Chapter 5

THE PARAMETRIC LINEAR
COMPLEMENTARITY PROBLEM

Let M be a given square matrix of order n and let b, b* be given column vectors in
R". Let g(A) = b+ Ab*. Assuming that b* # 0, ¢(\) traces a straight line in R",
L = {z : 2 = q()), for some A}, as A takes all real values. We consider the following
parametric LCP: find w, z satisfying

w—Mz=q(\) =b+ \b*
w=>0,22>20 (5.1)
w2z =0

as functions of A, for each value of A in some specified interval. Here we discuss an
algorithm developed in [5.12] by K. G. Murty for obtaining a solution of this parametric
LCP as a function of A. This algorithm is most useful when M is a P-matrix. This
algorithm solves the LCP (¢(\), M) for some fixed value of A\ by any method (such
as the complementary pivot method, or the principal pivoting methods), and then
obtains solutions for the parametric LCP for all values of A using only a series of single
principal pivot steps.

The Algorithm

Step 1: Choose a value Mg, and fix A at A\g (Ao could be equal to zero), and
solve the LCP (q(\o), M) by any one of the algorithms discussed earlier, and obtain
a complementary feasible basic vector for it. With this complementary feasible basic
vector for (5.1) when A = Ao, go to Step 2.

Step 2: Determine the range of values of A for which the present complementary
basic vector remains feasible. The procedure for doing this is the same as in parametric
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right hand side LP, and it is as follows: Let (y1,...,yn), where y; € {wj,z;} for
each j = 1 to n, be the present complementary basic vector. Let § = (8;;) be the
inverse of the present complementary basis. Let b, b be the present updated right
hand side constants vectors, that is b = (b, b= Bb*. Compute A, \; the lower
and upper characteristic values associated with the present complementary
basic vector, from the following.

A= —oc, if b; <0 for all i

= Maximum {—b;/b; : i such that b, > 0}, otherwise

— (5.2)
A = +o0, if b; > 0 for all ¢

— Minimum {—b;/b; : i such that b; < 0}, otherwise.

Since the present complementary basic vector is feasible for (5.1) for at least one value
of A, we will have A < A, and for all values of A in the closed interval A < A < A, the
present complementary basic vector remains feasible, and hence the solution

Present ith basic variable y; = b; + )\Er,i =1lton (5.3)
Complement of y;,t;, =0, =1ton '

is a solution of the parametric LCP (g(\), M). Go to Step 3 or 4 if it is required to
find the solutions of the parametric LCP (g()), M) for values of A > X, or for values
of A < A respectively.

Step 3: We come to this step when we have a complementary basic vector, y =
(y1,---,Yn) say, for which the upper characteristic value is A, and it is required to
find solutions of the parametric LCP (g(\), M), for values of A > X. Let b, b be
the present updated right hand side constant vectors. Find out J = {i : i ties for
the minimum in (5.2) for determining A}, r = maximum {i : i € J}. So b, < 0 and
—b./b, = A. The value of the rth basic variable ,., in the solution in (5.3) is zero
when A = X, and it becomes negative when A > X. Let ¢, be the complement of ,
and let A, = (@i,...,8,-)7 be its updated column vector. If @,, < 0, perform a
single principal pivot step in position r in y leading to the complementary basic vector
U = (Y1, -y Yr—1strsYrs1,---,Yn). Both y and u have the same BFS when A = X
(since y, = 0 when A = X in the solution in (5.3)). v is a complementary feasible basic
vector for (5.1) when A = X. The value of #,. in the basic solution of (5.1) with respect
to u is (by/@yr) + A(D /@y ), this quantity is 0 when A = X, and since @, < 0, b, < 0,
we verify that this quantity is positive when A > X. From this it can be verified that
the lower characteristic value for u is A = upper characteristic value for y. With u, go
back to Step 2.

If @, > 0, either the single principal pivot step in position r cannot be carried out
(when @,,, = 0); or even after it is carried out, the new rth basic variable continues to
be negative when A > X in the new basic solution (which happens when @,.,. > 0). Thus
in this case, the algorithm is unable to solve the parametric LCP (g, (A), M) for A > X,
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it is even unable to determine whether there exists a solution to the LCP (g, (\), M)
or not when A > .

Step 4:  We come to this step when we have a complementary basic vector, y =
(y1,.-.,Yn) say, for which the lower characteristic value is A, and it is required to find
solutions of the parametric LCP (¢, (A), M) for values of A < A\. Let J = {i : i ties
for the maximum in (5.2) for determining A}, r = maximum {i : ¢ € J}. Let ¢, be
the complement of y, and let A., = (@y,,...,an,)T be its updated column vector. If
- < 0, perform a single principal pivot step in position r in y. This leads to the
next complementary feasible basic vector for which A is the upper characteristic value,
continue with it in the same way. If @, > 0, this algorithm is unable to solve, or even
determine whether a solution exists for the parametric LCP (g, (\), M) when A < .

