/m11)(—1)""tAs = (As/m11) > 0, since both Ay, my; are strictly positive
because M is a P-matrix.

Hence the principal subdeterminant of M’ corresponding to the subset J is strictly
positive. This holds for all subsets J C {1,...,n}. So M’ is itself a P-matrix.

Thus the property of being a P-matrix is preserved in the PPTs of M obtained
after a single principal pivot step on (3.1). By Theorem 3.3 any PPT of M can be
obtained by making a sequence of single principal pivot steps on (3.1). So, applying
the above result repeatedly after each single principal pivot step, we conclude that

every PPT of M is also a P-matrix.
[

Theorem 3.6 If all the diagonal entries in every PPT of M are strictly positive,
M is a P-matrix.

Proof. By the hypothesis of the theorem all principal subdeterminants of M of order
1 are strictly positive.

Induction Hypothesis: Under the hypothesis of the theorem, all principal subde-
terminants of M of order less than or equal to r are strictly positive.

We will now prove that under the hypothesis of the theorem, the induction hy-
pothesis implies that any principal subdeterminant of M of order r 4 1 is also strictly
positive. Let A; be the principal subdeterminant of M corresponding to the subset
{j1s -y Jrsdr+1} C {1,2,...,n}. Carry out a single principal pivot step in position
Jr+1 in (3.1) and let M’ be the PPT of M obtained after this step. Since M’ is a PPT
of M it also satisfies the hypothesis of the theorem. So by the induction hypothesis, all
principal subdeterminants of M’ of order r or less are strictly positive, and so A, the
principal subdeterminant of M’ corresponding to the subset {ji,...,7-},is > 0. Asin
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the proof of Theorem 3.5 we have A = Ay/my; . j .., that is Ay =my ;. A, and
since mj, _, j.., > 0, A >0, we have A; > 0. So under the hypothesis of the theorem,
the induction hypothesis implies also that all principal subdeterminants of M of order
r + 1 are strictly positive. Hence by induction, all principal subdeterminants of M are
strictly positive, and hence M is a P-matrix.

[
Corollary 3.6 The following conditions (i) and (ii) are equivalent
(i) all principal subdeterminants of M are strictly positive
(ii) the diagonal entries in every PPT of M are strictly positive.
Proof. Follows from Theorem 3.5, 3.6. .

Corollary 3.7 If M is a P-matrix, in making any sequence of single principal pivot
steps on (3.1), the pivot element will always be strictly negative.

[]

Theorem 3.7 Let M’ be a PPT of M obtained after carrying out exactly one single
principal pivot step. Then M’ is PD if M is PD. And M’ is PSD if M is PSD.

Proof. Let M = (m;;). Let u = (uy,...,u,)T € R". Define v = (vq,...,v,)7 by

v—Mu=0. (3.5)

/

Suppose M' = (my;
step in (3.5) in position r. So m,.,. # 0. After this single principal pivot step in position
r, (3.5) becomes

) is the PPT of M obtained after making a single principal pivot

(UL, + vy Uy 1y Uy Uy 1y -+ o5 Un) T = M (U, oo Uy 1, Upy Upg1y - - Up) T = 0. (3.6)

For any u € R"™ and v defined by (3.5), let & = (w1, ..., Up_1, Up, Upp1, ..., Up),
N = (V1y.reyUp_1,Up, Upi1,...,0y). Since v, = M,.u and m,,. # 0, as u varies over
all of R", ¢ also varies over all of R™. Also, as u varies over all the nonzero points
in R", ¢ does the same. Since (3.6) is obtained from (3.5) by a pivot step, they
are equivalent. So for any u € R"™ and v defined by (3.5), (3.6) also holds. Now
uf Mu = uTv = ¢y = €T M'¢. These facts imply that éTM’€ > 0 for all £ € R™ iff
uTMu > 0 for all w € R™ and £€TM'¢ > 0 for all £ # 0 iff u" Mu > 0 for all u # 0.
Hence M is PD iff M’ is PD. And M’ is PSD iff M is PSD.
[

Theorem 3.8 Let M" be a PPT of M obtained after carrying out exactly one
double principal pivot step. Then M" is PD if M is PD. And M" is PSD if M is PSD.

Proof. Let M = (m;;). Let u = (u1,...,u,)T € R"™. Define v = (v1,...,v,)T by
(3.5). Suppose M" = (m;}) is the PPT of M obtained after making a double principal
pivot step in positions r and s. This implies that

—Mgs —Mgy

A = determinant [
—Myg — My

] #o.
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as otherwise the double principal pivot step in positions r and s cannot be carried
out on (3.5). For any u € R" and v defined by (3.5) define & = (uq,...,us_1,vs,
UstlyroryUp—1,Upy Up41s.00,y un)Tv n= (Ulv sy Us—1y Ugy Vst 1y oo oy Up— 1y Upy Up g1y o v oy Un)T'I
Then after this double principal pivot step in positions r and s, (3.5) gets transformed
into

n—M"€=0. (3.7)

Since (3.7) is obtained by performing two pivots on (3.5), they are equivalent. So for
any v € R"” and v defined by (3.5), (3.7) holds and we have uT Mu = uTv = ¢Tn =
ETM"¢. Also, since A # 0, as u varies over all of R"™, so does &; and as u varies over
all nonzero points in R™ so does £. These facts imply that ¢T'M”¢ > 0 for all ¢ € R™
iff T Mu >0 for all u € R" and £TM”¢ > 0 for all £ # 0 iff wT Mu > 0 for all u # 0.
Hence M" is PD iff M is PD, and M" is PSD iff M is PSD.

[]

Theorem 3.9  If M is a PD matrix, all its PPTs are also PD.

Proof. By Theorem 3.3 when M is PD, every PPT of M can be obtained by carrying
out a sequence of single principal pivot steps on (3.1). By applying the argument
in Theorem 3.7 repeatedly after each single principal pivot step in the sequence, we
conclude that all PPTs of M are also PD, if M is.

[

Theorem 3.10 If M is PSD, any PPT of M can be obtained by making a sequence
of single or double principal pivot steps on (3.1). Also, all these PPTs of M are also
PSD.

Proof. Let y = (y1,...,yn) be a complementary basic vector of (3.1). Starting with
the complementary basic vector w, perform single principal pivot steps in position j for
as many j € Z(y) as possible in any possible order. If this leads to the complementary
basic vector y, we are done by repeated use of the result in Theorem 3.7 after each single
principal pivot step. Suppose y has not yet been obtained and no more single principal
pivot steps can be carried out in the remaining positions j € Z(y). Let u = (uy,...,uy)
be the complementary basic vector at this stage. Let U = {j : j such that u; # y,}.
So U # 0, U C Z(y). And for each j € U, we have u; = wj, y; = z;. Let t; denote
the complement of u;, j =1 to n. Let the canonical tableau of (3.1) at this stage be

basic vector ULy .oy Up ti,....t, q
M’ is the PPT of M corresponding to U, it is PSD by repeated use of Theorem 3.7.
We have —m/; = 0 for each j € U (as single principal pivot steps cannot be carried

out in these positions). If U is a singleton set, this would imply that the set of column
vectors corresponding to y in (3.8) is linearly dependent, a contradiction, since y is a
complementary basic vector. So cardinality of U is > 2. Let r € U. Since m,.,. = 0 and
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M’ is PSD, by Result 1.6 we have m/.., +m} = 0 for all i = 1 to n. Search for an s € U
such that m!, # 0. If an s like this does not exist, again the set of column vectors
corresponding to y in (3.8) is linearly dependent, and y is not a complementary basic
vector, a contradiction. So there always exists an s € U such that m/,. # 0. Since
mi.s +m.,. =0, ml. . #0 too. So the determinant

[ m;"?" m;"s ]

m;?" m;s

is nonzero, and a double principal pivot step can be carried out in (3.8) in positions r, s.
The complementary basic vector obtained after this double principal pivot step contains
two more variables in common with y than u does, and the PPT of M corresponding to
it is also PSD by Theorem 3.8. Delete r, s from U. In the resulting canonical tableau,
make as many single principal pivot steps in positions j € U as possible, deleting such
g from U after each step. Or make another double principal pivot step in positions
selected from U as above, and continue the same way until U becomes empty. At that
stage we reach the canonical tableau with respect to y. By repeated use of Theorems
3.7, 3.8, the PPT of M with respect to y is also PSD.

[
3.2.1 Principal Rearrangements of a Square Matrix
Let M be a given square matrix of order n. Let p = (i1,...,i,) be a permutation of
(1,...,n). The square matrix P of order n whose rows are I; ., I;,.,...,I; . in that

order, is the permutation matrix corresponding to the permutation p. P is obtained
essentially by permuting the rows of the unit matrix I of order n using the permutation
p. The matrix M’ = PMPT is known as the principal rearrangement of M according
to the permutation p. Clearly M’ is obtained by first rearranging the rows of M
according to the permutation p, and in the resulting matrix, rearranging the columns
again according to the same permutation p.

As an example let n = 3, and

mi; M2 M13 0 0 1
P = (3, 1, 2) s M = Mmooy Mgy 123 s P = 1 0 0
m31 M3z M33 0 1 0
then
m31 7132 133 mg33 131 1M32
PM = mi1 ap) mi3 s M/ = PMPT = mis3 miq ap)
m21 M2z Ma3 Ma23 M21 M22

and M’ here is the principal rearrangement of M according to the permutation p.
The following results can be obtained directly using the definition. Let M’ be
the principal rearrangement of M according to the permutation p associated with the
permutation matrix P. Then M’ is a P-matrix, iff M is. For all y € R", yT My =
(Py)TM'(Py). So M’ is a PSD, or PD, or NSD, or ND matrix iff M has the same
property. Also, M’ is principally degenerate (or nondegenerate) iff M has the same

property.
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3.3 LCPs ASSOCIATED WITH P-MATRICES

Properties of P-Matrices

The following Theorems 3.11, 3.12 are important properties of P-matrices due to
D. Gale and H. Nikaido (see reference [3.24]).

Theorem 3.11  Let F = (f;;) be a P-matrix of order n. Then the system of linear
inequalities
Fz <0
>0

(3.9)

has “xr = 07 as its unique solution.

Proof. The theorem is easily verified to be true for n = 1. We will prove the theorem
for all n by induction.

Induction Hypothesis: If T' is a P-matrix of order r < n — 1, then the system of
inequalities T¢ < 0, £ > 0, £ € R" has “¢ = 0” as its unique solution.

Under the induction hypothesis we will now prove that the statement of the the-
orem holds for the matrix F' which is a P-matrix of order n. Since F' is a P-matrix,
it is nonsingular, and hence F~! exists. Let B = F~! = (b;;). From standard results
in the theory of determinants (for example, see Chapter 3 in F. E. Hohn, Elementary
Matrix Algebra, Macmillan, 2nd edition, 1964) it is known that b; = (principal sub-
determinant of F' corresponding to the subset {1,...,i—1,i+1,...,n})/determinant
of F'. So b;; > 0 for all 7, since F' is a P-matrix. Thus each column of B has at least
one positive entry. Let T € R" satisfy (3.9). Select a column of B, say B.;. Let
0 = minimum{T;/b;; : i such that b;; > 0}, and suppose this minimum is attained by
i =s5. S0 0 =71T/bs; >0, and (T;/bj1) > 0, for all j such that bj; > 0. From this
and the fact that T > 0, we have 7 = (7,...,7,)T =T —0B.; > 0 and 7j, = 0. Also
Fn=Fr—-0FB,y = Fx—0[1 <0. Let T be the matrix of order n — 1 obtained

by striking off the sth row and the sth column from F'. Since F' is a P-matrix, its
principal submatrix T is also a P-matrix. Let £ = (7, ..., T,_1,Tsp1s-- -+ 7,) " - Since
7s = 0 and F7j < 0, we have T¢ < 0. Also since 77 > 0, £ > 0 too. So T¢ <0, £ > 0.
Since T is a P-matrix of order n — 1, by the induction hypothesis, £ =0. £ = 0,7, =0
together imply that 7 = 0. So F7j = 0, that is F(T — #I.;) = 0. Then FZ =011 > 0.
However from (3.9), FZ < 0. So FZ = 0, and since F' is nonsingular, Z = 0.

