Chapter 9

ITERATIVE METHODS FOR LCP’s

9.1 Introduction

The name iterative method usually refers to a method that provides a simple formula
for computing the (r + 1)** point as an explicit function of the r’
f(z™). The method begins with an initial point z° (quite often z

arbitrarity, subject to some simple constraints that may be specified, such as z° >0,
1

h point: 2"t1 =

0 can be chosen

etc.) and generates the sequence of points {z° z',z2,...} one after the other using
the above formula. The method can be terminated whenever one of the points in the
sequence can be recognized as being a solution to the problem under consideration.
If finite termination does not occur, mathematically the method has to be continued
indefinitely. In some of these methods, it is possible to prove that the sequence {z"}
converges in the limit to a solution of the problem under consideration, or it may be
possible to prove that every accumulation point of the sequence {z"} is a solution of
the problem. In practice, it is impossible to continue the method indefinitely. In such
cases, the sequence is computed to some finite length, and the final solution accepted
as an approximate solution of the problem.

In this chapter we consider the LCP (¢, M) which is to find w, z € R" satisfying

w—Mz=q
wz 20 (9.1)
wT 2 =0
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where M, q are given matrices of orders n xn and n x 1, respectively. We discuss several
iterative methods for solving this LCP (¢, M). All the methods that we have discussed
so far for solving this problem (the pivotal methods and the ellipsoid methods) have
the finite termination property. In contrast, the iterative methods discussed here do
not in general terminate in a finite number of steps (even though the special structure
of the problem discussed in Section 9.2, makes it possible to construct a modification
of the iterative method discussed there that terminates after a finite amount of work).
However, these iterative methods have the advantage of being extremely simple and
easy to program (much more so than all the methods discussed so far in this book)
and hold promise for tackling very large problems that have no special structure (other
than possibly symmetry and/or positive definiteness as required by the algorithm).

Most of the algorithms for solving nonlinear programming problems are iterative in
nature (see references [10.9, 10.13, 10.33]) and the iterative methods discussed here can
be interpreted as specializations of some nonlinear programming algorithms applied to
solve a quadratic program equivalent to the LCP.

The word sequence here usually refers to an infinite sequence. An infinite se-
quence of points {z" : 7 =1,2,...} in R" is said to converge in the limit to the given
point z* if, for each € > 0, there exists a positive integer N such that ||z" — z*|| < ¢
for all » > N. As an example the sequence in R!, {z" : where z" = %,r > 1 and
integer} converges to zero. However, the sequence {z" : where z" = % if r = 2s for
some positive integer s, and " = 1 if r = 25 + 1 for some positive integer s} does not
converge. A point z* € R", is said to be a limit point or an accumulation point
for the infinite sequence {z" : r = 1,2,...} of points in R", if for every ¢ > 0 and
positive integer N, there exists a positive integer r > N such that ||z" —2*| <e. If 2*
is a limit point of the sequence {z" : r = 1,2,...}, then there exists a subsequence of
this sequence, say {z"* : k =1,2,...}, which converges in the limit to z*, where {ry :
k =1,2,...} is a monotonic increasing sequence of positive integers. If the sequence
{z" :r=1,2,...} converges in the limit to z*, then z* is the only limit point for this
sequence. A sequence that does not converge may have no limit point (for example,
the sequence of positive integers in R' has no limit point) or may have any number
of limit points. As an example, consider the sequence of numbers in R?, {z" : where
" = %, if » = 2s for some positive integer s, otherwise " = 1 + %, if r =2s+ 1 for
some non-negative integer s}. This sequence has two limit points, namely 0 and 1.
The subsequence {x2® : s = 1,2,...} of this sequence converges to the limit point 0,
while the subsequence {z2*T1:s=1,2,...} converges to the limit point 1.

The discussion in this section also needs knowledge of some of the basic properties
of compact subsets of R". See [9.21].
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9.2 An Iterative Method for LCPs
Associated with PD Symmetric Matrices

The method discussed in this section is due to W. M. G. Van Bokhoven [9.22]. We
consider the LCP (g, M) where M is assumed to be a PD symmetric matrix. For ¢ > 0,
(w = q,z = 0) is the unique solution of the LCP (g, M). So we only consider the case
q 2 0. For any vector z = (z;) € R" we denote by |z| the vector (|«;|) in this section.
The symbol I denotes the identity matrix of order n. We will now discuss the main
result on which the method is based.

Theorem 9.1 Let M be PD and symmetric. The LCP (q, M) is equivalent to the
fixed point problem of determining x € R" satisfying

flz) == (9.2)
where f(z) =b+ Blz|,b=—-{I+ M) tq, B= 1+ M) I - M).
Proof. In (9.1) transform the variables by substituing

w; = |x;| — x5, zj =|vj|+x;, foreachj=1ton (9.3)

We verify that the constraints w; > 0, z; > 0 for j = 1 to n automatically hold, from
(9.3). Also substituing (9.3) in “w — Mz — ¢ = 07, leads to f(x) — z = 0. Further,
w;zj = 0 for each j =1 to n, by (9.3). So any solution z of (9.2) automatically leads to
a solution of the LCP (g, M) through (9.3). Conversely suppose (w, z) is the solution
of the LCP (¢, M). Then z = 3 (z — w) can be verified to be the solution of (9.2).

[

Some Matrix Theoretic Results

If A is square matrix of order n, its norm, dented by ||A||, is defined to be the Supremum
of {% :x € R",z # 0}. From this definition, we have [|Az| < [|A].||z| for all
x € R". See references [9.9, 9.10, 10.33].

Since M is symmetric and PD, all its eigenvalues are real and positive (see refer-
ences [9.8, 9.9, 9.10, 10.33] for definition and results on eigenvalues of square matrices).

If A\1,..., A\, are the eigenvalues of M, then the eigenvalues of B = (I +M)~1(I — M)

are given by p; = %, i =1 to n; and hence all y; are real and satisfy |u;| < 1 for
all ¢ (since \; > 0). Since B is also symmetric we have ||B|| = Maximum{|u;| : i = 1

ton} < 1.

The Iterative Scheme for Solving (9.2)

The scheme begins with an initial point ' € R™ chosen arbitrarily (say z! = 0). For
r > 2 define

2"t = f(2") = b+ Bl2"] . (9.4)
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The equation (9.4) defines the iterative scheme. Beginning with the initial point
! € R" chosen arbitrarily, generate the sequence {z!, 2%, ...} using (9.4) repeatedly.
This iteration is just the successive substitution method d1scussed in Section 2.7.2 for
computing the Brouwer’s fixed point of f(x). We will now prove that the sequence
generated {z!,z2,...} converges in the limit to the unique fixed point z* of (9.2).