Example 5.1

Consider the parametric LCP (g, (A\) = b+ A\b*, M), for which the original tableau is

wy w2 w3 z1 29 z3 b b*
1 0 0 -1 0 0 8 -1
0 1 0 -2 -1 0 4 —1
0 0 1 -2 -2 —1 2 -1

When A = 0, (w1, we,ws) is a complementary feasible basic vector for this problem.
The inverse tableau corresponding to this is:

First Inverse Tableau

—b; /b, for i Pivot

Basic Inverse of the Com- such that Range of Column
Variable |plementary Basis bl 5: <0 5: > 0| Feasibility Z3
w1 1 0 0 8 |—1 8 —00 <A< 2 0
wa 0 1 0 4 |—-1 4 0
w3 0 0 1 2 -1 2 -1

So in the range —oo < A < 2, (w = (8 — X\, 4—X,2—X)T,z = 0) is a solution of this
parametric LCP. To find out solutions of this parametric LCP when A > 2, we have to
make a single principal pivot step in position 3.

The updated column vector of z3 is A.3 = (0,0, —1). @33 = —1, and hence we can
continue. The pivot column is already entered by the side of the first inverse tableau.
Performing the pivot leads to the next inverse tableau.
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Second Inverse

Tableau

—b; /b, for i

Basic Inverse of the Com- such that Range of
Variable |plementary Basis bl 5: <0 5: > 0 | Feasibility

w1 1 0 0 8 |—1 8 2<A<4

wa 0 1 0 4 |—-1 4

23 0 0 -1 -2 1 2

A=4 [=)1=2

So in the range 2 < A < 4, the solution (wi,ws,23) = (8 — A, 4 — X, =2+ )),

(21,22, w3) = (0,0,0) is a solution of this parametric LCP (g(A),M). Continuing in
the same way, we get the following solutions for this problem summarized in the table
below.
Optimality | Complementary Feasible | Complementary Solution
Range Basic Vector (wT; 2T
—c0< A< 2 (w1, wa, w3) (8=A,4—X2-X;0,0,0)
2<2< 4 (w1, wa, z3) (8 =X, 4—X,0;0,0,—2+ X)
4<A< 6 (w1, 22, 23) (8—=X,0,0;0,—4 4+ X,6 — A)
6<A< 8 (w1, z2, w3) (8= X,0,—6+ X;0,—4+ X, 0)
8<A<10 (21, 22, w3) (0,0,—6+ X\; =8+ A\, =4+ X, 0)
10 <A <12 (21, 22, 23) (0,0,0; -8+ A, 12 — A, —10 + A)
12<A<14 (21, ws, 23) (0, =12+ X,0; =8 + X, 0,14 — X)
14< A (21, wa, w3) (0,-124 X, =144+ X; =8+ A, 0,0)

283
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Example 5.2

Consider the parametric LCP (¢(\) = b+ Ab*, M) for which the original tableau is:

w] Ws W3 Wa 21 29 23 24 b b*
1 0 0 0 -1 1 1 1 3 | -2
0o 1 0 0 1 -1 1 1 5 | -4
o o 1 0 -1 -1 -2 0| -9 5
o 0o o 1 -1 -1 0 -2 | -5 3

Putting A = 0, we verify that this LCP is the same as the one solved in Example 2.8.
The complementary feasible basic vector obtained for this problem (when A = 0) in
Example 2.8 is (z1, 22, 23, 24). The inverse tableau corresponding to (z1, 22, 23, 24) is

—b; /b, for i
Basic Inverse of the Com- such that Range of
Variable |plementary Basis b | b 5: <0 5: >0 Feasibility
21 -1/2 0 —-1/4 —1/4 |2 |-1 2
22 0-1/2 -1/4 —1/4 |1 | O A<
Z3 1/4 1/4 —1/4 1/4 |3 | -2 3/2
24 1/4 1/4 1/4 1/4 |1 |-1 1
Minimum | Maximum
=A=1 |[=)A=—-x

So when A < 1, the solution (w = (w1, wa, w3, ws) =0, z = (21,22, 23, 24) = (2 — A, 1,
3 —2X,1— X)) is a solution of this parametric LCP (q(A), M). To look for solutions
when A > 1, we have to make a single principal pivot step in position 4. The updated
column vector of wy is A.q = (=1/4,—1/4,1/4,1/4). So G44 = 1/4 > 0. Since Gy
is strictly positive, the algorithm discussed above is unable to process this parametric
LCP (g(A\), M) when X\ > 1.

Theorem 5.1 Let M be a given P-matrix of order n. Consider the parametric
LCP (q(\), M). The algorithm discussed above finds solutions of this parametric LCP
for all real values of A in a finite number of pivot steps. Also, for each A, the solution
obtained is the unique solution of this parametric LCP for that value of .

