Chapter 6

COMPUTATIONAL COMPLEXITY OF
COMPLEMENTARY PIVOT METHODS

In this Chapter, we discuss the worst case behavior of the computational growth
requirements of the complementary and principal pivot methods for solving LCPs, as
a function of n, the order, and the size of the LCP. These results are from K. G. Murty
[6.5]. We construct a class of LCPs with integer data, one of order n for each n > 2,
and prove that the pivotal methods discussed in Chapters 2, 4, and 5 require 2™ — 1 or
21 pivot steps to solve the problem of order n in the class. The size of the n*” problem
in this class, defined to be the total number of bits of storage needed to store all the
data in the problem in binary form is < 4n? 4 3n. These results establish that in the
worst, case, the computational growth requirements of complementary pivot methods
are not bounded above by any polynomial in the order or size of the LCP.

To study the worst case computational complexity of complementary pivot meth-
ods, we look at the following question: What is the maximum number of complemen-
tary cones through which a straight line in R™ can cut across? For a problem of order
n, the answer turns out to be 2™, that is, there may exist straight lines which cut across
the interiors of every one of the 2™ complementary cones.

Let M(n) = (m;;) be the lower triangular matrix of order n, defined by m;; =1
for i = 1 to n, m;; = 0 for all j > 4, and m;; = 2 for all j < i. See (1.15), page
19. Since M(n) is lower triangular, all principal subdeterminants of M(n) are equal
to 1, and hence M (n) is a P-matrix. Since M (n) + (M(n))T is a matrix all of whose
entries are 2, it is singular, and clearly it is a PSD matrix. Hence M (n) is a P-matrix,
PSD matrix (and hence a copositive plus matrix), but not a PD matrix. Let e,, be the
column vector in R™ all of whose entries are equal to 1. Let:
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g(n) =(2=,2271, ..., 2)T
(n) =(—2m,—2» —2n~1 _on _on-1 _ogn=2"
R A A ) (6.1)
a(s) =2° — 1, for any s > 2
L(n) ={z :z = ¢(n) + y(—ey,) : v a real parameter}

Lo}

Theorem 6.1 . The straight line L(n) cuts across the interior of every one of the 2™

complementary cones in the class C(M(n)) for any n > 2.

Proof. Consider the class of parametric LCPs (G(n) +~(—ey), M(n)) for n > 2, where
«v is a real valued parameter. Consider the case n = 2 first. The following can be verified
in this case :

Tableau 6.1

Complementary Cone Portions of L(2) corresponding
corresponding to the to values of the Parametr ~
Complementary Basic Vector which lie in this Complementary Cone

(’LUI, ’lU2) 2=

(wb 22) 2 é Y é 4

(21, 22) 4<v7<6

(21, wa2) 6=~

Also whenever + is an interior point of one of these intervals, all the basic variables are
strictly positive in the complementary BFS of ((2) + vy(—en), M(2)), and this implies
that the point ¢(2) + y(—e,) corresponding to that value of v is in the interior of
the corresponding complementary cone. Hence, the statement of this Theorem is true
when n = 2. We now make an induction hypothesis.
Induction Hypothesis: The theorem is true for the LCP of order n — 1 in the
class. Specifically, the complementary basic vectors for the parametric LCP (¢(n —
1) +v(—epn), M(n — 1)) can be ordered as a sequence vg, V1, - - ., Uq(n—1), Such that the
complementary cone corresponding to the complementary basic vector v, contains the
portion of the straight line L(n —1) corresponding to vy < 2if r = 0; 2r <y < 2(r+1),
if1<r <22t —25and 20 — 2 <y if r = 2271 — 1. Also the straight line L(n — 1)
cuts across the interior of each of these complementary cones.

