Chapter 8

POLYNOMIALLY BOUNDED
ALGORITHMS
FOR SOME CLASSES OF LCPs

In this chapter we discuss algorithms for special classes of LCPs, whose computational
complexity is bounded above by a polynomial in either the order or the size of the LCP.
We consider the LCP (¢, M) where M is either a Z-matrix, or a triangular P-matrix,
or an integer PSD-matrix.

8.1 Chandrasekaran’s Algorithm for LCPs
Associated with Z-Matrices

Consider the LCP (q, M) of order n, where M is a Z-matrix. As discussed in Section
3.4, M = (myj) is a Z-matrix if all its off diagonal entries are nonpositive, that is
mi; < 0 for all ¢+ # j. The algorithm discussed below by R. Chandrasekaran [8.2],
terminates after at most n principal pivot steps, with either a solution of the LCP
(g, M) or the conclusion that it has no solution.

The Algorithm

The initial tableau is (8.1)

w z
(8.1)

1 -M q
Step 1: Start with the initial tableau and with w = (wy,...,w,) as the initial com-

plementary basic vector. If this is a feasible basis (i. e., if ¢ > 0) it is a complementary
feasible basis, terminate. Otherwise, go to the next step.
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General Step: Let ¢ be the present update right hand side constants vector. If
q > 0, the present basic vector is a complementary feasible basic vector, terminate.
Otherwise select a ¢t such that ¢ < 0. Let —my; be the present update entry in the
t*" row and the column vector of z. At this stage, the present basic variable in row
t will be w; (this follows from statement 5 listed below). If —my > 0, there exists
no nonnegative solution for (8.1) and consequently the LCP (g, M) has no solution,
terminate. Otherwise if —my; < 0, perform a principal pivot step in position ¢ and go
to the next step.

Using the fact that the initial matrix M is a Z-matrix, we verify that in the initial
system (8.1), for any ¢ = 1 to n, all the entries in row ¢ are nonnegative with the
exception of the entry in the column of z;. From the manner in which the algorithm
is carried out, the following facts can be verified to hold.

1. All pivot elements encountered during the algorithm are strictly negative.

2. For any t such that no pivot step has been performed in the algorithm so far
in row ¢, all the entries in this row on the left hand portion of the present
updated tableau are nonnegative, except, possibly the entry in the column
of z;. The infeasibility conclusion in the algorithm follows directly from this
fact.

3. If s is such that a pivot step has been carried out in row s in the algorithm,
in all subsequent steps, the updated entry in this row in the column of any
nonbasic z; is nonpositive.

4. Once a pivot step has been performed in a row, the updated right hand side
constant in it remains nonnegative in all subsequent steps. This follows from
statements 1 and 3.

5. Once a variable z; is made a basic variable, it stays as a basic variable, and
its value remains nonnegative in the solution, in all subsequent steps.

6. All basic vectors obtained in the algorithm are complementary, and the algo-
rithm terminates either with the conclusion of infeasibility or with a comple-
mentary feasible basis.

7. At most one principal pivot step is carried out in each position, thus the
algorithm terminates after at most n pivot steps. Thus the computational
effort measured in terms of basic operations like multiplications, additions,
comparisons of real numbers, is at most O(n?).

From these facts we conclude that if the system “w — Mz = ¢, w > 0, 2 > 0”
is feasible and M is a Z-matrix, then the LCP (¢, M) has a complementary feasible
solution and the above algorithm finds it. Hence, when M is a Z-matrix, the LCP

(¢, M) has a solution iff ¢ € Pos(I : — M), or equivalently, every Z-matrix is a Qo-
matrix.

R. W. Cottle and R. S. Sacher, and J. S. Pang [8.7, 8.8] discuss several large scale
applications of the LCP basid on this algorithm.
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FExercises

8.1 Solve the LCP with the following data by Chandrasekaran’s algorithm.

1 -2 0 -2 -1 —4

-1 0 -1 -2 0 —4
M=1]-2 -3 3 0 01 , qg= 1 —2
0o -1 -1 -2 -1 —1

-2 0 -1 -2 3 -2

8.2 Is the complementary pivot method guaranteed to process the LCP (¢, M) when
M is a Z-matrix 7

8.3 Discuss an efficient method for computing all the complementary solutions of the
LCP (¢, M) when M is a Z-matrix.

8.2 A Back Substitution Method for the LCPs
Associated with Triangular P-Matrices

A square matrix M = (m;;) of order n is said to be a lower triangular matrix if m;; = 0
for all j > i+ 1. It is upper triangular if M T is lower triangular. The square matrix M
is said to be a triangular matrix if there exists a permutation of its rows and columns
which makes it lower triangular. A triangular matrix satisfies the following properties.
(i) The matrix has a row that contains a single nonzero entry.
(ii) The submatrix obtained from the matrix by striking off the row containing
a single nonzero entry and the column in which that nonzero entry lies, also
satisfies property (i). The same process can be repeated until all the rows
and columns of the matrix are struck off.

A lower triangular or an upper triangular matrix is a P-matrix iff all its diagonal
entries are strictly positive. A triangular matrix is a P-matrix iff every one of its
single nonzero entries identified in the process (i), (ii) above is the diagonal entry in
its row and is strictly positive. Thus a triangular matrix is a P-matrix iff there exists
a permutation matrix @ such that QT MQ is a lower triangular matrix with positive
diagonal entries.
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Example 8.1

Let
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Verify that QTMQ = M(4) defined in equation (1.15) for n = 4, and hence M is a
triangular P-matrix.

If M is a triangular P-matrix, the LCP (¢, M) can be solved by the following back
substitution method.

Identify the row in M = (m,;) containing a single nonzero entry. Suppose it is
row t. If ¢ > 0, make w; = q¢, 2z = 0 = Z;. On the other hand, if ¢; < 0, make w; = 0,
zp = =L = Zz,. Add z;M.; to the right hand side constants vector ¢ in (8.1), and then

My
eliminate the columns of wy, z; and the ¢ row from (8.1), thus converting (8.1) into

a system of the same form in the remaining variables, on which the same process is
repeated.

In this method, the value of one complementary pair of variables (w;,z;) are
computed in each step, their values are substituted in the other constraints and the
process repeated. The method finds the complete solution in n steps.

Example 8.2

Consider the LCP (¢, M) with

1 0 0 —8
M=1|2 10|, gq¢g=]-12
2 2 1 —14

It can be verified that this method leads to the values (wi,21) = (0,8), (ws2,22) =
(4,0), (ws,z3) = (2,0) in that order, yielding the solution (wq,ws,ws; 21, 22,23) =
(0,4,2;8,0,0). The same problem was solved by the complementary pivot algorithm
in Example 2.10.