Proof. In the notation of the algorithm, let ¥y = (y1,...,y,) be the complementary
basic vector in Step 2 at some stage of the algorithm, for which the range of feasibility
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s A< AL X. In order to find out solutions for A > X, suppose we have to make a
single principal pivot step in position r. Let ¢, be the complement of v, and let A., be
the updated column vector of ¢,.. By Corollary 3.5 the method can continue. Let the
BFS with respect to y be the one given in (5.3). Let T = {i : i such that b; +Ab, = 0}.
Clearly r € T and in fact the set J defined in Step 3 at this stage satisfies J C T.
As long as A remains fixed at X, any principal pivot steps performed on positions in
T will not change the basic solution (because when the basic variable in the pivot
row is 0 in the basic solution, the pivot step is a degenerate pivot step that leaves the
basic solution unchanged). Let u = (uy,...,u,) be any complementary basic vector
satisfying the property that u; = y; for ¢ € T, u; = y; or its complement for ¢ € T.
Suppose the updated right hand side constant vectors with respect to u are l;, b*. By
the above argument, the basic solution of (5.1) with respect to u at A = X is

(Complement of u;) =0, i =1 to n.

So b;+Ab; = 0 for i € T and > 0 for i ¢ T. So the upper characteristic point associated
with u is > X iff 13;" > 0 for all 2 € T. Thus, if T is a singleton set, the pivot step carried
out in Step 3 at this stage is guaranteed to produce a complementary feasible basic
vector for which the upper characteristic value is > A. If T has 2 or more elements,
let w = (w;,i € T), £ = (2,1 € T), M the principal submatrix of M corresponding
to the subset T, and v = (b;,i € T). Consider the LCP (y, M) in the variables
(w,&). Since M is a P-matrix, by Theorem 4.1, the LCP (v, M) can be solved by
Principal Pivoting Method I in a finite number of pivot steps without cycling, starting
with the complementary basic vector (y;,7 € T) until a complementary basic vector is
obtained for it, with respect to which the updated v is > 0. The choice of the pivot
row r in Step 3 of the parametric algorithm implies that when it is continued from the
canonical tableau of (5.1) with respect to y, keeping A = A, it will go through exactly
the same sequence of pivotal exchanges as in the LCP (v, M), when it is solved by
Principal Pivoting Method I, until we obtain a complementary feasible basic vector,
u = (u1,...,uy) say, satisfying the property that the updated b} with respect to u is
> 0 for each 7 € T. By the above argument the upper characteristic value of u is > A,
and hence when we reach the basic vector u, we are able to strictly increase the value
of X beyond A. Also, once we cross the interval of feasibility of a complementary basic
vector in this parametric algorithm, we will never encounter this basic vector again.
We can apply the same argument in Step 4 for decreasing A below A. Continuing in
this way, since there are only 2™ complementary basic vectors, these arguments imply
that after at most a finite number (less than 2™) of pivot steps, we will obtain solutions
of the parametric LCP (q(X), M) for all A.
The fact that the solution obtained is the unique solution for each A, follows from
Theorem 3.13.
[
When there are ties for the ¢ that attains the minimum in (5.2) of Step 3 and the
pivot row is chosen among i € J arbitrarily (instead of choosing it as the bottommost
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as mentioned in Step 3), cycling can occur at this value of A = A, as shown in the
following example due to A. Gana [5.6]. He considers the parametric LCP with the

following data
1 2 0 1 -1
M=10 1 2, b=1[1}|, b*=]|-1].
2 01 1 -1

Starting with the complementary feasible basic vector (wq,ws,w3) when A = 0, we
want to solve this problem for all A > 0. Here is a sequence of complementary basic
vectors obtained when the pivot row in Step 3 is chosen among ¢ € J arbitrarily. Pivot
elements are in a box.

Basic Feasibility
Variables | w; ws w3z 21 22 23 b b* | Interval

w1 1 0 o|-1 -2 o 1] -1
Wa 0 1.0 0 -1 -2 1|-1]0<A<1
w3 0 0 1 -2 0 -1 1| -1
21 -1 0 0 1 2 0]|-1 1
Wa 0 1 0 o0]—-1 -2 1|-1 |1<A<Z1
w3 -2 01 0 4 -1 |-1 1
21 -2 0 1 0 -4| 1]-1
29 0 -1 0 1 2 |-1 1 |1<A<1
w3 -2 4 1 0 0-9] 3|-3
w1 1 -2 0 -1 0 4 |-1 1
%9 0o -1 0 0 1 2]|-1 1 |1<A<1
w3 0 0 1 -2 0|1 1] -1
w1 1 -2 4 -9 0 0| 3|-3
29 0—-1 2 -4 1 0 1|-1 (15ALZ1
23 0 0-1 2 0 1|-1 1
w1 1 0 o|-1 -2 o 1] -1
Wa 0 1-2 4 -1 0 |-1 1 |1<A<1
Z3 0o 0-1 2 0 1|-1 1
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Basic Feasibility

Variables | wq wo w3 z1 29 23 b b* | Interval

% -1 0 0 1 2 0|-1] 1
ws 4 1 -2 0-9 0| 3|-3 |1<A<1
23 2 0|-1 0 4 1| 1]-1
2 ~10 0 1 2 0|-1] 1
ws 01 0 0-1-2| 1|-1 |1<A<1
ws [-2 0 1 0 4-1]|-1] 1

The complementary basic vector (z1, ws, w3) repeated at A = 1, and hence cycling has
occurred, and the execution can go through this cycle repeatedly without ever being
able to increase A beyond 1. Theorem 5.1 indicates that if the pivot row is chosen as
mentioned in Steps 3, 4 of the parametric algorithm, this cycling cannot occur.