Thus under the induction hypothesis the statement of the theorem also holds for
F which is a P-matrix of order n. The statement of the theorem is easily verified for

n = 1. Hence, by induction, the statement of the theorem is true for all n.

[
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Theorem 3.12 The Sign Nonreversal Property: Let F' be a square matrix of
order n. For x € R" let y = Fa. Then F is said to reverse the sign of x if x;3; < 0 for
all ¢. If F' is a P-matrix it reverses the sign of no vector except zero.

Proof. For this proof we need only to consider the case z > 0. For if F' reverses the
sign of an T 2 0, let J = {j : T; < 0}, let D be the diagonal matrix obtained from
the unit matrix by multiplying its jth column by —1 for each j € J. The matrix
F* = DFD is again a P-matrix, since F'* is obtained by simply changing the signs of
rows and columns in F' for each 7 € J. And F* reverses the sign of & = D%, where
z>0.

Now suppose that z > 0 and that F' reverses the sign of z. Let P = {j : z; > 0}.
Assume that P # (). Let A be the principal submatrix of F' corresponding to P. Let
x be the vector of z; for j € P. The fact that F' reverses the sign of x implies that A
reverses the sign of x. Since x > 0, this implies that Ax < 0. Since A is a P-matrix
Ax <0, x 2 0 implies x = 0 by Theorem 3.11, a contradiction. So z must be zero.

[]

Unique Solution Property of LCPs
Associated with P-Matrices

Theorem 3.13  Let M be a P-matrix. The LCP (q, M) has a unique solution for
each ¢ € R". Also, when the complementary pivot algorithm of Section 2.2 is applied
on the LCP (q, M), it finds the solution.

Proof. Suppose when the complementary pivot algorithm is applied on the LCP
(¢, M) it ends in ray termination. As in the proof of Theorem 2.1 this implies that
there exists a 2" > 0, w" > 0, 2zl > 0 satisfying w" = Mz" + e,z{; wlzl = 0 for
all i. So zl'(M;.2") + 2l'zl = 0. This implies that 2(M;.2") = —z2) < 0 for all
i. So M reverses the sign of z* > 0, which is a contradiction to Theorem 3.12. So,
when the complementary pivot method is applied on the LCP (g, M) associated with
a P-matrix, it cannot end in ray termination, it has to terminate with a solution of
the LCP. This also proves that every P-matrix is a (Q-matrix.

Now we will prove that if M is a P-matrix, for any ¢ € R", the LCP (¢, M) has
exactly one solution, by induction on n, the order of the problem.

Suppose n = 1. M = (my;) is a P-matrix, iff mi; > 0. In this case ¢ = (q1).
If g1 >0, (w = (w1) = (q1); 2 = (21) = (0)) is the only solution to the LCP (g, M).
If 4 <0, (w=(w1)=1(0); 2= (21) = (—q1/m11)) is the only solution to the LCP
(g, M). Hence the theorem is true for n = 1.

Induction Hypothesis:  Suppose any LCP of order (n — 1) or less, associated with
a P-matrix, has a unique solution for each of its right hand side constant vectors.
Now we will prove that under the induction hypothesis, the LCP (g, M) where
M is a P-matrix of order n, has a unique solution for any ¢ € R". We have shown
above that it has at least one solution, say (w;Zz). For each j =1 to n let u; = z;, if
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Zj > 0; or w; otherwise; and let v; be the complement of u;. Then u = (u1,...,uy)
is a complementary feasible basic vector of variables associated with the BFS (w; 2)
for (3.1). Obtain the canonical tableau for (3.1) with respect to the complementary
feasible basic vector u, and suppose it is

Uty ooy Up ViyeeoyUp q

4 —M q (3.10)

¢ > 0 by our assumptions here. (3.10) can itself be viewed as the LCP (g, M), one
solution of this LCP is (u =@ = §; v = 9 = 0). M is a PPT of M, by Theorem 3.5, M
is also a P-matrix. So all the principal submatrices of M are also P-matrices. So the
principal subproblem of the LCP (g, M) in the variables (w1, ..., Ui—1, Ujt1, ..., Up);

(U1, .« s Vi1, Vix1,- .., Uy) is an LCP of order (n—1) associated with a P-matrix, and by
the induction hypothesis this principal subproblem has a unique solution. One solution
of this principal subproblem is (w1, ..., Ui—1, Uit1,- - -, Un; Uty ooy 0im1, Vig 1 - - - Up) =
(G1s- -y Gim1,GQit1y---50n; 0,...,0,0,...,0). If the LCP (¢, M), (3.10), has an alternate
solution (u;0) # (@;0) in which 9; = 0, its principal subproblem in the variables
(Upy e ey Uiy Uity e e oy Up); (U1, ooy V1, Vg1, ..., U,) Will have an alternate solution
(@1, oy i1y Qig1, -y Upj O1y. -, D1, Dig1, .-+, On), & contradiction. So, if the LCP

(¢, M) has an alternate solution (@;9) # (u;0), then 9; must be strictly positive in it,
and by complementarity @; must be zero. Since this holds for each ¢ = 1 to n, ¥ > 0,

A

u = 0. Sou—MU—q,u—O © > 0. Since ¢ > 0, thlslmphesthatMU——q<0

v > 0, a contradiction to Theorem 3.11, since M is a P-matrix. Hence under the
induction hypothesis the LCP (g, M ) has a unique solution, which implies that the
equivalent LCP (¢, M) has a unique solution also. Since this holds for any ¢ € R",
under the induction hypothesis, the LCP (g, M) of order n has a unique solution for
each ¢ € R" when M is a P-matrix. Hence, by induction the theorem is true.

[]

Theorem 3.14 Let M be a given square matrix of order n. Suppose the LCP
(¢, M) has at most one solution for each ¢ € R". Then M is a P-matrix.

Proof. So, the number of solutions of the LCP (¢, M) is either 1 or 0 and hence is finite
for all ¢, which implies that M is nondegenerate by Theorem 3.2. So the determinant
of M is nonzero, and hence M ! exists.

Proof is by induction on n, the order of the matrix M. We first verify that the
theorem is true if n = 1. In this case ¢ = (¢1), M = (mq1). Since M is shown to
be nondegenerate under the hypothesis of the theorem, mi; # 0. If my; < 0; when
g1 >0, (w=(q1),2=0), (w=0,z2=q1/(mq1|)) are two distinct solutions of the
LCP (g, M). Hence under the hypothesis of the theorem my; £ 0. So, my; > 0, which
implies that the theorem is true when n = 1.

Induction Hypothesis: If I is a square matrix of order r < n — 1, such that the
LCP (v, F) has at most one solution for each v € R", then F' is a P-matrix.
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Under the hypothesis of the theorem, and the induction hypothesis, we will now
prove that M has to be a P-matrix too.

Consider the principal subproblem of the LCP (¢, M) in the variables w = (ws,
ey W), € = (22,...,2,). This is an LCP of order n — 1 associated with the principal
submatrix of M determined by the subset {2,...,n}. If there exists a ¢ = (g2, .., qn)T
for which this principal subproblem has two distinct solutions, namely, (@,&) and
(@,€), choose 1 to satisfy ¢, > Maximum{]| > i Zgmagly | 35—y Zymagl}, and let wy =
q1 + Zyzﬁjmu, Z1 =0, 01 = q1 + Z?ZQ Zimij, 21 = 0, W = (W1, Wa, ..., Wy),
Z = (Z1,22,---,2Zn), W = (W1, W2,...,Wn), 2 = (31,22, 2n), @ = (q1,G2,---,4n)T.
Then (w;z), (w;Z) are two distinct solutions of the LCP (g, M), contradicting the
hypothesis of the theorem. So the principal subproblem of the LCP (¢, M) in the
variables w, £ has at most one solution for each of its right hand side constant vectors.
By the induction hypothesis this implies that the principal submatrix of M determined
by the subset {2,...,n} is a P-matrix.

A similar argument can be made for each principal subproblem of the LCP (¢, M)
of order (n — 1), and this implies that all principal submatrices of M of order (n — 1)
are P-matrices, by the induction hypothesis. Hence all the principal subdeterminants
of M of order < (n — 1) are strictly positive. In particular, the diagonal entries of M
are strictly positive. It only remains to be proved that the determinant of M itself
is strictly positive. We have already seen that M ~! exists. The canonical tableau of

(3.1) with respect to the complementary basic vector (z1,...,2,) is
z w
I | -M | 3 (3.11)

where M = M~! and § = —M ~'q. The LCP in (3.11) has at most one solution for each
7 € R"™. So by the previous arguments all diagonal entries in the matrix M have to be
strictly positive. However since M = (m;;) = M !, m1; = (principal subdeterminant
of M corresponding to the subset {2,...,n})/(determinant of M). Since the principal
subdeterminant of M corresponding by the subset {2,...,n} has been shown to be
strictly positive, m1; > 0 implies that the determinant of M is strictly positive. Hence
under the hypothesis of the theorem, and the induction hypothesis, the matrix M of
order n has to be a P-matrix. So, by induction the theorem is true in general.

[]

Corollary 3.8 Let M be a given square matrix of order n. If the LCP (q, M) has
at most one solution for each ¢ € R", then it has exactly one solution for each ¢ € R".
This follows from Theorems 3.13, 3.14.

[]

Theorem 3.15  Let M be a given square matrix of order n. The LCP (q, M) has
a unique solution for each ¢ € R" iff M is a P-matrix.

[]
Proof. Follows from Theorems 3.13, 3.14.
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Strict Separation Property

The strict separation property is a property of the matrix M, and does not depend
on the right hand side constants vector q. An LCP associated with the matrix M
(or the class of complementary cones C(M)) is said to satisfy the strict separation
property if the following conditions are satisfied.

(i) Every subcomplementary set of column vectors is linearly independent.

(ii) If (A, ..., A1, Ay, ..., Ay) is any subcomplementary set of column vectors,
the hyperplane which is its linear hull strictly separates the points represented by
the left out complementary pair of column vectors (1.;, —M.;).

From (i) and (ii), it is clear that every complementary set of column vectors has
to be linearly independent for the strict separation property to be satisfied.

Example 3.4

1
LetM—[_1 1

—M are plotted in Figure 3.1.

] . Here n = 2. The points representing the column vectors of I,

Since n = 2 here, in this case each subcomplementary set consists of exactly one
of the column vectors from {I.1, .o, —M.;,—M.5}. The linear hull of any subcomple-
mentary set of vectors in this example is the straight line through the vector in that
subcomplementary set and the origin.

Consider the subcomplementary set of column vectors {I.;}. The left out com-
plementary pair of column vectors in this set is (1.2, —M.5). The linear hull of {I.;},
which is the horizontal axis in Figure 3.1, strictly separates the points .o, —M.5, since
neither of these points is on this straight line and they are on opposite sides of it. In
a similar manner it can be verified that both properties (i) and (ii) discussed above
are satisfied in this example. Hence any LCP associated with the matrix M in this
example satisfies the strict separation property.

Example 3.5

1
Let M = [0 1

I, —M in this case are plotted in Figure 1.3. Consider the subcomplementary set of

] . Here again, n = 2. The points representing the column vectors of

column vectors {I.2} in this example. Its linear hull is the vertical axis in Figure 1.3,
and it strictly separates the left-out complementary pair of column vectors (1.1, —M.1).
In a similar manner, it can be verified that the strict separation property holds in this
case.
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—M.1 | L

Figure 3.1  Illustration of Strict Separation

Figure 3.2  Violation of the Strict Separation Property
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Figure 3.3  Another Example of Violation of the Strict Separation Property.