8.3 Polynomially Bounded Ellipsoid Algorithms
for LCPs Corresponding to
Convex Quadratic Programs

In the following sections we show that the ellipsoid algorithms for linear inequalities and
LPs (see references [8.13], [2.26]) can be extended to solve LCPs associated with PSD
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matrices with integer data, in polynomial time. As shown in Chapter 1 every convex
quadratic programming problem can be transformed into an LCP associated with a
PSD matrix, and hence the methods described here provide polynomially bounded
algorithms for solving convex quadratic programs with integer data. These algorithms
are taken from S. J. Chung and K. G. Murty [8.4]. Similar work also appeared in [8.14,
8.1] among other references. If the data in the problem is not integer but rational, it
could be converted into an equivalent problem with integer data by multiplying all the
data by a suitably selected positive integer, and solved by the algorithms discussed
here in polynomial time.

In Sections 8.1, 8.2 we discussed algorithm for special classes of LCPs in which
the computational effort required to solve an LCP of order n is at most O(n3). These
algorithms do not require the data in the problem to be integer or rational, it could
even be irrational as long as the matrix M satisfies the property of being a Z-matrix
or triangular P-matrix as specified and the required arithmetical operations can be
carried out on the data with the desired degree of precision. Thus these algorithms
discussed in Section 8.1, 8.2 are extremely efficient and practically useful to solve
LCPs of the types discussed there. The ellipsoid algorithms discussed in the following
sections have an entirely different character. They are polynomially bounded as long
as M is an integer PSD-matrix, but their computational complexity is not bounded
above by a polynomial in the order of the problem, but by a polynomial in the size
of the problem (the size of the problem is the total number of digits in all the data
when it is encoded using binary encoding). From Chapter 6 we know that in the
worst case, the complementary and principal pivoting method discussed earlier are
not polynomially bounded. However, in computational tests on practical, or randomly
generated problems, the observed average computational effort required by ellipsoid
method turned out to be far in excess of that required by complementary and principal
pivoting methods. Also, in the ellipsoid methods, each computation has to be carried
out to a large number of digits of precision, making it very hard to implement them
on existing computers.

Thus the ellipsoid algorithms discussed in the following sections are not likely
to be practically useful, at least not in their present forms. The major importance of
these ellipsoid methods is theoretical, they made it possible for us to prove that convex
quadratic programs, or equivalently LCPs associated with PSD-matrices with integer
data, are polynomially solvable.

Size of an LCP

In this and in subsequent sections, we use the symbol L to denote the size of the
problem istance, it is the total number of binary digits in all the data in the instance,
assuming that all the data is integer. Given an integer «, the total number of binary
digits in it (i. e., the number of bits needed to encode it in binary form) is approximately
[1+ logy(1 + |a)], the celing of (1 +log,(1 + |a])), that is, the positive integer just
> (14 1logy(1 + |])). Since the data in an LCP (g, M) of order n is n, ¢, M, we can
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define the size of this LCP to be

L= [(1 + logyn) + 2"_: (1 + logy (1 + |m”|)) + i(l + logy (1 + |qj|)>-‘ :

An Ellipsoid in R"

An ellipsoid in R" is uniquely specified by its center p € R"™ and a positive definite
matrix D of order n. Given these, the ellipsoid corresponding to them is {z : (x —
p)" D~z — p) < 1} and is denoted by E(p, D). Notice that if D = I, the ellipsoid
E(p, D) is the solid spherical ball with p as center and the radius equal to 1. When
D is positive definite, for z,y € R"™, the function f(z,y) = (x — y)TD 1 (x — y) is
called the distance between r and y with D~! as the metric matrix (if D = I,
this becomes the usual Euclidean distance). The ellipsoid methods discussed in the
following sections obtain a new ellipsoid in each step by changing the metric matrix.
Hence these methods belong to the family of variable metric methods. Also, the
formula for updating the metric matrix from step to step is of the form D,,; = a
constant times (D, + C;), where D; is the metric matrix in step j for j = r,7 + 1;
and (). is a square matrix of order n and rank 1 obtained by multiplying a column
vector in R"™ by its transpose. Methods which update the metric matrix by such a
formula are called rank one methods in nonlinear programming literature. Rank
one methods and variables metric methods are used extensively for solving convex
unconstrained minimization problems in nonlinear programming. See references [10.2,
10.3, 10.9, 10.13]. The ellipsoid methods discussed in the following sections belong to
these families of methods.

8.4 An Ellipsoid Algorithm for the
Nearest Point Problem on Simplicial Cones

Let B = (b;;) be a nonsingular square matrix of order n, and b = (b;) a column vector
in R". We assume that all the data in B, b is integer, and consider the nearest point
problem [B;b] discussed in Chapter 7. This is equivalent to the LCP (g, M) where
M = BTB, § = —BTb, and so M, § are integer matrices too, and M is PD and
symmetric. If b € Pos(B), then the point b is itself the solution of [B;b], and (w = 0,
z = B71b) is the unique solution of the LCP (g, M). So we assume that b ¢ Pos(B)
(this implies that b # 0). Here we present an ellipsoid algorithm for solving this nearest

point problem [B;b] and the corresponding LCP (7, M). We begin with some results
necessary to develop the algorithm.
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Definitions

Let ¢ be a small positive number. Later on we specify how small € should be. Let

K ={2z: B2 >0,BT(x —b) >0}

E :{.’17' _QT$_3)<bTb}

Bd(E) = Boundary of E = {z: (z — 2)T( g b}

E; :{ar:(a:—g)T(a:—g)é

Ly = {(1 +logyn) + > (1 + log, (|bi;| + 1)) + Z (1 + log, (|b;| + 1))}
ij=1 =1

Ly =n(n+1)(Ly +1)

Ly = (n(2n+1)+1)Ly

T = Nearest point in Pos(B) to b

M = (mi;)=B"B

q = (g:) = —B"b

Z =B 'z

m; =g+ Mz

0 = 397 L=2,

Some Preliminary Results

Our nearest point problem [B;b] is equivalent to the LCP (g, M). Each m;; or g; is of
the form y17vy2 4+ y3v4 + - - - + Y2n—172n, Wwhere the 4’s are entries from B, b, and hence
are integer. So we have

logy|mij| = loga(|v1v2 + - - -+ Yen—172nl)

1ogy (71| + 2)(J72 +2) + ... + (2n—1] + 2)(72n| + 2))
log, ((Iv1] + 2)(1v2l +2) - .- (y2n] +2))

2n
> logy (|l + 2)
t=1

2n

> (1 +logy (el + 1))

t=1
Ly .

IA A

[IA

[IA

So the total number of digits needed to specify the data in the LCP (g, M) in binary
encoding is at most Ls.