Now consider the parametric LCP of order n in the class, namely (¢(n) +v(—ey),
M (n)), the original tableau for which is Tableau 6.2
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Tableau 6.2

w1 wo SN W, Z1 zZ92 e Zn
1 0 - 0 -1 0o ... 0 2" —
0 1 0 -2 -1 0 | on1_ 4
0 1 - 1 -2 =2 ... -1 2—v
The principal subproblem of this in the variables (ws, ..., wy), (22,..., 2,), is the same

as the parametric LCP of order n — 1 in the class we are discussing, with the exception
that the variables in it are called as wo,...,wy,; 292,...,2,. By induction hypothesis,
the complementary basic vectors of this principal subproblem can be ordered in a
sequence as v, V1, . - -, Vg(n—1), Where vg = (wa,...,wy), v1 = (Wa,...,Wn_1,2n), etc.
such that the complementary cone for this principal subproblem, corresponding to
the complementary basic vector v,., contains the portion of the straight line L(n — 1)
corresponding to v < 2ifr = 0; 2r <y < 2(r+1)if1 <r <2271 — 2 and v >
28 — 2 if r = 2771 — 1; and as long as + is in the interior of one of these intervals, the
corresponding point on L(n — 1) is in the interior of the corresponding complementary
cone. Notice that in the original problem in Tableau 6.2, ¢;(y) = 2™ — « remains
nonnegative for all v < 2™ and strictly positive for all v < 2%. This, together with the
result for the principal subproblem, implies that the complementary cone corresponding
to the complementary basic vector V;. = (wy,v,) of the original problem (Tableau 6.2)
contains the portion of the line L(n) corresponding to values of v satisfying v < 2, if
r=0;2r <y <2r+2,if 1 <r < —1+422"1 =gq(n—1). It also implies that in each
case, the straight line L(n) cuts across the interior of these complementary cones.

Now perform a single principal pivot step in Position 1 in the original problem in
Tableau 6.2. This leads to Tableau 6.3

Tableau 6.3

w1 (1) c W, 21 Z9 P Zn q
-1 0 ... 0 1 0o ... 0 v —2"
-2 1 ... 0 0 -1 ... 0 (—2nFt 4 y) 42271
-2 0 ... 0 0 -2 ... 0 (—27+1 4 ) 4272
-2 0 ... 1 0 -2 ... -1 (=22t +4) +2
Let —\ = —22*! 4 ~ and treat A as the new parameter. As v increases from 2% to

20+l 9 X decreases from 2™ to 2. As a function of )\, the vector of the right hand
side constants in Tableau 6.3 is (2% — A, 2271 — X ..., 2 - \)T.
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Now look at the principal subproblem of the parametric LCP in Tableau 6.3 in
the variables wo, ..., wy,; 22,...,2,. This principal subproblem considered with A as
the parameter can be verified to be the same as the parametric LCP of order n — 1
in the class we are discussing, with the exception that the variables in it are called as
Wa, ..., Wy, 22,...,2n, and the parameter is .

Using arguments similar to those as above on these problems, and translating
everything to the original parameter v again, we conclude that the complementary
cone corresponding to the complementary basic vector V,. = (z1, vy(,)) of the original
problem, where b(r) = 2™ — r — 1, contains the portion of the straight line L(n)
corresponding to values of «y satisfying 2r < v < 2r + 2, if gn—1 <r<2"-2and vy >
2ntl 2 ifr =22 — 1.

Thus if vg, ..., v4(—1) is the ordered sequence of complementary basic vectors
for the principal subproblem of the parametric LCP in Tableau 6.2 in the variables
Wa, ..., Wy} Z2, ..., 2,; let the ordered sequence of complementary basic vectors for the

parametric LCP in Tableau 6.2 be

Vo :(wh ’Uo), (wl, Ul), ceny (wl, Ua(n—l));

- (6.2)
(Zla Ua(n—l))a (zlv Ua(n—l)—l)v R (Zla UO) - Va(n)-

Then the induction hypothesis implies the result that the complementary cone corre-
sponding to the complementary basic vector V,. contains the portion of the straight
line L(n) corresponding to v < 2,if r =0; 2r <y < 2r 4 2,if 1 <9 <27 —2; 4 >
2ntl _ 2 if r = 2% — 1. Also in each case, the straight line cuts across the interior
of the complementary cone. Hence the induction hypothesis implies that the state-
ment of Theorem 6.1 also holds for the parametric LCP of order n in the class we are
discussing. The statement of Theorem 6.1 has already been verified to be true from
n = 2. Hence it is true for all n > 2.

[]

6.1 Computational Complexity of the
Parametric LCP Algorithm

Theorem 6.2  Consider the class of parametric LCPs (§(n) + v(—en), M(N)), for
n > 2. The parametric LCP algorithm discussed in Chapter 5 requires 2™ pivot steps
to solve the nth problem in the class for all real values of the parameter ~y.