Geometric Interpretation

Let M be a given square matrix of order n. Consider the parametric LCP (g(\) =
b+Ab*, M). In the process of solving this problem by the parametric LCP algorithm dis-
cussed above, let y = (y1,...,yn), where y; € {wj, z;} for each j = 1 to n, be a comple-
mentary basic vector obtained in some stage. Let D.; be the column vector associated
with y; in (5.1) for j = 1 to n. Let [\, A] be the interval of feasibility of y. To find solu-
tions for the parametric LCP (g(\), M) when A > X, suppose we have to make a princi-
pal pivot step in position r. Let t, be the complement of ¥, and let A.,. be the column
associated with ¢, in (5.1). So A., is the complement of D.,.. Since the value of ,. in the
solution in 5.1 is zero when A = X, we have ¢(\) € Pos{D.1,...,D.,_1,D.,41,...,D.,}.
Thus the portion of the straight line L in (5.1) corresponding to A < A < X lies in the
complementary cone K; = Pos{D.y,...,D.,}, and as X increases through J, it leaves
the cone K; through its facet F = Pos{D.q,...,D..—1,D.,41,...,D.,}. Let H denote
the hyperplane in R"™ which is the linear hull of {D.y,...,D.._1,D..11,...,D.,}. Let
A, = (@1ry - - ,EnT)T be the updated column associated with ¢,.. By Theorem 3.16,
the hyperplane H strictly separates D., and A.,. iff @, < 0. If @,.. < 0, ¢()) is on
the common facet F of the complementary cones K; and Ko = Pos{D.1,...,D.._1,
A,,D.g1,...,D.,}. See Figure 5.1. As )\ increases beyond X, the line L leaves the
complementary cone K; and enters the complementary cone Ko through their common
facet F.
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Facet F=Pos{ D.1,...,Dsi+1, Dej-1 ,...,Den}
which is a subset of the hyperplane H, the linear hull of
{D.1,...,Dei+1, Dei1 ,...,Den}

Origin

Figure 5.1 Situation when @, < 0. As X increases through A, the point q())
travels along the straight line L, leaves the complementary cone K; and enters the
complementary cone Ky, through their common facet F.

If M is a P-matrix, by the strict separation property discussed in Section 3.3, this
situation occurs whenever Step 3 or 4 is carried out in the parametric LCP algorithm,
and the algorithm finds the solutions of the parametric LCP for all values of the
parameter .

Ifa,.. =0, A., lies on the hyperplane H itself. If @,,. > 0, A.,. lies on the same side
of the hyperplane H as D.,. In either of these cases, as A increases through A, the line
L leaves both the complementary cones K; and Ko and (y1,. .., Yr—1,tr, Yrt1s- -+ Yn)
is not a complementary feasible basic vector for the parametric LCP (¢(\), M) when
A > \. Hence if @, > 0, the parametric LCP algorithm is unable to find solutions of
the parametric LCP (g()\), M) when X increases beyond .

Hence, geometrically, the parametric LCP algorithm discussed above can be in-
terpreted as a walk along the straight line L crossing from one complementary cone in
C(M) to an adjacent complement cone through their common facet.
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FExercises

5.1 Let M be a given PSD matrix of order n, which is not PD. Discuss an approach
for solving the parametric LCP (g(A) = b+ \b*, M) for all values of A for which it has
a solution, and determining the range of values of A\ for which it has no solution, based
on the Graves’ principal pivoting method of Section 4.2.

5.2 Suppose M is a copositive plus matrix and not a P-matrix. Discuss an approach
for processing the parametric LCP (5.1) in this case, by the algorithm discussed above,
using the complementary pivot algorithm to extend the value of A whenever the pivot
element in the parametric algorithm turns out to be nonnegative. Also prove that in
this case, the set of all values of A for which the parametric LCP (5.1) has a solution,
is an interval.

5.1 PARAMETRIC CONVEX
QUADRATIC PROGRAMMING

Here we consider a problem of the following form:

(c+ Ac*)z + 22T Do
b+ Ab* (5.4)
0

minimize  Qx(z)
subject to Ax

8
IAVAIAVAN]

where D is a symmetric PSD matrix of order n, and A is a real valued parameter. The
parameter A in the right hand side constants vector in the constraints, and the linear
part of the objective function, is the same. If b* = 0, or ¢* = 0, we get the special case
of the problem in which the parameter appears in only the right hand side constants
vector, or the linear part of the objective function, respectively. It is required to find
an optimum solution of this problem, treating A as a parameter, for all values of A.

By the results in Chapter 1, this problem is equivalent to a parametric LCP
(¢ + Ag*, M) where M is a PSD matrix. For the problem above, the data in the
parametric LCP is given by

= (38) () e (9

We now discuss an algorithm for solving problems of this type. In preparing this
section, I benefitted a lot from discussions with R. Saigal.