From well known results the absolute value of the determinant of any square
submatrix of B is at most % See Chapter 15 in [2.26]. So there exists a positive

integer vy < % such that all the data in the system
vB~lz
BT (z —b)

0

. (8.2)

v v
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are integers. The absolute value of each entry in yB~!is < (%)2 (since it is less than
or equal to a subdeterminant of B times ). Hence the size of (8.2) the total number
of digits in the data in it, in binary encoding, is at most Lg.

Theorem 8.1 K has nonempty interior.

Proof. Proving this theorem is equivalent to showing that there exists an z € R"
satisfying each of the constraints in the definition of K as a strict inequality. This
holds iff the system

Bz >0
BTy — BTb.Tn_H >0
Tn+1 >0

has a feasible solution (z,x,+1) = X. By Motzkin’s theorem of the alternatives (The-
orem 5 of Appendix 1) this system has a feasible solution X iff there exists no row
vectors m, ;1 € R™, § € R! satisfying

7B~ + ,uBT =0
—uBTb+6=0 (8.3)
(m,p,6) =0
From the first set of constraints in this system we have uBT B = —r < 0. Since BTBis

PD, we know that uBT B < 0, > 0 implies that p, must be 0 in any feasible solution
of (8.3). This in turn implies that 7, ¢ will have to be zero too, a contradiction. So
(8.3) has no feasible solution, hence K has a nonempty interior.

[
Theorem 8.2 KNE=KnNBd(E)={z}.
Proof. By the results in Chapter 7, (W, z) is the solution of the LCP (g, M). So z =
B7'z>0,0<w=q§+Mz= BTb+BTBB z=DBT(z-b). Also (z—2)T(z—-2)-

(42) =Tz — 37 =77 (7 — b) = 27 BT(z — b) = 2'w = 0. So 7 € KNE.

Conversely, suppose # € KN E. Define 2 = B~'%, @ = BT (2 — b). Since # € E
we have 0 > (& — 2)7(& — &) — (&) = 27(& — b) = 27@. Since & € K, we have
2>0,w >0, and hence 7@ > 0. These two together imply that 27w = 0 and we
can verify that @ = BT (% — b) = g+ M2. These facts together imply that (@, 2) is
the solution of the LCP (g, M). Since M is PD, by Theorem 3, the LCP (g, M) has
a unique solution and so (w, 2) = (w, z). So £ = . Thus KNE = {z}. Also, for all
z € K we have (v — 8)T(z — 8) = 2T (z — b) + (52) = (B~22)T BT (v — b) + (232) >
(3%). This implies that K NE = K N Bd(E).

[]

Theorem 8.3 I is an extreme point of K.

Proof. Since M is PD, (w, z), the unique solution of the LCP (¢, M) defined above,
is a complementary BFS. So Z is an extreme point of {z : —Mz < ¢,z > 0} =T. It
can be verified that z € T iff x = Bz € K. So there is a unique nonsingular linear
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transformation between I' and K. This, and the fact that z is an extreme point of I’
implies that £ = B~'Z is an extreme point of K.

[
Theorem 8.4 If (w = (w;),Zz = (2;)) is any extreme point of
w—Mz= q
w>0, z2>0, (8.4)

then w;, %, is either 0 or > 2~2, for each i.

Proof. As discussed above, Lj is the size of the system (8.4). This result follows from
the results discussed in Chapter 15 of [2.26].
[

Theorem 8.5 The Fuclidean lenght of any edge of K is > 27 Ls,

Proof. If the edge is unbounded, the theorem is trivially true. Each bounded edge of
K is the line segment joining two distinct adjacent extreme points of K. Let x!, x2
be two distinct adjacent extreme points of K. Since K is the set of feasible solutions
of (8.2), the results discussed in Chapter 15 of [2.26] imply that z! = (% . Z=1)

V1 vy
2 _ (w12 Un2 ) : .
r° = (E’ cee ﬁ) where all the u;;’s are integers, vy, vy are nonzero integers, all
L3 . . . .
2= Also, since z' # 22, these facts imply that there exists a j

satisfying [« — x7| > 27F2. This clearly implies that [|z! — 22|| > 27 Ts,

|U1;j|, |’U1|, |’U2| are é

[]

Theorem 8.6 Ifec < 2_2(“+1)2L1, the n-dimensional volume of KN E; > &"
2—(n+1)L3_

Proof. KN Bd(E) = {z} and K has a nonempty interior. So K N E; contains all
the points in K is an e-neighbourhood of z, and hence has a nonempty interior and a
positive n-dimensional volume.

If one takes a sphere of radius «, a concentric sphere of radius a + ¢, and a
hyperplane tangent to the smaller sphere at a boundary point x on it, then a tight
upper bound on the distance between x and any point in the larger sphere on the side
of the hyperplane opposite the smaller sphere is v/2a + 2. Also the radius of E is

% < 2L1=1) 7 is an extreme point of K, and every edge of K through z, has a

length > 2~ Ls by Theorem 8.5. These facts and the choice of ¢ here, together imply
that every edge of K through Z intersects the boundary of E;. Let Vi,...,V,, be points
along the edges of K through Z that intersect the boundary of E;, at a distance of
at most 1 but greater than ¢ from z, such that {z, Vi,...,V,,} is affinely independent.
The portion of the edge between x and Vj lies inside E; for at least a length of €. See
Figure 8.1. If V;(e) is the point on the edge joining Z and V; at a distance of ¢ from
Z, the volume of E; N K is greater than or equal to the volume of the simplex whose
vertices are z, V;(e) for ¢ = 1 to n. From the choice of V;, V;(¢) —z = v(V; — z) where
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v > €. So in this case the volume of E; N K is greater than or equal to

1 . _ ) . -
" ‘determlnant of <€(V1 —z) + ... i eg(Vh- x)) ‘
= .| determinant of (Vi =2) : ... i (Vu—2)
n!
en . 11 : ... 1
= ‘ determinant of [ FOVioi oV ] ‘

> gt~ (nt)ls

using the results from Chapter 15 in [2.26].

Figure 8.1 The volume of E; N K is greater than or equal to the volume of
the shaded simplex.

8

Theorem 8.7 Let2 € EiNK, 2=B"'%, @ =BT(Z—b). Then, forallj=1ton

& —z;] < 2/e
-z £ n2®ye
@ —w;| < n2* e

Proof. As mentioned earlier, the absolute value of any entry in B~ is < 251 and the

same fact obviously holds for BT. The radius of E is % < 2L1=1 The results in this

theorem follow from these facts and the definitions of E, Eq, w, 2.

[
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Theorem 8.8 LetZ € E;NK and 2= B~ !4 Ife < 9-2(n+1)*(L1+1) ¢hep

(
(

>

IAVAIVAY

)27 Lz, for j such that z; = 0
)27L2 = §, for j such that z; > 0 .

J

J

o=

Proof. This follows from Theorems 8.7 and 8.4.

The Algorithm
Fix ¢ = 2~ 20+1)*(La+1)  Congider the following system of constraints.

