
Chapter �

POLYNOMIALLY BOUNDED
ALGORITHMS
FOR SOME CLASSES OF LCPs

In this chapter we discuss algorithms for special classes of LCPs� whose computational

complexity is bounded above by a polynomial in either the order or the size of the LCP�

We consider the LCP �q�M� where M is either a Z�matrix� or a triangular P �matrix�

or an integer PSD�matrix�

��� Chandrasekaran�s Algorithm for LCPs

Associated with Z�Matrices

Consider the LCP �q�M� of order n� where M is a Z�matrix� As discussed in Section

���� M 	 �mij� is a Z�matrix if all its o
 diagonal entries are nonpositive� that is

mij �
	 � for all i �	 j� The algorithm discussed below by R� Chandrasekaran �
����

terminates after at most n principal pivot steps� with either a solution of the LCP

�q�M� or the conclusion that it has no solution�

The Algorithm

The initial tableau is �
���

w z

I �M q
�
���

Step �� Start with the initial tableau and with w 	 �w�� � � � � wn� as the initial com�

plementary basic vector� If this is a feasible basis �i� e�� if q �	 �� it is a complementary

feasible basis� terminate� Otherwise� go to the next step�
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General Step� Let �q be the present update right hand side constants vector� If

�q �
	 �� the present basic vector is a complementary feasible basic vector� terminate�

Otherwise select a t such that �qt � �� Let �mtt be the present update entry in the

tth row and the column vector of zt� At this stage� the present basic variable in row

t will be wt �this follows from statement � listed below�� If �mtt �	 �� there exists

no nonnegative solution for �
��� and consequently the LCP �q�M� has no solution�

terminate� Otherwise if �mtt � �� perform a principal pivot step in position t and go

to the next step�

Using the fact that the initial matrixM is a Z�matrix� we verify that in the initial

system �
���� for any t 	 � to n� all the entries in row t are nonnegative with the

exception of the entry in the column of zt� From the manner in which the algorithm

is carried out� the following facts can be veri�ed to hold�

�� All pivot elements encountered during the algorithm are strictly negative�

�� For any t such that no pivot step has been performed in the algorithm so far

in row t� all the entries in this row on the left hand portion of the present

updated tableau are nonnegative� except� possibly the entry in the column

of zt� The infeasibility conclusion in the algorithm follows directly from this

fact�

�� If s is such that a pivot step has been carried out in row s in the algorithm�

in all subsequent steps� the updated entry in this row in the column of any

nonbasic zi is nonpositive�

�� Once a pivot step has been performed in a row� the updated right hand side

constant in it remains nonnegative in all subsequent steps� This follows from

statements � and ��

�� Once a variable zt is made a basic variable� it stays as a basic variable� and

its value remains nonnegative in the solution� in all subsequent steps�

�� All basic vectors obtained in the algorithm are complementary� and the algo�

rithm terminates either with the conclusion of infeasibility or with a comple�

mentary feasible basis�

�� At most one principal pivot step is carried out in each position� thus the

algorithm terminates after at most n pivot steps� Thus the computational

e
ort measured in terms of basic operations like multiplications� additions�

comparisons of real numbers� is at most O�n���
From these facts we conclude that if the system �w �Mz 	 q� w �

	 �� z �
	 ��

is feasible and M is a Z�matrix� then the LCP �q�M� has a complementary feasible

solution and the above algorithm �nds it� Hence� when M is a Z�matrix� the LCP

�q�M� has a solution i
 q � Pos�I
��� �M�� or equivalently� every Z�matrix is a Q��

matrix�

R� W� Cottle and R� S� Sacher� and J� S� Pang �
��� 
�
� discuss several large scale

applications of the LCP basid on this algorithm�
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Exercises

��� Solve the LCP with the following data by Chandrasekaran�s algorithm�

M 	

��������������
� �� � �� ��

�� � �� �� �
�� �� � � �
� �� �� �� ��

�� � �� �� �

�������������� � q 	

��������������
��
��
��
��
��

�������������� �

��	 Is the complementary pivot method guaranteed to process the LCP �q�M� when

M is a Z�matrix �

��� Discuss an e�cient method for computing all the complementary solutions of the

LCP �q�M� when M is a Z�matrix�

��� A Back Substitution Method for the LCPs

Associated with Triangular P�Matrices

A square matrixM 	 �mij� of order n is said to be a lower triangular matrix ifmij 	 �

for all j �	 i��� It is upper triangular ifMT is lower triangular� The square matrixM

is said to be a triangular matrix if there exists a permutation of its rows and columns

which makes it lower triangular� A triangular matrix satis�es the following properties�

�i� The matrix has a row that contains a single nonzero entry�

�ii� The submatrix obtained from the matrix by striking o
 the row containing

a single nonzero entry and the column in which that nonzero entry lies� also

satis�es property �i�� The same process can be repeated until all the rows

and columns of the matrix are struck o
�

A lower triangular or an upper triangular matrix is a P �matrix i
 all its diagonal

entries are strictly positive� A triangular matrix is a P �matrix i
 every one of its

single nonzero entries identi�ed in the process �i�� �ii� above is the diagonal entry in

its row and is strictly positive� Thus a triangular matrix is a P �matrix i
 there exists

a permutation matrix Q such that QTMQ is a lower triangular matrix with positive

diagonal entries�
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Example ���

Let

M 	

����������
� � � �
� � � �
� � � �
� � � �

���������� � Q 	

����������
� � � �
� � � �
� � � �
� � � �

���������� �

Verify that QTMQ 	 fM��� de�ned in equation ������ for n 	 �� and hence M is a

triangular P �matrix�

IfM is a triangular P �matrix� the LCP �q�M� can be solved by the following back

substitution method�

Identify the row in M 	 �mij� containing a single nonzero entry� Suppose it is

row t� If qt �	 �� make wt 	 qt� zt 	 � 	 �zt� On the other hand� if qt � �� make wt 	 ��

zt 	
qt

�mtt
	 �zt� Add �ztM�t to the right hand side constants vector q in �
���� and then

eliminate the columns of wt� zt and the t
th row from �
���� thus converting �
��� into

a system of the same form in the remaining variables� on which the same process is

repeated�

In this method� the value of one complementary pair of variables �wi� zi� are

computed in each step� their values are substituted in the other constraints and the

process repeated� The method �nds the complete solution in n steps�

Example ��	

Consider the LCP �q�M� with

M 	

������� � � �
� � �
� � �

������� � q 	

������� �

���
���

������� �

It can be veri�ed that this method leads to the values �w�� z�� 	 ��� 
�� �w�� z�� 	

��� ��� �w�� z�� 	 ��� �� in that order� yielding the solution �w�� w�� w�� z�� z�� z�� 	

��� �� �� 
� �� ��� The same problem was solved by the complementary pivot algorithm

in Example �����

��� Polynomially Bounded Ellipsoid Algorithms

for LCPs Corresponding to

Convex Quadratic Programs

In the following sections we show that the ellipsoid algorithms for linear inequalities and