290 CHAPTER 5. THE PARAMETRIC LINEAR COMPLEMENTARITY PROBLEM

Algorithm for Parametric LCP (q + Aq*, M') When M is PSD

Initialization

Find a value for the parameter A for which the system

w—Mz=q+ \*

5.6
w, z >0 (56)

has a feasible solution. Since M is PSD, by the results in Chapter 2, the LCP (q +
A¢*, M) has a solution iff (5.6) has a feasible solution for that A. Phase I of the
parametric right hand side simplex method can be used to find a feasible solution for
(5.6) (see Section 8.8 of [2.26]). When M, ¢, ¢* are given by (5.5), if (5.6) is infeasible
for a value of A\, by the results in Chapter 2, (5.4) does not have an optium solution
for that A (it is either infeasible, or Qx(x) is unbounded below on the set of feasible
solutions for it).

If there exists no value for A for which (5.6) has a feasible solution, the parametric
LCP (q + A¢*, M) does not have a solution for any A, terminate. Otherwise, let Ay
be a value of A, for which (5.6) has a feasible solution (the parametric right hand
side simplex algorithm, see Section 8.6 of [2.26], can in fact be used to determine the
interval of values of A for which (5.6) is feasible).

Now, find a complementary feasible basis for the LCP (¢ + Aog*, M) with X fixed
equal to Ag. The complementary pivot algorithm of Section 2.2 can be used for finding
this. Since (5.6) is feasible when A = A\g and M is PSD, by the results in Chapter 2,
the complementary pivot algorithm applied on the LCP (¢ + A\pg*, M) will terminate
with a complementary feasible basic vector for it, in a finite number of pivot steps,
if the lexicographic minimum ratio rule is used to determine the dropping variable in
each step. Let the complementary feasible basic vector be y = (y1,...,9s), (where
y; € {wj, z;} for each j =1 to n), associated with the complementary basis B. Let ,
7* be the updated right hand side constants vectors (g = B~1q,g* = B~1¢*). Let

AL = —o0, if §* <0

= Maximum {—g,/q} : i such that g > 0}, otherwise,
Ap = 400, if g* >0

= Minimum {—g;/q} : 7 such that g < 0}, otherwise.

Then, for all A\; < X < Ay, y is a complementary feasible basic vector for the parametric
LCP (g+Ag*, M). This interval is nonempty since Ay is contained in it. In this interval,
a complementary feasible solution for the parametric LCP is

complement of y is 0

y=q+Aq".
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Procedure to Increase the Value of \

Suppose we have a complementary basic vector y = (y1,...,yn), where y; € {w;, z;}
for each j = 1 to n, corresponding to the complementary basis B, for which the
upper characteristic value is A, which is finite. Here we discuss how to proceed to find
complementary solutions of the parametric LCP when A > A. Assume that B is lexico
feasible for A = . Let 3 = B™1, g = B~lq, ¢* = B~¢*. Then (g, + A\q},3;.) = 0 for
all i = 1 to n. Determine the ¢ which attains the lexico minimum {—(q;, £;.)/(q}) : @
such that g < 0}, and suppose it is p. Let the complement of the variable y, be t,.
Suppose the updated column vector of ¢, in the canonical tableau for

w z
with respect to the complementary basic vector y be (@1, ..., anp)T. Since M is PSD,

by the results in Chapter 3, @y, < 0.

If a,, < 0, performing a single principal pivot step in position p in the present
complementary basic vector y, leads to a new complementary basic vector which will be
feasible for some values of A > X under nondegeneracy. We repeat this whole process
with that complementary basic vector.

If @, = 0, to increase the value of A beyond A, we enter into a special comple-
mentary pivot phase described below.

The Complementary Pivot Phase to Increase the Value of \

We enter this phase when we obtain a complementary basic vector y = (y1,...,Yn),
where y; € {w;, z;} for each j = 1 to n, with finite upper characteristic value A, and
app = 0, as discussed above.

In the present canonical tableau, transfer the column of the parameter A from the
right hand side to the left hand side, and treat A now as a variable. This leads to

Basic
Variables Y t A

In this tableau, perform a pivot step in the column of A, with row p as the pivot row,
this is possible since —g;, > 0. This leads to the following tableau.
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Tableau 5.1
Basic

Variables Yoo Yp—1 A Yp+i.-.Un Yp t1...ty
Y1

Yp—1 I q
A

Yp+1

Yn

Tableau 5.1 is the canonical tableau with respect to the basic vector (y1, ..., yp—1,
Ay Yp+1s--->Yn). As defined in Chapter 2, this is an ACBV (almost complementary
basic vector). Here, A plays the same role as the artificial variable zg in Chapter 2.
There is one difference. In Chapter 2, zp was a nonnegative artificial variable, here A
is a variable which is a natural parameter, and it can take either negative or positive
values.