-B7'z <0, BT(z-1b)<0 (8.5)

- 0)(-7) < <e+ \/?) (8.6)

Any point & € R" satisfying both (8.5) and (8.6) is in KNE;. We use an ellipsoid
method to first find such a point Z. Then using & we compute Z in a final step.
2
Define 2! = &, A, = I(s + \/%) , where I is the unit matrix of order n,
N =8(n+1)*(Ly +1). Go to Step 2.

General Step r + 1

Let 2", A", E, = E(z", A,.) be respectively the center, positive definite symmetric
matrix, and the ellipsoid at the beginning of this step. If 2" satisfies both (8.5), (8.6),
terminate the ellipsoid method, call " as £ and with it go to the final step described
below. If 2" violates (8.5) select a constraint in it that it violates most, breaking ties
arbitrarily, and suppose it is ax < d. If 2" satisfies (8.5) but violates (8.6), find the
point of intersection £, of the line segment joining ' and £ with the boundary of E;.

vTh
So " = Azl + (1 — X)z" where A =1 — ﬁ Find the tangent plane of E; at its
boundary point ", and find out the half-space determined by this hyperplane which
does not contain the point z". Suppose this half-space is determined by the constraint

“ax < d”. See Figure 8.2.

Now define
 d—azx"
i vaAraT
1—vn AyaT
r+1 _ r T T
T <1+n>m (8.7)
(1— 72)n2 2 L=y (AraT)(ATaT)T
A =~ TI0 (4 _
+ n? —1 (n+1>(1—fy,,> aA,aT
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where the square root of a quantity always represents the positive square root of that
quantity. With 2™+ A..q, B,y = E(2"! A,41) move to the next step in the
ellipsoid method.

After at most N steps, this ellipsoid method will terminate with the point =" in
the terminal step lying in E; N K. Then go to the final step discussed below.

Half-space ax<d

Figure 8.2 Construction of “ax < d” when 2" satisfies (8.5) but violates
(8.6).

Final Step : Let the center of the ellipsoid in the terminal step be & (this is the
point z" in the last step r of the ellipsoid method). Let 2 = B~ !2. Let J = {j : j
such that 2; > 6}. Let y; = z; if j € J, w; if 7 ¢ J and let y = (y1,...,¥yn). Then
y is a complementary feasible basic vector for the LCP (g, M), and the BFS of (8.4)
corresponding to y is the solution of this LCP. If this solution is (w, ), £ = BZ is the

nearest point in Pos(B) to b.

Definition We denote by e, the base of natural logarithms. e = 1+ | ﬁ, it is
approximately equal to 2.7.

Proof of the Algorithm

Let 2", A,, E, = E(z", A,), be the center, positive definite symmetric matrix,
and the ellipsoid at the beginning of step r + 1. The inequality “ax < d” is choosen in
this step r 4+ 1 in such a way that x" violates it. In the hyperplane “ax = d” decrease d
until a value d; is reached such that the translate “ax = d;” is a tangent plane to the
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ellipsoid E,., and suppose the boundary point of E,. where this is a tangent plane is 7,.
Then E,;1 = E(z" ™1, A,.11) is the minimum volume ellipsoid that contains E, N {z :
ax < d}, the shaded region in Figure 8.3, it has 7, as a boundary point and has the
same tangent plane at 7, as E,. From the manner in which the inequality “az < d”
is selected, it is clear that if E, D E; N K, then E,y; D E; N K. Arguing inductively
on r, we conclude that every ellipsoid E, constructed during the algorithm satisfies
E, D E; N K. From Theorem 8.6, the volume of E; NK is > 9—4n(n+1)*(L1+1)  From
the results in Chapter 15 of [2.26] we know that the volume of E, gets multiplied by
a factor of e~ ZTmF1 or less, after each step in the ellipsoid method. E; is a ball whose

radius is (e + \/@), and bTh < 2211 So the volume of E; is at most 222L1. The
algorithm terminates in step r, if the center z” satisfies (8.5), (8.6) and that is, it is a
point in E; N K. If termination does not occur up to step N = 8(n + 1)*(Ly + 1), the
volume of Ex is at most 92Ling~3min <« 2-40m+1)*(Li+1) Fyom the fact that the
volume of E; N K > 2-4n(m+1)*(L1+1) this is a contradiction to Exy D E; N K. So for
somer < N, we will have " € E;NK, and in that step the ellipsoid method terminates.
The validity of the remaining portion of the algorithm follows from Theorem 8.7, 8.8,
2.9. Since the ellipsoid method terminates after at most N = 8(n + 1)*(L; + 1) steps,
the algorithm is obviously polynomially bounded.

Half-space
axsd

Er+1

Acg

g
I
o

Figure 8.3 Construction of the new ellipsoid E,

In practice, it is impossible to run the algorithm using exact arithmetic. To run
the algorithm using finite precision arithmetic, all computations have to be carried out
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to a certain number of significant digits as discussed in [8.13], and the ellipsoid have
to be expanded by a small amout in each iteration (this is achieved by multiplying the
matrix A, in each step by a number slightly larger than one in each step). As pointed
out in [2.26] if each quantity is computed correct to 61nL; bits of precision, and D4
multiplied by (1 + =) before being rounded, all the results continue to hold.

16n2

Computational Comparison

Y. Fathi [8.10] did a comparative study in which this ellipsoid algorithm has been
compared with the algorithm discussed in Chapter 7 for the nearest point problem.
We provide a summary of his results here. In the study the matrix B was generated
randomly, with its entries to be integers between —5 and +5. The b-vector was also
generated randomly with its entries to be integers between —20 and +20. Instead
of using computer times for the comparison, he counted the number of iterations of
various types and from it estimated the total number of multiplication and division
operations required before termination on each problem. Problems with n = 10, 20,
30, 40, 50 were tried and each entry in the table is an average for 50 problems. Double
precision was used. It was not possible to take the values of ¢ and d as small as
those recomended in the algorithm. Mostly he tried £,6 = 0.1 (the computational
effort before termination in the ellipsoid algorithms reported in the table below refers
to €,0 = 0.1), and with this, sometimes the complementary basic vector obtained
at termination of the algorithm turned out to be infeasible (this result is called an
unsuccessful run). He noticed that if the values of these tolerances were decreased,
the probability of an unsuccessful run decreases; but the computational effort required
before termination increases very rapidly.

Average Number of Multiplication and Division
Operations Required Before Termination in

n The Algorithm of Chapter 7 The Ellipsoid Algorithm

10 Too small 33,303

20 16,266 381,060

30 42,592 1,764,092

40 170,643 5,207,180

50 324,126 11,286,717

These empirical results suggest that the ellipsoid algorithm cannot compete with the
algorithm discussed in Chapter 7 for the nearest problem, in practical efficiency. The
same comment seems to hold for the other ellipsoid algorithms discussed in the follow-
ing sections.
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8.5 An Ellipsoid Algorithm for LCPs
Associated with PD Matrices

In this section M = (m;;) denotes a given PD matrix of order n (symmetric or not)

with integer entries, and ¢ = (¢;) denotes a given nonzero integer column vector in R".
We consider the LCP (q, M).