Example 3.6

1 2
LetM_[1 1

Figure 3.2. Consider the subcomplementary set of column vectors {—M.;} here. Both
the points in the left-out complementary pair (I.o, —M.5) are on the same side of the
linear hull of {—M.;} here, and hence the strict separation property is not satisfied by
the LCPs associated with the matrix M here.

] . Here n = 2, and the column vectors of I, —M are plotted in

Example 3.7

1
Let M = [1 9

tors {—M.1} here. The point —M.5 from the left-out complementary pair (1.5, —M.s)
lies on the straight line which is the linear hull of the subcomplementary set of column

] . See Figure 3.3. Consider the subcomplementary set of column vec-

vectors {—M.1}. So the strict separation property is not satisfied in this example.

Corollary 3.9 Ifan LCP associated with the matrix M satisfies the strict separation
property, M is nondegenerate. This follows from the definitions.

[
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Theorem 3.16  The LCP associated with a matrix M satisfies the strict separation
property iff M is a P-matrix.

Proof. Suppose M is a P-matrix. Property (i) required for strict separation property
is obviously satisfied because M is nondegenerate (Corollary 3.1).

Let (A.q,...,Ai_1,A.iy1,...,A.,) be any subcomplementary set of column vec-
tors where A.; € {I.;,—M.;} for each j # i. Let H be the hyperplane which is the
linear hull of {A.4,...,4,-1,A+1,...,A.n}. By Corollary 3.1, the complementary
sets of column vectors (A.1,...,A;—1,1;, Aix1,...,Ap) and (A.q,..., A1, —M.,;,
A.iy1,...,A.,) are both linearly independent, and hence neither I.; nor —M.,; lie on
the hyperplane H. Suppose both I.; and —M.; are on the same side of the hyper-
plane H in R". See Figure 3.4. In this case the interiors of the complementary
cones Pos(A.1,..., 41,1, Aiy1,...,Ap) and Pos(A.q, ..., A1, =M., Aiga, - - -,
A.p,) have a nonempty intersection, and if § is a point in the intersection, then § is in
the interior of two complementary cones, and the LCP (g, M) has two distinct solu-
tions; a contradiction to Theorem 3.13, since M is a P-matrix. So I.; and —M.; cannot
be on the same side of the hyperplane H. Since neither of these points is on H, and
they are not on the same side of H, these points are on either side of H, that is H
separates them strictly. Since this holds for any subcomplementary set of column vec-
tors and the corresponding left-out complementary pair of column vectors, the strict
separation property holds when M is a P-matrix.

Suppose the strict separation property is satisfied. By Corollary 3.9 M is non-
degenerate. So all the principal subdeterminants of M are nonzero. It remains to be
proved that they are all positive. Let y = (y1,...,y,) be any complementary vector of
variables for the LCP (¢, M). Let t; be the complement of y; for j = 1 to n. Since M is
nondegenerate, (y1,...,¥,) is a complementary basic vector of variables by Corollary
3.1. Obtain the canonical tableau of (3.1), with respect to the complementary basic
vector y. Suppose it is

Y1 ---Yn t1...1n q

I M| 4 (3.12)

where M’ = (m;j) is the PPT of M corresponding to the complementary basic vector
y. Now look at the subcomplementary vector of variables (y1,...,%i—1,Yit1s---,Yn)-
The column corresponding to y; in (3.12) is I.;, for j = 1 to n. For convenience,
call the coordinates along the axis of coordinates, as x1,...,z,. Since the column of
yj in (3.12) is I.;, the hyperplane in R™ which contains the columns of y; in (3.12) for

allj=1,...,i—1,i+1,...,n, is the coordinate hyperplane H = {z : z; = 0}.
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H = linear hull of
{A.l,...,A.i+1,

A1, A}

0 =origin

Figure 3.4 I.; and —M.; are both on the same side of H. Interiors of the com-
plementary cones Pos(A.1,...,A,;—1,1;A.i+1,...,A.n) and Pos(A.q1,..., A1,
—M.;A.+1,...,A.,) have a nonempty intersection.

Among the left-out complementary pair of column vectors (I.;, —M!;), since the ith
component in the column vector I.; is +1, it is on the side on H corresponding to the
inequality x; > 0. So by the strict separation property, the point —M/; is on the side
of H corresponding to the inequality x; < 0, which implies that —m/, < 0, or M/, > 0.
Thus the ith diagonal element in M’ is strictly positive. In a similar manner we see
that if the strict separation property holds, then all the diagonal elements in all PPTs

of M are strictly positive. By Theorem 3.6 this implies that M is a P-matrix.
[

A class of convex polyhedral cones in R" is said to partition R" if

a) Every cone in the class has a nonempty interior.
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b) The union of the cones in the class is R".
¢) The interiors of any pair of cones in the class are disjoint.

Theorem 3.17 Let M be a given square matrix of order n. The class of comple-
mentary cones C(M) partitions R" iff M is a P-matrix.

Proof. If M is a P-matrix, the result that the class of complementary cones C(M)
partitions R" follows from Corollary 3.1 and Theorem 3.13.

To prove the converse, suppose that C(M) partitions R"™. Since every comple-
mentary cone in C(M) has a nonempty interior, by Corollary 3.2, M must be nonde-
generate. Hence all complementary sets of column vectors are linearly independent.
If the strict separation property is not satisfied, there exists a subcomplementary set
of column vectors, say (A.1,...,A.i-1,A.i41,-..,A.n) such that the hyperplane H
which is its linear hull contains both the points in the left out complementary pair
(I.;,—M.;) on the same side of it. As in the proof of Theorem 3.16, this implies that
the interiors of the complementary cones Pos(A.q,...,A;—1,1;, Ait1,...,A.) and
Pos(A.1, ..., Ai—1,—M.;, A.iy1,...,A.,) have a nonempty intersection; a contradic-
tion, since C(M) partitions R"™. Hence, if C(M) partitions R", the strict separation
property is satisfied, and by Theorem 3.16 this implies that M is a P-matrix.

Hence the class of complementary cones C(M) partitions R™ iff M is a P-matrix.

[]

Example 3.8

10
0 1
Figure 1.3, and obviously this class of complementary cones partitions R". For any n

in general C([) is the class of orthants of R", and these obviously partition R". As
mentioned earlier the class of complementary cones is a generalization of the class of

Let M = [ ] . The complementary cones are the quadrants in R?, drawn in

orthants of R" (orthants of R™ are the special class of complementary cones obtained
by taking M = I), and C(M) possesses the property of partitioning R" as long as M
is a P-matrix. This was first proved by Samelson, Thrall and Wesler in [3.69].

Corollary 3.10 Let M be a given square matrix of order n. The following conditions
are mutually equivalent.

i) All principal subdeterminants of M are strictly positive.
ii) The LCP (q, M) has a unique solution for each ¢ € R".
iii) The LCP (q, M) has at most one solution for each ¢ € R".
iv) The diagonal entries in all PPTs of M are strictly positive.
v) LCPs associated with M satisfy the strict separation property.
vi) The class of complementary cones C(M) forms a partition of R".

Proof. Follows from Theorems 3.15, 3.16, 3.17, 3.6 and Corollaries 3.6, 3.8.
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Theorem 3.18  Consider the LCP (3.1) in which M is a P-matrix. Suppose (W, %)
is the unique solution of the LCP with z; = 0. Let w = (wa,...,wy), & = (22,...,2y).
If (y2,...,yn), with y; € {wj,z;} for j = 2 to n, is a complementary feasible basic
vector for the principal subproblem of (3.1) in w, §; (w1, Y2, - .., Yn) iS a complementary
feasible basic vector for (3.1).

Proof. By Result 2.2 and Theorem 3.13, @ = (Wa,...,Wy), & = (Z2,...,%y,) is the
unique solution of the principal subproblem in w, £. Since w, Z is the unique solution
of (3.1), and Z; = 0, we have Z?:z ma;jZ; + g1 = w1 > 0. Under degeneracy, there
may be several complementary feasible basic vectors (all differing in the zero valued
basic variables) for the principal subproblem in w, £, but the BFS corresponding to
each of them must be @, € by the uniqueness of the solution. Also, the column vector
of wy in (3.1) is I.;. So, when we compute the basic solution of (3.1) corresponding

to the basic vector (w1,¥ys2,...,yn), we get w; = W;, z; = Z; for j =2ton, zZ; =0
and w; = 2?22 maojZ; + ¢ = Wy > 0, which is the solution (w,Z) of (3.1). So,
(w1,9y2,...,Yn) is a complementary feasible basic vector for (3.1).

[

Higher Order Separation Theorems

Theorem 3.19 Let M be a P-matrix of order n and let J, J be a partition of
{1,...,n} with J, J both being nonempty. Let {A.; : j € J}, {A.; : j € J} be the
corresponding partition of a complementary set of vectors. Let {B.; : j € J} be the
complement of the subcomplementary set {A.; : j € J}. If H is a hyperplane in R"
satisfying
i) H contains the origin 0 and all the vectors in the subcomplementary sets {A.; :
jeJ}.
i) All the vectors in the subcomplementary set {A.; : j € J} lie in one of the closed
half-spaces, Hg, defined by H, then at least one of the vectors in {B.; : j € J}
lies strictly on the other side of H in the other open half-space H< defined by H.

Proof. Consider the system (3.13)
w—Mz=0. (3.13)

Perform principal pivot steps in (3.13) to transform the complementary set of vectors
{A.; : j € JUJ} into the set of unit vectors. This is a nonsingular linear transformation
that preserves separation properties. If u; denotes the variable in (3.13) associated with
A.;, and v; denotes its complement, this transforms (3.13) into

u—Mv=0 (3.14)

where M is also a P-matrix because it is a principal pivot transform of the P-matrix
M. Let Hﬁ denote the principal submatrix of M corresponding to the subset J. Let
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H={z: 2?21 ajx; = 0} be the transform of H. Since A.; is transformed into I.;,
by (i) we have a; = 0 for each j € J, and by (ii) we have a5 = (a; : j € J) > 0. So
the row vector a = (a;) > 0 and since H is a hyperplane a > 0, that is agy > 0. (A
vector y = (y;) > 0 means that each y; is nonnegative and at least one y; is strictly
positive). For j € J, B.; is now transformed into —M ;. The vector (a(—M.;) : j €
J) = —ajﬁﬁ. Since Mﬁ is itself a P-matrix and a3 > 0, by Theorem 3.11 at least
one of the components of a3 M75 is strictly positive, that is a(—M.;) < 0 for at least
one j € J. That is, at least one of the —M.; for j € J lies in the open half-space
H = {z : Z;”:l ajx; < 0} not containing the unit vectors. In terms of the original
space this implies that at least one of the B.;, j € J is contained in the open half-space

H< defined by H not containing the complementary set of vectors {A;:jedU J}.
[]

Theorem 3.20 Let M be a P-matrix of order n, J a nonempty proper subset of
{1,...,n} and let {A.; : j € J} be a subcomplementary set of vectors. Let H be a
hyperplane in R" that contains the origin 0 and all the vectors in the set {A.; : j € J}.
Then H strictly separates at least one pair of the left out complementary pairs of
vectors {I.j,—M.;} for j € J={1,...,n}\J.