Proof. Let Vo, V1,...,V,) be the sequence of complementary basic vectors for the
parametric LCP of order n in this class obtained in the proof of Theorem 6.1. From the
proof of Theorem 6.1, we conlcude that the complementary basic vector V,. is feasible
to the parametric LCP (g(n) + v(—en), M(n)) in the interval y < 2ifr =0; 2r <y <
2r+2,if 1 <r <27 -2, > 2n+1l _ 9 if » = 27 — 1. Hence, when the parametric LCP
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algorithm is applied to solve (¢(n) + v(—ey), M(n)) for all values of the parameter =,
it terminates only after going through all the complementary basic vectors, Vg, V1, ...,
Va(n); and thus requires a(n) + 1 = 2" pivot steps.

[

Example 6.1

See Example 5.1 in Chapter 5. There the parametric LCP (¢(3) + fy(—eg),M(S)) is
solved for all values of the parameter  (there the parameter is denoted by A intead )
using the parametric LCP algorithm and verify that it took 23 = 8 pivot steps in all.

6.2 Geometric Interpretation of a Pivot Step in the
Complementary Pivot Method

Let M be a given square matrix of order n, and ¢ a column vector in R". Consider the
LCP (g, M). The original tableau for solving it by the complementary pivot method
is (2.3) of Section 2.2.1.

Let (y1,--+,Yr—1,Yr+1,---,Yn,20) be a basic vector obtained in the process of
solving this LCP by the complementary pivot method where y; € {wj, z;} for all j.
Let A.; denote the column vector associated with y; in (2.3) for each j. If ¢ = (q1,. . .,
@n)T is the update right hand constants vector in the canonical tableau of (2.3) with
respect to the basic vector (yi1,...,%r—1,Yr41,---,¥Yn,%0), then ¢ > 0 (since this basic
vector must be a feasible basic vector) and we have

q= A-l(jl +...+ A-T‘—lq_T‘—l + A-r+1q_7“ +...0+ A-n(jn—l + (_en)(jn (63)

Gn 18 the value of zp in the present BFS. If ¢,, = 0, the present BFS is a complementary
feasible solution and the method would terminate. So assume ¢, > 0 and denote it
by the symbol Z,. Then (6.3) implies that ¢ + Zpe, € Pos{A.1,..., A1, Ai1,--.,
A.,}. The present left out complementary pair is (wy, z.), and one of the variables
from this pair will be choosen as the entering variable at this stage, let us denote it
by y, € {w,, 2.} and let A.. denote the column vector associated with y, in (2.3).
If y, replaces zy from the basic vector in theis step, we get a complementary feasible
basic vector at the end of this pivot step, and the method terminates. Suppose the
dropping variable is not zp, but some y; for i € {1,...,r —1,r+1,...,n}. Let 25 > 0
be the value of zy in the new BF'S obtained after this pivot step. Then using the same
arguments as before we conclude that g + Zpe, € Pos{A.1,..., Ai—1,Ait1,-.-, An}.

Under these conditions, clearly (y1,...,y,) is itself a complementary basic vector,
and let K = Pos(A.q,..., A.;) be the complementary cone associated with it. The net
effect in this pivot step is therefore that of moving from the point q 4+ Zpe,, contained



6.2. GEOMETRIC INTERPRETATION OF A PIVOT STEP 305

on the facet Pos{A.1,..., A_1,Ar11,..., A} of K to the point g + Zpe,, on the
facet Pos{A.1,...,A;_1,A.iy1,..., A} of K, along the half-line {z : z = q + Ae,,
A a nonnegative real number}. See Figure 6.1. The complementary pivot method
continues in this manner walking along the half-line {z : x = ¢ + Ae,, A > 0} cutting
across different complementary cones, until at some stage it enters a complementary
cone containing the point ¢ on this half-line.

We will now use this geometric interpretation, to establish the computational
complexity of the complementary pivot method in the worst case.

Point g+ Z,e, on the facet
POS{A‘l;---fA'r-ll
A.r+]_, Ces ,A.n} of K.