Definitions

Let ¢ be a small positive number. Later on we specify how small € should be. Let

K ={z: Mz4+q >0, z>0}.
(w = Mz + q,Z) = unique solution of the LCP (¢, M).
1) — 2T(Mz+q).
E ={z: f(») <0}
Bd(E) = Boundary of E = {z: f(z) = 0}.
= [(1 + logyn) + Z(l + logy (|m4j| + 1)) + Z(l + logy (|gi| + 1))-‘
2] (3
E. ={z: 2T (Mz+q) <e} fore > 0.
Eo = {z: 2Tz <22t}

Since M is a PD matrix, E defined above is an ellipsoid.
Some Preliminary Results

Theorem 8.9 The set K= {z: Mz+ ¢ >0,z > 0} has nonempty interior.

Proof. Remembering that M is a PD matrix, the proof of this theorem is similar to
the proof of Theorem 8.1 of Section 8.4.
[]

Theorem 8.10 ENK =Bd(E)NK = {z}.

Proof. This follows directly from the definitions.
[]

Theorem 8.11 Z is an extreme point of K. Also, every extreme point z of K other
than z satisfies f(z) > 272L.

Proof. Since (w, z) is a BFS of: w — Mz =¢, w >0, z > 0; Z is an extreme point of
K. Also, L is the size of this system. Since (w, z) is the unique solution of the LCP
(g, M), at every extreme point z of K other than z, we must have f(z) > 0. Using
arguments similar to these in Theorem 8.4 of Section 8.4, we conclude that for each
i, either z; is 0 or > 27X and M;.z + ¢; is 0 or > 27 ¥, at every extreme point z of
K. Combining these results we conclude that every extreme point z of K other than
Z satisfies f(z) > 272k,

[
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Theorem 8.12 For 0 < ¢ < 272L the n-dimensional volume of Eg N E. N K is
> 6n2—3(n+1)L_

Proof. Obviously Z € E. N K, and by Theorem 8.11, no other extreme point z of K
lies in Ec N K for 0 < e < 272L_ So for every value of ¢ in the specified range, every
edge of K through z intersects E.. Also, since K has a nonempty interior by Theorem
8.9, E. N K has a positive n-dimensional volume, K might be unbounded, but by the
results in Chapter 15 of [2.26], at every extreme point of K, both z; and M;.z + ¢; are
< % for each 1. LetIA(:{z:()gzj < %,OéMj.z+qj§ %, for j =1 ton}. By
the above facts, every edge of K through z is either an edge K (if it is a bounded edge
of K), or a portion of an edge of K (if it is an unbounded edge of K). Let z!,..., 2" be
adjacent extreme points of Z in K, such that {Z : 21,..., 2"} is affinely independent.
The above facts imply that all these points z, zt, t = 1 to n are in Eq. Since M is PD,
f(z) is convex. Let A = €272, Soforeach t =1 ton, f(z+ Azt —2)) < (1—\)f(2)+
M) = Mf(2Y) = A, 2H(M;.2" 4+ ¢;) < )\Z?:l(%)(%) < e. This implies that
the line segment [z, z + A(2* — 2)] completely lies inside Eg N E. N K. So the volume
of Eg NE. N K > the volume of the simplex whose vertices are z, Z+ A(2" — Z), t =1
to n, which is

1 . = . . 5
o determinant of (A(z' —2) : ... i A" —2))|

Arg—(n+L by results similar to those in the proof of Theorem 8.6

6n2—(3n+1)L )

v v

Theorem 8.13 Let ey = 2~ (6441 For any point 2 € Eg NE,, N K, we have:

either 2 < \Jeo < 273
or M;.z+ q; é Ve < 2-3L

Proof. For any i, if both 2; and M;.2+q; are > /g, then 2(M2+q) > ¢, contradiction
to the fact that z € Eg N E., N K.
[

Theorem 8.14 Let Z by any point in Eg N E., N K. Define
) w; if 2; < 2—3L
Vo= ifz > 2780
Then (y1,...,ys) is a complementary feasible basic vector for the LCP (q, M).

Proof. Let J; = {Z D 2 i 2_3L}, Js = {Z P2 < 2_3L}. SoJiNJdy = () and Jiuds =
{1,...,n}, and by Theorem 8.13, M;.2 + q; < 273 for i € J;.
In [8.11] P. Gacs and L. Lovész proved the following lemma :
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Consider the system of constraints
Az b, i=1tom (8.8)
with integer data, and let [ be the size of this system. Suppose & is a solution of
Apz <bi+27', i=1tom

such that A;.x > b;, ¢ =1to k, and let {Ap,.,..., A, .} C {A1.,..., A} be such that
it is linearly independent and it spans {41.,..., Ay,.} linearly. Let z be any solution
of the system of equations

Ay, x=0b,, t=1tor.

Then 7 is a solution (8.8). See also Chapter 15 in [2.26]. We will use this lemma in
proving this theorem. Consider the system :
—Mi.z§qi+2_31‘, t1=1ton
—2<0+273L i=1ton
Mz < —qi+27% el
2z <0+273 ied,.

(8.9)

We know that Z solves this system and in addition Z also satisfies M;.2 > —q;, i € J;
and 2 >0, ¢ € Jy. Also, since M is PD, the set {M;. : i € J1}U{I; : i € Jo} is linearly
independent and linearly spans all the row vectors of the constraint coefficient matrix
of the system (8.9). From the lemma of P. Gacs and L. Lovasz mentioned above, these
facts imply that if Z is a solution of the system of equations :

Mi.z = —q;, 1 € Jl

then 2z also satisfies :
—Mi.Z

—2;

gi,t=1ton
0, e=1ton

AN

Soz>0,w=MZz+q >0 and since z; = 0 for i € Jo and M;.z +¢q; = 0 for i € J;
we have f(Z) = 0 (since Jy NJy = @ and J; UJ2 = {1,...,n}). So (w,2) is the
solution of the LCP (g, M). Since Z is the solution of (8.10), (w, Z) is the BFS of the
system: w — Mz = ¢, w > 0; z > 0; corresponding to the basic vector y. So y is a

complementary feasible basic vector for the LCP (¢, M).
[

The Algorithm

Fix ¢ = g9 = 27(6L+1), So Eg = E(0,22%]). Define N = 2(n + 1)2(11L + 1) in this
section. With 20 =0, Ay = 22T, B(2°, Ap) go to Step 1.



