
Chapter �

COMPUTATIONAL COMPLEXITY OF

COMPLEMENTARY PIVOT METHODS

In this Chapter� we discuss the worst case behavior of the computational growth

requirements of the complementary and principal pivot methods for solving LCPs� as

a function of n� the order� and the size of the LCP� These results are from K� G� Murty

������ We construct a class of LCPs with integer data� one of order n for each n �
� 	�

and prove that the pivotal methods discussed in Chapters 	� 
� and � require 	n� � or

	n pivot steps to solve the problem of order n in the class� The size of the nth problem

in this class� de�ned to be the total number of bits of storage needed to store all the

data in the problem in binary form is �� 
n� 
 �n� These results establish that in the

worst case� the computational growth requirements of complementary pivot methods

are not bounded above by any polynomial in the order or size of the LCP�

To study the worst case computational complexity of complementary pivot meth�

ods� we look at the following question� What is the maximum number of complemen�

tary cones through which a straight line in Rn can cut across� For a problem of order

n� the answer turns out to be 	n� that is� there may exist straight lines which cut across

the interiors of every one of the 	n complementary cones�

Let fM�n� � �emij� be the lower triangular matrix of order n� de�ned by emij � �

for i � � to n� emij � � for all j � i� and emij � 	 for all j � i� See ������� page

��� Since fM�n� is lower triangular� all principal subdeterminants of fM�n� are equal

to �� and hence fM�n� is a P �matrix� Since fM�n� 
 �fM�n��T is a matrix all of whose

entries are 	� it is singular� and clearly it is a PSD matrix� Hence fM�n� is a P �matrix�

PSD matrix �and hence a copositive plus matrix�� but not a PD matrix� Let en be the

column vector in Rn all of whose entries are equal to �� Let�
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�q�n� ��	n� 	n��� � � � � 	�T

�q�n� ���	n��	n � 	n����	n � 	n�� � 	n��� � � � �

� 	n � 	n�� � � � �� 	� � 	�T

a�s� �	s � �� for any s �� 	

L�n� �fx � x � �q�n� 
 ���en� � � a real parameterg

�����

Theorem ��� � The straight line L�n� cuts across the interior of every one of the 	n

complementary cones in the class C�fM�n�� for any n �
� 	�

Proof� Consider the class of parametric LCPs ��q�n�
���en��fM�n�� for n �
� 	� where

� is a real valued parameter� Consider the case n � 	 �rst� The following can be veri�ed

in this case �

Tableau ���

Complementary Cone Portions of L�	� corresponding

corresponding to the to values of the Parametr �

Complementary Basic Vector which lie in this Complementary Cone

�w�� w�� 	 � �

�w�� z�� 	 �� � �� 


�z�� z�� 
 �� � �� �

�z�� w�� � �� �

Also whenever � is an interior point of one of these intervals� all the basic variables are

strictly positive in the complementary BFS of ��q�	� 
 ���en��fM�	��� and this implies

that the point �q�	� 
 ���en� corresponding to that value of � is in the interior of

the corresponding complementary cone� Hence� the statement of this Theorem is true

when n � 	� We now make an induction hypothesis�

Induction Hypothesis� The theorem is true for the LCP of order n � � in the

class� Speci�cally� the complementary basic vectors for the parametric LCP ��q�n �

�� 
 ���en��fM�n� ��� can be ordered as a sequence v�� v�� � � � � va�n���� such that the

complementary cone corresponding to the complementary basic vector vr contains the

portion of the straight line L�n��� corresponding to � �� 	 if r � �� 	r �� � �� 	�r
���

if � �� r �� 	n�� � 	� and 	n � 	 �� � if r � 	n�� � �� Also the straight line L�n� ��

cuts across the interior of each of these complementary cones�

Now consider the parametric LCP of order n in the class� namely ��q�n�
 ���en��fM�n��� the original tableau for which is Tableau ��	
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Tableau ���

w� w� � � � wn z� z� � � � zn

� � � � � � �� � � � � � 	n � �

� � � � � � �	 �� � � � � 	n�� � �

�� �� �� �� �� �� ��

� � � � � � �	 �	 � � � �� 	� �

The principal subproblem of this in the variables �w�� � � � � wn�� �z�� � � � � zn�� is the same

as the parametric LCP of order n�� in the class we are discussing� with the exception