Convergence Theorems

Theorem 9.2 When M is PD and symmetric, the sequence of points {z"} defined
by (9.4) converges in the limit to x*, the unique solution of (9.2), and the solution (w
zx) of the LCP (q, M) can be obtained from z* from the transformation (9.3).

Proof. Forany z,y € R" we have || f(z)— f(y)[| = | B(lz| = [y]) | < [ BI|-|(|=[ =yl <
|z — yl|, since ||(Jz] — |y])|| < ||z —y|| and ||B]| < 1 as discussed above. So f(z) is a
contraction mapping (see reference [9.20]) and by Banach contraction mapping theorem
the sequence {z"} generated by (9.4) converges in the limit to the unique solution z*
of (9.2). The rest follows from Theorem 9.1.
[
We will denote ||B|| by the symbol p. We known that p < 1, and it can actually
be computed by well known matrix theoretic algorithms.

Theorem 9.3 If z* is the unknown solution of (9.2), ||z*|| > 7

Proof. From (9.2) [lz*|| = [[(b + Blz*[)|| = oIl — [[(B]z*])]

b
o] = A

5
> [[bll = plle*]]. So

[
Theorem 9.4 Let 2" be the r'" point obtained in the iterative scheme (9.4) and let
z* be the unique solution of (9.2). Then for r > 1, ||z* — 2" +1|| < (lpr)Ha:Z — .

Proof. We have z* — 2" = f(a*) — f(z"). So [lz* — 2" = |[f(z*) — f(a")]| £
plle* — «"|| (by the argument used in the proof of Theorem 9.2, since ||B| = p).
Applying the same argument repeatedly we get

lz* = 2" < pfla* — 2t (9-5)

Now, for r > 2 we have 2" ™! — 2" = f(z") — f(z"~1). So we have [|z"+! — 27| =

| f(z") = f(z" || < pl|la” — 2"~ ||. Using this argument repeatedly, we get
2"t — 27| < prH|a? — 2], forr > 2. (9.6)

We also have z* — z' = 2* — 22 + (22 — z'). So we have [[z* — 2t < ||z* — 22| +
|z? — z!||. Using this same argument repeatedly, and the fact that the z* = limit

xt as t tends to oo, (and therefore limit ||z* — x*|| as ¢ tends to oo is 0), we get
1

le* = 2t < 02, ettt — at] < Jla® — 2 [(S52g p) (from (9.6)) = LZ=2L Using
this in (9.5) leads to [lz* — 2"+ < (£5)|2? — || for r > 1.

[
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Theorem 9.5 Ifz! =0, we have ||z* — 2" 1| <p ( ”b”p)

Proof. Follows from Theorem (9.4).

[
Theorem 9.6 Ifz' =0, we have for r > 1, [|a" || > ||b||(m — lpT'p)_
Proof. We know that [|z*|| — ||z" || < |lz* — 2" TH|. So ||z" || > ||o*|| — [Ja* — 2" .
The result follows from this and Theorems 9.3, 9.5.

[

How to Solve the LCP (q,M) in a Finite Number of Steps
Using the Iterative Scheme (9.4)

Initiate the iterative scheme (9.4) with ! = 0. Then for r > 1 from Theorem 9.6, we
know that there must exist an ¢ satisfying

r+1 >M 1 _ P
! |:ﬁ(1+p 1_p)- (9.7)

But from Theorem 9.5, for the same i we must have |z} — x| < ||b||(1pTrp) So if

. 1—
r is such that \/—(ﬁp — 1= p) > (1 ) that is r > N = ﬂog(%)/logp] for

the same i satisfying (9.7) we must have both 2!™' and z} nonzero, and both have
the same sign. Hence, after NV + 1 iterations of (9.4) we know at least one 7 for which
x} is nonzero, and its sign. If ¥ is known to be negative, from (9.3), the variable
w; is positive in the solution of the LCP (¢, M) (and consequently z; = 0). On the
other hand, if z} is known to be positive, from (9.3), the variable z; is positive and
consequently w; = 0 in the solution of the LCP (g, M). Using this information, the
LCP (g, M) can be reduced to another LCP of order (n — 1) as discussed in Chapter

7. Since N defined above is finite and can be computed once the matrix B is known,

after a finite number of steps of the iterative scheme (9.4), we can identify a basic
variable in the complementary feasible basic vector for the LCP (¢, M), and reduce
the remaining problem into an LCP of order (n — 1), and repeat the method on it.
The same thing is repeated until a complementary feasible basic vector for the LCP
(g, M) is fully identified. In [9.22] W. M. G. Van Bokhoven has shown that the total
number of steps that the iterative method has to be carried out before a basic variable
in the complementary feasible basic vector for any of the principal subproblems in this
process is identified, is at most N, where N is the number depending on the original
matrix M, given above. So after at most nN steps of the iterative scheme (9.4) applied
either on the original problem or one of its principal subproblems, a complementary
feasible basic vector for the LCP (¢, M) will be identified.
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FExercise

9.1 Consider the LCP (g, M) where

w(1%)

A 0

which comes from transforming an LP into an LCP. Here M is neither PD nor even
symmetric, but is PSD. Show that (I + M)~! exists in this case. Define, as before
b=—I+M)"Yq, B=(I+ M) (I — M). Apply the transformation of variables as
in (9.3) in this LCP, and show that it leads to the fixed point problem (9.2). Consider
in this following iterative scheme for solving this fixed point problem in this case.

' =0

1 _bra + BlaT| (9.8)
2

Show that if the LCP (g, M) has a solution, then the sequence {z"} generated by (9.8)
converges to a solution of the fixed point problem and that the limit of this sequence
leads to a solution of the LCP (¢, M) in this case through the transformation (9.3).
(W. M. G. Van Bokhoven [9.22]).

9.3 Iterative Methods for LCPs
Associated with General Symmetric Matrices

In this section we consider the LCP (g, M), in which the only assumption made is
that M is a symmetric matrix. The method and the results discussed here are due
to O. L. Mangasarian [9.12], even through in some cases these turn out to be gener-
alizations of the methods developed in references [10.33]. We begin with some basic
definitions. We assume that ¢ 2 0, as otherwise (w = ¢,z = 0) is a solution of the
LCP (¢, M).

A square matrix P = (p;;) is said to be strictly lower triangular if p;; = 0 for
i < j. It is said to be strictly upper triangular if p;; = 0 for all 4 > j. Given a
square matrix M = (m;;) it can be written as the sum of three matrices M = L+G+U,

where
(0 0 ... 0 0
mea O ... 0 0 mu o 0 ... 0
. 0 mo9 0
L= ms31 132 . 0 0 s G = . . . . y
0 0 eer Mpn
\ Mp1 mp2 s mn,n—l 0 J
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0 mi2 mizg ... Mip—1 My

0 0 mo3 Ce mz,n_l mz,n
U=1|: : g : :

0 0 0o ... 0 Mp—1,n

0 0 o ... 0 0

The matrices L, G, U defined above, are respectively known as the strictly lower
triangular part, the diagonal part and the strict upper triangular part of the

given square matrix M. If M is symmetric we will have LT = U.