350 CHAPTER 8. POLYNOMIALLY BOUNDED ALGORITHMS FOR SOME CLASSES OF LCPs

General Step r+1: Let 2", A, E, = E(2", A,); be respectively the center, PD
symmetric matrix, and the ellipsoid at the beginning of this step. If 2" satisfies :

“Mz—q<0
= (8.11)

—¢<0
T(Mz+q)<e (8.12)

terminate the ellipsoid algorithm, call 2" as Z and go to the final step described
below. If 2" violates (8.11), select a constraint in it that it violates most, breaking ties
arbitrarily, and suppose it is “az < d”. If 2" satisfies (8.11) but violates (8.12), let
&" be the point of intersection of the line segment joining the center of the ellipsoid
E., (thisis, 2/ = —(MJ“TMT)_I(%)) and z" with the boundary E.,. Therefore {" =
Az’ 4+ (1—X)z", where ) is the positive root of the equation (A2’ + (1 —X)z")T M (X2’ +
(1 —=X)z")+ q = €p. Let az = d by the equation of the tangent hyperplane to E., at
§", where the equation is written such that the half-space az < d does not contain 2".

Define 7,41, Ay41, as in (8.7) and

L _ (1 ey ( Ara® )

1+n )\ Jad,aT

With 2"+ A, 1, E.p1 = E(2"1 A, 41), move to the next step in the ellipsoid algo-
rithm.

After at most N steps, this ellipsoid algorithm will terminate with the point 2" in
the terminal step lying in Eg N E., N K. Then go to the final step described below.

Final Step: Let the center of the ellipsoid in the terminal step by z. Using 2, find
the complementary BFS as outlined in Theorem 8.14.

Proof of the Algorithm

The updating formulas used in this ellipsoid algorithm are the same as those used in
the algorithm of Section 8.4. Hence using the same arguments as in Section 8.4, we
can verify that E, D Eo N E., N K for all r. The volume of E is < 22Ln - After each
step in the ellipsoid algorithm, the volume of the current ellipsoid E, gets multiplied
by a factor of ¢" 2o or less. So if the ellipsoid algorithm does not terminate even
after N steps, the volume of Ey < e~(r+1)(A1L+1)92Ln o 9—L(®n+1)—n " coperadiction
to the fact that Exy D Eqg N E,, N K and Theorem 8.12. So for some r < N, we will
have 2" € Eog N E.,, N K, and in that step the ellipsoid algorithm terminates. Hence
the algorithm is obviously polynomially bounded.

Comments made in Section 8.4 about the precision of computation required, re-
main valid here also.
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8.6 An Ellipsoid Algorithm for LCPs
Associated with PSD Matrices

In this section we consider the LCP (g, M) where M denotes a given PSD matrix of
order n (symmetric or not) with integer entries, and ¢ denotes a given integer column
vector in R".

Definitions

Let K, E, Bd(E), L, E. be as defined in Section 8.5. Let Eg = {z: 272 < 22(L+1},
Since M is only PSD here, K may have no interior, in fact K may even be empty. Also
E, E. may not be ellispoids. Let e, = (1,...,1)T € R".

Some Preliminary Results

Theorem 8.15 In this case the LCP (q, M) has a solution iff K # (. If K # 0,
there exists a solution, (w, z), to the LCP (q, M) where Z is an extreme point of K.
When K # (), the LCP (q, M) may have many solutions, but the set of all solutions is
a convex set which is ENK = Bd(E) N K.

Proof. Since M is PSD, the fact that (¢, M) has a solution iff K # ) follows from
Theorem 2.1. When K # (), the complementary pivot algorithm produces a solution
(w, z), to the LCP (g, M) which is a BFS and this implies that z is an extreme point
of K. The set of all solutions of the LCP (g, M) is obviously Bd(E) N K, and from the
definition of K, and E here it is clear that in this case BA(E) NK = ENK, and since
both E and K are convex sets (E is convex because M is PSD), this set is convex.

[]

Theorem 8.16 When K # (), Eo N E. N K contains all the extreme points z of K
such that (w = Mz + q, z) is a solution of the LCP (q, M).

Proof. By the results discussed in Chapter 15 of [2.26] if (w, z) is solution of (¢, M)
which is BF'S, then z € Eq. The rest follows from Theorem 8.15.
[
In this case Eg N E. N K may not contain all the z which lead to solutions of the
LCP (q, M), Theorem 8.16 only guarantees that Eo N E. N K contains all the z which
are extreme points of K that lead to solutions of (¢, M). Since M is PSD, the set of
solutions of the LCP (¢, M) may in fact be unbounded and hence all of it may not lie
in E().

Theorem 8.17  If z; is positive in some solution of (q, M), then its complement w;
is zero in all solutions of (q, M'). Similarly if w; is positive in some solutions of (q, M),
then z; is zero in all solutions of (q, M).
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Proof. By Theorem 8.15, the set of all solutions of (¢, M) is convex set. So if (w?, 1),
(w2, 2%) are two solutions of (¢, M) satisfying the properties that 2z} > 0 and w? > 0,
then the other points on the line segment joining (w?!, 21), (w?, 22) cannot be solutions
of (g, M) (because they violate the complementarity constraint w;z; = 0) contradicting

the fact that the set of solutions of (¢, M) is a convex set.
[

Theorem 8.18 If Z is an extreme point of K, for each i either Z; = 0 or 2L <z <

. Also either M;.Z + q; is zero or 27% < M;.Z +¢q; < 2" Also at every extreme point

z ofK that does not lead to a solution of (g, M), we W1'11 have f(2) = 2T (Mz + q) >
272k,

Proof. Similar to the proof of Theorem 8.11 in Section 8.5.

[
Theorem 8.19 K # () iff the set of solutions of
Mz+q> —2710%
T (8.13)

has a nonempty interior.

Proof. By the results of P. Gacs and L. Lovész in [8.11] (also see Chapter 15 in [2.26]),
(8.13) is feasible iff K # (). Also any point in K is an interior point of the set of feasible
solutions of (8.13).

[

Let K; denote the set of feasible solutions of (8.13).

Theorem 8.20 Let ¢ = 2~ 6L+ For any point 2 € Eg N E,, N K1, we have for
each i =1 to n, either 2; < 273%, or M;.2 + ¢; < 273L.

Proof. Suppose that 2; > 273" and M;.2 +¢; > 273%. Since 2 € E,, 27 (M2 +¢q) <
27(6L+1). Then we have Y, ,4; 2(M;.2 + q;) < 27081 — 276 < _9=(6L+1) Byt
from (8.13) and the definition of Ey we arrive at the contradiction Zt 1t Z(My.2+qy)
> —(’I’L _ 1)2 10L(22L+1 + 2L) S 9~ (6L+1).