Pointq +Z,e, on the facet
Pos{Aol,...,A-i_]_,
A.i+]_,.. . ,Aon} OfK

Origin

Figure 6.1 Geometric interpretation of a pivot step in the complementary
pivot method as a walk from one facet of a complementary cone to another facet
of the same cone along the half-line {z : £ = ¢+ Aen, A > 0} as A varies from Zy
to 20.
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6.3 Computational Complexity of the
Complementary Pivot Method

Theorem 6.3  For any n > 2, the complementary pivot method requires 2" pivot

steps before termination when applied on the LCP (G(n), M(n))

Proof. Notice that §(n) + v(—e,) = §(n) + Ae, where A = 2°F! — 4. Hence the
straight line {x : z + §¢(n) + Ae,, A a real number} is the same as the line L(n) defined
in equation (6.1) but in the reverse direction.

The original tableau for applying the complementary pivot method to solve the
LCP (§(n), M(n)) is shown in Tableau 6.4.

Tableau 6.4
w1 Wo . W, Z1 zZ9 . Zn 20 q
1 0 e 0 -1 0o ... 0o -1 —-on
0 1 0 -2 -1 ... 0o -1 —9on _ on-1
0 0 1 -2 -2 ... -1 -1 —gn_on-1_  _9
The initial basic vector obtained in the complementary pivot method is (wy, ..., w,_1,

z0) and in the solution corresponding to this basic vector, the value of zy is 2™ +
2n—1 4 42 =221 _ 2 The entering variable into the basic vector at this initial
stage is zj,.

Let Vo, . .., Va(n) be the ordering of the complementary basic vectors for this prob-
lem, obtained in the proof of Theorem 6.1. V) = (wy,...,wy), V1 = (w1,...,Wnp_1,
zn), etc. Let K,. be the complementary cone corresponding to the complementary ba-
sic vector V, for the LCP (§(n), M(n)). Using the geometric interpretation discussed
above, the effect of the initial pivot step of bringing z, into the basic vector (wq, ...,
Wn—1, Z0) can be interpreted as a walk through the complementary cone K1, beginning
with the point §(n) + Aie,, (where A\; = 28+1 —2) on the facet of K; corresponding to
the Pos cone of the columns of wy, ..., w,_2,w,_1 in Tableau 6.4, to the point §(n) +
Aze, (where Ao = ont+l _ 4) on the facet of K; corresponding to the Pos cone of the
columns of wy,...,w,_2, 2, in Tableau 6.4 along the half-line {z : x = §(n) + Aey,,
A > 0}. Here Ay, Ap are the values of zp in the basic solution of Tableau 6.4 correspond-
ing to the basic vectors (wy, ..., wn_1,20) and (wy, ..., w,_2, 2y, 2o) respectively. Thus
the initial pivot step of introducing z, into the basic vector (wy,...,w,_1,2p) can be
interpreted as the walk across the complementary cone K, starting at the value A =
A1 to the value A = Xy along the half-line {z : x = §(n)+ Ae,, A > 0}. Similarly the "
pivot step performed during the complementary pivot method applied on this problem,
can be interpreted as the walk through the complementary cone K, along the half-line
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{z : 2 = q(n) + Aen, A > 0}, for 7 > 2. Since the straight line {z : z = §(n) + ey,
A a real number} is the same as the line L(n) defined in equation (6.1), from the re-
sults in the proof of Theorem 6.1 and the geometric interpretation of the pivot steps in
the complementary pivot method discussed above, we reach the following conclusions:
the complementary pivot method starts with a value for zy of 221 — 2 in the initial
step. All pivot steps are nondegenerate and the value of zy decreases by 2 in every
pivot step. Hence the method terminates when the value of zy becomes zero after the
(2™ —1)th pivot step. This last pivot step in the method corresponds to a walk into the
complementary cone K,,) associated with the complementary basic vector V() =
(21, w2,...,wy) along the half-line {z : x = ¢(n) + Ae,, A > 0}. Hence the terminal
basic vector obtained in the complementary pivot method applied on this problem will
be (z1,ws,...,w,) and it can be verified that the solution of the LCP (cj(n),M(n))
is (w=(0,22"1,...,2), 2 = (2",0,...,0)). Therefore counting the first pivot step in
which the canonical tableau with respect to the initial basic vector (wq,...,w,_1, 20)
is obtained, the complementary pivot method requires 2™ pivot steps for solving the
LCP (Q(n),M(n)), for any n > 2.

[

Example 6.2

See Example 2.10 in Section 2.2.7 where the LCP (§(3), M(?))) of order 3 is solved by
the complementary pivot method and verify that it required 23 = 8 pivot steps before
termination.