LPs �see references �
����� ������� can be extended to solve LCPs associated with PSD
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matrices with integer data� in polynomial time� As shown in Chapter � every convex

quadratic programming problem can be transformed into an LCP associated with a

PSD matrix� and hence the methods described here provide polynomially bounded

algorithms for solving convex quadratic programs with integer data� These algorithms

are taken from S� J� Chung and K� G� Murty �
���� Similar work also appeared in �
����


��� among other references� If the data in the problem is not integer but rational� it

could be converted into an equivalent problem with integer data by multiplying all the

data by a suitably selected positive integer� and solved by the algorithms discussed

here in polynomial time�

In Sections 
��� 
�� we discussed algorithm for special classes of LCPs in which

the computational e
ort required to solve an LCP of order n is at most O�n��� These
algorithms do not require the data in the problem to be integer or rational� it could

even be irrational as long as the matrix M satis�es the property of being a Z�matrix

or triangular P �matrix as speci�ed and the required arithmetical operations can be

carried out on the data with the desired degree of precision� Thus these algorithms

discussed in Section 
��� 
�� are extremely e�cient and practically useful to solve

LCPs of the types discussed there� The ellipsoid algorithms discussed in the following

sections have an entirely di
erent character� They are polynomially bounded as long

as M is an integer PSD�matrix� but their computational complexity is not bounded

above by a polynomial in the order of the problem� but by a polynomial in the size

of the problem �the size of the problem is the total number of digits in all the data

when it is encoded using binary encoding�� From Chapter � we know that in the

worst case� the complementary and principal pivoting method discussed earlier are

not polynomially bounded� However� in computational tests on practical� or randomly

generated problems� the observed average computational e
ort required by ellipsoid

method turned out to be far in excess of that required by complementary and principal

pivoting methods� Also� in the ellipsoid methods� each computation has to be carried

out to a large number of digits of precision� making it very hard to implement them

on existing computers�

Thus the ellipsoid algorithms discussed in the following sections are not likely

to be practically useful� at least not in their present forms� The major importance of

these ellipsoid methods is theoretical� they made it possible for us to prove that convex

quadratic programs� or equivalently LCPs associated with PSD�matrices with integer

data� are polynomially solvable�

Size of an LCP

In this and in subsequent sections� we use the symbol L to denote the size of the

problem istance� it is the total number of binary digits in all the data in the instance�

assuming that all the data is integer� Given an integer �� the total number of binary

digits in it �i� e�� the number of bits needed to encode it in binary form� is approximately

d� � log��� � j�j�e� the celing of �� � log��� � j�j��� that is� the positive integer just
�
	
�
� � log��� � j�j��� Since the data in an LCP �q�M� of order n is n� q� M � we can
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de�ne the size of this LCP to be

L 	

��
� � log�n

�
�

nX
i�j��

	
� � log��� � jmij j�



�

nX
j��

	
� � log��� � jqj j�


�
�

An Ellipsoid in Rn

An ellipsoid in Rn is uniquely speci�ed by its center p � Rn and a positive de�nite

matrix D of order n� Given these� the ellipsoid corresponding to them is fx � �x �
p�TD���x � p� �	 �g and is denoted by E�p�D�� Notice that if D 	 I� the ellipsoid

E�p�D� is the solid spherical ball with p as center and the radius equal to �� When

D is positive de�nite� for x� y � Rn� the function f�x� y� 	 �x � y�TD���x � y� is

called the distance between x and y with D�� as the metric matrix �if D 	 I�

this becomes the usual Euclidean distance�� The ellipsoid methods discussed in the

following sections obtain a new ellipsoid in each step by changing the metric matrix�

Hence these methods belong to the family of variable metric methods� Also� the

formula for updating the metric matrix from step to step is of the form Dr�� 	 a

constant times �Dr � Cr�� where Dj is the metric matrix in step j for j 	 r� r � ��

and Cr is a square matrix of order n and rank � obtained by multiplying a column

vector in Rn by its transpose� Methods which update the metric matrix by such a

formula are called rank one methods in nonlinear programming literature� Rank

one methods and variables metric methods are used extensively for solving convex

unconstrained minimization problems in nonlinear programming� See references ������

����� ����� ������� The ellipsoid methods discussed in the following sections belong to

these families of methods�

��� An Ellipsoid Algorithm for the

Nearest Point Problem on Simplicial Cones

Let B 	 �bij� be a nonsingular square matrix of order n� and b 	 �bi� a column vector

in Rn� We assume that all the data in B� b is integer� and consider the nearest point

problem �B� b� discussed in Chapter �� This is equivalent to the LCP ��q�M� where

M 	 BTB� �q 	 �BT b� and so M � �q are integer matrices too� and M is PD and

symmetric� If b � Pos�B�� then the point b is itself the solution of �B� b�� and � �w 	 ��

�z 	 B��b� is the unique solution of the LCP ��q�M�� So we assume that b �� Pos�B�

�this implies that b �	 ��� Here we present an ellipsoid algorithm for solving this nearest

point problem �B� b� and the corresponding LCP ��q�M�� We begin with some results

necessary to develop the algorithm�
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De�nitions

Let � be a small positive number� Later on we specify how small � should be� Let

K 	
�
x � B��x �	 �� BT �x� b� �	 �



E 	

�
x � �x� b

�
�T �x� b

�
� �	

bT b
�



Bd�E� 	 Boundary of E 	

�
x � �x� b

�
�T �x� b

�
� 	 bT b

�



E� 	

�
x � �x� b

�
�T �x� b

�
� �	

	
��

q
bT b
�


��
L� 	

��
� � log�n

�
�

nP
i�j��

	
� � log��jbij j� ��



�

nP
i��

	
� � log��jbij� ��


�
L� 	 n�n� ���L� � ��

L� 	
�
n��n� �� � �

�
L�

�x 	 Nearest point in Pos�B� to b

M 	 �mij� 	 BTB

�q 	 ��qi� 	 �BT b

�z 	 B���x

�w 	 �q �M �z

� 	 �
��

�L� �

Some Preliminary Results

Our nearest point problem �B� b� is equivalent to the LCP ��q�M�� Each mij or �qi is of

the form 	�	� � 	�	� � � � �� 	�n��	�n� where the 	�s are entries from B� b� and hence

are integer� So we have

log�jmij j 	 log��j	�	� � � � �� 	�n��	�nj�
� log�

�
�j	�j� ���j	�j� �� � � � �� �j	�n��j� ���j	�nj� ��

�
�
	 log�

�
�j	�j� ���j	�j� �� � � � �j	�nj� ��

�
	

�nX
t��

log��j	tj� ��

�
	

�nX
t��

�
� � log��j	tj� ��

�
�
	 L� �

So the total number of digits needed to specify the data in the LCP ��q�M� in binary

encoding is at most L��

From well known results the absolute value of the determinant of any square

submatrix of B is at most �L�

n
� See Chapter �� in ������� So there exists a positive

integer 	 � �L�

n
such that all the data in the system

	B��x �
	 �

BT �x� b� �
	 �

�
���
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are integers� The absolute value of each entry in 	B�� is �
�
�L�

n

��
�since it is less than

or equal to a subdeterminant of B times 	�� Hence the size of �
��� the total number

of digits in the data in it� in binary encoding� is at most L��

Theorem ��� K has nonempty interior�

Proof� Proving this theorem is equivalent to showing that there exists an x � Rn

satisfying each of the constraints in the de�nition of K as a strict inequality� This

holds i
 the system
B��x � �

BTx�BT bxn�� � �

xn�� � �

has a feasible solution �x� xn��� 	 X� By Motzkin�s theorem of the alternatives �The�

orem � of Appendix �� this system has a feasible solution X i
 there exists no row

vectors 
� � � Rn� � � R� satisfying


B�� � �BT 	 �

� �BT b� � 	 �

�
� �� �� � �

�
���

From the �rst set of constraints in this system we have �BTB 	 �
 �
	 �� Since BTB is