+ _
=
Maximum {0, z;}, for each j = 1 to n. The vector zt can be verified to be the nearest

point in the nonnegative orthant to x.

Let z = (z;) € R™ be any column vector. We denote by zt = (a:j) where x

The Iterative Method

Let z° > 0 be an arbitrarily chosen initial point in the nonnegative orthant of R".
The iterative method is defined by the formula

zr+1 — )\(zr _wET‘(MZT‘ _+_q_+_KT'(Z7“+1 - ZT‘)))+ + (1 - )\)zr (99)

for r = 0,1,..., where A, w are parameters satisfying 0 < A < 1, w > 0, whose
values have to be chosen; for each r, K" is a strictly lower triangular or strictly upper
triangular matrix, and E" is a positive diagonal matrix, which together satisfy

E" > al

yT(()\wE’“)_l + K" — %)y > v||ly||?, for all y € R™ (9.10)

for some positive numbers «, . Also {E" : r = 0,1,...}, {K" : r = 0,1,...} are
bounded sequences of matrices. When K7 is strictly lower triangular, (9.9) yields,

271“"‘1 o )\(2;71" — wE{l(Ml.Zr + q1))+ + (1 - A)ZL and
j—1

Z;+1 = )\(z; — wE;"j(Mj.zT +q; + Z ;l(z;"H — Z{)))+ +(1- )\)z;", for j =2 to n,
1=1

where Ej; is the j™ diagonal entry in the diagonal matrix E” and K7, is the (j, 1)th
entry in K. So in this case Z;TH can be computed, very conveniently, in the specific
order j =1,2,...,n. If K" is strictly upper triangular, (9.9) yields
2t =X (2 — wE, (M,.2" + qn))Jr + (1 —=X)zl, and
n
G =N~ B (M2 g+ Y KR =) T+
I=j+1
(1=A)zj, for j=n—1to 1,

and so in this case 27 ; can be computed very conveniently in the specific order j =
n,n—1,...,2 1.
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How is the Iterative Method Obtained 7

The formula (9.9) for the iterative method is obtained by considering the quadratic
programming problem

%ZTMZ +qT2

Minimize f(z)
220 (9.11)

Subject to
In this section f(z) denotes the function defined in (9.11). Remembering that M is
a symmetric matrix, it can be verified that every KKT point for (9.11) leads to a
solution of the LCP (¢, M) and vice versa. The iteration (9.9) comes from an SOR
(Successive Overrelaxation) type of gradient-projection algorithm for solving (9.11).
We will discuss the choice for the parameters A, w and the matrices E”, K" in (9.9),

later on. We will now characterize the convergence properties of the iterative method
defined by (9.9).

Convergence Theorems

Theorem 9.7 Let E be a diagonal matrix with positive diagonal entries. Then
(W= MZ+ q,Z) is a solution of the LCP (q, M) iff Z satisfies

(z—wE(Mz+q))+—z:0, for some or all w > 0 . (9.12)

Proof. Suppose (W = Mz + q,Zz) is a solution of the LCP (¢, M). Let w > 0 be
arbitrary. If j is such that zZ; = 0, M;.Z + ¢; > 0, we have (Z; —wE;;(M;.Z + q;))* —
Zj = (—ijj(Mj.Z + Qj))+ = 0. Ifj is such that Mj.Z + q; — 0 and Ej i 0, we have
(zj —wE;j(M;.Z2 4+ ¢q;))T — Z; = Zj — Z; = 0. So in this case z satisfies (9.12).
Conversely suppose z € R" satisfies (9.12). Then z = (z —wE(MZz + ¢))* > 0.
Also, if for some j, we have M;.Z+q; < 0, then from (9.12), 0 = (Zj—ijj(Mj.Z+qj))+
—Zj = —wkE;;(M;.Z+q;), a contradiction. So MZ+q > 0 too. Now, for any j between
1 to n, if zZ; — wE;j(M;.Z 4+ q;) > 0, we have 0 = (z; — wE;;(M;.zZ + ¢;))" — z; =
—wF;;(M;.Z+ q;), and hence we must have M;.Z+ ¢; = 0. On the other hand if z; —
wE;;(M;.Z + qj) <0, we have 0 = (Z; —wE;;(M;.Z + q;))T — Z; = —Z;, and hence we
must have Z; = 0. Thus depending on whether Z; — wE;;(M;.Z+ ¢;) in nonnegative or
negative, we must have M;.z + ¢; or Z; equal to zero. So ZT(Mz+ q) = 0. Together
with the nonnegativity proved above, we conclude that (w = Mz + ¢, z) is a solution
of the LCP (¢, M).
[

Theorem 9.8 Let E be a diagonal matrix with positive diagonal entries and let
z € R". Then (2t — 2)TE~1(2* —y) <0 for all y > 0.

Proof. We have (z+ — 2)TE~} (2t —y) = 2:?:1((,2;-L — 2j)(2] —y;)/Ej;). Here Ej

is the j* diagonal entry of the matrix E. If j is such that zj > 0, then Z;L —z; = 0.
If j is such that z; < 0, then (ZJ+ - zj)(zjJr —y;)/Ej; = zjy;/Ej; <0 since y; > 0. So
(2t —2)TE~1(2% —y) is the sum of non-postive quantities, and hence is non-positive.

[
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Theorem 9.9 Let {z" : r = 1,2,...} be the sequence of points obtained under
the iterative scheme (9.9). If Z is an accumulation point of this sequence, then (w =
M?Z + q, z) is a solution of the LCP (q, M).

Proof. Since the initial point 2° > 0, and from (9.9) we conclude that 2" > 0 for all
r=1,2,.... From strightforward manipulation it can be verified that

flr ) = f(2") =
= (wE"(Mz" + q))T(wE’")_l(z’"+1 —2")
+ (2 — )T =2

= (—ZTH_(;_’\)ZT — 2" +wE"(Mz2" +q
T
+ KT (27— z)» (WE™)~ @”4—HH— (9.13)
+ r~|—1 (% _ )\wEr Kr) (Zr—i—l _ zr)

= AT (BN (M 4 g
—{—KT( r+l )))) (wEr)—l(er_()\l_)\)zT B zr)_|_

+ (2"t — 2 )T(% — (MWE")"E— K") (2" = 27)

From (9.9) we know that w = (2" —wE"(Mz"+q+ K" (2" - zT)))+. Also
A > 0. Using these, and Theorem 9.8, we conclude that the first term in the right hand
side of (9.13) is < 0. So f(2" 1) —f(2") < (271 —2")T (Z —(MAwE") 1= K") (2" +1—2").
So,

M

f(ZT) . f(Zr—i—l) (zr~|—1 . zr)T(()\wEr)—l + K" — 7)(Zr—i—l . zr)

v

(9.14)
r+1 zr“Z

27z
The last inequality (9.14) follows from the conditions (9.10). Since v > 0, (9.14) implies
that f(2") — f(2"*') > 0. Hence {f(2") : r = 1,2,...} is a monotone non-increasing
sequence of real numbers.