6.4 Computational Complexity of
Principal Pivoting Method 1

Theorem 6.4  Principal pivoting Method I requires 2™ — 1 pivot steps before termi-
nation, when applied on the LCP (—ey, M(n)), for any n > 2.

Proof. Proof is by induction on n. The original tableau for this problem is shown in
Tableau 6.5

Tableau 6.5
wy Wy ... W, 21 Zo ... Zn q
1 0 0 -1 0 0 -1
0 1 0o -2 -1 0 -1
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It can be verified that (z1,ws,...,w,) is a complementary feasible basis for Tableau
6.5 and the solution of this LCP is (wy,...,wy,) = (0,1,...,1), (21,...,2,) = (1,0,...,
0).

In Example 4.1 of Section 4.1 the LCP (—es, M(3)) was solved by Principal Piv-
oting Method I, and it required 23 — 1 = 7 pivot steps, thus verifying the theorem for
n = 3. The theorem can also be verified to be true when n = 2. We now set up an
induction hypothesis.

Induction Hypothesis: When applied on the LCP (—e,_1, M(n— 1)), the Principal

22~1 _ 1 pivot steps before termination.

Pivoting Method I requires

We will now prove that the induction hypothesis implies that the Principal Pivot-
ing Method I requires 2™ — 1 pivot steps before termination when apllied on the LCP
(—en, M(n)) of order n.

When it is applied on the LCP in Tableau 6.5 the initial basic vector in Principal
Pivoting Method I is (w,...,w,). The entering variable into this initial complemen-
tary basic vector is z,. Since M(n) is a P-matrix, by the results in Section 4.1, the
method terminates when all the updated right hand side constants become nonnega-
tive.

By the pivot row choice rule used in Principal Pivoting Method I, the question
of using Row 1 in Tableau 6.5 as the pivot row does not arise until a complementary
basic vector satisfying the property that the entries in Rows 2 to n of the updated
right hand side constant vectors corresponding to it are all nonnegative, is reached.
So until such a complementary basic vector is reached, the pivot steps choosen are
exactly those that will be choosen in solving the principal subproblem of Tableau 6.5
in the variables (ws, ..., wy); (22,...,2,). This principal subproblem is actually the
LCP (—en_1, M(n — 1)) of order n — 1, with the exception that the variables in it are
called (wa,...,wy,); (22,...,2,). By the induction hypothesis, to solve this principal
subproblem, Principal Pivoting Method I takes 2"~ — 1 pivot steps. By the results
discussed above (22, ws,...,w,) is the unique complementary feasible basic vector for
this principal subproblem.

Hence when Principal Pivoting Method I is applied on Tableau 6.5, after 22~1 —
1 pivot steps it reaches the complementary basic vector (wi, za,,ws, ..., wy,). The
canonical tableau of Tableau 6.5 corresponding to the complementary basic vector
(w1, 22, ws, ..., wy,) is given in Tableau 6.6.
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Tableau 6.6 Canonical Tableau after 2°~1 — 1 Pivot Steps are carried out,
beginning with Tableau 6.5 in Principal Pivoting Method I.

Basic wy Wg W3 ... Wp 21 2o 23 ... Zn q
Variable

w1 1 0 0 ... 0 -1 0 0 ... 0 -1

%9 0o -1 0 ... O 2 1 0 ... 0 1

w3 0o -2 1 ... 0 2 0o -1 ... 0 1

W, o -2 0 ... 1 2 0o -2 ... -1 1

Since the update right hand side constant in Row 1 is —1 < 0, the method now
continues by making a single principal pivot step in position 1 in Tableau 6.6 (this
replaces w; in the basic vector by z1). The pivot element is inside a box. This leads
to the canonical tableau in Tableau 6.7.

Tableau 6.7 Canonical Tableau after 22~! Pivot Steps are Carried Out, begin-
ning with Tableau 6.5 in Principal Pivoting Method I.