that the variables in it are called as w�� � � � � wn� z�� � � � � zn� By induction hypothesis�

the complementary basic vectors of this principal subproblem can be ordered in a

sequence as v�� v�� � � � � va�n���� where v� � �w�� � � � � wn�� v� � �w�� � � � � wn��� zn�� etc�

such that the complementary cone for this principal subproblem� corresponding to

the complementary basic vector vr� contains the portion of the straight line L�n� ��

corresponding to � �
� 	 if r � �� 	r �

� � �
� 	�r 
 �� if � �

� r �
� 	n�� � 	� and � �

�
	n � 	 if r � 	n�� � �� and as long as � is in the interior of one of these intervals� the

corresponding point on L�n� �� is in the interior of the corresponding complementary

cone� Notice that in the original problem in Tableau ��	� q���� � 	n � � remains

nonnegative for all � �� 	n and strictly positive for all � � 	n� This� together with the

result for the principal subproblem� implies that the complementary cone corresponding

to the complementary basic vector Vr � �w�� vr� of the original problem �Tableau ��	�

contains the portion of the line L�n� corresponding to values of � satisfying � �
� 	� if

r � �� 	r �� � �
� 	r 
 	� if � �� r �� �� 
 	n�� � a�n� ��� It also implies that in each

case� the straight line L�n� cuts across the interior of these complementary cones�

Now perform a single principal pivot step in Position � in the original problem in

Tableau ��	� This leads to Tableau ���

Tableau ���

w� w� � � � wn z� z� � � � zn q

�� � � � � � � � � � � � � � 	n

�	 � � � � � � �� � � � � ��	n�� 
 �� 
 	n��

�	 � � � � � � �	 � � � � ��	n�� 
 �� 
 	n��

�� �� �� �� �� �� ��

�	 � � � � � � �	 � � � �� ��	n�� 
 �� 
 	

Let �� � �	n�� 
 � and treat � as the new parameter� As � increases from 	n to

	n�� � 	� � decreases from 	n to 	� As a function of �� the vector of the right hand

side constants in Tableau ��� is �	n � �� 	n�� � �� � � � � 	� ��T �
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Now look at the principal subproblem of the parametric LCP in Tableau ��� in

the variables w�� � � � � wn� z�� � � � � zn� This principal subproblem considered with � as

the parameter can be veri�ed to be the same as the parametric LCP of order n � �

in the class we are discussing� with the exception that the variables in it are called as

w�� � � � � wn� z�� � � � � zn� and the parameter is ��

Using arguments similar to those as above on these problems� and translating

everything to the original parameter � again� we conclude that the complementary

cone corresponding to the complementary basic vector Vr � �z�� vb�r�� of the original

problem� where b�r� � 	n � r � �� contains the portion of the straight line L�n�

corresponding to values of � satisfying 	r �� � �� 	r
	� if 	n�� �� r �� 	n� 	� and � ��
	n�� � 	� if r � 	n � ��

Thus if v�� � � � � va�n��� is the ordered sequence of complementary basic vectors

for the principal subproblem of the parametric LCP in Tableau ��	 in the variables

w�� � � � � wn� z�� � � � � zn� let the ordered sequence of complementary basic vectors for the

parametric LCP in Tableau ��	 be

V� ��w�� v��� �w�� v��� � � � � �w�� va�n�����

�z�� va�n����� �z�� va�n������� � � � � �z�� v�� � Va�n��
���	�

Then the induction hypothesis implies the result that the complementary cone corre�

sponding to the complementary basic vector Vr contains the portion of the straight

line L�n� corresponding to � �
� 	� if r � �� 	r �� � �

� 	r 
 	� if � �
� r �� 	n � 	� � �

�
	n�� � 	� if r � 	n � �� Also in each case� the straight line cuts across the interior

of the complementary cone� Hence the induction hypothesis implies that the state�

ment of Theorem ��� also holds for the parametric LCP of order n in the class we are

discussing� The statement of Theorem ��� has already been veri�ed to be true from

n � 	� Hence it is true for all n �
� 	�

��� Computational Complexity of the

Parametric LCP Algorithm

Theorem ��� Consider the class of parametric LCPs ��q�n� 
 ���en��fM�N��� for

n �
� 	� The parametric LCP algorithm discussed in Chapter � requires 	n pivot steps