From the manner in which Tableau 5.1 is obtained, it is clear that the value of A
in the basic solution corresponding to Tableau 5.1 is ¢, = —q,, /6;‘, = \. Treat Tableau
5.1 as the original tableau for this phase. The word basis in this phase refers to the
matrix of columns from Tableau 5.1, corresponding to the basic variables in any basic
vector for Tableau 5.1. This phase requires moving among ACBVs in which A will
always be the pth basic variable. Let B be the basis corresponding to such an ACBV,
and let § = B~'q, 3 = B~!. This ACBV is said to be feasible for this phase
if ¢; > 0 for all i # p and lexico feasible for this phase if (¢;,3;.) > 0 for all
i # p. Let B be such a basis, let § = B¢, 3 = B~! and suppose it is required to
bring the column of a nonbasic variable, say x, into the basis B. Let (G1s,. .., Gns)"
be the updated column of z (it is, B~ (column of z4 in Tableau 5.1)). The lexico
minimum ratio test for this phase determines the dropping variable to be the rth
basic variable, where r is the ¢ which attains the lexico minimum {(§;, 5;.)/a;s : ¢ such
that i € {1,...,p—1,p+1,...,n} and a;5s > 0}. The minimum ratio for this pivot
step, is defined to be (g,/drs), it is always > 0. The initial ACBV in Tableau 5.1 is
lexico feasible in the sense defined here, and all the ACBVs obtained during this phase
will have the same property.

Now, bring the variable ¢, into the initial ACBV (y1,...,¥p—1, A, Yp+1,--->Yn)s
determining the dropping variable by the lexico minimum ratio test as discussed above.
Continue this phase using the complementary pivot rule, that is, the entering
variable in any step, is always the complement of the dropping basic variable in the
previous step. We prove below that the value of A in the basic solution keeps on
increasing in this phase.

At some stage, let (&1,...,&—-1,A,&pt1,...,&,) be the ACBV with the values of
the basic variables in the corresponding BFS to be ¢ = (d1,...,4n)T. So the value
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of A in this solution is ¢,. Let vy denote the entering variable into this ACBV, as
determined by the complementary pivot rule. Let (a1, ...,d,s)’ be the pivot column
(updated column of vg), and let # denote the minimum ratio, as defined above, for this
step. We prove below that a,s < 0. The solution

£&i=Gq —ada,ief{l,....,p—1Lp+1,....,n}
Vg = @

all other variables = 0

is a complementary feasible solution of the original parametric LCP when A = ¢,—aa,,
for 0 < o < 0. As the value of A keeps on increasing during this phase, this process
keeps getting solutions of the original parametric LCP for higher and higher values of
A, as the phase progesses.

This phase only terminates when an ACBV, say, (71, ...,Mp—1, A\, Tp41s - - -, M) 18
reached satisfying the property that if # denotes the entering variable into this ACBV,
as determined by the complementary pivot rule, and (a}, ..., a*)T is the pivot column
(updated column of v), then af < 0 for alli € {1,...,p—1,p+1,...,n}. This is
similar to ray termination of Chapter 2. Let ¢* = (q},...,q:)? be the present updated
right hand side constants vector. If aj; < 0, then the solution

n=q —aal,ie{l,....,p—1,p+1,...,n}
V=oa

all other variables =0

is a complementary solution of the original parametric LCP when A = ¢ — aay, for
all & > 0. In this case, this solution therefore, provides the solution of the parametric
LCP for all A > g, terminate.

If a; = 0 when this termination occurs, the original parametric LCP is infeasible
whenever A > g5 (this fact is proved below), terminate.

Procedure to Decrease the Value of A

Suppose we have a complementary basic vector y = (y1,...,y), for which the lower
characteristic value is ), finite. Let 8 = B~! be the inverse of the complementary
basis corresponding to y, and § = (¢, ¢* = [B¢*. Assuming that y is lexico feasible for
A = A, we have (g, + AG;, 5;.) > 0 for all i. Determine the i that attains the lexico
maximum {—(q;, 4;.)/(q}) : i such that gF > 0}, and suppose it is p. Let the updated
column of the complement of y, in the canonical tableau of (5.7) with respect to y be
(@1p, - - - ,anp)T. If @), < 0, perform a single principal pivot step in position p in the
present complementary basic vector y, and continue in the same way. If a,, = 0, to
decrease A below )\, enter into a special complementary pivot phase. This phase begins
with performing a pivot step in the column of A in (5.8) with row p as the pivot row,
to transform the column of A in (5.8) into —1.,, (the usual pivot step would transform
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the column of A in (5.8) into +1.,,), leading to an ACBV as before. Except for this
change, the complementary pivot procedure is carried out exactly as before. In all the
canonical tableaus obtained in this phase, A remains the pth basic variable, with its
updated column as —1I.,,. The value of A keeps on decreasing as this phase progresses,
and termination occurs when ray termination, as described earlier, occurs. During this
procedure, the complementary solutions of the original parametric LCP for different
values of A are obtained using the same procedure as discussed earlier, from the basic
solution of the system in Tableau 5.1 corresponding to the ACBV at each stage.

Proof of the Algorithm

Here we prove the claims made during the complementary pivot phase for increasing
the value of .

Theorem 5.2  Let (&{1,...,&p—1, A, &pt1, -+ -, &n) be an ACBV obtained during this
phase. Let ¢ = (41,-..,4,)T be the updated right hand side constants vector with re-
spect to this ACBV. Let vy denote the entering variable into this ACBV as determined
by the complementary pivot rule. Let (dis,...,a1,)7 be the updated column of v,.