PD� we know that �BTB �
	 �� � �

	 � implies that �� must be � in any feasible solution

of �
���� This in turn implies that 
� � will have to be zero too� a contradiction� So

�
��� has no feasible solution� hence K has a nonempty interior�

Theorem ��	 K �E 	 K � Bd�E� 	 f�xg�
Proof� By the results in Chapter �� �w� �z� is the solution of the LCP ��q�M�� So �z 	

B���x �	 �� � �	 w 	 �q�M �z 	 �BT b�BTBB���x 	 BT ��x�b�� Also ��x� b
� �

T ��x� b
� ��

� b
T b
� � 	 �xT �x� �xT b 	 �xT ��x� b� 	 �zTBT ��x� b� 	 �zTw 	 �� So �x � K � E�
Conversely� suppose �x � K � E� De�ne �z 	 B���x� bw 	 BT ��x� b�� Since �x � E

we have � �
	 ��x � b

� �
T ��x � b

� � � � b
T b
� � 	 �xT ��x � b� 	 �zT bw� Since �x � K� we have

�z �
	 �� bw �

	 �� and hence �zT bw �
	 �� These two together imply that �zT bw 	 � and we

can verify that bw 	 BT ��x � b� 	 �q �M �z� These facts together imply that � bw� �z� is
the solution of the LCP ��q�M�� Since M is PD� by Theorem �� the LCP ��q�M� has

a unique solution and so � bw� �z� 	 �w� �z�� So �x 	 �x� Thus K � E 	 f�xg� Also� for all
x � K we have �x� b

��
T �x� b

� � 	 xT �x� b� � � b
T b
� � 	 �B��x�TBT �x� b� � � b

T b
� � �	

� b
T b
� �� This implies that K � E 	 K � Bd�E��

Theorem ��� �x is an extreme point of K�

Proof� Since M is PD� �w� �z�� the unique solution of the LCP ��q�M� de�ned above�

is a complementary BFS� So �z is an extreme point of fz � �Mz �
	 �q� z �	 �g 	    � It

can be veri�ed that z �    i
 x 	 Bz � K� So there is a unique nonsingular linear
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transformation between    and K� This� and the fact that �z is an extreme point of    

implies that �x 	 B���z is an extreme point of K�

Theorem ��� If � ew 	 � ewi�� !z 	 �!zi�� is any extreme point of

w �Mz 	 �q

w �
	 �� z �	 � �

�
���

then ewi� !zi� is either � or � ��L� � for each i�

Proof� As discussed above� L� is the size of the system �
���� This result follows from

the results discussed in Chapter �� of �������

Theorem ��� The Euclidean lenght of any edge of K is �	 ��L� �

Proof� If the edge is unbounded� the theorem is trivially true� Each bounded edge of

K is the line segment joining two distinct adjacent extreme points of K� Let x�� x�

be two distinct adjacent extreme points of K� Since K is the set of feasible solutions

of �
���� the results discussed in Chapter �� of ������ imply that x� 	 �u��
v�
� � � � � un�

v�
��

x� 	 �u��
v�
� � � � � un�

v�
� where all the uij �s are integers� v�� v� are nonzero integers� all

juij j� jv�j� jv�j are �	 �L�

n
� Also� since x� �	 x�� these facts imply that there exists a j

satisfying jx�j � x�j j �	 ��L� � This clearly implies that jjx� � x�jj �	 ��L� �

Theorem ��
 If � � ����n��	
�
L� � the n�dimensional volume of K � E� �

	 �n

���n��	L� �

Proof� K � Bd�E� 	 f�xg and K has a nonempty interior� So K � E� contains all

the points in K is an ��neighbourhood of �x� and hence has a nonempty interior and a

positive n�dimensional volume�

If one takes a sphere of radius �� a concentric sphere of radius � � �� and a

hyperplane tangent to the smaller sphere at a boundary point x on it� then a tight

upper bound on the distance between x and any point in the larger sphere on the side

of the hyperplane opposite the smaller sphere is
p
��� ��� Also the radius of E isq

bT b
� � ��L���	� �x is an extreme point of K� and every edge of K through �x� has a

length �
	 ��L� by Theorem 
��� These facts and the choice of � here� together imply

that every edge ofK through �x intersects the boundary of E�� Let V�� � � � � Vn be points

along the edges of K through �x that intersect the boundary of E�� at a distance of

at most � but greater than � from �x� such that f�x� V�� � � � � Vng is a�nely independent�
The portion of the edge between �x and Vi lies inside E� for at least a length of �� See

Figure 
��� If Vi��� is the point on the edge joining �x and Vi at a distance of � from

�x� the volume of E� �K is greater than or equal to the volume of the simplex whose

vertices are �x� Vi��� for i 	 � to n� From the choice of Vi� Vi���� �x 	 	�Vi� �x� where
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	 �	 �� So in this case the volume of E� �K is greater than or equal to

�

n"

���determinant of 	��V� � �x� �� � � � �� ��Vn � �x�

���

	
�n

n"
j determinant of ��V� � �x� �� � � � �� �Vn � �x��j

	
�n

n"

���� determinant of ��� � � �� � � � �� �
�x V� �� � � � �� Vn

�������
� �n���n��	L� �

using the results from Chapter �� in �������

V
1

V
2

Bd(   )E

1
Eb

2

V
2
(  )εV

1
(  )ε

x

E

K

ε

Figure ��� The volume of E� �K is greater than or equal to the volume of

the shaded simplex�

Theorem ��� Let �x � E� �K� �z 	 B���x� bw 	 BT ��x� b�� Then� for all j 	 � to n

j�xj � �xj j �
	 �L�

p
�

j�zj � �zj j �
	 n��L�

p
�

j bwj � wj j �
	 n��L�

p
�

Proof� As mentioned earlier� the absolute value of any entry in B�� is �	 �L� � and the

same fact obviously holds for BT � The radius of E is bT b
� � �L���� The results in this

theorem follow from these facts and the de�nitions of E� E�� bw� �z�
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Theorem ��� Let �x � E� �K and �z 	 B���x� If � �	 ����n��	
��L���	� then