to solve the nth problem in the class for all real values of the parameter ��

Proof� Let V�� V�� � � � � Va�n� be the sequence of complementary basic vectors for the

parametric LCP of order n in this class obtained in the proof of Theorem ���� From the

proof of Theorem ���� we conlcude that the complementary basic vector Vr is feasible

to the parametric LCP ��q�n� 
 ���en��fM�n�� in the interval � �� 	 if r � �� 	r �� � ��
	r
	� if � �� r �� 	n�	� � �� 	n���	� if r � 	n��� Hence� when the parametric LCP
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algorithm is applied to solve ��q�n� 
 ���en��fM�n�� for all values of the parameter ��

it terminates only after going through all the complementary basic vectors� V�� V�� � � � �

Va�n�� and thus requires a�n� 
 � � 	n pivot steps�

Example ���

See Example ��� in Chapter �� There the parametric LCP ��q��� 
 ���e���fM���� is

solved for all values of the parameter � �there the parameter is denoted by � intead ��

using the parametric LCP algorithm and verify that it took 	� � � pivot steps in all�

��� Geometric Interpretation of a Pivot Step in the

Complementary Pivot Method

Let M be a given square matrix of order n� and q a column vector in Rn� Consider the

LCP �q�M�� The original tableau for solving it by the complementary pivot method

is �	��� of Section 	�	���

Let �y�� � � � � yr��� yr��� � � � � yn� z�� be a basic vector obtained in the process of

solving this LCP by the complementary pivot method where yj � fwj � zjg for all j�

Let A�j denote the column vector associated with yj in �	��� for each j� If �q � ��q�� � � � �

�qn�
T is the update right hand constants vector in the canonical tableau of �	��� with

respect to the basic vector �y�� � � � � yr��� yr��� � � � � yn� z��� then �q �� � �since this basic

vector must be a feasible basic vector� and we have

q � A���q� 
 � � �
 A�r���qr�� 
A�r���qr 
 � � �
A�n�qn�� 
 ��en��qn �����

�qn is the value of z� in the present BFS� If �qn � �� the present BFS is a complementary

feasible solution and the method would terminate� So assume �qn � � and denote it

by the symbol �z�� Then ����� implies that q 
 �z�en � PosfA��� � � � � A�r��� A�r��� � � � �

A�ng� The present left out complementary pair is �wr� zr�� and one of the variables

from this pair will be choosen as the entering variable at this stage� let us denote it

by yr � fwr� zrg and let A�r denote the column vector associated with yr in �	����

If yr replaces z� from the basic vector in theis step� we get a complementary feasible

basic vector at the end of this pivot step� and the method terminates� Suppose the

dropping variable is not z�� but some yi for i � f�� � � � � r� �� r
 �� � � � � ng� Let �z� � �

be the value of z� in the new BFS obtained after this pivot step� Then using the same

arguments as before we conclude that q 
 �z�en � PosfA��� � � � � A�i��� A�i��� � � � � A�ng�

Under these conditions� clearly �y�� � � � � yn� is itself a complementary basic vector�

and letK � Pos�A��� � � � � A�n� be the complementary cone associated with it� The net

e�ect in this pivot step is therefore that of moving from the point q 
 �z�en contained
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on the facet PosfA��� � � � � A�r��� A�r��� � � � � A�ng of K to the point q 
 �z�en on the

facet PosfA��� � � � � A�i��� A�i��� � � � � A�ng of K� along the half�line fx � x � q 
 �en�

� a nonnegative real numberg� See Figure ���� The complementary pivot method

continues in this manner walking along the half�line fx � x � q 
 �en� � �
� �g cutting

across di�erent complementary cones� until at some stage it enters a complementary

cone containing the point q on this half�line�

We will now use this geometric interpretation� to establish the computational

complexity of the complementary pivot method in the worst case�

Point              on the facetq + z ne0̂

A 1 , . . . , ,A i -1Pos{

A n, . . . , } of K.A i +1A r+1 A n, . . . , } of K .