Basic wy Wy W3 ... W, 21 Xz 23 ee. Zn q
Variable

Z1 -1 0o 0 ... 0 1 0 0 ... 0 1

%2 2 -1 0 ... 0 0 1 0 ... 0 -1

w3 2 -2 1 ... 0 o o0 -1 ... 0 -1

Wy 2 -2 0 ... 1 o o0 -2 ... -1 -1

Since some of the updated right hand side constants in Tableau 6.7 are still negative,
the method continues. By the arguments mentioned above, when Principal Pivoting
Method I is continued from Tableau 6.7, z; remains the basic variable in the first row
until another complementary basic vector satisfying the property that the entries in
Rows 2 to n in the updated right hand side constants vector corresponding to it are
all nonnegative, is again reached. It can be verified that the principal subproblem
obtained by eliminating Row 1 and the columns corresponding to the complementary
pair of variables w1y, z; in Tableau 6.7 and interchanging the columns of the variables
wy and zy; is exactly the LCP (—e,_1, M(n —1)) with the exception that the variables
in it are called (22, w3, ..., wy); (wa,, 23, ..., 2,). When Principal Pivoting Method T is
continued from Tableau 6.7 the pivot steps obtained are exactly those that occur when
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this principal subproblem is solved by Principal Pivoting Method I, until this principal
subproblem is solved. Since this principal subproblem is the LCP (—e,, 1, M (n—1)), by
the induction hypothesis, this leads to an additional 2°~! — 1 pivot steps from Tableau
6.7. Since the variables in this principal subproblem are (z3, ws, ..., wy), (w2, 23, .. .,
Zn), in that order, by the results mentioned earlier, (wy,ws,...,w,) is the unique
complementary feasible basic vector for this principal subproblem. So after continuing
for an additional 22~ — 1 pivot steps from Tableau 6.7, Principal Pivoting Method
I reaches the complementary basic vector (z1,ws,ws,...,w,), which was verified to
be a complementary feasible basic vector for the LCP in Tableau 6.5 and then the
method terminates. So it took 22~ pivot steps to reach Tableau 6.7 and an additional
2n—1 _ 1 pivot steps afterwards, before termination. Thus it requires a total of 22~ +
2n—1 _ 1 = 2% _ 1 pivot steps before termination, when applied on the LCP of order
n in Tableau 6.5. Thus under the induction hypothesis, the statement of the theorem
also holds for n. The statement of the theorem has already been verified for n = 2, 3.
Hence, by induction, Theorem 6.4 is true for all n > 2.

[]

FExercise

6.1 Prove that the sequence of complementary basic vectors obtained when Principal
Pivoting Method I is applied on the LCP in Tableau 6.5 is exactly the sequence Vj, V7,
-+, Va(n), obtained in the proof of Theorem 6.1. (Hint: Use an inductive argument as
in the proof of Theorem 6.4).

So far, we have discussed the worst case computational complexity of comple-
mentary and principal pivot methods, which can handle a large class of LCPs. These
results may not apply to other special algorithms for solving LCPs (¢, M), in which
the matrix M has special structure. An example of these is the algorithm of R. Chan-
drasekaran which can solve the LCP (¢, M) when M is a Z-matrix (a square matrix
M = (mj;) is said to be a Z-matrix if m;; < 0 for all ¢ # j) discussed in Section 8.1.
This special algorithm for this special class of LCPs has been proved to terminate in
at most n pivot steps.

The matrix M (n) used in the examples contructed above is lower triangular, it is
a P-matrix, a nonnegative matrix, it is copositive plus and also PSD. So it has all the
nice properties of matrices studied in LCP literature. In spite of it, complementary
pivot methods take 2™ —1 or 2™ pivot steps to solve the LCP of order n in the examples
constructed above, all of which are associated with the matrix M (n).

We have shown that the computational requirements of the well known comple-
mentary and principal pivot methods exhibit an exponential growth rate in terms of
the order of the LCP. Our analysis applies only to the worst case behavior of the meth-
ods on specially constructed simple problems. The performance of the algorithms on
average practical problems using practical data may be quite different. The analysis
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here is similar to the analysis of the worst case computational requirements of the
simplex method for solving linear programs in Chapter 14 of [2.26].

The class of LCPs (¢, M) where M is a PD and symmetric matrix is of particular
interest because of the special structure of these problems, and also because they
appear in many practical applications. It turns out that even when restricted to this
special class of LCPs, the worst case computational requirements of complementary
pivot methods exhibit an exponential growth rate in terms of the order of the LCP.
See reference [6.3] of Y. Fathi and Exercises 6.2 to 6.5.