Let z be an accumulation point of {2" : r = 0,1,...}. So there exists a sequence
of positive integers such that the subsequence of 2" with r belonging to this sequence
of integers converges to z. Since {E" : r =0,1,...}, {K" : r = 0,1,...} are bounded
sequences of matrices, we can again find a subsequence of the above sequence of positive
integers satisfying the property that both the subsequences of E" and K" with r
belonging to this subsequence converge to limits. Let {r; : ¢ = 1,2,...} be this final
subsequence of positive integers. So limit 2"t as ¢ tends to oo is Z. Also limits of E™t,
K™ as t tends to oo exist, and denote these limits respectively by E and K. Since
each E" is a diagonal matrix satisfying E” > al, for some positive a for all r, we
know that E = limits E™ as t tends to oo, is itself a diagonal matrix with positive
diagonal entries. Since f(z) is continuous, we have f(z) = limit f(z"*) as ¢t tends to
+o00. Since {f(2") : = 0,1,...} is non-increasing sequence of real numbers, and
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its subsequence {f(z") : t = 1,2,...} converges to the limit f(z), we conclude that
{f(z") : r = 0,1,...} is a non-increasing sequence of real numbers bounded below
by f(z). Hence the sequence {f(z") : r = 0,1,...} itself converges. This and (9.14)
together imply that 0 = t_ljinoo (f(z"t) = f(z1Fm)) > 1imoofy||z1+7“t — 2"||2 > 0. From

— t—=+
this and the fact that the sequence {z"* : t = 1,2,...} converges to z, we conclude that

the sequence {2177t : ¢ = 1,2,...} also converges to z. These facts imply that

0= lim [zt — 2"
t—+4o0
=\ lim [|(2" —wE" (Mz" +q+ K"t (21T — 2")))T — 2|
t—+4o00

=M(z-wEMz+q)" -2 .

So we have (z — wE(Mz +q))t —z = 0. So by Theorem 9.7, (W = Mz + ¢,Z) is a
solution of the LCP (¢, M).
[]
Theorem 9.9 does not guarantee that the sequence {z" : r = 0,1,...} generated
by the iterative method (9.9) has any limit points. When additional conditions are
imposed, it is possible to guarantee that this sequence has some limit points.

Theorem 9.10 Let M be a symmetric and copositive matrix of order n. Suppose
{2 : s =1,2,...} is an unbounded sequence (i. e., limit ||2%|| as s tends to oo is 00)
satisfying z° > 0 and f(2°) < a for all s = 1,2, ..., where « is a constant. Then, there

25t
llz5¢]]?
t = 1,2,...} converges to a point § satisfying § > 0, T My = 0, q7 < 0. If, in
addition, M is copositive plus, then iy also satisfies My = 0, and in this case either
(9.15) or (9.16) have no solution z € R".

exists a subsequence {z°t : t = 1,2,...} such that the sequence {y°t : y5t =

Mz+q>0 (9.15)

Mz >0 (9.16)

Proof. Since ||z°|| diverges to +o00, and z* > 0, we have z° > 0 when s is sufficiently
large. Eliminating some of the terms in the sequence {2° : s = 1,2, ...} at the beginning
of it, if necessary, we can therefore assume that z° > 0 for all s in the sequence. So
|z°]| > 0 and hence y* = ﬁ
an infinite sequence of points lying on the boundary of the unit sphere in R" (i. e.,
satisfying ||y®|| = 1 for all s), and hence if has a limit point ¢, and there exists a

is defined for all s. The sequence {y° : s =1,2,...} is

subsequence {y®t : t =1,2,...} coverging to y. Clearly ||y|| = 1, and since y®* > 0 for

all s, we have y > 0. From the conditions satisfied by the sequence {2° : s =1,2,...}
we have .
gy

o f(z%) 1 T
> = (") My™ + .
|25¢]]2 = [lz5e)|2 2 [|25¢]]

Taking the limit in this as ¢ tends to +oo, we have 0 > (3)y M7, and since M is

2
copostive and ¢ > 0, this implies that g7 My = 0. Also, we have ”zi‘t i > Jﬂ(ziit”) =
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(%)stt”(yst)TMyst + ¢Ty*t > qTy®, since M is copositive and y** > 0. Now taking
the limit as ¢ tends to +oo, we get 0 > qry.

If, in addition, M is copositive plus, and symmetric, g7 My = 0, § > 0 implies
My = 0 by the definition of copositive plus. Also, in this case, if (9.15) has a solution z,
multiplying both sides of (9.15) by g7 on the left yields (since § > 0) 0 < y7 (Mz+q) =
g’y + 2T (My) = ¢"y < 0, a contradiction. Similarly, if (9.16) has a solution z in
this case, multiplying both sides of (9.16) on the left by i > 0 yields 0 < 7 Mz =
2T (My) = 0, a contradiction.

Hence (9.15) has no solution z in this case. Also the system (9.16) has no solution
z in this case.

[]

Theorem 9.11 Suppose either
(a) M is a symmetric strictly copositive matrix, or
(b) M is a symmetric copositive plus matrix satisfying the condition that either
(9.15) or (9.16) has a feasible solution z.

Then the sequence {z" : 7 = 0,1, ...} generated by the iterative scheme (9.9) is bounded
and has an accumulation point which leads to a solution of the LCP (q, M).

Proof. From Theorem 9.9 we know that f(2") < f(2°) for all r = 1,2,.... If the
sequence {z" : 7 =0,1,...} is not bounded, it must have a subsequence which diverges,
and using it together with the results in Theorem 9.10, we get a contradiction. Hence
the sequence {z" : r = 0,1,...} must be bounded. So it must possess an accumulation

point, and by Theorem 9.9, every accumulation point of this sequence leads to a solution
of the LCP (¢, M).
[

Corollary 9.1 If M is symmetric, nonnegative and has positive diagonal elements,
the sequence {z" : 7 = 0,1, ...} obtained under (9.9) is bounded, and every accumula-
tion point of it leads to a solution of the LCP (q, M).

Proof. Follows from Theorem 9.11.