B 0

Theorem 8.21 Let e = 2~ 6L+ If K +£ (), the n-dimensional volume of Eq N
E., NK; is > 27110k,

Proof. Assume K # (). So (¢, M) has a solution. Let (w, Z) be a complementary BFS
of (¢, M). So, by Theorem 8.16, z € BA(E)NK. For A > 0 define the hypercube; C) =
{z:2€R" |zj—zj| < 4 forall j = 1 ton}. Then, clearly, the n-dimensional volume of
C, is A™. We will now prove that C, C KiNEoNE,, for A < 27%. Since the radius of
Eg is 21T, C, C Ej by the definition of Cy and the fact that ||Z|| < 2 from Theorem
8.18. Let 2z be any point in Cy. Since z; > 0, M;.Z +¢; > 0 for all i = 1 to n, we have;
2s-32 -2 20N Mg 2 Mzt — 3 T Imy| 2 —27 010
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2t > —2710L  So Cy C K;. Also, since 27 (Mz + q) = 0 (since (W = Mz + q,2)
solves (q, M)), we have: 2T (M2+4q) = (2-2)T(Mz+q+MT2)+ (2—-2)TM(2-%) <

an(28 + 282%) + (3)2 X0, i mi| < 27 (MEAp220H2 4 290 —2(1EH) < ¢ This
implies that Cy C E.,. Hence Cyx C K; NEyNE,,. Now letting A = 27 11L " the

volume of Cy is 2711, and these facts imply the theorem.
[
Let Z be any point in Eg N E., N K;. Define

Jr={i: Mi.24+¢ <0}, J={i:0<M.2+¢q <273},
Jy ={i:z <0}, Jy={i:0<z <2730},

Then by Theorem 8.20, J7 UJT UJ, UJS = {1,...,n}. Furthermore, 2 is a solution
of :

~M;.z< ¢+23 i=1ton
—2; E 2-38L, 1=1ton

M;.z é —q; + 278 for i e Jf (8.14)
z < 2730 for i € I

Theorem 8.22 Let Z be any point in Eg N E., N K;. Let I be the unit matrix
of order n. Using the constructive procedure described by P. Gacs and L. Lovasz in
[8.11] (see also Theorem 15.7, Chapter 15 of [2.26]) obtain a new solution, which we
will denote by the same symbol z, such that if J7, J}L, Js, J; are the index sets
corresponding to this new Z, then the new Z also satisfies (8.14), and there exists a
linearly independent subset, D C {M;. :i € J; UJ]}U{I;. :i € J; UJS} such that
D spans linearly {M;. :i=1 ton}U{I;. : i =1 to n}. Furthermore, if Z is a solution

of :
—M;.z = q;, for i such that M;. € D

z; = 0, for i such that I;. € D
then (W= Mz + q,z) is a solution of the LCP (q, M).

Proof. This theorem follows from the results of P. Gacs and L. Lovész in [8.11] (or
Theorem 15.7, Chapter 15 in [2.26]) applied on (8.14). We know that Z satisfies :

—-M;.2 > q;, foriedy
M;.z > —q;, foriEJiF
%2> 0, forieldy
2> 0, forielf

By these results, z is a solution of
—Mz<q
-2=0.
Furthermore, z satisfies :

M;.z = —q;, forie J7 UJT
Z = 0, forieJ; UuJS
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by the spanning property of D and these results. Also, since {1,...,n} is the union
of J7, 1, J5, JF, at least one of w; or z; is zero for each i = 1 to n. All these facts
together clearly imply that (w, z) is a solution of the LCP (q, M).

[

The Algorithm

Apply the ellipsoid algorithm discussed in Section 8.5 to get a point 2 in Eg N E., N
K, initiating the algorithm with 20 = 0, Ag = 23(L+V] By = E(2°, Ap). In this
case K could be (). This could be recognized in the ellipsoid algorithm in two different
ways. For any r, if the quantity =, in step r of the ellipsoid algorithm turns out to be
< —1, it is an indication that the set EgNE. NK; = (), terminate, in this case K = ()
and the LCP (g, M) has no solution (for a proof of this see Chapter 15 of [2.26]). If
vy > —1, compute 2”1, A,,; and continue. The volume of Eg here is < 22n(L+1)
and if K # 0, the volume of Eq N E., N Ky is > 27112 by Theorem 8.21. Hence if
K # (), this ellipsoid algorithm will terminate in at most 2(n +1)2(13L + 1) steps with
a point Z € Eg N E., N K;. So, if the ellipsoid algorithm did not find a point in Eq N
E., N K; even after 2(n + 1)2(13L + 1) steps, we can conclude that K = (), that is,
that the LCP (¢, M) has no solution. On the other hand, if a point 2 in Eg N E., N
K is obtained in the ellipsoid algorithm, then using it, obtain a solution (w, z) of the
LCP (g, M) as discussed in Theorem 8.22.

8.7 Some NP-Complete Classes of LCPs

The ellipsoid algorithm discussed in Section 8.4, 8.5, 8.6 can only process LCPs asso-
ciated with PSD matrices (the class of these LCP is equivalent to the class of convex
quadratic programs). In [8.6, 8.15] it was shown that certain LCPs satisfying special
properties can be solved as linear programs, and these LCPs are therefore polynomially
solvable using the ellipsoid algorithm (see Chapter 15 in [2.26]) on the resulting linear
programs.

For the general LCP, the prospects of finding a polynomially bounded algorithm
are not very promising, in view of the result in [8.3] where it is shown that this problem
is MP-complete. See reference [8.12] for the definition of A/P-completeness. Let aq, ...,
an, ap be positive integers and let M, 2 and ¢(n + 2) be the following matrices :

ai

-1, 0 0 :

M40 = [ el —n 0 ] , qn+2)=1 ay
—el 0 —n —ao

ao
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where I,, denotes the unit matrix of order n, and e, is the column vector in R" all
of whose entries are 1. Also consider the 0-1 equality constrained Knapsack feasibility
problem :

2 i = (8.15)
z;=0or1 foralli=1ton.

If (w,Z2) is a solution of the LCP (q(n + 2), My, 42), define &; = i—l, i =1 to
n, and verify that # = (#1,...,%,)7 is a feasible solution of the Knapsack problem
(8.15). Conversely of & = (£1,...,2,)T is a feasible solution of (8.15), define @, =
Zn41 = Wpto = Znto = 0 and 2; = a;2;, w; = a;(1 — Z;), 1 = 1 to n; and verify that
(W = (Wy,...,Wnt2),2 = (21,--.,2n+2)) is a solution of the LCP (¢(n + 2), Mp42).
Since the problem of finding whether a feasible solution for (8.15) exists is a well
known N/P-complete problem (see [8.12]), the problem of checking whether the LCP
(¢(n+2), M,,12) has a solution is NP-complete. Also, since the matrix M,, ;5 is negative
definite, the class of LCPs associated with negative definite or negative semidefinite
matrices are NP-hard. Also M, o is lower triangular. This shows that the class of
LCPs associated with lower or upper triangular matrices is N/P-hard, if negative entries
appear in the main diagonal.
Let M be a given negative definite matrix with integer entries, and let ¢ € R"™ be
a given integer column vector. In this case the LCP (¢, M) may not have a solution;
and even if it does, the solution may not be unique. From the results in Chapter 3
we know that the number of distinct solutions of the LCP (g, M) in this case is finite.
Define :
K={z: 220, Mz+¢q >0}
E={z: 2T (Mz+q) >0}

Since M is negative definite, E is an ellipsoid. Let Bd(E) = boundary of E =
{2:2T(Mz+ q) = 0}.