Then a,s < 0, and the value of X increases or remains unchanged when v, enters this
ACBYV.

Proof. We will first prove that a,s < 0. The first ACBV in this phase was (y,...,
Yp—1s A, Yp+1, - - -, Yn) and the entering variable into it is ¢,. From the manner in which
this phase was initiated, we know that the updated column of ¢, in the canonical
tableau of (5.7) with respect to y, (@1p,...,anp), has its pth entry @,, = 0. Thus
the pth entry in the column of ¢, in Tableau 5.1 is also zero, and when ¢, enters the
ACBYV in Tableau 5.1, no change occurs in its row p, which verifies the statement of
this theorem for the initial ACBYV in this phase. We will now show that it holds in all
subsequent ACBVs obtained in this phase too.

Let (¢1,...,¢n) denote the ACBV just before the current ACBV (&1,...,&p—1, A,
€pt1,---,&n). Suppose the statement of the theorem holds true in all steps of this
phase until the ACBV (. We will now prove that this implies that the statement of
this theorem must also hold for the complementary pivot step of bringing v, into this
ACBV (€1, ., & 1, M, Eprts - En).

Let us denote the complement of v,. Since vy is the entering variable chosen by
the complementary pivot rule, us must have just dropped out of the basic vector (
leading to the present basic vector (&1,...,&p—1, A, &pt1,---,&n). Let u, denote the
entering variable into the ACBYV ( that replaced us from it. Suppose the pivot row for
entering u, into ( was row p’ (so, us must have been the p’th basic variable in (). Let
the updated entries in the canonical tableau of Tableau 5.1 with respect to the ACBV
¢, in rows p and p’ be as given below.

Variable — Gt vor Cpr=us ... CG=XA Cpt1 ... Cn U Vg

row p’ 0o ... 1 0 0 e 0 61 b
TOW P 0o ... 0 1 0 ... 0 03 04
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¢=(C1,...,Cn) is an ACBV with (, = A, and u, is the entering variable into it chosen
by the complementary pivot rule. These facts imply that ((1,..., (o1, Ur, Gpt1s -+ -5 Cn)
becomes a complementary basic vector when the variables are properly ordered. It
cannot be a basic vector unless d3 # 0. So, d3 # 0. Also since the statement of the
theorem holds for the ACBV ¢, we have d3 < 0, so d3 < 0. Also, since u, is the entering
variable into the ACBV ( and row p’ is the pivot row for this pivot step, we must have
01 > 0. The pivot step in the column of u, with §; as the pivot element, transforms

04 into 04 — ‘sgf?, by definition this is a,s, and we want to show that this is < 0. As

mentioned earlier, (C1,...,(p—1,Ur, Cp+1,---,Cn) is @ permutation of a complementary
basic vector. So in the canonical tableau with respect to (, if we perform a pivot
step in the column of w,., with d3 as the pivot element (row p as the pivot row) and
rearrange the rows and columns properly, we get the canonical tableau with respect
to a complementary basic vector. This pivot step transforms the element do in the
column of v into dy — 6321 , this will be the entry in the column of v, in row p’, which
is the row in which ug is the basic variable. M is PSD, by the results of Chapter 3
every PPT of a PSD matrix is PSD, and by the results in Chapter 1 every diagonal

entry in a PSD matrix is > 0, these facts imply that this element do — % < 0. This,
and d3 < 0, 67 > 0 established earlier imply that a,s = 64 — % <0.

In all the pivot steps in this phase, the pivot elements are > 0, and all the updated
right hand side constants with the possible exception of the pth, stay > 0. These facts,
and the fact that a,, < 0 imply that when vs enters the ACBV (él,i =1, A Eptt,

.., &), the value of A, the pth basic variable, either increases or stays the same (but

never decreases).

Thus if the statement of the theorem holds for the ACBV (, it must hold for
the ACBV (&1,...,&-1, A, &pt1, - - -, &) following it. We have already established the
theorem for the initial ACBV in this phase. Hence, by induction, the theorem holds
in all ACBVs obtained during this phase.

[

So, the value of A, the pth basic variable in the ACBV, increases during this phase.
From the arguments used in Chapter 2, it is clear that the adjacency path of ACBVs
in this phase continues unambiguously, and no ACBV can reappear. Since there are
only a finite number of ACBVs, these facts imply that this phase must terminate with
the special type of ray termination discussed here, after at most a finite number of
steps.

We will now prove the claims made when ray termination occurs in this phase.