Proof. Choose the subcomplementary set {A.; : j € J} arbitrarily and transform the
system (3.13) into (3.14) as in the proof of Theorem 3.19. Using the notation in the
proof of Theorem 3.19, suppose this transforms H into H = {x : 2?21 a;x; = 0}.
Since A.; is transformed into I.; and H contains A.; for j € J, H must contain [.;
for j € J, that is a; = 0 for all j € J. Since H is a hyperplane, we must have a # 0,
that is a5 = (a; : j € J) # 0. Define Mﬁ as in the proof of Theorem 3.19, it is a
P-matrix as noted there. By the sign nonreversal theorem for P-matrices of D. Gale
and H. Nikaido, Theorem 3.12, if (y; : j € J) = ajﬁﬁ, a;y; > 0 for at least one j € J.
Since a; = 0 for j € J, these facts imply that there exists at least one j € J satisfying
the property that al.; and a(—M.j) have strictly opposite signs, that is H separates
the complementary pair of vectors {I.;, —M. ;j} strictly. In terms of the original space,
this implies that H strictly separates the complementary pair of vectors {I.;, —M.;}
for that j € J.

[]

Comment 3.1 Theorem 3.2 is from K. G. Murty [3.47, 3.48]. Theorem 3.5 is due
to A. W. Tucker [3.78]. The proofs of Theorems 3.7, 3.8 given here are attributed to
P. Wolfe. The fact that the LCP (g, M) of order n has a unique solution for all ¢ € R"
is originally established [3.69]. The inductive proof of Theorem 3.13 given here, and
Theorems 3.14, Corollary 3.6 are from K. G. Murty [3.47, 3.49].

A Variant of the LCP

We now discuss some results from K. G. Murty [3.51]. Let M be a given square matrix
of order n and ¢ a given column vector of order n. Let J be a given subset of {1,...,n}.
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The generalized LCP with data ¢, M, J is the problem of finding column vectors
w e R", z € R" satisfying:

w —Mz =gq

W;jZj =0 forallj=1ton
wj, z; 20 foralljgJ (3.15)
Wy 2; <0 foralljeld.

We will use the notation (¢, M, J) to denote this generalized LCP. Notice that if J = (),
the generalized LCP (g, M, () is the same as the usual LCP (g, M) that we have been
discussing so far. We will now prove some results about the uniqueness of the solution
to this generalized LCP.

Theorem 3.21 Let M be a given square matrix of order n, and J a given subset
of {1,...,n}. With M, J fixed, the generalized LCP (q,M,J) has a unique solution
for each ¢ € R"™ iff M is a P-matrix.

Proof. In (3.15), make the following transformation of variables: w; = wu; for i ¢ J,
—u; for v € J; z; = v; for ¢ € J, —v; for ¢+ € J. After making these substitutions,
multiply both sides of the ith equation in it by —1 for each i € J. Let u = (u1, ..., u,)7T,
v = (v1,...,v,)T. After these transformation the problem becomes:

U—Mvzﬁ
u>0,v2>0 (3.16)

ulTv =0

where M is the matrix obtained from M by multiplying each entry in the ith row of
M by —1 for each ¢ € J, and then multiplying each entry in the ith column of the
resulting matrix by —1 for each ¢+ € J. So the value of a principal subdeterminant of
M is exactly equal to the corresponding principal subdeterminant of M. Thus M is a
P-matrix, iff M is. The column vector g is obtained by multiplying the ¢th entry in ¢
by —1 for each i € J. (3.16) is equivalent to (3.15). If (w, 2) is a solution of (3.15), then
the corresponding (u,v) obtained as above is a solution of (3.16) and vice versa. But
(3.16) is the usual LCP (g, M), and hence by Theorem 3.13 it has a unique solution
for each 7 € R" iff M is a P-matrix. Consequently (3.15) has a unique solution for
each ¢ € R" iff M is a P-matrix.
[]
Now let M be a given square matrix of order n, and consider the usual LCP
(q, M), (3.1), again. The column vector ¢ is nondegenerate in (3.1), if ¢ is not in
the linear hull of any set of (n — 1) columns of (I, —M). There are 2™ complementary
sets of column vectors in the LCP (g, M), and number these sets in some order, from
[ =1 to 2™. Let A; denote the matrix whose columns are the columns in the [th
complementary set of column vectors (in that order), for [ = 1 to 2. If M is a P-
matrix, by Corollary 3.1, A; is nonsingular and hence is a complementary basis for
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(3.1), for each [ = 1 to 2™. Let A denote the set of all these complementary bases,
that is A= {A;:1=1,2,...,2"}.

It is clear from the definitions, that if ¢ is nondegenerate in the LCP (¢, M) and
A is a complementary basis for the LCP (¢, M) and ¢ = (g;) = A~ 'q, then ¢; # 0
for each j = 1 to n. (Since ¢ = A~1q, we have ¢ = A§ = 2?21 g; A.j. If g; =0 for
some j, then ¢ can be expressed as a linear combination of (n — 1) column vectors of
(I * —M), contradicting the hypothesis that ¢ is nondegenerate in (3.1)).

We will now discuss some important results on the LCP (¢, M) when M is a
P-matrix and ¢ is nondegenerate, from [3.51].

Theorem 3.22  Let M be a given P-matrix of order n, and let ¢ be nondegenerate
in the LCP (q, M). Then for each subset J C {1,...,n}, there exists a unique com-
plementary basis A € A satisfying the property that if ¢ = (4;) = A~ 'q, then §; < 0
for all j € J and ¢; > 0 for all j & J.

Proof. Since g is nondegenerate, for any A € A all the components in A~!q are
nonzero. Suppose § = A~'q is such that ¢; < 0 for all j € J and ¢; > 0 for all
j ¢ J. Let (y1,...,yn) be the complementary vector of variables corresponding to the
complementary basis A. Let (w; %) be the solution defined by:

yj =g, forj=1ton
Complement of y; =0, forj=1ton.

Then (1w, 2) is a solution of the generalized LCP (g, M,J). However, by Theorem 3.21,
the generalized LCP (g, M,J) has a unique solution, since M is a P-matrix. This
implies that there exists a unique complementary basis A € A such that if § = A~ 1q,

then g; < 0 for all j € J and ¢; > 0 for all 7 € J.
[]

Example 3.9

Let

N 1 0 0
M(S)[2 1 0] q=

2 21

Here n = 3, and there are eight complementary bases. Verify that M (3) is a P-matrix.
The LCP (q,M(S)) corresponding to this data will be discussed in Example 4.1 of
Chapter 4. From there, we see that for A € A, § = A~ !q, the updated right hand side
constants vector is as tabulated below.
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Complementary Basic Vector g% = Transpose of the Updated
Corresponding to the Right Hand side Constants Vector
Complementary Basis

(w1, wa, ws) (—-1,-1,-1)

(w1, ws, 23) (—-1,-1, 1)

(w1, 2o, 23) (-1, 1,-1)

(w1, 22, w3) (-1, 1, 1)

(21, 22, w3) ( 1,-1,-1)

21,22, 23) ( 1,-1, 1)
(21, wa, 23) (1, 1,-1)
(21, wa, w3) (1, 1, 1)

As an example let J = {2}. We verify that the complementary basis corresponding
to the complementary basic vector (zi,22,23) is the unique complementary basis in
this problem satisfying the property that the jth updated right hand side constant
is negative for 7 € J and positive for j ¢ J. In a similar manner, the statement of
Theorem 3.22 can be verified to be true in this example for all subsets J C {1, 2, 3}.

3.3.1 One-to-One Correspondence Between Complementary

Bases and Sign Vectors

Given any vector of “4+” and “—” sign symbols in R", Theorem 3.22 states that if M
is a P-matrix of order n and ¢ is nondegenerate in the LCP (g, M), then there exists a
unique complementary basis for the LCP (¢, M) satisfying the property that the signs
of the components in the updated right hand sides constants vector with respect to
that complementary basis, are exactly the given vector of signs.

Corollary 3.11 Let M be a given P-matrix of order n, and let q be a given column
vector which is nondegenerate for the LCP (q,M). The number of complementary
basis A € A such that if § = (§;) = A~ 1q, then exactly r of the q; are strictly negative,
is (:f) This follows from Theorem 3.22.

Corollary 3.12 Let M be a given P-matrix of order n, and let q be a given column
vector which is nondegenerate for the LCP (q, M). There is a one-to-one correspon-
dence between the 2™ complementary basic vectors for this problem, and the 2™ sign
vectors for the components in the updated q. This follows from Theorem 3.22.
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The result in Theorem 3.22 and Corollary 3.12 displays the nice combinatorial
structure of the LCP (q, M') when M is a P-matrix and q is nondegenerate. As we move
from one complementary basic vector to another, the sign pattern of the components in
the updated q vector changes distinctly. The problem of solving the LCP (q, M) in this
case, is the same as that of finding the complementary basic vector that corresponds
to the sign vector consisting of all + signs under this one-to-one correspondence.

3.4 OTHER CLASSES OF MATRICES IN
THE STUDY OF THE LCP

In this section we provide a brief summary of some of the other classes of matrices
used by many researchers in the study of the LCP.

The Weak Separation Property

This is a property of the matrix M, and does not depend on the right hand side
constants vector ¢. An LCP associated with the matrix M (or the class of comple-
mentary cones C(M)) is said to satisfy the weak separation property if, given any
subcomplementary set of column vectors (A.q1,..., A 1,A.i11,...,A.,), there exists
a hyperplane H in R™ which contains the points 0, and A.;, t =1,...,i—1,i+1,...,n,
and separates (not necessarily strictly) the points represented by the left out comple-
mentary pair of column vectors I.;, —M.;. See reference [3.48]. As an example let

0 1
v= (3

verify that the weak separation property holds, but not the strict separation property.
Also see Figure 3.6.

] . The corresponding complementary cones are drawn in Figure 3.5,
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0 1
1 0
Cones Pos{I.1,—M.s}, Pos{—M.1,1.5} are both degenerate, they are the coordinate

lines. The Weak Separation Property Holds.

Figure 3.5 The Complementary Cones when M = [ ] . The Complementary
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0 1
0 0]. The Cones

Pos(I.1,—M.5), Pos(—M.1, —M.5), Pos(—M.1,1.5) are all degenerate and their
Union is the Horizontal Coordinate Line, and the Nonnegative Half of the Ver-
tical Coordinate Line.

Figure 3.6 The Complementary Cones when M = [

The square matrix M of order n is said to be a weak separation matrix if it satisfies
the weak separation property. Using arguments similar to those in the proof of Theorem
3.16, it can be verified that M is a weak separation matrix iff the diagonal entries in
M and all the PPTs of M are nonnegative. See reference [3.48], and also Exercise 3.1.

Py-Matrices: A square matrix M of order n belongs to this class iff all its principal
subdeterminants are > 0.

The union of all the complementary cones in C(M) may not even be convex when
0 1

0 0
for this case are plotted in Figure 3.6. The complementary pivot algorithm may not

be able to process the LCP (¢, M) when M is a Py-matrix. For example, on the LCP
in which M is the matrix given above, and ¢ = (—1,0)%, the complementary pivot
algorithm ends up in ray termination, even though the LCP has a solution.

M is a Py-matrix. For example, consider M = [ ] . The complementary cones

Z-Matrices: A square matrix M = (m;;) of order n is said to be a Z-matrix iff
m;; < 0 for every i # j. A very efficient special algorithm for solving the LCP (¢, M)
when M is a Z-matrix has been developed by R. Chandrasekaran, and this is discussed
in Section 8.1.
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Matrices with Dominant Principal Diagonal: A square matrix M = (m;;) of
order n belongs to this class if |m;;| > >""=1 |my;| for each i =1 to n.

J#i
Generalized Diagonally Dominant: A square matrix M is said to be a generalized
diagonally dominant if there exists a positive diagonal matrix 7" such that AT is strictly
diagonally dominant.

M-Matrices: A square matrix M of order n is said to be an M-matrix if it is a
Z-matrix which is also a Py-matrix. In the literature these matrices are also called
Ky-matrices in some references (see S. R. Mohan [3.46]). Nonsingular M-matrices are
precisely Z-matrices which are also P-matrices (in the literature these are also known
as Minkowski-matrices or K-matrices and some authors refer to these as M-matrices.
See the paper [3.22] by M. Fiedler and V. Ptak for the properties of these matrices. If
M is a nonsingular M-matrix, then its inverse M~1 > 0.)