A r-1Pos{A 1 , . . . , ,

q + z ne0
~Point              on the facet

Origin

K

A A ri

Figure ��� Geometric interpretation of a pivot step in the complementary

pivot method as a walk from one facet of a complementary cone to another facet

of the same cone along the half�line fx � x � q
 �en� � �� �g as � varies from �z�
to �z��
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��� Computational Complexity of the

Complementary Pivot Method

Theorem ��� For any n �
� 	� the complementary pivot method requires 	n pivot

steps before termination when applied on the LCP ��q�n��fM�n���

Proof� Notice that �q�n� 
 ���en� � �q�n� 
 �en where � � 	n�� � �� Hence the

straight line fx � x
 �q�n� 
 �en� � a real numberg is the same as the line L�n� de�ned

in equation ����� but in the reverse direction�

The original tableau for applying the complementary pivot method to solve the

LCP ��q�n��M�n�� is shown in Tableau ��
�

Tableau ��	

w� w� � � � wn z� z� � � � zn z� q

� � � � � � �� � � � � � �� �	n

� � � � � � �	 �� � � � � �� �	n � 	n��

�� �� �� �� �� �� �� ��

� � � � � � �	 �	 � � � �� �� �	n � 	n�� � � � �� 	

The initial basic vector obtained in the complementary pivot method is �w�� � � � � wn���

z�� and in the solution corresponding to this basic vector� the value of z� is 	n 


	n�� 
 � � �
 	 � 	n�� � 	� The entering variable into the basic vector at this initial

stage is zn�

Let V�� � � � � Va�n� be the ordering of the complementary basic vectors for this prob�

lem� obtained in the proof of Theorem ���� V� � �w�� � � � � wn�� V� � �w�� � � � � wn���

zn�� etc� Let Kr be the complementary cone corresponding to the complementary ba�

sic vector Vr for the LCP ��q�n��fM�n��� Using the geometric interpretation discussed

above� the e�ect of the initial pivot step of bringing zn into the basic vector �w�� � � � �

wn��� z�� can be interpreted as a walk through the complementary cone K�� beginning

with the point �q�n�
 ��en �where �� � 	n��� 	� on the facet of K� corresponding to

the Pos cone of the columns of w�� � � � � wn��� wn�� in Tableau ��
� to the point �q�n� 


��en �where �� � 	n�� � 
� on the facet of K� corresponding to the Pos cone of the

columns of w�� � � � � wn��� zn in Tableau ��
 along the half�line fx � x � �q�n� 
 �en�

� �
� �g� Here ��� �� are the values of z� in the basic solution of Tableau ��
 correspond�

ing to the basic vectors �w�� � � � � wn��� z�� and �w�� � � � � wn��� zn� z�� respectively� Thus

the initial pivot step of introducing zn into the basic vector �w�� � � � � wn��� z�� can be

interpreted as the walk across the complementary cone K�� starting at the value � �

�� to the value � � �� along the half�line fx � x � �q�n�
�en� � �� �g� Similarly the rth

pivot step performed during the complementary pivot method applied on this problem�

can be interpreted as the walk through the complementary cone Kr along the half�line
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fx � x � �q�n� 
 �en� � �
� �g� for r �� 	� Since the straight line fx � x � �q�n� 
 �en�

� a real numberg is the same as the line L�n� de�ned in equation ������ from the re�

sults in the proof of Theorem ��� and the geometric interpretation of the pivot steps in

the complementary pivot method discussed above� we reach the following conclusions�

the complementary pivot method starts with a value for z� of 	n�� � 	 in the initial

step� All pivot steps are nondegenerate and the value of z� decreases by 	 in every

pivot step� Hence the method terminates when the value of z� becomes zero after the

�	n���th pivot step� This last pivot step in the method corresponds to a walk into the

complementary cone Ka�n� associated with the complementary basic vector Va�n� �

�z�� w�� � � � � wn� along the half�line fx � x � �q�n� 
 �en� � �
� �g� Hence the terminal

basic vector obtained in the complementary pivot method applied on this problem will

be �z�� w�� � � � � wn� and it can be veri�ed that the solution of the LCP ��q�n��fM�n��

is �w � ��� 	n��� � � � � 	�� z � �	n� �� � � � � ���� Therefore counting the �rst pivot step in

which the canonical tableau with respect to the initial basic vector �w�� � � � � wn��� z��

is obtained� the complementary pivot method requires 	n pivot steps for solving the