�zj �	 ��� ��
�L� � for j such that �zj 	 �

�zj �	 ��� ��
�L� 	 �� for j such that �zj � � �

Proof� This follows from Theorems 
�� and 
���

The Algorithm

Fix � 	 ����n��	
��L���	� Consider the following system of constraints�

�B��x �	 �� BT �x� b� �	 � �
���

�
x� b

�

�T �
x� b

�

�
�
	

�
��

r
bT b

�

��

�
���

Any point �x � Rn satisfying both �
��� and �
��� is in K�E�� We use an ellipsoid

method to �rst �nd such a point �x� Then using �x we compute �x in a �nal step�

De�ne x� 	 b
� � A� 	 I

	
� �

q
bT b
�


�
� where I is the unit matrix of order n�

N 	 
�n� ����L� � ��� Go to Step ��

General Step r � �

Let xr� Ar� Er 	 E�xr� Ar� be respectively the center� positive de�nite symmetric

matrix� and the ellipsoid at the beginning of this step� If xr satis�es both �
���� �
����

terminate the ellipsoid method� call xr as �x and with it go to the �nal step described

below� If xr violates �
��� select a constraint in it that it violates most� breaking ties

arbitrarily� and suppose it is ax �
	 d� If xr satis�es �
��� but violates �
���� �nd the

point of intersection �r� of the line segment joining x� and xr with the boundary of E��

So �r 	 
x� � ��� 
�xr where 
 	 �� ��
p

bT b

�

jjxr�x�jj � Find the tangent plane of E� at its

boundary point �r� and �nd out the half�space determined by this hyperplane which

does not contain the point xr� Suppose this half�space is determined by the constraint

�ax �	 d�� See Figure 
���

Now de�ne

	r 	
d� axrp
aAraT

xr�� 	 xr �
�
�� 	rn

� � n

�
Ara

Tp
aAraT

Ar�� 	
��� 	�r �n

�

n� � �

�
Ar �

	 �

n� �


	�� �	r

�� 	r


 �Ara
T ��Ara

T �T

aAraT

� �
���
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where the square root of a quantity always represents the positive square root of that

quantity� With xr��� Ar��� Er�� 	 E�xr��� Ar��� move to the next step in the

ellipsoid method�

After at most N steps� this ellipsoid method will terminate with the point xr in

the terminal step lying in E� �K� Then go to the �nal step discussed below�

b
2

rξ

Er

E1

=<ax    dHalf-space

K

xr

ax = d

Figure ��	 Construction of �ax �
	 d� when xr satis�es �
��� but violates

�
����

Final Step � Let the center of the ellipsoid in the terminal step be �x �this is the

point xr in the last step r of the ellipsoid method�� Let �z 	 B���x� Let J 	 fj � j
such that �zj �	 �g� Let yj 	 zj if j � J� wj if j �� J and let y 	 �y�� � � � � yn�� Then

y is a complementary feasible basic vector for the LCP ��q�M�� and the BFS of �
���

corresponding to y is the solution of this LCP� If this solution is �w� �z�� �x 	 B�z is the

nearest point in Pos�B� to b�

De�nition We denote by e� the base of natural logarithms� e 	 � �
P�

n��
�
n
 � it is

approximately equal to ����

Proof of the Algorithm

Let xr� Ar� Er 	 E�xr� Ar�� be the center� positive de�nite symmetric matrix�

and the ellipsoid at the beginning of step r��� The inequality �ax �	 d� is choosen in

this step r�� in such a way that xr violates it� In the hyperplane �ax 	 d� decrease d

until a value d� is reached such that the translate �ax 	 d�� is a tangent plane to the



���� An Ellipsoid Algorithm for the Nearest Point Problem ���

ellipsoid Er� and suppose the boundary point of Er where this is a tangent plane is �r�

Then Er�� 	 E�xr��� Ar��� is the minimum volume ellipsoid that contains Er � fx �
ax �

	 dg� the shaded region in Figure 
��� it has �r as a boundary point and has the

same tangent plane at �r as Er� From the manner in which the inequality �ax �
	 d�

is selected� it is clear that if Er � E� �K� then Er�� � E� �K� Arguing inductively
on r� we conclude that every ellipsoid Er constructed during the algorithm satis�es

Er � E� �K� From Theorem 
��� the volume of E� �K is �	 ���n�n��	
��L���	� From

the results in Chapter �� of ������ we know that the volume of Er gets multiplied by

a factor of e�
�

��n��� or less� after each step in the ellipsoid method� E� is a ball whose

radius is �� �
q

bT b
� �� and bT b � ��L� � So the volume of E� is at most �

�nL� � The

algorithm terminates in step r� if the center xr satis�es �
���� �
��� and that is� it is a

point in E� �K� If termination does not occur up to step N 	 
�n� ����L� � ��� the

volume of EN is at most ��L�ne�
N

��n��� � ���n�n��	
��L���	� From the fact that the

volume of E� �K � ���n�n��	
��L���	 this is a contradiction to EN � E� �K� So for

some r �	 N � we will have xr � E��K� and in that step the ellipsoid method terminates�
The validity of the remaining portion of the algorithm follows from Theorem 
��� 
�
�

���� Since the ellipsoid method terminates after at most N 	 
�n� ����L� � �� steps�

the algorithm is obviously polynomially bounded�

Er

=<ax    d
Half-space

Er +1

rx
rx η r

ax = d

Figure ��� Construction of the new ellipsoid Er��

In practice� it is impossible to run the algorithm using exact arithmetic� To run

the algorithm using �nite precision arithmetic� all computations have to be carried out
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to a certain number of signi�cant digits as discussed in �
����� and the ellipsoid have

to be expanded by a small amout in each iteration �this is achieved by multiplying the

matrix Ar in each step by a number slightly larger than one in each step�� As pointed

out in ������ if each quantity is computed correct to ��nL� bits of precision� and Dr��

multiplied by �� � �
��n� � before being rounded� all the results continue to hold�

Computational Comparison

Y� Fathi �
���� did a comparative study in which this ellipsoid algorithm has been

compared with the algorithm discussed in Chapter � for the nearest point problem�

We provide a summary of his results here� In the study the matrix B was generated

randomly� with its entries to be integers between �� and ��� The b�vector was also

generated randomly with its entries to be integers between ��� and ���� Instead

of using computer times for the comparison� he counted the number of iterations of

various types and from it estimated the total number of multiplication and division

operations required before termination on each problem� Problems with n 	 ��� ���

��� ��� �� were tried and each entry in the table is an average for �� problems� Double

precision was used� It was not possible to take the values of � and � as small as

those recomended in the algorithm� Mostly he tried �� � 	 ��� �the computational

e
ort before termination in the ellipsoid algorithms reported in the table below refers

to �� � 	 ����� and with this� sometimes the complementary basic vector obtained

at termination of the algorithm turned out to be infeasible �this result is called an

unsuccessful run�� He noticed that if the values of these tolerances were decreased�

the probability of an unsuccessful run decreases� but the computational e
ort required

before termination increases very rapidly�

Average Number of Multiplication and Division

Operations Required Before Termination in

n The Algorithm of Chapter � The Ellipsoid Algorithm

�� Too small ������

�� ������ �
�����

�� ������ ���������

�� ������� �������
�

�� ������� ����
�����

These empirical results suggest that the ellipsoid algorithm cannot compete with the

algorithm discussed in Chapter � for the nearest problem� in practical e�ciency� The

same comment seems to hold for the other ellipsoid algorithms discussed in the follow�

ing sections�
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��	 An Ellipsoid Algorithm for LCPs