Comparison Matrix: Given a square matrix M = (m;;), its comparison matrix is
A = (a;;) where a;; = |m;;| for i =1 to n and a;; = —|m;;| for all i # j, i, j =1 to n.

H-Matrix: A square matrix M is said to be a H-matrix if its comparison matrix
(which is a Z-matrix) is a P-matrix.

Semi-Monotone Matrices (FEp-Matrices): The square matrix M of order n is
said to be semi-monotone iff for all z € R", x > 0, there exists an index ¢ such that
x; > 0 and M;.x > 0. This class of matrices has also been called the class of L;-
matrices. The matrix M belongs to this class iff the LCP (¢, M) has a unique solution
whenever ¢ > 0. If M is symmetric, then it is semi-monotone iff it is copositive.

Strictly Semi-Monotone Matrices: The square matrix M of order n belongs to
this class if for every z € R", x > 0, there exists an index 7 such that z; > 0 and
M;.x > 0. Equivalently, let M refer to any nonempty principal submatrix of M, or M
itself. Then M is strictly semi-monotone, iff the system

Mz <0
z2>0

has no solution z, for all such M. B. C. Eaves [3.21] calls this class of matrices L.
See also the papers [1.3] of R. W. Cottle and G. B. Dantzig, [1.16] by S. Karamardian,
and [3.40] of C. E. Lemke (Lemke calls this class of matrices F).

If M is symmetric, M is strictly semi-monotone iff it is strictly copositive. A
matrix M is strictly semi-monotone if the LCP (¢, M) has a unique solution whenever
q > 0. This class is the same as the class of Q or completely QQ-matrices.

Fully Semi-Monotone: A square matrix of M of order n belongs to this class if
M and all its PPTs are semi-monotone. See R. W. Cottle and R. E. Stone [3.13].
The square matrix M is fully semi-monotone iff the LCP (¢, M) has a unique solution
whenever ¢ is in the interior of any nondegenerate complementary cone.
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S-Matrix: A matrix M, not necessarily square, belongs to this class if the system
Mz >0, z>0

has a solution z. See [3.40] by C. E. Lembke.

Q, or Completely (Q-Matrices: A square matrix of order n belongs to this class
if the matrix, and all its principal submatrices are @-matrices. In [3.9] R. W. Cottle
has proved that this class is exactly the same as the class of strictly semi-monotone
matrices. See Exercises 3.10, 3.11.

V-Matrices: The square matrix M of order n belongs to this class if every principal
submatrix M of M has the property that there is no positive column vector z such
that the last coordinate of M7 is nonpositive and the remaining ones are zero. In
[2.38] L. Van der Heyden constructed a new algorithm for the LCP and showed that
it will always obtain a solution to the LCP (g, M), provided M is a V-matrix. In [3.9]
R. W. Cottle has proved that this class of matrices is the same as the class of strictly
semi-monotone matrices, or the class of Q-matrices. See Exercises 3.10, 3.11.

Qo-Matrices: A square matrix M of order n belongs to this class if the union of all
the complementary cones in C(M) is convex. In some early papers on the LCP this
class was denoted by K. We have the following theorem on this class of matrices.

Theorem 3.23  If M is a (Qp-matrix, the union of all the complementary cones in
C(M) is Pos(I,—M).

Proof. Let K(M) denote the union of all the complementary cones in C(M). Every
solution of the LCP (¢, M) is a (w, z) satisfying w = MZ + ¢, W,z > 0 and w” z = 0,
and hence (w,Zz) give the coefficients in an expression for ¢ as a nonnegative linear
combination of the columns of (I : —M). So if ¢ € K(M), then ¢ € Pos(I : —M),

that is, K(M) C Pos(I : —M). Now, let I C {I.;, —M.;,j =1 to n}. For any j =1 to
n,if ¢ =1.j, (w = I.j, z = 0) is a solution of the LCP (¢, M); and if ¢ = —M.;, (w = 0,
z = 1.;) is a solution of the LCP (¢, M). SoI' C K(M). Since M is a Qo-matrix by

hypothesis I' C K(M) implies that Pos(I') C K(M), that is, Pos(I : —M) C K(M).

All these facts together imply that K(M) = Pos(I : —M).
[

Qo-Matrices: The square matrix M of order n belongs to this class if it, and all its
principal subdeterminants are Qp-matrices.

Adequate Matrices: A square matrix of order n belongs to this class if it is
a Pp-matrix, and whenever a principal submatrix of M corresponding to a subset
{i1,...,ir} C {1,...,n} is singular, the sets of vectors {M;. : i € {iy,...,ir}},
{M.,; i€ {i1,...,ir}} are both linearly dependent. This class of matrices has been
defined by A. W. Ingleton [3.31]. He proved that if M is adequate, for any ¢ € R",
there exists at most one w such that (w, z) is a solution of the LCP (g, M). Also, if M
is invertible and adequate, it is a P-matrix.
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Lo-Matrices: A square matrix of order n is said to be an Ls-matrix if for each z > 0
satisfying w = Mz > 0 and w’'z = 0; there exists a 2 # 0 satisfying v = — (2T M)7,
w>w>0,2>5>0.

E*(d)-Matrices: Let d € R" be given. The square matrix M of order n belongs to
this class if z = 0 in every solution of the LCP (d, M). Thus if M is an E*(d) matrix,
the LCP (d, M) has the unique solution (w = d, z = 0) if d > 0, and no solutions if

d#0.

E(d)-Matrices: Let d € R" be given. The square matrix M of order n belongs to
this class, if whenever (w,z) is a solution of the LCP (d, M) with Z # 0, there exists
anxiOsuchthaty:—MTxEO, and Z >z, w > y.

L(d)-Matrices: Let d € R" be given. The square matrix M of order n belongs to
this class if it is both an E(d)-matrix and also an E(0)-matrix.

L*(d)-Matrices: Let d € R" be given. The square matrix M of order n belongs to
this class if it is both an E*(d)-matrix and also an E*(0)-matrix.

The classes of matrices E(d), E*(d), L(d), L*(d) have been defined by C. B. Garcia
[3.25]. He has shown that if d > 0, and M is an L(d) matrix, then the LCP (¢, M)
can be processed by the variant of the complementary pivot algorithm in which the
original column of the artificial variable 2z is taken to be —d.

Regular Matrices: The square matrix M of order n is said to be a regular matrix
(denoted by R-matrix) if there exists no z € R", t € R! satisfying

220,620
M;.z+t=0 ifissuch that z; >0
M;.z+t >0 if ¢ is such that z; = 0.

So the matrix M is a regular matrix iff for all A > 0, the only solution to the LCP
(Ae, M) is (w = Xe, z = 0). S. Karmardian [1.16] introduced this class of matrices and
proved that all regular matrices are (Q-matrices.

Ry-Matrices: These are matrices M for which the LCP (0, M) has a unique solution.
This is exactly the class E*(0) defined earlier. These matrices have also been called
superregular matrices. If M belongs to this class there exists no z € R" satisfying

z>0
M;.z =0 for ¢ is such that z; > 0
M;.z > 0 for i is such that z; = 0.

This class includes all regular matrices. In particular the matrix M = [ :1 :1 ] is
an Ry-matrix, but not regular.
A degenerate complementary cone Pos(A.1,...,A.,) is said to be strongly de-

generate if there exists o = («q,...,a.,,) > 0 satisfying Z?Zl ajA.; = 0, weakly
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degenerate if no such « exists. As an example, let

1 -1 -1
M = 1 -1 —-17].
—1 1 0

For this matrix M, the degenerate complementary cone Pos(—M.1, —M.5, I.3) is strong-
ly degenerate because 0 = (—M.;) + (—M.2). The degenerate complementary cone
Pos(I.1,1.2,—M.3), is weakly degenerate since it is impossible to express 0 as a1 +
asl.o + az(—M.3) with aq, as, a3 > 0 and at least one of oy, as, ag strictly > 0.

Clearly, a square matrix M is an Rp-matrix iff there exists no strongly degenerate
complementary cone inC(M).

N-Matrix: A square matrix of order n belongs to this class if all its nonempty
principal subdeterminants are strictly negative. See M. Kojima and R. Saigal [3.39] in
which they prove that if M is an N-matrix, then the LCP (¢, M) has either 0, 1, 2 or
3 solutions for any q.

U-Matrix: A square matrix of order n belongs to this class iff the LCP (¢, M) has a
unique solution whenever ¢ is in the interior of K(M) = the union of all complementary
cones in C(M). See R. W. Cottle and R. E. Stone [3.13].

INS-Matrices: A square matrix M of order n is said to be an INS-Matrix (Invariant
Number of Solutions) iff the number of solutions of the LCP (g, M) is the same for
all ¢ contained in the interior of K(M). See R. W. Cottle and R. E. Stone [3.13],
R. E. Stone [3.70, 3.71].

INS;-Matrices: A square matrix M of order n is called an INSg-Matrix if for every
q in the interior of K(M), the LCP (g, M) has exactly k distinct solutions.

W-Matrices: Let M be a given real square matrix of order n. Forany J C {1,...,n}
define the complementary matrix A(J) associated with the subset J to be the square
matrix of order n in which

-M.;, ifjeld
AJ)).; = S
(A()).5 { I, ifj¢&d.

The matrix M is said to be a W-matrix iff

Pos(A(J)) NPos(A(J)) = {0}

for every J C {1,...,n} and J = {1,...,n} \ J. This definition is due to M. W. Jeter
and W. C. Pye, they have shown that every W-matrix is a U-matrix.
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3.5 Exercises

3.1 Let M be a given square matrix of order n. Let I' = {1,...,n}. If S C I" define

f(S)=1, ifS=10
= principal subdeterminant of M corresponding to S, if S # (.

Prove that M is a weak separation matrix iff there exists no nonempty subset S C T’
satisfying the property that for some j € S, f(S) and f(S\{j}) are both non-zero and
have strictly opposite signs. Using it, prove that a square matrix is a weak separation
matrix iff the diagonal entries of all its PPTs are > 0.

Prove that every nondegenerate weak separation matrix is a P-matrix and that
every square matrix which is not a weak separation matrix must have a negative
principal subdeterminant. Show that all Py-matrices are weak separation matrices.

Prove that if the LCP (¢, M) has more than one solution, and M is a weak
separation matrix, then ¢ > 0 (K. G. Murty [3.48, 1.26]).

3.2 Prove that the two definitions given for strictly semi-monotone matrices are equiv-
alent.

3.3 Prove that every copositive plus matrix which contains a strictly positive column
vector, is a (Q-matrix.

3.4 Prove that all PPTs of a Py-matrix are Py-matrices.

3.5 Prove that the square matrix M of order n is a Py-matrix iff for ally € R", y # 0,
there exists an 4 such that y; # 0 and y;(M;.y) > 0 (Fiedler and Ptak [3.23]).

3.6 If M is a Py-matrix, prove that there exists an x > 0 such that Mz > 0
(B. C. Eaves [3.21]).

3.7 If M is a Py-matrix and x > 0 satisfies Mx = 0, prove that there exists a y > 0
such that yT M = 0.

3.8 If M is a Py-matrix and (¢, M) has a nondegenerate complementary BFS, then
prove that it is the unique complementary feasible solution. Construct a numerical
example to show that the converse could be false (B. C. Eaves [3.21]).

3.9 Prove that every Q-matrix is an S-matrix (C. E. Lemke [3.40]).
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3.10 Prove that if M is a square matrix of order n which is an S-matrix, and every
(n — 1) x (n — 1) principal submatrix of M is strictly semi-monotone then M itself
is strictly semi-monotone; using this prove that the class of strictly semi-monotone
matrices is the same as the class of completely ()-matrices (R. W. Cottle [3.9]).