[]

Corollary 9.2 If M is symmetric, copositive plus, and either (9.15) or (9.16) has
a feasible solution z, then the LCP (q, M) has a solution. In this case when the
complementary pivot method is applied on the LCP (q, M), it cannot terminate in a
ray, it terminates with a solution for the problem.

Proof. Follows from Theorem 9.11 and Theorem 2.1.
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FExercise

9.2 Suppose that M is symmetric and copositive plus. If ¢ < 0 and there exists a z
satisfying Mz + g > 0, prove that the LCP (g, M) has a solution.

Now we state a theorem due to Ostrowski (Theorem 28.1 in reference [9.17], The-
orem 6.3.1 in reference [9.12]) which we will use in proving Theorem 9.13 later on.

Theorem 9.12  If the sequence {z" : r = 0,1,...} in R" is bounded and limit
|z"t1 — a"|| as r tends to oo is zero, and if the set of accumulation points of {z" :
r =0,1,...} is not a continuum (i. e., a closed set which cannot be written as the
union of two nonempty disjoint closed sets), then {x" : r = 0,1,...} converges to a
limit.

Proof. See references [9.17] mentioned above.

[]

Theorem 9.13 Suppose M is symmetric, copositive plus and nondegenerate. Then
the sequence {z" : r = 0,1,...} obtained under (9.9) converges to a solution of the
LCP (q, M).

Proof. In this case the determinant of M is nonzero, so M ~! exists. The vector z =
M~1e can be verified to be a feasible solution for (9.16), so by Theorem 9.11, the
sequence {z" : 7 =0,1,...} of points obtained under the iterative scheme (9.9) for this
case is bounded, and has at least one limit point. So the nonincreasing sequence of
real numbers {f(z") :r =0,1,...} is also bounded and hence converges. From (9.14)
we also conclude that limit [|2" T — 27|| as r tends to oo is zero. By Theorem 9.9 every
accumulation point of {2" : r = 0,1, ...} leads to a solution of the LCP (¢, M). But the
LCP (g, M) has only a finite number of solutions in this case, since M is nondegenerate
(Theorem 3.2). So the sequence {z" : r = 0,1,...} has only a finite number of limit
points in this case. This, together with the fact that limit [|2"*! — 27|| as r tends to
+00 is zero, implies by Theorem 9.12, that the sequence {z" : r = 0,1,...} converges
to a limit, say z. By Theorem 9.9, z leads to a solution of the LCP (¢, M).

[

Corollary 9.3 If M is symmetric and PD, the sequence {z" : 7 = 0,1, ...} produced
by the iterative scheme (9.9) converges to a point z that leads to a solution of the LCP

(¢, M).

Choice of Various Parameters in the Iterative Scheme (9.9)

By setting K™ = 0, E™ = FE for all r, where E is a diagonal matrix with positive
diagonal elements, the iterative scheme (9.9) becomes the following scheme
2° > 0, an initial point

9.17
S = A& —wB(MZ + @)t + (L= N r=0,1,... 0
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where 0 < A < 1, w > 0 are chosen to satisfy th property that the matrix 2(AwE)~1—M
is PD (to meet condition (9.10)). This special scheme is a projected Jacobi over-
relaxation scheme (see reference [10.33]).

By setting K™ = L or U, E" = E where E is a diagonal matrix with positive
diagonal entries we obtain the following scheme which is a projected SOR, (successive
over relaxation) scheme.

g 0, an initial point

9.18
=N —wEMz2" +q+ K" (2" —2))T+ (1 - N2, r=0,1,... (9.18)

where 0 < A < 1, w > 0 satisfying the condition that
Aw < 2/Maximum {Gj;E;; : j such that Gj; > 0} (9.19)

(where G is the diagonal part of M, and G;; denotes the jth diagonal element fo G if
the set {j : j such that Gj; > 0, j =1 to n} is non-empty). This is to meet condition
(9.10).

In (9.9), by setting K™ = L and U alternately, we get the following projected
symmetric SOR. scheme.

||\/

0, an initial point.
Mz" —wEMz2" +q+ Lz = 2))T+ (1= N)2", r=0,2,4,... (9.20)
Mz —wEMz2" +q+ U 2T+ (1—N)2", r=1,3,5,...

where 0 < A < 1, w > 0 and F is a diagonal matrix with positive diagonal entries
satisfying (9.19).

9.3.1 Application of These Methods to Solve

Convex Quadratic Programs

The LCP (1.19) corresponding to the quadratic program (1.11) is associated with a
matrix M which is not symmetric, and hence the iterative methods discussed in this
section cannot be applied to solve it. Here we show that by treating the sign restrictions
on the variables, also as contraints, and writing down the KK'T optimality conditions
for the resulting problem, we can derive an LCP associated with a symmetric matrix
M corresponding to the problem, if the objective function is strictly convex (i. e., if D
is PD). We consider the quadratic program (1.11), but include all the sign restrictions
under the system of constraints. This leads to a problem in the following form :

Minimize Q(z) = cz + 327 Dz

Subject to Az > b (9-21)
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where A is a given matrix of order m x n; b, ¢ are given vectors, and D is a given
symmetric matrix of order n. We assume that D is PD. So (9.21) is a convex program
with a strictly convex objective function. Associate the Lagrange multiplier u; to the
ith constraint in (9.21), i = 1 to m, and let v = (uy,...,un)T. The Lagrangian for
this problem is L(z,u) = cz + 327 Dz — u” (Az — b). The KKT necessary optimality
conditions for this problem are (since D is symmetric)

0
—L(z,u) =c" + Dz — ATu =0

ox
uwz0 (9.22)
uT (Az —b) =0
Az —b2>0.

Since D is assumed to be PD here, D~! exists. So from the first set of conditions
in (9.22), we get z = D71(ATu — 7). Using this we can eliminate z from (9.22).
Denoting the slack variables Ax — b by v, this leads to the LCP

v— (AD7*ATYu = —(b+ AD1cT)
v>20, u>0 (9.23)
vTu=0

So if (@, ¥) is a solution of the LCP (9.23), then # = D~1(AT@—cT) is a KKT point for
the quadratic program (9.21). Applying Theorems 1.13, 1.14 to the convex quadratic
program (9.21), we conclude that an optimum solution of (9,21) is a KKT point and
vice versa. So solving (9.21) is equivalent to solving the LCP (9.23). Since the matrix
AD AT is symmetric this is an LCP associated with a symmetric matrix, and can
be solved by the iterative methods discussed above. In particular, let L, G, U be
respectively the strictly lower triangular part, the diagonal part, and the strictly upper
triangular part of the matrix AD~*AT. Generate the sequence {u” : » = 0,1,...} in
R™ by the following iterative scheme :

u® > 0 selected arbitrarily

9.24
ur—i—l — (ur _ wE(AD—lATur —bh— AD—ICT + Kr(ur—f—l _ ur)))-i— ( )

where F is a diagonal matrix with positive diagonal entries, K" is either L or U and
0 < w < 2/ Maximum {G;;Ej; : j such that G;; > 0} (9.25)

Note that (9.24) corresponds to setting A = 1 in (9.9). Also (9.25) is the condtion
(9.19) for this case. Also, using (9.24), u" ™! is computed from u” in the specific order
g =12,...,nif K" = L, or in the specific order j = n,n —1,...,1if K" = U,as
discussed earlier. We have the following theorems.
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Theorem 9.14  FEach accumulation point u of the sequence {u" : r = 0,1,...}
generated by (9.24) satisfies the property that (v = AD™*AT4 — (b+ AD=1cT), u) is
a solution of the LCP (9.23), and & = D~*(AT@ — ¢T') is the optimum solution of the
quadratic program (9.21).