LCP ��q�n��fM�n��� for any n �
� 	�

Example ���

See Example 	��� in Section 	�	�� where the LCP ��q����fM���� of order � is solved by

the complementary pivot method and verify that it required 	� � � pivot steps before

termination�

��� Computational Complexity of

Principal Pivoting Method I

Theorem ��	 Principal pivoting Method I requires 	n� � pivot steps before termi�

nation� when applied on the LCP ��en�fM�n��� for any n �
� 	�

Proof� Proof is by induction on n� The original tableau for this problem is shown in

Tableau ���

Tableau ��


w� w� � � � wn z� z� � � � zn q

� � � � � � �� � � � � � ��

� � � � � � �	 �� � � � � ��

�� �� �� �� �� �� ��

� � � � � � �	 �	 � � � �� ��
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It can be veri�ed that �z�� w�� � � � � wn� is a complementary feasible basis for Tableau

��� and the solution of this LCP is �w�� � � � � wn� � ��� �� � � � � ��� �z�� � � � � zn� � ��� �� � � � �

���

In Example 
�� of Section 
�� the LCP ��e��fM���� was solved by Principal Piv�

oting Method I� and it required 	� � � � � pivot steps� thus verifying the theorem for

n � �� The theorem can also be veri�ed to be true when n � 	� We now set up an

induction hypothesis�

Induction Hypothesis� When applied on the LCP ��en���fM�n����� the Principal

Pivoting Method I requires 	n�� � � pivot steps before termination�

We will now prove that the induction hypothesis implies that the Principal Pivot�

ing Method I requires 	n � � pivot steps before termination when apllied on the LCP

��en�fM�n�� of order n�

When it is applied on the LCP in Tableau ��� the initial basic vector in Principal

Pivoting Method I is �w�� � � � � wn�� The entering variable into this initial complemen�

tary basic vector is zn� Since fM�n� is a P �matrix� by the results in Section 
��� the

method terminates when all the updated right hand side constants become nonnega�

tive�

By the pivot row choice rule used in Principal Pivoting Method I� the question

of using Row � in Tableau ��� as the pivot row does not arise until a complementary

basic vector satisfying the property that the entries in Rows 	 to n of the updated

right hand side constant vectors corresponding to it are all nonnegative� is reached�

So until such a complementary basic vector is reached� the pivot steps choosen are

exactly those that will be choosen in solving the principal subproblem of Tableau ���

in the variables �w�� � � � � wn�� �z�� � � � � zn�� This principal subproblem is actually the

LCP ��en���fM�n� ��� of order n� �� with the exception that the variables in it are

called �w�� � � � � wn�� �z�� � � � � zn�� By the induction hypothesis� to solve this principal

subproblem� Principal Pivoting Method I takes 	n�� � � pivot steps� By the results

discussed above �z�� w�� � � � � wn� is the unique complementary feasible basic vector for

this principal subproblem�

Hence when Principal Pivoting Method I is applied on Tableau ���� after 	n�� �

� pivot steps it reaches the complementary basic vector �w�� z�� � w�� � � � � wn�� The

canonical tableau of Tableau ��� corresponding to the complementary basic vector

�w�� z�� w�� � � � � wn� is given in Tableau ����
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Tableau ��� Canonical Tableau after 	n�� � � Pivot Steps are carried out�

beginning with Tableau ��� in Principal Pivoting Method I�

Basic w� w� w� � � � wn z� z� z� � � � zn q

Variable

w� � � � � � � � �� � � � � � � ��

z� � �� � � � � � 	 � � � � � � �

w� � �	 � � � � � 	 � �� � � � � �

�� �� �� �� �� �� �� �� �� ��

wn � �	 � � � � � 	 � �	 � � � �� �

Since the update right hand side constant in Row � is �� � �� the method now

continues by making a single principal pivot step in position � in Tableau ��� �this

replaces w� in the basic vector by z��� The pivot element is inside a box� This leads

to the canonical tableau in Tableau ����

Tableau ��� Canonical Tableau after 	n�� Pivot Steps are Carried Out� begin�

ning with Tableau ��� in Principal Pivoting Method I�

Basic w� w� w� � � � wn z� z� z� � � � zn q

Variable

z� �� � � � � � � � � � � � � � �

z� 	 �� � � � � � � � � � � � � ��

w� 	 �	 � � � � � � � �� � � � � ��

�� �� �� �� �� �� �� �� �� ��

wn 	 �	 � � � � � � � �	 � � � �� ��

Since some of the updated right hand side constants in Tableau ��� are still negative�

the method continues� By the arguments mentioned above� when Principal Pivoting

Method I is continued from Tableau ���� z� remains the basic variable in the �rst row

until another complementary basic vector satisfying the property that the entries in