As mentioned in Section 2.8 the exponential growth of the worst case computa-
tional complexity as a function of the size of the problem does not imply that these
algorithms are not useful for solving large scale practical problems. The exponential
growth has been mathematically established on specially constructed problems with
a certain pathological structure. This pathological structure does not seem to appear
often in practical applications. As discussed in Section 2.8 and in Reference [2.36],
the probabilistic average (or expected) computational complexity of some versions of
the complementary pivot algorithm grows at most quadratically with n. Empirical
computational tests seem to indicate that the number of pivot steps needed by these
algorithms before termination grows linearly with n on an average.

6.5 Exercises

~
—~
S
S
~
!

6.2 For n > 2, let M(n) = (M (n)

(1l 2 2 ... 2 2 )

2 5 6 ... 6 6
M@my=|2 %" : :

2 6 1+4(ﬁ—2) 2+4(ﬁ—2)

(2 6 : ... 24+4(n—-2) 1+4(n—-1))

Prove that M(n) is PD and symmetric. Solve the LCP (—es3, M(3)) by Principal
Pivoting Method I and verify that it takes 23 — 1 = 7 pivot steps before termination.
Solve The LCP ((—4,—7)T, M (2)) by the complementary pivot method and verify
that it takes 22 = 4 pivot steps before termination. Solve the parametric LCP ((4 —
v,1—~)T, M(2)) by the parametric LCP algorithm and verify that it produces all the
22 = 4 complementary basic vectors of this problem before solving the problem for all

the values of the parameter ~.
(Y. Fathi [6.3])

6.3 Prove that Principal Pivoting Method I requires 2™ — 1 steps before termination
when applied on the LCP (—e,, M(n)), for any n > 2.
(Y. Fathi [6.3])
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6.4 Prove that there exists a column vector g(n) € R" (actually an uncountable num-
ber of such ¢(n)s exist) such that the straight line {z : x = q(n) —vye,,y a real number}
cuts across the interior of every one of the 2™ complementary cones in the class C(M (n))
for any n > 2.

(Y. Fathi [6.3])

6.5 Prove that the parametric algorithm obtains all the 2™ complementary basic vectors
before termination, when applied to solve the LCP (¢(n) —ye,, M (n)) for all  for any
n > 2, where ¢(n) is the column vector in R" constructed in Exercise 6.4.

(Y. Fathi [6.3])

6.6 Prove that the complementary pivot method requires 2™ pivot steps before termi-
nation when applied on the LCP (¢(n), M(n)), for n > 2, where ¢(n) is the column
vector in R"™ constructed in Exercise 6.4.

(Y. Fathi [6.3])

6.7 Construct a class of LCPs with integer data, containing one problem of order n
for each n > 2, each associated with a PD matrix, such that the number of pivot steps
required by Graves’ principal pivoting method (Section 4.2) to solve the n** problem
in this class is an exponentially growing function of n.

6.8 Let g(n) = (2 +2,2" +4,...,2% + 23,20 4 2271 —2M)T and

(1 2 2 2 =2

0 1 2 2 =2

201 2 =2
— 0 Do
M (n) = 0

00 0 1 -2

.0 0 0 0 1)

Prove that the Dantzig-Cottle principal pivoting method of Section 4.3 requires 221
steps to solve the LCP (g(n), M (n)).
(A. Gana [6.4])

6.9 Show that the variable dimension algorithm of Secton 2.6 requires 2™ — 1 steps to
solve the LCP (g(n), (M(n))T).
(A. Gana [6.4])
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6.10 Define the matrix M = (m;;) of order n x n by the following

m;; = 1 foralli=1ton

mi; = 2 if j >4 and i+ jis odd
=—1 ifj>7¢and i+ jis even
=—1 ifj <+ and i+ jisodd
= 2 ifj<iandi+jis even.

For example, the matrix M defined above, is the following for n = 4

1 2 —1 2
-1 1 2 -1
2 -1 1 2
-1 2 -1 1

M =

Show that M is a P-matrix and a PSD matrix.

Let e be the column vector of all 1s in R™. Consider the LCP (—e, M), where M
is the matrix defined above. Show that the complementary feasible basic vector for
this problem is

(w1, 22,...,2,) if nis even
(21,22,...,2n) if nis odd.

Study the computational complexity of the various algorithms for solving LCPs dis-
cussed so far, on the LCP (—e, M), where M is the matrix defined above.
(R. Chandrasekaran, J. S. Pang and R. Stone)
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