3.11 Prove that the classes of matrices, strictly semi-monotone, @, V, are the same
(R. W. Cottle [3.9]).

3.12 If M is a square symmetric matrix of order n, prove that the following conditions
are equivalent.
(i) M is strictly copositive,
(ii) M is strictly semi-monotone,
(iii) for all ¢ > 0, the LCP (¢, M) has a unique solution (F. Pereira [3.59]).

3.13 If M is a square matrix of order n which is principally nondegenerate, prove
that the number of complementary feasible solutions for the LCP (¢, M) has the same
parity (odd or even) for all ¢ € R™ which are nondegenerate. As an example, when

-1 2 2
M = 2 -1 2
2 2 -1

show that the number of complementary feasible solutions for the LCP (¢, M) is always
an even number > 2 whenever ¢ is nondegenerate (K. G. Murty [1.26, 3.47]).

3.14 Prove that if the number of complementary feasible solutions for the LCP (g, M)
is a constant for all ¢ which are nondegenerate, then that constant must be equal to
1, and M must be a P-matrix. (K. G. Murty [1.26, 3.47]).

3.15 If yTq+y? My is bounded below on the set y > 0, then prove that the LCP (¢, M)
has a solution and it can be computed by using the complementary pivot algorithm
(B. C. Eaves [3.21]).

3.16 Let g, M be matrices of orders n x 1, n X n respectively. If there exists an
z € R", z > 0 such that ¢"z < 0, M7z < 0, prove that the LCP (¢, M) has no
solution (C. B. Garcia [3.25]).

3.17 Prove that the classes of matrices E(d) and E*(d) are the same whenever either
d>0,ord<0 (C.B. Garcia [3.25]).

3.18 Prove that the semi-monotone class of matrices is (), F(d). Also, prove that
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the class L of matrices is (), L(d). Verify that the matrix

1 1 1
0 -1 1

-1 -1 0

M

is an L(d) matrix for d = (2,3,1)T, but not an L-matrix (C. B. Garcia [3.25]).

3.19 Let d > 0 and suppose M is an L*(d) matrix. For any ¢ € R", prove that when
the variant of the complementary pivot algorithm in which the original column of the
artificial variable z, is taken to be —d, is applied on the LCP (g, M), it terminates
with a solution of the LCP (S. Karamardian, [1.16], C. B. Garcia [3.25]).

3.20 Let M be a copositive plus matrix. Prove that the set of solutions of the LCP
(¢, M) is nonempty and bounded iff the optimum objective value in the following LP

is zero
Maximize elu
Subject to  M7Tu <0
qTu <0
u>0.

In particular, prove that if M is copositive plus and the LCP (g, M) has a nonde-
generate complementary BFS, then the set of solutions of the LCP (g, M) is bounded
(O. L. Mangasarian [3.42]).

3.21 Let M be a copositive plus matrix. If the system: Mz > 0, x > 0 has a solution
x € R", prove that the set of solutions of the LCP (g, M) is nonempty and bounded,
for every ¢ € R" (O. L. Mangasarian [3.42], J. Parida and K. L. Roy [3.56]).

3.22 Prove that every regular matrix is a -matrix (S. Karamardian [1.16]).

3.23 Prove that if M is a Py-matrix then the following are equivalent

(i) M is an Ryp-matrix,
(ii) M is a regular matrix,
(iii) M is a @Q-matrix.

(M. Aganagic and R. W. Cottle [3.2]).

3.24 If M is a P-matrix, prove that the system Mx > 0, x > 0 has a feasible solution.
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3.25 Let M be a P-matrix of order n and let ¢ € R". Consider the quadratic program:

minimize 27 (Mz + q)
subject to Mz+q> 0 (3.17)
z2 0.

Prove the following

(i) (3.17) has a unique local minimum Z which is the global minimum with objective
value 0. In this case (W = MZ + ¢, %) is the unique solution of the LCP (¢, M).

(ii) If 7 is the unique local minimum for (3.17), let # = 21, u = (Mz + ¢)*. Then
(Z,7, 1) is the unique KKT point for (3.17) (Y. C. Chang [3.7]).

3.26 The square matrix M of order n is a nonsingular M-matrix iff the following
property holds. Let (w,Zz) be the solution of the LCP (¢, M). Then Z is the unique
vector in the region X = {z : Mz + ¢ > 0,z > 0} satisfying Z € X and z > 7 for any
z € X (R. W. Cottle and A. F. Veinott, Jr. [3.14]).

3.27 Let M be a Z-matrix which is also a P-matrix of order n, and ¢',¢> € R"”
satisfying ¢* > ¢*. If (w’, 2%) is a solution of the LCP (¢%, M) for i = 1,2, prove that
2zt > 2% (R. W. Cottle, G. H. Golub, and R. S. Sacher [3.11]).

3.28 Let M be an N-matrix. Then prove that either M < 0 or there exists a d > 0
such that Md > 0. Also prove that a square matrix M is an N-matrix iff all proper
principal subdeterminants of M ~! are positive and the determinant of M1 is < 0
(M. Kojima and R. Saigal [3.39]).

3.29 Let M be an N-matrix. Prove the following. If M < 0, (¢, M) has no solutions
for ¢ 2 0 and exactly two solutions for ¢ > 0. If M £ 0, and ¢ # 0, the LCP (¢, M)
has a unique solution. If M «£ 0, and ¢ > 0, the LCP (¢, M) has 2 or 3 solutions. If
M £ 0, q >0 and g; = 0 for at least one i, the LCP (¢, M) has exactly two solutions
(M. Kojima and R. Saigal [3.39]).

3.30 If M is an M-matrix prove that the union of all the degenerate complementary
cones is the set of all ¢ € R" for which the LCP (¢, M) has an infinite number of
solutions. Also, in this case, prove that the LCP (¢, M) has infinitely many solutions
iff ¢ is in the boundary of K(M), which is the union of all complementary cones in
C(M) (S. R. Mohan [3.46]).

3.31 Prove that every U-matrix is a fully semi-monotone matrix (R. W. Cottle and
R. E. Stone [3.13]).
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3.32 Prove that the LCP (¢, M) has an even number of solutions for each ¢ € R"
which is nondegenerate, if there exists a z > 0 such that zM < 0, or equivalently if
(x =0, y =0) is the only solution to the system

Ix— My=20
z,y =20

(R. Saigal [3.63]).

3.33 Counsider the LCP (g, M) where M is an adequate matrix. If (w,z), (w0, 2) are
any two solutions of this LCP, prove that w = w (A. W. Ingleton [3.31]).

3.34 Let M be a square nondegenerate matrix of order n. For some ¢* € R", if the
LCP (g*, M) has a unique solution (w*, 2z*) and w* + z* > 0, then prove that M is a
()-matrix (A. W. Ingleton [3.31]).

3.35 If M is an L-matrix and an Rg-matrix prove that it must also be an R-matrix
and a (Q-matrix.

Prove that if M is Ryp-matrix which is copositive, then it must be an R-matrix
and a (Q-matrix.

If M is an Ls-matrix and a (Q-matrix, prove that it must be an Ryp-matrix.

If M is an L-matrix, prove that the following are equivalent:

(i) M is a Q-matrix,

(ii) M is an R-matrix,

(iii) M is an Rp-matrix, and

(iv) M is an S-matrix.

Is every @-matrix which is an Lq-matrix, also an Rp-matrix? (J. S. Pang [3.53]).

3.36 Prove that copositive plus and strictly copositive matrices are L-matrices.

3.37 Prove that every Py-matrix is semi-monotone, and that every ()-matrix is an
S-matrix.

3.38 If M is an L-matrix, prove that it is a Q-matrix iff it is an S-matrix (B. C. Eaves
[3.21]).

3.39 Prove that the system: Mx = 0, x > 0, is inconsistent if either M is an Li-matrix
and a (Q-matrix, or M is a (Q-matrix which is copositive.

If M is an Li-matrix and a Q-matrix, prove that every nonzero z that leads to
solution of the LCP (0, M) must have at least two nonzero components.
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If M is a Q-matrix which is copositive, prove that any vector Z satisfying z7 Mz =
0 and (M + M7T)z = 0, and leads to a solution of the LCP (0, M) must be the zero
vector.

If M is a Q-matrix which is symmetric and copositive, prove x = 0 is the only
feasible solution to the system: Mz =0, x > 0.

If M is a Q-matrix which is symmetric and copositive plus, prove that it must be
strictly copositive.

If M is a copositive plus matrix prove that the following are equivalent:

(i) M is a Q-matrix,
(ii) M is a R-matrix,
(ili) M is a Rp-matrix,
(iv) M is an S-matrix.
In addition, if M is also symmetric, then prove that each of the above is equivalent to
(v) M is strictly copositive,
(vi) = 0 is the only feasible solution of the system: Mz =0,z >0

(J. S. Pang [3.53]).

3.40 Let M be a nondegenerate Q-matrix of order n. Prove that the number of
distinct solutions of the LCP (¢, M) is < 2" —1 for any ¢ € R" (A. Tamir [3.75]).

3.41 If M is a square matrix all of whose principle subdeterminants are negative and
there exists an x > 0 such that Mz > 0, then M is a Q-matrix (R. Saigal [3.65]).

3.42 Prove that any square matrix of order 2 with all diagonal entries zero cannot be
a (Q-matrix. Show that this result is not true for higher order matrices by considering

0 3 —1 0
3 0 0 -1
-1 -1 0 1
-1 -1 1 0

M =

which is a Q-matrix since M~! > 0 (M. Jetter and W. Pye [3.33]).

3.43 If M is a square matrix of order n such that there exists a z > 0 satisfying
2T M < 0 then the LCP (g, M) has an even number of solutions for all nondegenerate
q (R. Saigal [3.63]).

3.44 1If M is copositive plus and the LCP (¢, M) has a solution (w,z) which is a
nondegenerate BEFS of “w — MZ = q, w > 0, z > 07, prove that the set of solutions of
the LCP (g, M) is a bounded set. However, show that the existence of a nondegenerate
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BF'S solution is not necessary for the set of solutions of the LCP (¢, M) to be bounded.

(Hint: try ¢ = [ :1 ] , M = [ } } ] (O. L. Mangasarian [3.42]).

3.45 If M is a copositive plus matrix of order n, for any ¢ € R", the set of solutions
of the LCP (g, M) is nonempty and bounded if the following system has a solution
x € R".

Mx+qg>0,z>0 (3.18)

(O. L. Mangasarian [3.42]).

3.46 If M is a copositive (Q-matrix, prove that the system
Mz =0
x>0

is inconsistent.

3.47 If M is a symmetric, copositive plus (-matrix, prove that M must be strictly
copositive (J. S. Pang [3.53]).

3.48 If M is a copositive plus matrix of order n, the solution set of the LCP (q, M)
is nonempty and bounded for each ¢ € R" iff M is a Q-matrix. This happens iff the
system “Mx > 0, x > 0” has a solution € R"™ (O. L. Mangasarian [3.42]).

3.49 If the nondegenerate matrix M is the limit of a convergent sequence of non-
degenerate Q-matrices, prove that M is a @Q-matrix (M. Aganagic and R. W. Cottle
[3.2]).

3.50 Suppose M is a Q-matrix of order n. Let J C {1,...,n} be such that M;. >0
for a j € J. Then the principal submatrix of M determined by the subset {1,...,n}\J
must be a (Q-matrix.

3.51 Let M be a Q-matrix of order n. If {A.1,...,A;_1,A.j41,...,A.n} is a sub-
complementary set, there exists a hyperplane H in R" containing 0 and all the vectors
in this subcomplementary set such that I.; and —M.; do not lie in the same open half-
space corresponding to this hyperplane H. Also, if M is a nondegenerate (Q-matrix,
there exists a hyperplane H of the type described above, which strictly separates I.;
and —M.; (M. Aganagic and R. W. Cottle [3.2]).