Rows 	 to n in the updated right hand side constants vector corresponding to it are

all nonnegative� is again reached� It can be veri�ed that the principal subproblem

obtained by eliminating Row � and the columns corresponding to the complementary

pair of variables w�� z� in Tableau ��� and interchanging the columns of the variables

w� and z�� is exactly the LCP ��en���fM�n���� with the exception that the variables

in it are called �z�� w�� � � � � wn�� �w�� � z�� � � � � zn�� When Principal Pivoting Method I is

continued from Tableau ��� the pivot steps obtained are exactly those that occur when
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this principal subproblem is solved by Principal Pivoting Method I� until this principal

subproblem is solved� Since this principal subproblem is the LCP ��en���fM�n����� by

the induction hypothesis� this leads to an additional 	n���� pivot steps from Tableau

���� Since the variables in this principal subproblem are �z�� w�� � � � � wn�� �w�� z�� � � � �

zn�� in that order� by the results mentioned earlier� �w�� w�� � � � � wn� is the unique

complementary feasible basic vector for this principal subproblem� So after continuing

for an additional 	n�� � � pivot steps from Tableau ���� Principal Pivoting Method

I reaches the complementary basic vector �z�� w�� w�� � � � � wn�� which was veri�ed to

be a complementary feasible basic vector for the LCP in Tableau ��� and then the

method terminates� So it took 	n�� pivot steps to reach Tableau ��� and an additional

	n��� � pivot steps afterwards� before termination� Thus it requires a total of 	n��


	n�� � � � 	n � � pivot steps before termination� when applied on the LCP of order

n in Tableau ���� Thus under the induction hypothesis� the statement of the theorem

also holds for n� The statement of the theorem has already been veri�ed for n � 	� ��

Hence� by induction� Theorem ��
 is true for all n �
� 	�

Exercise

��� Prove that the sequence of complementary basic vectors obtained when Principal

Pivoting Method I is applied on the LCP in Tableau ��� is exactly the sequence V�� V��

� � � � Va�n�� obtained in the proof of Theorem ���� �Hint� Use an inductive argument as

in the proof of Theorem ��
��

So far� we have discussed the worst case computational complexity of comple�

mentary and principal pivot methods� which can handle a large class of LCPs� These

results may not apply to other special algorithms for solving LCPs �q�M�� in which

the matrix M has special structure� An example of these is the algorithm of R� Chan�

drasekaran which can solve the LCP �q�M� when M is a Z�matrix �a square matrix

M � �mij� is said to be a Z�matrix if mij �� � for all i �� j� discussed in Section ����

This special algorithm for this special class of LCPs has been proved to terminate in

at most n pivot steps�

The matrix fM�n� used in the examples contructed above is lower triangular� it is

a P �matrix� a nonnegative matrix� it is copositive plus and also PSD� So it has all the

nice properties of matrices studied in LCP literature� In spite of it� complementary

pivot methods take 	n�� or 	n pivot steps to solve the LCP of order n in the examples

constructed above� all of which are associated with the matrix fM�n��

We have shown that the computational requirements of the well known comple�

mentary and principal pivot methods exhibit an exponential growth rate in terms of

the order of the LCP� Our analysis applies only to the worst case behavior of the meth�

ods on specially constructed simple problems� The performance of the algorithms on

average practical problems using practical data may be quite di�erent� The analysis
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here is similar to the analysis of the worst case computational requirements of the

simplex method for solving linear programs in Chapter �
 of �	�	���

The class of LCPs �q�M� where M is a PD and symmetric matrix is of particular

interest because of the special structure of these problems� and also because they

appear in many practical applications� It turns out that even when restricted to this

special class of LCPs� the worst case computational requirements of complementary

pivot methods exhibit an exponential growth rate in terms of the order of the LCP�

See reference ����� of Y� Fathi and Exercises ��	 to ����

As mentioned in Section 	�� the exponential growth of the worst case computa�

tional complexity as a function of the size of the problem does not imply that these

algorithms are not useful for solving large scale practical problems� The exponential

growth has been mathematically established on specially constructed problems with

a certain pathological structure� This pathological structure does not seem to appear

often in practical applications� As discussed in Section 	�� and in Reference �	�����

the probabilistic average �or expected� computational complexity of some versions of

the complementary pivot algorithm grows at most quadratically with n� Empirical

computational tests seem to indicate that the number of pivot steps needed by these

algorithms before termination grows linearly with n on an average�

��� Exercises

��� For n �
� 	� let M�n� �

�fM�n�
��fM�n�

�T
�

M�n� �

������������������

� 	 	 � � � 	 	
	 � � � � � � �
	 � � � � � �� ��
�� �� �� �� ��
	 � �� � � � � 
 
�n� 	� 	 
 
�n� 	�
	 � �� � � � 	 
 
�n� 	� � 
 
�n� ��

������������������

Prove that M�n� is PD and symmetric� Solve the LCP ��e��M���� by Principal

Pivoting Method I and verify that it takes 	� � � � � pivot steps before termination�

Solve The LCP ���
����T �M�	�� by the complementary pivot method and verify

that it takes 	� � 
 pivot steps before termination� Solve the parametric LCP ��
 �

�� �� ��T �M�	�� by the parametric LCP algorithm and verify that it produces all the

	� � 
 complementary basic vectors of this problem before solving the problem for all

the values of the parameter ��

�Y� Fathi ������

��� Prove that Principal Pivoting Method I requires 	n � � steps before termination

when applied on the LCP ��en�M�n��� for any n �
� 	�

�Y� Fathi ������
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��	 Prove that there exists a column vector q�n� � Rn �actually an uncountable num�

ber of such q�n�s exist� such that the straight line fx � x � q�n���en� � a real numberg

cuts across the interior of every one of the 	n complementary cones in the class C�M�n��

for any n �
� 	�

�Y� Fathi ������

��
 Prove that the parametric algorithm obtains all the 	n complementary basic vectors

before termination� when applied to solve the LCP �q�n���en�M�n�� for all � for any

n �
� 	� where q�n� is the column vector in Rn constructed in Exercise ��
�

�Y� Fathi ������

��� Prove that the complementary pivot method requires 	n pivot steps before termi�

nation when applied on the LCP �q�n��M�n��� for n �
� 	� where q�n� is the column

vector in Rn constructed in Exercise ��
�

�Y� Fathi ������

��� Construct a class of LCPs with integer data� containing one problem of order n

for each n �
� 	� each associated with a PD matrix� such that the number of pivot steps

required by Graves� principal pivoting method �Section 
�	� to solve the nth problem

in this class is an exponentially growing function of n�

��� Let q�n� � �	n 
 	� 	n 
 
� � � � � 	n 
 	j� � � � � 	n 
 	n����	n�T and

M�n� �

��������������������������

� 	 	 � � � 	 �	
� � 	 � � � 	 �	
�� � � � � � 	 �	
�� �� � � � � �� ��
�� �� � � � � �� ��
�� �� �� �� ��
� � � � � � � �	
� � � � � � � �

��������������������������

Prove that the Dantzig�Cottle principal pivoting method of Section 
�� requires 	n��

steps to solve the LCP �q�n��M�n���

�A� Gana ���
��

��
 Show that the variable dimension algorithm of Secton 	�� requires 	n � � steps to

solve the LCP
�
�q�n�� �fM�n��T

�
�

�A� Gana ���
��
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���� De�ne the matrix M � �mij� of order n� n by the following

mii � � for all i � � to n

mij � 	 if j � i and i
 j is odd

� �� if j � i and i
 j is even

� �� if j � i and i
 j is odd

� 	 if j � i and i
 j is even�

For example� the matrix M de�ned above� is the following for n � 


M �

����������

� 	 �� 	
�� � 	 ��
	 �� � 	

�� 	 �� �

����������
�

Show that M is a P �matrix and a PSD matrix�

Let e be the column vector of all �s in Rn� Consider the LCP ��e�M�� where M

is the matrix de�ned above� Show that the complementary feasible basic vector for

this problem is
�w�� z�� � � � � zn� if n is even

�z�� z�� � � � � zn� if n is odd�

Study the computational complexity of the various algorithms for solving LCPs dis�

cussed so far� on the LCP ��e�M�� where M is the matrix de�ned above�

�R� Chandrasekaran� J� S� Pang and R� Stone�
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