Associated with PD Matrices

In this section M 	 �mij� denotes a given PD matrix of order n �symmetric or not�

with integer entries� and q 	 �qi� denotes a given nonzero integer column vector in R
n�

We consider the LCP �q�M��

De�nitions

Let � be a small positive number� Later on we specify how small � should be� Let

K 	 fz � Mz � q �	 �� z �	 �g�
�w 	M �z � q� �z� 	 unique solution of the LCP �q�M��

f�z� 	 zT �Mz � q��

E 	 fz � f�z� �	 �g�
Bd�E� 	 Boundary of E 	 fz � f�z� 	 �g�
L 	

l
�� � log�n� �

P
i�j

�
� � log��jmij j� ��

�
�
P
i

�
� � log��jqij� ��

�m
E� 	 fz � zT �Mz � q� �	 �g for � � ��

E� 	 fz � zT z �	 ��Lg�
Since M is a PD matrix� E de�ned above is an ellipsoid�

Some Preliminary Results

Theorem ��� The set K 	 fz �Mz � q �	 �� z �	 �g has nonempty interior�

Proof� Remembering that M is a PD matrix� the proof of this theorem is similar to

the proof of Theorem 
�� of Section 
���

Theorem ���
 E �K 	 Bd�E� �K 	 f�zg�
Proof� This follows directly from the de�nitions�

Theorem ���� �z is an extreme point of K� Also� every extreme point z of K other

than �z satis�es f�z� � ���L�

Proof� Since �w� �z� is a BFS of� w �Mz 	 q� w �
	 �� z �	 �� �z is an extreme point of

K� Also� L is the size of this system� Since �w� �z� is the unique solution of the LCP

�q�M�� at every extreme point z of K other than �z� we must have f�z� � �� Using

arguments similar to these in Theorem 
�� of Section 
��� we conclude that for each

i� either zi is � or � ��L� and Mi�z � qi is � or � ��L� at every extreme point z of

K� Combining these results we conclude that every extreme point z of K other than

�z satis�es f�z� � ���L�
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Theorem ���	 For � � � �
	 ���L� the n�dimensional volume of E� � E� � K is

�
	 �n����n��	L�

Proof� Obviously �z � E� �K� and by Theorem 
���� no other extreme point z of K

lies in E� �K for � � � �	 ���L� So for every value of � in the speci�ed range� every

edge of K through �z intersects E�� Also� since K has a nonempty interior by Theorem


��� E� �K has a positive n�dimensional volume� K might be unbounded� but by the

results in Chapter �� of ������� at every extreme point of K� both zi and Mi�z � qi are
�
	

�L

n
for each i� Let bK 	 fz � � �	 zj �	

�L

n
� � �	 Mj�z � qj �	

�L

n
� for j 	 � to ng� By

the above facts� every edge of bK through z is either an edge K �if it is a bounded edge

of K�� or a portion of an edge of K �if it is an unbounded edge of K�� Let z�� � � � � zn be

adjacent extreme points of �z in bK� such that f�z � z�� � � � � zng is a�nely independent�
The above facts imply that all these points �z� zt� t 	 � to n are in E�� Since M is PD�

f�z� is convex� Let 
 	 ����L� So for each t 	 � to n� f��z�
�zt� �z�� �	 ���
�f��z��


f�zt� 	 
f�zt� 	 

Pn

i�� z
t
i �Mi�z

t � qi� �	 

Pn

i��

�
�L

n

��
�L

n

�
�
	 �� This implies that

the line segment ��z� �z � 
�zt � �z�� completely lies inside E� � E� �K� So the volume
of E� �E� �K �

	 the volume of the simplex whose vertices are �z� �z � 
�zt � �z�� t 	 �

to n� which is

	
�

n"

�� determinant of �
�z� � �z� �� � � � �� 
�zt � �z�
���

�
	 
n���n��	L� by results similar to those in the proof of Theorem 
��

�
	 �n����n��	L �

Theorem ���� Let �� 	 ����L��	� For any point �z � E� �E�� �K� we have�

either �zi �	
p
�� � ���L

or Mi��z � qi �	
p
�� � ���L �

Proof� For any i� if both �zi andMi��z�qi are�
p
��� then �z�M �z�q� � ��� contradiction

to the fact that �z � E� � E�� �K�

Theorem ���� Let �z by any point in E� � E�� �K� De�ne

yi 	

�
wi if �zi � ���L

zi if �zi �	 ���L �

Then �y�� � � � � yn� is a complementary feasible basic vector for the LCP �q�M��

Proof� Let J� 	 fi � �zi �	 ���Lg� J� 	 fi � �zi � ���Lg� So J� � J� 	 � and J� � J� 	
f�� � � � � ng� and by Theorem 
���� Mi��z � qi � ���L for i � J��

In �
���� P� G#acs and L� Lov#asz proved the following lemma �
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Consider the system of constraints

Ai�x �	 bi� i 	 � to m �
�
�

with integer data� and let l be the size of this system� Suppose �x is a solution of

Ai�x �	 bi � ��l� i 	 � to m

such that Ai�x �	 bi� i 	 � to k� and let fAp��� � � � � Apr�g 	 fA��� � � � � Ak�g be such that
it is linearly independent and it spans fA��� � � � � Am�g linearly� Let �x be any solution

of the system of equations

Apt�x 	 bpt � t 	 � to r �

Then �x is a solution �
�
�� See also Chapter �� in ������� We will use this lemma in

proving this theorem� Consider the system �

�Mi�z �	 qi � ���L� i 	 � to n

�zi �	 � � ���L� i 	 � to n

Mi�z �	 �qi � ���L� i � J�

zi �	 � � ���L� i � J� �

�
���

We know that �z solves this system and in addition �z also satis�es Mi��z �	 �qi� i � J�

and �z �	 �� i � J�� Also� sinceM is PD� the set fMi� � i � J�g�fI�i � i � J�g is linearly
independent and linearly spans all the row vectors of the constraint coe�cient matrix

of the system �
���� From the lemma of P� G#acs and L� Lov#asz mentioned above� these

facts imply that if !z is a solution of the system of equations �

Mi�z 	 �qi� i � J�

zi 	 �� i � J�
�
����

then !z also satis�es � �Mi�z �	 qi� i 	 � to n

�zi �	 �� i 	 � to n

So !z �	 �� ew 	 M !z � q �	 � and since !zi 	 � for i � J� and Mi�z � qi 	 � for i � J�

we have f�!z� 	 � �since J� � J� 	 � and J� � J� 	 f�� � � � � ng�� So � ew� !z� is the
solution of the LCP �q�M�� Since !z is the solution of �
����� � ew� !z� is the BFS of the
system� w �Mz 	 q� w �

	 �� z �
	 �� corresponding to the basic vector y� So y is a

complementary feasible basic vector for the LCP �q�M��

The Algorithm

Fix � 	 �� 	 ����L��	� So E� 	 E��� ��LI�� De�ne N 	 ��n � ������L � �� in this

section� With z� 	 �� A� 	 ��LI� E�z�� A�� go to Step ��
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General Step r � � � Let zr� Ar� Er 	 E�zr� Ar�� be respectively the center� PD

symmetric matrix� and the ellipsoid at the beginning of this step� If zr satis�es �

�Mz � q �	 �

�q �	 �
�
����

zT �Mz � q� �	 � �
����

terminate the ellipsoid algorithm� call zr as �z and go to the �nal step described

below� If zr violates �
����� select a constraint in it that it violates most� breaking ties

arbitrarily� and suppose it is �az �
	 d�� If zr satis�es �
���� but violates �
����� let

�r be the point of intersection of the line segment joining the center of the ellipsoid

E�� �this is� z
� 	 ��M�MT

�

���
� q��� and zr with the boundary E�� � Therefore �

r 	


z�����
�zr� where 
 is the positive root of the equation �
z�����
�zr�TM�
z��

��� 
�zr� � q 	 ��� Let az 	 d by the equation of the tangent hyperplane to E�� at

�r� where the equation is written such that the half�space az �	 d does not contain zr�

De�ne 	r��� Ar��� as in �
��� and

zr�� 	 zr �
	�� 	rn

� � n


	 Ara
Tp

aAraT



With zr��� Ar��� Er�� 	 E�zr��� Ar���� move to the next step in the ellipsoid algo�

rithm�

After at most N steps� this ellipsoid algorithm will terminate with the point zr in

the terminal step lying in E� �E�� �K� Then go to the �nal step described below�
Final Step� Let the center of the ellipsoid in the terminal step by �z� Using �z� �nd

the complementary BFS as outlined in Theorem 
����

Proof of the Algorithm

The updating formulas used in this ellipsoid algorithm are the same as those used in

the algorithm of Section 
��� Hence using the same arguments as in Section 
��� we

can verify that Er � E� � E�� �K for all r� The volume of E� is � ��Ln� After each

step in the ellipsoid algorithm� the volume of the current ellipsoid Er gets multiplied

by a factor of e�
�

��n��� or less� So if the ellipsoid algorithm does not terminate even

after N steps� the volume of EN �
	 e��n��	���L��	��Ln � ��L��n��	�n� contradiction

to the fact that EN � E� � E�� �K and Theorem 
���� So for some r �	 N � we will

have zr � E� � E�� �K� and in that step the ellipsoid algorithm terminates� Hence

the algorithm is obviously polynomially bounded�

Comments made in Section 
�� about the precision of computation required� re�

main valid here also�
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��
 An Ellipsoid Algorithm for LCPs

Associated with PSD Matrices

In this section we consider the LCP �q�M� where M denotes a given PSD matrix of

order n �symmetric or not� with integer entries� and q denotes a given integer column

vector in Rn�

De�nitions

Let K� E� Bd�E�� L� E� be as de�ned in Section 
��� Let E� 	 fz � zT z �	 ���L��	g�
SinceM is only PSD here� K may have no interior� in fact K may even be empty� Also

E� E� may not be ellispoids� Let en 	 ��� � � � � ��T � Rn�

Some Preliminary Results

Theorem ���� In this case the LCP �q�M� has a solution i� K �	 �� If K �	 ��
there exists a solution� �w� �z�� to the LCP �q�M� where �z is an extreme point of K�

When K �	 �� the LCP �q�M� may have many solutions� but the set of all solutions is

a convex set which is E �K 	 Bd�E� �K�

Proof� Since M is PSD� the fact that �q�M� has a solution i
 K �	 � follows from
Theorem ���� When K �	 �� the complementary pivot algorithm produces a solution

�w� �z�� to the LCP �q�M� which is a BFS and this implies that �z is an extreme point

of K� The set of all solutions of the LCP �q�M� is obviously Bd�E��K� and from the

de�nition of K� and E here it is clear that in this case Bd�E� �K 	 E �K� and since
both E and K are convex sets �E is convex because M is PSD�� this set is convex�

Theorem ���
 When K �	 �� E� � E� �K contains all the extreme points z of K

such that �w 	Mz � q� z� is a solution of the LCP �q�M��

Proof� By the results discussed in Chapter �� of ������ if �w� �z� is solution of �q�M�

which is BFS� then z � E�� The rest follows from Theorem 
����

In this case E� �E� �K may not contain all the z which lead to solutions of the

LCP �q�M�� Theorem 
��� only guarantees that E� �E� �K contains all the z which

are extreme points of K that lead to solutions of �q�M�� Since M is PSD� the set of

solutions of the LCP �q�M� may in fact be unbounded and hence all of it may not lie

in E��

Theorem ���� If zi is positive in some solution of �q�M�� then its complement wi

is zero in all solutions of �q�M�� Similarly if wi is positive in some solutions of �q�M��

then zi is zero in all solutions of �q�M��
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Proof� By Theorem 
���� the set of all solutions of �q�M� is convex set� So if �w�� z���

�w�� z�� are two solutions of �q�M� satisfying the properties that z�i � � and w�
i � ��

then the other points on the line segment joining �w�� z��� �w�� z�� cannot be solutions

of �q�M� �because they violate the complementarity constraint wizi 	 �� contradicting

the fact that the set of solutions of �q�M� is a convex set�

Theorem ���� If !z is an extreme point of K� for each i either !zi 	 � or ��L �
	 !zi �	

�L

n
� Also either Mi�!z� qi is zero or �

�L �
	Mi�!z� qi �	

�L

n
� Also at every extreme point

!z of K that does not lead to a solution of �q�M�� we will have f�!z� 	 !zT �Mz � q� �

���L�

Proof� Similar to the proof of Theorem 
��� in Section 
���

Theorem ���� K �	 � i� the set of solutions of

Mz � q �	 �����Le
z �	 �����Le �
����

has a nonempty interior�

Proof� By the results of P� G#acs and L� Lov#asz in �
���� �also see Chapter �� in ��������

�
���� is feasible i
 K �	 �� Also any point in K is an interior point of the set of feasible

solutions of �
�����

Let K� denote the set of feasible solutions of �
�����

Theorem ��	
 Let �� 	 ����L��	� For any point �z � E� � E�� �K�� we have for

each i 	 � to n� either �zi � ���L� or Mi��z � qi � ���L�

Proof� Suppose that �zi �	 ���L and Mi��z � qi �	 ���L� Since �z � E�� � �z
T �M �z � q� �	

����L��	� Then we have
Pn

t���t��i �zt�Mt��z � qt� �	 ����L��	 � ���L �
	 �����L��	� But

from �
���� and the de�nition of E� we arrive at the contradiction
Pn

t���t��i �zt�Mt��z�qt�

�
	 ��n� ������L���L�� � �L� � �����L��	�

Theorem ��	� Let �� 	 ����L��	� If K �	 �� the n�dimensional volume of E� �
E�� �K� is �	 ����nL�

Proof� Assume K �	 �� So �q�M� has a solution� Let �w� �z� be a complementary BFS

of �q�M�� So� by Theorem 
���� �z � Bd�E��K� For 
 � � de�ne the hypercube� C� 	

fz � z � Rn� jzj��zj j �	 �
� for all j 	 � to ng� Then� clearly� the n�dimensional volume of