Clearly any point z € Bd(E) N K satisfies the property that (w = Mz + ¢, z) is
a solution of the LCP (¢, M) and vice versa. So solving the LCP (g, M) is equivalent
to the probem of finding a point in BA(E) N K. However, in this case K C E, and
in general, BA(E) N K C EN K. See Figure 8.4. So the nice property that ENK =
Bd(E) N K which held for LCPs associated with PSD matrices does not hold here
anymore, which makes the LCP associated with a negative definite matrix much harder.
In this case (i. e., with M being negative definite), it is possible to find a point in ENK
using an ellipsoid algorithm (actually since K C E here, a point in K can be found
by the ellipsoid algorithm of Chapter 15 of [2.26] and that point will also lie in E),
but the point in E N K obtained by the algorithm may not be on the boundary of E,
and hence may not lead to a solution of the LCP (¢, M). In fact, finding a point in
Bd(E) N K is a concave minimization problem, and that’s why it is MP-hard.

The status of the LCPs (¢, M) where M is a P-but not PSD matrix, is unresolved.
In this case the LCP (¢, M) is known to have a unique solution by the results in
Chapter 3, but the sets {z : 27(Mz + q) < 0} are not ellipsoids. The interesting
question is whether a polynomially bounded algorithm exists for solving this special



356 CHAPTER 8. POLYNOMIALLY BOUNDED ALGORITHMS FOR SOME CLASSES OF LCPs

class of LCPs. This still remains an open question. It is also not known whether these
LCPs are NP-hard.

Figure 8.4 When M is negative definite, E and K may be as in one of the
figures given here. Points of K on the boundary of E, if any, lead to solutions
of the LCP (¢, M).

8.8 An Ellipsoid Algorithm for
Nonlinear Programming

In [8.9] J. Ecker and M. Kupferschmid discussed an application of the ellipsoid algo-
rithm to solve NLPs of the following form :

minimize fo(x)
subject to f;(z) <0, i=1tom

where all the f;(z) are differentiable functions defined on R", and we assume that
n > 1.

For the convergence of the ellipsoid algorithm, we need to specify an initial el-
lipsoid whose intersection with a neighborhood of an optimum solution has positive
n-dimensional volume. This requirement prevents the algorithm from being used in a
simple way for problems having equality constraints, but the penalty transformation
discussed in Section 2.7.6 can be used for them.

It is assumed that lower and upper bounds are avaible on each variable. [, u are
these lower and upper bound vectors. The initial ellispoid is chosen to be the one
of smallest volume among those ellipsoids with center z° = HT“ and containing {x :
| <2 <u}. Let this be Eg = {z: (v — 2°)T Dy (z — 2°) < 1} = Eo(2°, Dy), where

'(’U,l—ll)z 0 0 0 W
0 (Ug—lz)z 0 0
n
DOZZ 0 0 0
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Suppose we have E,. (2", D,). If " is infeasible, choose a violated constraint, say the
ith | where f;(x") > 0. In case x" is infeasible, the index i of the selected constraint
is that of the first violated constraint encountered under a search of the constraints
in cyclical order beginning with the constraint selected in the previous step. If z" is
feasible and V fo(z") = 0, terminate, 2" is optimal to NLP (under convexity assuptions,
it is a stationary point otherwise). If " is feasible and V fy(z") # 0, choose the index
¢ to be zero.

Having selected the index i (corresponding to a violated constraint if z” is in-
feasible, or the objective function if z" is feasible and V fy(z") # 0), let H, be the
hyperplane

H, ={z: —(Vfi(z")(x—2") =0} .

The hyperplane H, supports the contour f;(x) = f;(z") and divides the ellipsoid in
half. The center z"t! of the next ellipsoid E,;1 and the PD matrix D,;; used in
defining E, 1, are determined by the updating formulae

IV fi(zm)|
T
g —D,h

+vhD,.hT
d

l,r~|—1 = " +

n+1

n2 2
D,y = (Dr - ddT> .
e ] n—+1

The best point obtained during the algorithm and its objective value are main-
tained. Various stopping rules can be employed, such as requiring the difference be-
tween successive best values to be sufficiently small, etc.

The method is best suited for solving the NLP above, when all the functions f;(z)
are convex. If a nonconvex function is used to generate the hyperplane H, that cuts
E, in half, the next ellipsoid may not contain the optimal point, and the algorithm
may converge to a point that is not even stationary.

In computational tests carried out by J. G. Ecker and M. Kupferschmid [8.9], this
method performed very well.
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Figure 8.5 Construction of the new ellipsoid when z" is infeasible. The arrow
on constraint surface f;(z) = 0 indicates the feasible side, that is satisfying
fi(z) £0. fi(z) <0 is violated at 2" and is selected.

8.9 Exercises

8.4 Let A, D, b, d be given matrices of orders my X n, ms X n, my X 1, mg X 1
respectively with integer entries. Let F' be a given PD symmetric matrix of order n
with integer entries. Define.
Ky ={z: Az > b}
Ky ={z: Dz >d}
E={z: 2TFr <1}.
Construct polynomially bounded algorithms for checking whether
(i) K; C Ky
(ii)) E C Kj;.
Does a polynomially bounded algorithm exists for checking whether Ky C E 7
Why ?

8.5 Consider the quadratic program
minimize cx + %JJTD.’L'
subject to x < b



8.10. REFERENCES 359

where b > 0 and D is a Z-matrix of order n. Express the KKT optimality conditions
for this problem in the form of a special type of linear complementarity problem, and
develop a special direct method for solving it, based on Chandrasekaran’s algorithm
discussed in Section 8.1.

(J. S. Pang [8.17])

8.6 Study the computational complexity of the problem of checking whether the ellip-
soid E = {z: (x — )T D(z — z) < 1} where D is given integer PD symmetric matrix
and 7 is a given noninteger rational point, contains an integer point.

8.7 Show that the LCP (g, M) is equivalent to the following piecewise linear concave
function minimization problem.

n
minimize Y. (minimum{0, M.z — z; + ¢; } + 2;)
j=1
subject to Mz+q¢ >0

z 20.

(O. L. Mangasarian)
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