3.52 If M is a Qg-matrix satisfying the property that the LCP (¢, M) has a unique
solution for each ¢ in the interior of K(M), prove that M must be a Py-matrix. Also,
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if M is a Py-matrix with only one zero principal subdeterminant and has the property
that K(M) # R", then prove that K(M) is a closed half-space and that the LCP
(g, M) has a unique solution whenever ¢ is in the interior of K(M) (R. W. Cottle and
R. E. Stone [3.13]).

3.53 If M is a symmetric matrix of order n satisfying

m;; > 0 for all ¢
m”§0 fOI‘aHJ%Z

prove that M is copositive iff it is PSD.

3.54 Prove that the LCP (g, M) has a unique solution for all ¢ > 0 iff for all z > 0
there exists an ¢ such that z; > 0, y = (y1,...,yn)T = Mz and y; > 0.

3.55 If M is a symmetric matrix of order n, the following are equivalent
(i) M is copositive;
(ii) for all > 0 there exists an ¢ such that z; > 0 and y = (y1,...,9yn)T = Mu,
yi 2 0;
(iii) (¢, M) has a unique solution for all ¢ > 0.

3.56 If M is a symmetric matrix of order n, the following are equivalent
(i) M is strictly copositive;
(ii) M is a @-matrix and the LCP (¢, M) has a unique solution for all ¢ € {I.1,...,1.,}
(F. J. Pereira [3.59]).

3.57 Prove that a H-matrix with positive diagonals is a P-matrix (J. S. Pang [3.55]).

3.58 Prove that M-matrices and generalized diagonally dominant matrices are H-
matrices.

3.59 Prove that if M is a strictly semi-monotone matrix and ¢ is nondegenerate in
the LCP (q, M), then the LCP (g, M) has an odd number of solutions (B. C. Eaves
[3.21]).

3.60 Prove that a square matrix M of order n is a Z-matrix iff for each ¢ € R"
for which the set X(¢, M) = {& : Mz +q > 0, x > 0} # 0, there exists a least
element 7 € X(q, M) (given K C R", an element T € K is said to be a least element
in Kif 7 <z for all z € K. If a least element exists, it is clearly unique) satisfying

T (M7 + q) = 0 (A. Tamir [3.73]).
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3.61 Prove that a square matrix M of order n is a nonsingular M-matrix (i. e., a
Z-matrix which is also a P-matrix) iff for each ¢ € R", the set X(¢, M) = {x : Mz +q
> 0,2 > 0} has a least element & which is the only vector in X(gq, M) satisfying
2T (Mz +q) = 0 (R. W. Cottle and A. F. Veinott, Jr. [3.14]).

3.62 Prove that a square matrix which has either a zero row or a zero column cannot
be a (Q-matrix.

3.63 If M is a Q-matrix and PSD, is M7 also a Q-matrix? (Hint: Check [ } _(1) ] ).

3.64 Let M be a PSD matrix and A a PD matrix of order n. Let (w(e), z(g)) denote
the solution of the LCP (¢, M + ¢A) for some ¢ € R" and € > 0. If the LCP (¢, M)
has a solution, prove that the limit._, o+ 2 () exists, and if this limit is z, it is the point
that minimizes the norm ||Az|| in the set {z : (w = Mz + ¢, 2) is a solution of the
LCP (¢, M)}. If the LCP (g, M) has no solution, prove that limit. o+ ||2(e)| = +o0
(A. Gana [5.6)).

3.65 Let —M be a Z matrix. A well-known theorem states that if there exists an
x > 0 such that 7'M < 0 in this case, then M ™! exists and —M~! > 0. Using this
theorem, prove the following;:

(a) If M satisfies all the above properties, there exist y;; > 0 for all ¢, j such that

n

I.j = Z(—y,’j)M.i, for all j .

=1

(Hint: Use the fact that M~! < 0.)

(b) Under the same conditions on M, Pos(I : —M) = Pos(—M).

(¢c) Under the same conditions on M the LCP (¢, M) has a solution iff —M~'q >
0. Also, if —M~'q > 0, then a solution to the LCP is (w,z) = (0,—M~1q)
(R. Saigal).

3.66 Let M be a square matrix of order n satisfying the property “if Mz < 0, then
x must be nonnegative”. Prove the following.

(a) M~ must exist.

(b) —M~' > 0. (Hint: Use the fact that (M(M~1)).; =1.; >0.)

(c) In this case Pos(—M) D Pos(I).

3.67 Let M be an arbitrary square matrix of order n. Consider the LCP (¢, M). Prove
that the following property “the LCP has a solution whenever ¢ is such that the system
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w— Mz =q,w >0, 2> 0 has a feasible solution and for all such ¢ the LCP has a

solution in which w = 0” holds iff Pos(—M) D Pos([) [i. e., Pos(I : —M) = Pos(—M)].
Also prove that this property holds iff for all x such that Mz < 0, z must be
nonnegative (A. K. Rao).

3.68 Let M be a square matrix of order n with non-positive off-diagonal elements.
If M is a P-matrix, prove that it has a nonnegative inverse (M. Fiedler and V. Ptak
[3.22]).

3.69 Let M be a square matrix of order n. Let ¢ € R"™. The matrix M is said to
be a Qo-matrix if the LCP (g, M) has a complementary feasible solution whenever the
system

w—Mz=q

w=>0,22>20

has a feasible solution.
i) Prove that M is a Qp-matrix iff the union of all the complementary cones in C(M)
is a convex set.
ii) Prove that the matrix M is a Qo-matrix iff the LCP (g, M) satisfies: “if ¢*,¢?> € R"
are such that (¢!, M) has a complementary feasible solution, and ¢ > q', then
(¢%, M) also has a complementary feasible solution” (A. K. Rao).

3.70 If M is a square matrix which is positive semidefinite, and ¢ is nondegenerate in
the LCP (g, M), prove that the number of solutions of the LCP (¢, M) is either 0 or 1.

3.71 If M is a square matrix of order n which is positive semidefinite, prove that the
intersection of the interiors of any pair of complementary cones in C(M) is empty.

3.72 If M is a square matrix of order n which is positive semidefinite, and ¢ lies in
the interior of a complementary cone in C(M), prove that the LCP (¢, M) has a unique
solution.

3.73 Let M be a M-matrix (i. e., a Z-matrix which is also a Py-matrix). Let w(e),
z(e) be the solution of the LCP (¢, M + €I). If the LCP (¢, M) has a solution, prove
that limit._,o+2(e) exists, and if this limit is Z, it is the least element of {z : z >
0,Mz+q > 0} (i. e., Z < z for all z in this set). If the LCP (¢, M) does not have a
solution, then limit. _,o+||z(¢)|| is 400 (A. Gana [5.6]).

3.74 Consider the LCP (g, M) of order n. Suppose the matrix M is not a P-matrix,
but its principal submatrix of order n — 1 obtained by deleting row ¢ and column ¢
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from it is a P-matrix for a given . Discuss an efficient algorithm for computing all the
solutions of this LCP (V. C. Prasad and P. K. Sinha [3.60]).

3.75 Let M be a square nondegenerate matrix. Prove that the number of com-
plementary feasible solutions for the LCP (¢, M), is either even for all ¢ that are
nondegenerate, or odd for all ¢ that are nondegenerate (K. G. Murty [3.50]).

3.76 Given ¢ € R" and a square matrix M of order n, ¢ is said to be nondegenerate
with respect to M, if ¢ does not lie in the linear hull of any set of n—1 or less column
vectors of (I @ —M).

Let M be a nondegenerate (Q-matrix of order n satisfying the property for some
g € R" which is nondegenerate with respect to M, the LCP (¢, M) has an odd number
of solutions. Prove that small perturbations in the entries of M still leave it as a
nondegenerate Q-matrix (A. Tamir).

3.77 Let M be a square matrix of order 2 and let I be the identity matrix of order
2. Prove that M is a @Q-matrix iff the LCPs (—1.;, M) and (—I.5, M) both have
complementary feasible solutions (L. M. Kelly and L. T. Watson [3.38]).

1 -1 4 0
M=|4 -3 1 |, =] 1
1 04 —0.1 —1

and let I be the identity matrix of order 3. Show that the LCPs (1.1, M), (—1.2, M),
(—1.3, M) all have complementary feasible solutions, but the LCP (g, M) does not have
a complementary feasible solution. This clearly shows that the result in Exercise 3.77
cannot be generalized for n > 2 (L. M. Kelly and L. T. Watson [3.38]).

3.78 Let

3.79 Consider the following matrix

21 256 =27 —-36-—¢
7 3 =9 36 + ¢
12 12 -20 0
4 4 -4 -8

M(e) =

and let I be the identity matrix of order 4.

(a) Show that M(e) is a nondegenerate matrix for all 0 < e < 1.

(b) Show that M(0) is a @Q-matrix.

(c) Show that M(e) is not a @Q-matrix for 0 < ¢ < 1. In particular, let g(e) =
(1 —€)32L.3 + £(0.26,—0.02, 30.8, —0.08)T. Show that the LCP (q(¢), M(¢)) has
no complementary feasible solution when 0 < e < 1.
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These results clearly establish that small perturbations in its elements might
change a nondegenerate (Q-matrix into a nondegenerate non @-matrix (L. M. Kelly
and L. T. Watson [3.38]).

3.80 Let M be a given square matrix of order n. Prove that the set of complementary
feasible solutions for the LCP (¢, M) is a bounded set for every ¢ € R", iff (w,z) =
(0,0) is the unique solution of the LCP (0, M).

3.81 The set of nondegenerate ()-matrices is closed in the relative topology of the set
of nondegenerate matrices.

Let M be a given nondegenerate (Q-matrix of order n. Let # > 0, and let M be
a square matrix of order n satisfying the properties that

a) M + A0M is a nondegenerate Q-matrix for all 0 < X < 3,
b) M + OM is nondegenerate.

Then prove that M + SOM is also a Q-matrix.

Using the same arguments, prove the following: Suppose M, M2, ... is a given
infinite sequence of nondegenerate (Q-matrices satisfying the property that it converges
to a limit, M. If M is also nondegenerate, prove that M is a Q-matrix (L. T. Watson
[3.79], and M. Aganagic and R. W. Cottle [3.2]).

3.82 Let M be a square matrix of order n satisfying the following properties:

a) m;; > 0 for all 4 # j, and m;; < 0.

b) There exists a row vector 7 € R" satisfying 7 > 0 and 7 M < 0.
Property b) is easily satisfied by m = e, if a) holds and [m;;| > ., m;; for each i.
Prove the following;:

i) If M satisfies properties a), b) above, then Pos(I) C Pos(—M).

ii) If M satisfies properties a), b) above, then either the LCP (¢, M) has a

solution in which w = 0, or it has no solution at all.
iii) If M satisfies properties a), b) above, the LCP (¢, M) has a solution iff

—Mz=q
z20

has a solution. And if Z is a feasible solution of the above system then
(w = 0,%) is a solution of the LCP (g, M).

iv) If M satisfies conditions a), b) above, and if ¢ > 0, the the LCP (g, M) has
2™ distinct solutions (R. Saigal [3.64)).

3.83 Consider the LCP (¢, M) where M is a square matrix of order n all of whose
nonempty principal subdeterminants are strictly negative. Prove the following:
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i) The matrix
-1 2 =2 2
2 -1 2 =2
-2 2 -1 2
2 =2 2 -1
. i . L
satisfies the property that all its nonempty principal subdeterminants are strictly
negative.
ii) If all the nonempty principal subdeterminants of M are strictly negative, either
M < 0 or there exists an x > 0 satisfying Mz > 0.

(iii) All the nonempty principal subdeterminants of M are strictly negative iff all the
proper principal subdeterminants of M ~! are strictly positive and the determinant
of M~1 is strictly negative.