C� is 

n� We will now prove thatC� 	 K��E��E�� for 
 �

	 ����L� Since the radius of

E� is �
L��� C� 	 E� by the de�nition of C� and the fact that jj�zjj � �L from Theorem


��
� Let �z be any point in C�� Since �zi �	 �� Mi��z� qi �	 � for all i 	 � to n� we have�

�zi �	 �zi � �
�
�
	 ��

�
�
	 �����L� Mi��z � qi �	 Mi��z � qi � �

�

Pn

j�� jmij j �	 ������L��	 
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�L �
	 �����L� So C� 	 K�� Also� since �zT �M �z � q� 	 � �since �w 	 M �z � q� �z�

solves �q�M��� we have� �zT �M �z� q� 	 ��z� �z�T �M �z� q�MT �z�� ��z� �z�TM��z� z� �	
�
�n��

L � �L�L� � ��� �
�
P

i�j jmij j �	 �����L��	n��L�� � n��L�����L��	 �
	 ��� This

implies that C� 	 E�� � Hence C� 	 K� � E� � E�� � Now letting 
 	 ����L� the

volume of C� is �
���L� and these facts imply the theorem�

Let �z be any point in E� �E�� �K�� De�ne

J�� 	 fi �Mi��z � qi �	 �g � J�� 	 fi � � � Mi��z � qi �	 ���Lg �
J�� 	 fi � �zi �	 �g � J�� 	 fi � � � �zi �	 ���Lg �

Then by Theorem 
���� J�� � J�� � J�� � J�� 	 f�� � � � � ng� Furthermore� �z is a solution
of �

�Mi�z �	 qi � ���L� i 	 � to n

�zi �	 ���L� i 	 � to n

Mi�z �	 �qi � ���L� for i � J��

zi �	 ���L� for i � J��

�
����

Theorem ��		 Let �z be any point in E� � E�� � K�� Let I be the unit matrix

of order n� Using the constructive procedure described by P� G	acs and L� Lov	asz in


����
 �see also Theorem ����� Chapter �� of 
����
� obtain a new solution� which we

will denote by the same symbol �z� such that if J�� � J
�
� � J

�
� � J

�
� are the index sets

corresponding to this new �z� then the new �z also satis�es ������� and there exists a

linearly independent subset� D 	 fMi� � i � J�� � J�� g � fIi� � i � J�� � J�� g such that

D spans linearly fMi� � i 	 � to ng � fIi� � i 	 � to ng� Furthermore� if �z is a solution

of � �Mi�z 	 qi� for i such that Mi� � D

zi 	 �� for i such that Ii� � D

then �w 	M �z � q� �z� is a solution of the LCP �q�M��

Proof� This theorem follows from the results of P� G#acs and L� Lov#asz in �
���� �or

Theorem ����� Chapter �� in ������� applied on �
����� We know that �z satis�es �

�Mi��z �	 qi� for i � J��

Mi��z �	 �qi� for i � J��

��zi �	 �� for i � J��

�zi �	 �� for i � J��

By these results� �z is a solution of

�Mz �	 q

�z �	 � �

Furthermore� �z satis�es �

Mi��z 	 �qi� for i � J�� � J��
�zi 	 �� for i � J�� � J��
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by the spanning property of D and these results� Also� since f�� � � � � ng is the union
of J�� � J

�
� � J

�
� � J

�
� � at least one of wi or zi is zero for each i 	 � to n� All these facts

together clearly imply that �w� �z� is a solution of the LCP �q�M��

The Algorithm

Apply the ellipsoid algorithm discussed in Section 
�� to get a point �z in E� � E�� �
K�� initiating the algorithm with z� 	 �� A� 	 ���L��	I� E� 	 E�z�� A��� In this

case K could be �� This could be recognized in the ellipsoid algorithm in two di
erent

ways� For any r� if the quantity 	r in step r of the ellipsoid algorithm turns out to be
�
	 ��� it is an indication that the set E� �E�� �K� 	 �� terminate� in this case K 	 �
and the LCP �q�M� has no solution �for a proof of this see Chapter �� of �������� If

	r � ��� compute xr��� Ar�� and continue� The volume of E� here is � ��n�L��	�

and if K �	 �� the volume of E� � E�� �K� is � ����nL by Theorem 
���� Hence if

K �	 �� this ellipsoid algorithm will terminate in at most ��n�������L��� steps with

a point �z � E� � E�� �K�� So� if the ellipsoid algorithm did not �nd a point in E� �
E�� �K� even after ��n � ������L � �� steps� we can conclude that K 	 �� that is�
that the LCP �q�M� has no solution� On the other hand� if a point �z in E� � E�� �
K� is obtained in the ellipsoid algorithm� then using it� obtain a solution �w� �z� of the

LCP �q�M� as discussed in Theorem 
����

��� Some NP�Complete Classes of LCPs

The ellipsoid algorithm discussed in Section 
��� 
��� 
�� can only process LCPs asso�

ciated with PSD matrices �the class of these LCP is equivalent to the class of convex

quadratic programs�� In �
��� 
���� it was shown that certain LCPs satisfying special

properties can be solved as linear programs� and these LCPs are therefore polynomially

solvable using the ellipsoid algorithm �see Chapter �� in ������� on the resulting linear

programs�

For the general LCP� the prospects of �nding a polynomially bounded algorithm

are not very promising� in view of the result in �
��� where it is shown that this problem

is NP�complete� See reference �
���� for the de�nition of NP�completeness� Let a�� � � � �
an� a� be positive integers and let Mn�� and q�n� �� be the following matrices �

Mn�� 	

��������In � �
eTn �n �

�eTn � �n

������� � q�n� �� 	

��������������
a�
��
an
�a�
a�

��������������



��	� Some NP
completeClasses of LCPs ���

where In denotes the unit matrix of order n� and en is the column vector in Rn all

of whose entries are �� Also consider the ��� equality constrained Knapsack feasibility

problem �
nP
i��

aixi 	 a�

xi 	 � or � for all i 	 � to n �
�
����

If � ew� !z� is a solution of the LCP �q�n � ���Mn���� de�ne !xi 	
�zi
ai
� i 	 � to

n� and verify that !x 	 �!x�� � � � � !xn�
T is a feasible solution of the Knapsack problem

�
����� Conversely of �x 	 ��x�� � � � � �xr�
T is a feasible solution of �
����� de�ne bwn�� 	

�zn�� 	 bwn�� 	 �zn�� 	 � and �zi 	 ai�xi� bwi 	 ai�� � �xi�� i 	 � to n� and verify that

� bw 	 � bw�� � � � � bwn���� �z 	 ��z�� � � � � �zn���� is a solution of the LCP �q�n � ���Mn����

Since the problem of �nding whether a feasible solution for �
���� exists is a well

known NP�complete problem �see �
������ the problem of checking whether the LCP

�q�n����Mn��� has a solution isNP�complete� Also� since the matrixMn�� is negative

de�nite� the class of LCPs associated with negative de�nite or negative semide�nite

matrices are NP�hard� Also Mn�� is lower triangular� This shows that the class of