Theorem 5.3 Let (M1, Mp—1, A, Mp+1,---,7n) be the terminal ACBV in the
complementary pivot phase to increase \. Let v denote the entering variable into this
ACBYV chosen by the complementary pivot rule, and let (a%,...,a%)T be the updated
column of v with respect to this ACBV. Let ¢* = (¢},...,q;)T be the updated right
hand side constants vector with respect to this terminal ACBV in this phase. If ay =0,
the original parametric LCP has no solution when A > qy.
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Proof. Let the complement of v be u’. By the arguments used earlier, (91, ...,7p—1,
u\ Mp41, ..., Mn) must be a permutation of a complementary basic vector. So, perform-
ing a pivot step in the canonical tableau with respect to the ACBV (n1,...,mp—1, A,
Np+1s - - -»Mn) With «’ as the entering variable and row p as the pivot row, leads to a
canonical tableau with respect to a complementary basic vector, with some rows and
» = 0, this pivot step would not alter the column vector
of v, and hence it remains as (af,...,a})" < 0 with af = 0. M is PSD, and every
PPT of a PSD matrix is PSD. These facts together with Result 1.6 imply that the
updated row corresponding to u’ in the canonical tableau (5.7) with respect to the
complementary basic vector which is a permutation of (91,...,7p—1, %, Dpt1,- .-, 7)),
has all nonnegative entries on the left hand side. When A > ¢, the updated right
hand side constant in this row will be < 0. This implies that the system (5.7) cannot
have a nonnegative solution when A > ¢y, that is, that the original parametric LCP

has no solution when A > g;.

columns rearranged. Since a

[]

5.2 Exercises

5.3 Let M, q, ¢*, a be given matrices of orders n x n, n x 1, n x 1, n x 1 respectively.
Assume that M is a P-matrix. Let (w(\), z(\)) be the solution of the parametric LCP
(g + Ag*, M) as a function of A. Let A = maximum {\ : z(\) < a}. Also, let A=
maximum {X : z(«) < a, for all « satisfying 0 < o < A}. Discuss an efficient algorithm

for find X, given M, ¢, ¢*, a. Also, derive necessary and sufficient conditions on this
data for A = X to hold. (I. Kaneko [5.9] and O. De Donato and G. Maier [1.4]).

2 1 -1 1 — A
M=|-1 3 o, qn=]2 +2
0 1 4 3 =2\
Solve the parametric LCP (q(A), M) for all real values of A.

5.4 Let

5.5 Let ¢ = (—1,—2,—3)T and M be the matrix given in Exercise 5.4. Solve the LCP
(¢, M) by Principal Pivoting Method I.

5.6 Prove that the value of 2 (artificial variable) is strictly monotone decreasing in
the complementary pivot method when applied on the LCP (g, M) associated with a
P-matrix.

Prove that the same thing is true when the LCP (g, M) is one corresponding to
an LP.



5.2. EXERCISES 297

Is it also true when the LCP is one corresponding to a convex quadratic program
in which the matrix D is PSD and not PD?

5.7 Consider the following problem

minimize z(z) = cx + ay/(1/2)(zT Dx)
subject to Az > b
x>0

where D is a square symmetric PD matrix of order n, o > 0, A is an m X n matrix
and b € R™. Let K denote the set of feasible solutions of this problem.

i) Show that z(z) is a convex function which is a homogeneous function of degree

1.

ii) If a < vV2eD~1cT, prove that every optimum solution of this problem must
be a boundary point of K.

iii) If 0 ¢ K and if the problem has an optimum solution, prove that there exists
a boundary point of K which is an optimum solution of the problem.

iv) Develop an efficient procedure for solving this problem.

v) Solve the problem

minimize —x1 — Ty + /(22 + 22)/2

subject to — x; — 3z, > —14
—Tr1 + To i -2
T1,To i 0

using the method developed in (iv). (C. Sodini [5.15]).

5.8 Consider the following problem
minimize f(z) = (co + cx + (1/2)z" Dx)/(dy + dz)?
subject to Az > b
x>0
where D is a square symmetric PD matrix of order n, p is 1 or 2 and dy + dxz > 0

over v € K = {z : Az > b,z > 0}. Develop an approach for solving this problem.
(S. Schaible [5.14]; A. Cambini, L. Martein and C. Sodini [5.4]).

5.9 Consider the following problem
minimize Qq(z) = cx + %xTDx

subject to Az > b
x>0
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where D is a PSD matrix of order n, and « is a nonnegative parameter. It is required
to solve this problem for all & > 0. Formulate this problem as a parametric LCP of
the form (¢ + A¢*, M), A > 0, and discuss how to solve it.

Note 5.1  This problem arises in the study of portfolio models. The linear function
(—cz) may represent the expected yield, and the quadratic term %ZUTD.T may be the
variance of the yield (the variance measures the extent of random fluctuation in the
actual yield from the expected). Q,(z) is a positive weighted combination of the two
objectives which are to be minimized in this model.

5.10 If ¢ is nondegenerate in the LCP (¢, M) (i. e., if every solution (w,z) to the
system of equations, w — Mz = ¢, makes at least n variables nonzero), prove that the
number of solutions of the LCP (¢, M) is finite.

5.11 Let Cq; be the set of solutions of

w—Mz=q
w,z >0
wjz; =0, 7=2ton.

Prove that C; is the union of disjoint paths in R".

5.12 Consider the LCP (g, M). Define S(q) = {(w, z) : (w, ) is a solution of the LCP
(g, M)}. Prove that if there exists a ¢ € R™ such that S(g) is a nonempty unbounded
set, then S(0) contains a nonzero point, that is, the LCP (0, M) has a nonzero solution.
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