(iv) If all the nonempty principal subdeterminants of M are strictly negative and
M < 0, then the LCP (¢, M) has a solution whenever ¢ > 0, and no solution
whenever ¢ 2 0. Also when ¢ > 0, it has exactly two solutions.

v) If all the nonemtpy principal subdeterminants of M are strictly negative and

M £ 0, then the LCP (¢, M)

a) has a unique solution whenever ¢ 2 0,

b) has exactly three solutions whenever ¢ > 0,

c) has exactly two solutions, with one solution degenerate, whenever ¢ > 0 with

at least one ¢; = 0.

Hence establish that any matrix M £ 0 whose nonempty principal subdetermi-
nants are strictly negative, is a Q-matrix.

Also prove that in this case, if ¢ > 0, and w; = 0 in some solution of the LCP (¢, M),
then that w; > 0 in all other solutions of the LCP (¢, M).

vi) Whenever M is such that all the nonempty principal subdeterminants of M are
strictly negative, the LCP (g, M) has either 0, 1, 2 or 3 solutions for any ¢ € R"
(M. Kojima and R. Saigal [3.39]).

3.84 If M is a Q-matrix, prove that the system

Mz>0
z20

has a solution z.

3.85 Let M be a given square matrix of order n. For j =1ton, let A.; € {I.;,—M.;}.
Then (A.1,...,A.,) is a complementary set of column vectors for the LCP (¢, M) and
we call the matrix with A.1,..., A., as its columns in this order, a complementary

submatrix of (I : —M). Obviously there are 2™ such matrices, and let these be
A', ..., A?". On these, some may be nonsingular and some singular. Let there be
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[ nonsingular complementary submatrices, and let all the 2" — [ remaining comple-
mentary submatrices be singular. Rearrange the complementary submatrices in the
sequence A, ..., A%", so that the first [ of these are nonsingular, and all the remaining
are singular. So the complemenatry cone Pos(A?) has a nonempty interior iff 1 < ¢ <1,
and has an empty interior if [ +1 < ¢ < 2™,

Prove that M is a Q-matrix iff

!
U Pos(A") = R"
t=1
that is, iff the union of all the complementary cones with a nonempty interior is R".

3.86 Using the same notation as in Exercise 3.85 for any fixed 7 between 1 to n,
the subcomplementary set of column vectors (A%, ..., A% _,, A% ,,... A? ) is linearly
independent for 1 < ¢ < [, and let Hf denote the hyperplane in R" which is the
subspace of R" containing all the column vectors in this subcomplementary set.

If there exists an ¢ between 1 to n such that I.; and —M.; are both in one of the
open half-spaces determined by HE, for each t = 1 to [, then prove that M is not a
(Q-matrix.

3.87 A Finite Procedure for Checking Whether a Given Square Matrix M
of Order n is a -Matrix

Using the same notation as in Exercise 3.85, let Dt be (A%)~! for t = 1 to I. For
each t = 1 to [, select one of the rows of D?, for example the 4;th for t = 1 to [, leading
to the set of row vectors {D} . : ¢ =1 to l}. For each t, i; can be chosen in n different
ways, and hence there are n' different sets of row vectors {Df :¢ =1 to I} obtained
in this manner. For each such sets define the following system of linear inequalities in
the variables ¢ = (q1,...,qn)7

D! qg<0,t=1tol. (3.19)

So there are n! different systems of inequalities of the form (3.19) depending on the
choice of the rows from the matrices D?.

(i) (3.19) is a system of [ strict linear inequalities in n variables ¢1,...,q,. Prove
that the system (3.19) has a feasible solution g, iff the following system (3.20) is

infeasible:
l
Z Wtht_ = 0
t=1

!
>
t=1

e >0forallt=1tol

(3.20)

I
—_
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that is, it has no feasible solution © = (m).

(ii) Prove that M is a Q-matrix iff each of the n! systems of the form (3.19) is infeasible,
that is, none of them has a feasible solution q.

(iii) Remembering that [ < 2™, construct a finite procedure for checking whether a
given square matrix M of order n is a ()-matrix, using the above results. Comment
on the practical usefulness of such a procedure (D. Gale, see [3.2]).

3.88 A square matrix M is called a (Qp-matrix if the union of all complementary cones
in C(M) is a convex set.

(i) Prove that M is a Qo-matrix iff w — Mz = ¢, w > 0, 2 > 0 has a feasible solution
implies that the LCP (¢, M) has a complementary feasible solution.
(ii) Prove that M is a Qo-matrix iff

(¢°, M) has a complemenatry feasible solution
implies
(g, M) has a complemenatry feasible solution for all ¢ > q°.

(iii) Prove that every 1 x 1-matrix is a Qg matrix. Also develop necessary and sufficient
condition for a 2 x 2 matrix to be a (Qp-matrix.
(iv) Consider the matrices

-1 1 1 ~10
M=| 1 -1 1], ¢= 2| .
1 1 -1 5

Show that w — Mz = ¢q, w > 0, z > 0 has a feasible solution, but the LCP
(¢, M) has no complementary feasible solution. Also, in this case verify that all
the proper principal submatrices of M are Qp-matrices (by (i), this implies that
there are matrices which are not (Qy-matrices, but all of whose proper submatrices
are (Qo-matrices).

3.89 A Finite Characterization for (),-Matrices
Given a square matrix M of order n, using the notation and results in Exercises
3.85, 3.87, prove that M is a Qp-matrix iff

!
Pos(I : —M) = U Pos(A") .

Using this, show that M is a Qo-matrix, iff each of the following n' systems

l
» mDi, —p =0
t=1

—uM >0
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are infeasible (i. e., none of them have a feasible solution (7, p)). This provides a
method for checking whether a given square matrix of order n, is a (Qp-matrix or not,
using at most a finite amount of computation.

3.90 Prove that every PPT of a Q-matrix is a (Q-matrix.

3.91 Let M be a square matrix of order n. Prove that all nonempty principal sub-
matrices of M are (Q-matrices iff any of the following three equivalent conditions hold.

i) For all nonempty principal submatrices M of M (including M itself), the system

Myé()
>0

has no solution.
ii) For every vector = > 0, there exists an index j such that z; > 0 and (Mx); > 0.
iii) For every ¢ > 0 the LCP (¢, M) admits the unique solution (w;z) = (g;0)
(R. W. Cottle [3.9]).

3.92 Row and Column Scalings of Matrices

Given a square matrix of order n, multiply its rows by positive numbers aq, ...,
oy, respectively. Multiply the columns of the resulting matrix by positive numbers
B1,- .., B respectively. The final matrix M’, is said to have been obtained from M
by row scaling using the positive vector of scales a« = (ay, ..., ay), and column scaling
using the positive vector of scales 8 = (1, B2, .. -, On)-

(i) Prove that, to every LCP associated with the matrix M; there is a correspond-
ing LCP associated with the matrix M’, that can be obtained by dividing each
constraint by a suitable positive number and appropriate scaling of the variables
(i. e., choose appropriate units for measuring it); and vice versa.

(ii) Prove that M is a P-matrix iff M’ is.

(iii) Assume that M is an asymmetric P-matrix which is not a PD matrix. It is possible

that M’ is PD (e. g., let M = [—1(:; (1)] Obtain M’ using a = (100, 1),

B = (1,1) and verify that the resulting matrix is PD). If M is either a lower
triangular or an upper triangular P-matrix, show that positive scale vectors «, 3
exists, such that the resulting matrix is PD.

(iv) Let
1 -1 -3
M = 1 1 1
1 -3 €

where ¢ is a positive number. Verify that M is a P-matrix. When ¢ is sufficiently
small, prove that there exist no positive scale vectors «, 3 which will transform
this matrix into a PD matrix by scaling.
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If M is a P-matrix which is not PSD, the LCP (¢, M) is equivalent to the
nonconvex quadratic program

Minimize 27 (Mz+ q)
Subject to 220
Mz+q> 0.

And yet, if we can find positive row and column scale vectors «, (3 that will
convert M into a PD matrix M’ by scaling, this problem can be transformed
into an equivalent convex quadratic programming problem. For this reason,
the study of scalings of P-matrices that transform them into PD matrices is
of interest. Prove that every P-matrix of order 2 can be scaled into a PD-
matrix. Characterize the class of P-matrices which can be transformed into
PD matrices by scaling (R. Chandrasekaran and K. G. Murty).

3.93 Let D be a given square matrix of order n and let I be the unit matrix of order
n. Let ¢, b be given column vectors in R". Let

c D I
o= () v (7o)
With this data, prove that LCP (g, M) always has a solution, and that the solution is
unique if D is a P-matrix (B. H. Ahn [9.4]).

3.94 Let M be a Z-matrix of order n. Prove that M is a P-matrix if the LCPs (0, M)
and (e, M) have unique solutions.

3.95 Let M be a given square matrix of order n, and let D be an arbitrary diagonal
matrix with positive diagonal elements. Prove that the following are equivalent.
i) M is a P-matrix.
ii) (I — E)D 4+ EM is a P-matrix for all diagonal matrices F = (E;;) of order n
satisfying 0 < E;; <1 for all 4.
iii) (I — E)D + EM is nonsingular for all diagonal matrices E = (E;;) of order n
satisfying 0 < Fj; < 1 for all 4 (M. Aganagic [3.1]).

3.96 Develop an efficient method based on the complementary pivot algorithm to
check whether a given square matrix is an M-matrix (K. G. Ramamurthy [3.61]).

3.97 Prove that a Z-matrix which is also a (Q-matrix must be a P-matrix. Also prove
that every M-matrix is a U-matrix.

3.98 Prove that a symmetric matrix is semi-monotone iff it is copositive. Prove that
a symmetric matrix M is strictly semi-monotone iff it is strictly copositive.
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3.99 If M is a fully semi-monotone matrix and (@, Z) is a solution of the LCP (¢, M)
and w + Z > 0, prove that (w,z) is the unique solution of this LCP.

3.100 (Research Problem) Given a square matrix M of order n, develop finite sets
of points I'y and I's in R", constructed using the data in M, satisfying the properties

(i) M is a Q-matrix if the LCP (g, M) has a solution for each ¢ € 'y,
(ii) M is a Qo-matrix if the LCP (g, M) has a solution for each q € T's.

3.101 Let M be a P-matrix of order n. Let J C {1,2,...,n}, J = {1,2,...,n}\ J.
Let (A.; : j € J) be a subcomplementary vector corresponding to J. For each j € J,
let {A.;,B.;} ={I.;,—M.;}. Is the following conjecture — “there exists a hyperplane
containing the linear hull of (A.; : j € J) which separates the convex hull of {A.; : j €
J} from the convex hull of {B.; : j € J}", — true?

3.102 Let M be a square matrix of order n. M is said to be totally principally
degenerate iff all its principal subdeterminants are zero. Prove that M is totally
principally degenerate iff it is a principal rearrangement of an upper triangular matrix
with zero diagonal elements. Use this to develop an efficient algorithm to check whether
a matrix is totally principally degenerate (T. D. Parsons [4.15]).

3.103 Let M be a square matrix of order n which is not an Ry-matrix (i. e., the LCP
(0, M) has (w = 0, z = 0) as the unique solution). Show that there exists a square
matrix M = (1;;) of order n, satisfying

Mpn = 0 and

miyp, =0or 1foralli=1ton—1

such that for any ¢ € R"™, the LCP (g, M) can be transformed into an equivalent LCP

~

(G, M), by performing a block principal pivot step, some principal rearrangements, and
row scalings.
Use this to show the following

a) Every @Q-matrix of order 2 must be an Ry-matrix.
b) Every @-matrix which is also a PSD matrix, must be an Rp-matrix.

Verify that the result in (a) does not generalize to n > 2, using the matrix

-1 2 1
M = 2 -1 11.

10 10 0
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