Proof. Follows by applying Theorem 9.9 to this case.
[
Theorem 9.14 does not, of course, guarantee that the sequence {u" : r =0,1,...}
generated by (9.24) has an accumulation point. This requires some more conditions
on (9.21) as discussed below in Theorem 9.15.

Theorem 9.15 If the set of feasible solutions of (9.21) has an interior point (i. e.,
there exists an x satisfying Az > b) and D is symmetric PD, then the sequence {u" :
r = 0,1,...} generated under (9.24) is bounded, and has at least one accumulation
point. Fach accumulation point u satisfies the statement in Theorem 9.14.

Proof. Since Ax > b is feasible, there exists a § > 0 such that the set of feasible
solutions of
Az > b+ de (9.26)

is nonempty. Fix § at such a positive value. Since the set of feasible solutions of (9.26)
is nonempty, and @Q(z) is strictly convex, the problem of minimizing Q(z) subject to
(9.26) has an optimum solution and it is unique. Suppose this optimum solution is Z.
The KKT necessary optimality conditions for this problem are

I+ Dz —ATu=0
u=>0

Ax > b+ de
u(Az —b—de)=0.

(9.27)

So there exists a @ € R™ such that Z, @ together satisfy (9.27). Hence (AD~1AT)a +
(—=b— AD~ ') > de > 0. This is like condition (9.15) for the LCP (9.23). Using this,
this theorem follows from Theorem 9.11.

[]

9.3.2 Application to Convex Quadratic Program

Subject to General Constraints

The constraints in a quadratic program may be either linear inequalities or equations.
Here we discuss how to apply the iterative scheme to solve the quadratic program
directly without carrying out any transformations first to transform all the constraints
into inqualities. We consider the quadratic program

Minimize Q(z) = czx + 127Dz
Subject to Az >b (9.28)
Fr=d
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where A, F' are given matrices of orders m x n, k x n respectively; b, d, ¢ are given
vectors; and D is a given symmetric positive definite matrix of order n. Associate the
Lagrange multiplier u;, to the i*" inequality constraint in (9.20), i = 1 to m; and the
Lagrange multiplier & to the t'* equality constraint in (9.28),¢ =1 to k. Let u = (u;),
¢ = (&). The Lagrangian for this problems is L(z,u,{) = cx + 127 Dz —uT (Az — b) —
¢T(Fx — d). Since D is symmetric, the KKT necessary optimality conditions for this
problem are :

a—L($,u,§):cT+D;U—ATu—FT£:0

ox
u=>0
ul'(Az —b) =0 (9.29)
Ar—b2>0
Fr—d=0.

From (9.29) we get © = D=Y(ATu — FT¢ — ¢T'). Using this we can eliminate x from
(9.29). When this is done, we are left with a quadratic program in terms of u and
§ associated with a symmetric matrix, in which the only constraints are u > 0. The
iterative scheme discussed above, specialized to solve this problem, becomes the fol-
lowing. Let L, G, U be respectively the strict lower triangular part, the diagonal part,

?, ] D=t (AT FT). Generate the sequence

{(u",€") : r=0,1,...} by the following scheme

and the strict upper triangular part of [

(u®, £Y) selected arbitrarily to satisfy u® > 0.

(e) = (&) —er[(F) oo (2]
r+1 r *

(w) o= () e (o) - ()]

where, as before, F is a diagonal matrix with positive diagonal entries, K" is either L
or U, w is a positive number satisfying (9.25), and

() - (%)

3 £

In (9.30), if K" = L, u§+1 are computed in the order 1,2,...,m first and then £"+!
is computed. If K" = U, "1 is first computed and then U;H are computed in the

order j =m,m—1,...,1. We have the following theorems about this iterative scheme,
corresponding to Theorems 9.14, 9.15 discussed earlier.

Theorem 9.16  FEach accumulation point (ua,&) of {(u",&") : 7 =0,1,...} generated
by (9.30) satisfies the property that (u,&,z = D™Y(ATu — FT¢ — cT)), satisfies (9.29)
and ¥ is the optimum solution of the quadratic program (9.28).

Proof. Similar to Theorem 9.14.
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Theorem 9.17  If there exists an & satisfying Az > b, F& = d; and the set of rows
of F is linearly independent, then the sequence {(u",&") : r = 0,1,...} generated by
(9.30) is bounded, and at last one accumulation point.

Proof. Similar to Theorem 9.15.

9.3.3 How to Apply These Iterative Schemes in Practice

In practice we can only carry out the iterative scheme up to a finite number of steps,
and obtain only a finite number of elements in the sequence. Usually the iterative
scheme can be terminated whenever the current element in the sequence satisfies the
constraints in the LCP to a reasonable degree of accuracy, or when the difference
between successive elements in the sequence is small.

FExercise

9.3 Consider the LP
Minimize 60(z) = cx

Subject to Az > b (9-31)

where A is a given matrix of order m x n, and b, ¢ are given vectors. Suppose this
problem has an optimum solution, and let 8 denote the unknown optimum objective
value in this problem. Now consider the following quadratic programming pertubation
of this LP where ¢ is a small positive number

Minimize %SETZU + cx

Subject to Az > b (9.32)

i) Prove that if (9.31) has an optimum solution, there exists a real positive number
€ such that for each € in the interval 0 < e < &, (9.32) has an unique optimum
solution Z which is independent of £, and which is also an optimum solution of
the LP (9.31).

ii) If 4 is the nonnegative optimal Lagrange multiplier associated with the last con-
straint in the following problem, where f is the optimum objective value in (9.31),

prove that the £ in (i) can be selected to be any value satisfying 0 < € < <. If

1
v
4 = 0, € can be chosen to be any postive number.