LCPs associated with lower or upper triangular matrices is NP�hard� if negative entries
appear in the main diagonal�

Let M be a given negative de�nite matrix with integer entries� and let q � Rn be

a given integer column vector� In this case the LCP �q�M� may not have a solution�

and even if it does� the solution may not be unique� From the results in Chapter �

we know that the number of distinct solutions of the LCP �q�M� in this case is �nite�

De�ne �
K 	 fz � z �	 �� Mz � q �	 �g
E 	 fz � zT �Mz � q� �	 �g

Since M is negative de�nite� E is an ellipsoid� Let Bd�E� 	 boundary of E 	

fz � zT �Mz � q� 	 �g�
Clearly any point z � Bd�E� �K satis�es the property that �w 	 Mz � q� z� is

a solution of the LCP �q�M� and vice versa� So solving the LCP �q�M� is equivalent

to the probem of �nding a point in Bd�E� � K� However� in this case K 	 E� and

in general� Bd�E� �K 	 E �K� See Figure 
��� So the nice property that E �K 	

Bd�E� � K which held for LCPs associated with PSD matrices does not hold here

anymore� which makes the LCP associated with a negative de�nite matrix much harder�

In this case �i� e�� withM being negative de�nite�� it is possible to �nd a point in E�K
using an ellipsoid algorithm �actually since K 	 E here� a point in K can be found

by the ellipsoid algorithm of Chapter �� of ������ and that point will also lie in E��

but the point in E �K obtained by the algorithm may not be on the boundary of E�

and hence may not lead to a solution of the LCP �q�M�� In fact� �nding a point in

Bd�E� �K is a concave minimization problem� and that�s why it is NP�hard�
The status of the LCPs �q�M� whereM is a P�but not PSD matrix� is unresolved�

In this case the LCP �q�M� is known to have a unique solution by the results in

Chapter �� but the sets fz � zT �Mz � q� �
	 �g are not ellipsoids� The interesting

question is whether a polynomially bounded algorithm exists for solving this special
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class of LCPs� This still remains an open question� It is also not known whether these

LCPs are NP�hard�

KK
E E

Figure ��� When M is negative de�nite� E and K may be as in one of the

�gures given here� Points of K on the boundary of E� if any� lead to solutions

of the LCP �q�M��

��� An Ellipsoid Algorithm for

Nonlinear Programming

In �
��� J� Ecker and M� Kupferschmid discussed an application of the ellipsoid algo�

rithm to solve NLPs of the following form �

minimize f��x�

subject to fi�x� �	 �� i 	 � to m

where all the fi�x� are di
erentiable functions de�ned on Rn� and we assume that

n � ��

For the convergence of the ellipsoid algorithm� we need to specify an initial el�

lipsoid whose intersection with a neighborhood of an optimum solution has positive

n�dimensional volume� This requirement prevents the algorithm from being used in a

simple way for problems having equality constraints� but the penalty transformation

discussed in Section ����� can be used for them�

It is assumed that lower and upper bounds are avaible on each variable� l� u are

these lower and upper bound vectors� The initial ellispoid is chosen to be the one

of smallest volume among those ellipsoids with center x� 	 l�u
� and containing fx �

l �	 x �	 ug� Let this be E� 	 fx � �x� x��TD��
� �x� x�� �	 �g 	 E��x

�� D��� where

D� 	
n

�

������������������

�u� � l��
� � � � � � �

� �u� � l��
� � � � � �

� �
� � � � � � �

���
���

���
� � �

���
� � � � � � �un � ln�

�

������������������
�
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Suppose we have Er�x
r� Dr�� If x

r is infeasible� choose a violated constraint� say the

ith� where fi�x
r� � �� In case xr is infeasible� the index i of the selected constraint

is that of the �rst violated constraint encountered under a search of the constraints

in cyclical order beginning with the constraint selected in the previous step� If xr is

feasible and rf��xr� 	 �� terminate� xr is optimal to NLP �under convexity assuptions�

it is a stationary point otherwise�� If xr is feasible and rf��xr� �	 �� choose the index

i to be zero�

Having selected the index i �corresponding to a violated constraint if xr is in�

feasible� or the objective function if xr is feasible and rf��xr� �	 ��� let Hr be the

hyperplane

Hr 	 fx � ��rfi�xr���x� xr� 	 �g �
The hyperplane Hr supports the contour fi�x� 	 fi�x

r� and divides the ellipsoid in

half� The center xr�� of the next ellipsoid Er�� and the PD matrix Dr�� used in

de�ning Er�� are determined by the updating formulae

h 	
rfi�xr�
jjrfi�xr�jj

d 	
�Drh

T

�
p
hDrhT

xr�� 	 xr �
d

n� �

Dr�� 	
n�

n� � �

	
Dr � �

n� �
ddT



�

The best point obtained during the algorithm and its objective value are main�

tained� Various stopping rules can be employed� such as requiring the di
erence be�

tween successive best values to be su�ciently small� etc�

The method is best suited for solving the NLP above� when all the functions fi�x�

are convex� If a nonconvex function is used to generate the hyperplane Hr that cuts

Er in half� the next ellipsoid may not contain the optimal point� and the algorithm

may converge to a point that is not even stationary�

In computational tests carried out by J� G� Ecker and M� Kupferschmid �
���� this

method performed very well�



��� Chapter �� Polynomially Bounded Algorithms for Some Classes of LCPs

f x(  ) = 0

f x(  ) = 0

f x(  ) = 0

Er +1

r +1

rx

2

1

3

x
Er

Figure ��� Construction of the new ellipsoid when xr is infeasible� The arrow

on constraint surface fi�x� 	 � indicates the feasible side� that is satisfying

fi�x� �	 �� f��x� �	 � is violated at xr and is selected�

��� Exercises

��� Let A� D� b� d be given matrices of orders m� 
 n� m� 
 n� m� 
 �� m� 
 �

respectively with integer entries� Let F be a given PD symmetric matrix of order n

with integer entries� De�ne�

K� 	 fx � Ax �	 bg
K� 	 fx � Dx �	 dg
E 	 fx � xTFx �	 �g �

Construct polynomially bounded algorithms for checking whether

�i� K� 	 K�

�ii� E 	 K��

Does a polynomially bounded algorithm exists for checking whether K� 	 E �

Why �

��� Consider the quadratic program

minimize cx� �
�x

TDx

subject to x �	 b
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where b � � and D is a Z�matrix of order n� Express the KKT optimality conditions

for this problem in the form of a special type of linear complementarity problem� and

develop a special direct method for solving it� based on Chandrasekaran�s algorithm

discussed in Section 
���

�J� S� Pang �
�����

��
 Study the computational complexity of the problem of checking whether the ellip�

soid E 	 fx � �x� �x�TD�x� �x� �	 �g where D is given integer PD symmetric matrix

and �x is a given noninteger rational point� contains an integer point�

��� Show that the LCP �q�M� is equivalent to the following piecewise linear concave

function minimization problem�

minimize
nP

j��
�minimumf��Mj�z � zj � qjg� zj�

subject to Mz � q �	 �

z �
	 ��

�O� L� Mangasarian�
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