Minimize 127z
Subject to Az > b
—cr > —0

(O. L. Mangasarian and R. R. Meyer [9.15])
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9.4 Sparsity Preserving SOR Methods
For Separable Quadratic Programming

The iterative SOR methods discussed in Section 9.3 for quadratic programming require
the product of the constraint matrix by its transpose which can cause loss of both
sparsity and accuracy. In this section we discuss special sparsity preserving versions
of the general SOR algorithms presented in Section 9.3 for the LCP associated with
a symmetric matrix, or equivalently for the quadratic program with nonnegativity
constraints only; these versions are given in a simple explicit form in terms of the rows
of the matrix M, and very large sparse problems can be tackled with them. Then
we specialize these algorithms into SOR algorithm for solving separable quadratic
programming problems that do not require multiplication of the constraint matrix
by its transpose. The algorithms and the results discussed in this section are from
O. L. Mangasarian [9.14].

We consider the LCP (9.1) in which M = (m;;) is a symmetric matrix. As
discussed in Section 9.3, solving (9.1) is equivalent to finding a KKT point for the
quadratic programming problem (9.11). The SOR algorithm given here is a type of
gradient projection algorithm for (9.11) with w as the relaxation factor or step size that
must satisfy 0 < w < 2, and is based on those discussed in Section 9.3. The algorithm
is the following. Choose 2z > 0 as the initial point. For r = 0,1, ... define for j =1 to
n.

Z;"H = (2] — war (YT + ijt2; +q;))" (9.33)

t=j
where a; = nﬂ%ﬂ if m;; >0, and aj = 1 if m;; < 0; fy’l"+1 =0, ’y;H = Zi;ll mjtz{“
for j > 1.

Convergence Theorems

Theorem 9.18 Let M be a symmetric matrix. Then the following hold.

(1) Each accumulation point of the sequence {z" : r = 0,1,...} generated by the
iterative scheme (9.33) leads to a solution of the LCP (9.1).

(2) If M is symmetric and PSD and the system: Mz + q > 0, has a solution z,
the sequence {z" : r = 0,1,...} generated by (9.33) is bounded and has an
accumulation point that leads to a solution of (9.1).

(3) If M is symmetric and PD the sequence {z" : 7 = 0,1...} generated by (9.33)
converges to a point z that leads to the unique solution of the LCP (9.1) (i. e.,
(W= MZz+ q,2) is the solution of the LCP).

(4) If M is symmetric and PSD and (9.1) has a nonempty bounded solution set,
the sequence {z" : r = 0,1,...} generated by (9.33) is bounded and has an
accumulation point that leads to a solution of (9.1).
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Proof. Part (1) follows from Theorem 9.9. Part (2) follows from Theorem 9.11. Part
(3) follows from Corollary 9.3. To prove part (4), notice that if the sequence {z"
r=0,1,...} generated by (9.33) is unbounded, by Theorem 9.10, there exists a § € R"
satisfying: §y > 0, My = 0, ¢Ty < 0. So, if (W = Mz + q,%) is a solution of (9.1),
then (M(z+ A\y) + ¢, Z+ Ay) is also a solution of (9.1) for all A > 0 (since Z + Ay > 0,
M(Z4+Aj)+q¢>0and 0 < (z+ 29T (M(z+ Aj) + q) = AT § < 0) contradicting the
boundedness assuption of the solution set of (9.1).

[
9.4.1 Application to
Separable Convex Quadratic Programming
Consider the quadratic program
Minimize cx + :ETD;U
Subject to Az > b (9.34)

x>0

where A is a given matrix of order m xn and D is a positive diagonal matrix of order n.
Let uT € R™, vT € R" be the row vectors of Lagrange multipliers associated with the
constraints and sign restrictions in (9.34). From the necessary optimality conditions
for (9.34) it can be verified that an optimum solution for (9.34) is given by

r=D"YATu+v—c") (9.35)
where (u,v) is an optimum solution of

Minimize —bTu+ 1(ATu+v — ) TD7HATu+v —cT) 936
Subject to (u,v) > 0 (9.36)
The problem (9.36) is in the same form as (9.11) and so the iterative algorithm (9.33)
can be applied to solve it. It leads to the following iterative scheme. Choose (u?,v%) >
0, 0 < w < 2. Having (u",v") define for i =1 to m.

m +
r r w - i,r r r
it = (= s (D7 w4 - ) <)
' t:’L

" = (vr —w(ATy ™ 4o — cT))Jr
(9.37)
where 4*" 1 = 0 for i = 1, or = 3/_1(A;.)Tul ! for i > 1. Notice that the sparsity or
any structural properties that the constraint coefﬁ(:lent matrix A may have are taken
advantage of in (9.37).
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Theorem 9.19  The following hold.
(1) Each accumulation point (@, ) of the sequence {(u",v") : r =0,1,...} gen-
erated by (9.37) solves (9.36) and the corresponding T determined by (9.35)
solves (9.34).
(2) If {x : Ax > b,x > 0} # (), the sequence {(u",v") : r =0,1,...} generated by
(9.37) is bounded and has an accumulation point (u,v) and the corresponding
x determined by (9.35) solves (9.34).

Proof. Part (1) follows from Theorem 9.18. To prove part (2), if {x : Az > b,x > 0} #
(), the perturbed positive definite quadratic program: minimize cz + %.TTD.T subject to
Ax > b+epnd, x> e,0, where e; is the column vector of all 1’s in R' for any ¢, has an
optimum solution z. If (u,0) are the corresponding Lagrange multiplier vectors, from
the KKT necessary optimality conditions we have

F=DYATa+v—-c")>e,d >0
AD Y (ATa+9—c")—b>end > 0.

These conditions are equivalent to the condition Mz + ¢ > 0 in Theorem 9.18 for
the LCP corresponding to problem (9.36). Hence, by Theorem 9.18, the sequence
{(u",v") : r=0,1,...} generated by (9.37) is bounded, and hence has an accumulation
point (u,v). The corresponding x determined from (9.35) solves (9.34) by the result
in part (1).
[]

In [9.14] O. L. Mangasarian used the iterative scheme (9.37) to develop a spar-
sity preserving SOR, algorithm for solving linear programs. These schemes are also
discussed in Section 16.4 [2.26].
Note 9.1 Suppose we have observations on the yield a; at values of the temperature
t=1,2,...,n; and it is believed that this yield can be approximated very closely by
a convex function of ¢. Let z(t) be a convex function in ¢, and denote z(t) by x;
for t = 1,...,n. The problem of finding the best convex approximation to the yield,
usng the least squares formulation, leads to the quadratic programming problem : find
r=(x1,...,2,)T to

minimize Y ., (z; — a;)?
subject to $i+1—a:,~§a:i—a:i_1, i:2,...,n—1
This leads to the LCP (q, M), where
(6 —4 1 0 0 0 0)
—4 6 —4 1 0 0 0
1 —4 6 —4 1 0 0
M = 0 1 —4 6 —4 0 0

. 0 0 0 O 0 1 -4 6)

_ T
and ¢ = (ag — a1,a3 — az,a4 —asg,...)" .
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J. S. Pang has tried to solve this class of LCPs for n = 100, using various iterative
SOR methods discussed in this section and in Section 9.3 and found that convergence is
not obtained even after several thousands of iterations. The matrix M given above is a
very specially structured positive definite symmetric matrix, and the pivotal methods
discussed in Chapters 2,4 perform very well in solving LCPs associated with this matrix
M. An explanation for the poor performance (slow convergence) of SOR iterative
methods on LCPs associated with M can be given in terms of the eigenvalues of M.
At any rate, this example shows that iterative methods may not perform well on some
classes of LCPs. These iterative methods are particularly useful for solving LCPs of
very large orders or those which lack special structure, and thus are not easily handled
by pivotal methods.

9.5 Iterative Methods for General LCPs

The results in Section 9.3 have been generalized by B. H. Ahn to the case of LCPs in
which the matrix M may not be symmetric [9.3]. We discuss his results in this section.
We want to solve the LCP (¢, M) (9.1), where M is a given matrix of order n, not
necessarily symmetric.

Given any matrix A = (a;;) we will denote by |A| the matrix (|a;;|). Also if A is
a square matrix of order n, the matrix C' = (¢;;) of order n where ¢;; = |a;;| for i =1
to n; and ¢;; = —laij|, 4,j = 1 to n, i # j, is known as the comparison matix of A.
We will now discuss some results on which the algorithm will be based.

Suppose we are given a square matrix A of order n which is not necessarily sym-
metric. So some of the eigenvalues of A may be complex. The spectral radius of A
denoted by p(A), is the maximum {|A1|,...,|A,|} where A1,..., )\, are the eigenvalues
of A. See Ortega and Rheinboldt [10.33] for results on the spectral radius of A.

Theorem 9.20 Let z,y € R". Then (x +y)* < 2t + y*, also © < y implies
zt <yt Also (x —y)t >zt —yt.

Proof. Follows by direct verification.

[]

Theorem 9.21 Let g(z) = (z — wE(Mz +q))", w > 0 and E is a diagonal matrix
with positive diagonal entries. (w = Mz + ¢, z) is a solution of the LCP (q, M) iff

g(z) = z.

Proof. Follows from Theorem 9.7 of Section 9.3.

The Iterative Scheme

Choose z° > 0 in R™ arbitrarily. Given 2", determine 2"*! from

_l’_
2T = (z’" ~wE(Mz" +q+ K(2"" - z’“))) , r=0,1,... (9.38)
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where w > 0, E is a diagonal matrix with positive diagonal entries, and K is either a
strictly upper triangular or a strictly lower triangular matrix. This scheme is a special
case of (9.9) discussed earlier in Section 9.3. We will now study the convergence
properties of the sequence {z" : » = 0,1,...} when M is not necessarily symmetric.
Notice that the convergence properties of this sequence established in Section 9.3 using
the descent function %ZTM 24 q" z, need the symmetry of M, and hence may not hold
when M is not symmetric.

Convergence Properties

Theorem 9.22  The vectors in the sequence {z" : r = 0,1, ...} obtained using (9.32)
satisfy for each r =1,2,...

27— 2| < (T WRIK )T = wB(M = K)L2" =2 (9.39)

Proof. From (9.38), we have 2" t1 —2" = (2" —wE(M 2" +q+ K (z"t1 —2"))) T — (271 -
wE(Mz" "t 4q+K(z" —2""H))T < ((2"—2""Y) —wEM (2" =21 —wEK (2" Tt —2")+
wEK (2" — 2"~1))* from Theorem 9.20. So (2" —2")* < (I —wE(M — K))(2" —
2T+ (—wEK (2"t — 27))*. We can obtain a similar result for 2" — 2"*1 that is
(2" =2t < (I—wE(M-K))(2" ' =2")) T+ (—wEK (2" — 2"t'))". Remembering
that |z| = 2T+ (—z)T for any vector € R", and adding the above two inequalities we
get |2"H — 27| < [ —wE(M — K)|-|2" — 2" + wE|K||2"t! — 2"|. Since K is strictly
lower or upper triangular, the matrix I — wF|K]| is either a lower or upper triangular
matrix, is invertible, and has a nonnegative inverse. Using this we get (9.39) from the
last inequality.

[]

Theorem 9.23  Suppose the iteration parameters w, E, K and the underlying
matrix satisfy p(Q) = ||Q]| < 1, where Q = (I — wE|K|)"}(|I — wE(M — K)|). Then
the sequence of points {z" : r = 0,1,...} generated by (9.38) converges to a point Z
where (W = MZ + q, Z) is a solution of the LCP.

Proof. Since p(Q)) < 1, by the result in Theorem 9.22 we conclude that limit of
(2" Tt —2") as r tends to oo, is zero. Also, clearly @ > 0. Now [2" — 20| < |27 — 2"+
et = 2@+ Dl =2 S (T - Q)T = 20, (since Q] < 1) =
a constant vector independent of . So the sequence {z" : r = 0,1,...} is bounded.
So it has a subsequence {z"* : ¢t = 1,2,...} which converges to a limit, z, say. So
lim |2"tF1 —Z| < lim |2"¢F! — 2"t |+ lim |2" — Z| = 0, which shows that limit 2"t *! as
t—o0 t—o0 t— oo

t tends to co is Z too. Now by the definition of 2! from equation (9.38), and taking
the limit as ¢ tend to +o0o, we conclude that z = (z —wE(MZz + q))*. So by Theorem
9.21, (w = Mz + q, z) is a solution of the LCP. Also, as in the proof of Theorem 9.22,
we can show that [2"1 — z| < Q|2" — z| holds for all r. Since |p(Q)| < 1; we conclude
that limit |2" — Z| as 7 tends to +oo is zero. So the entire sequence {z" : r =0,1,...}
itself converges in the limit to Z.

[
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Theorem 9.24 Let L, D, U be respectively the strictly lower triangular, diagonal
and strictly upper triangular parts respectively of M. Let K be L or U or 0. Let
B=1-wEK| C =|-wEM-K)|, A= B—-C. If Ais a P-matrix, then
the sequence {z" : r = 0,1,...} generated by (9.38) converges to a point z where
(W= Mz+ q,z) is a solution of the LCP (q, M).

Proof. From the definition of B, we know that B is invertible and B! > 0. Also
C > 0. So by 2.4.17 of Ortega and Rheinboldt’s book [10.33], p(B~'C) < 1 iff A~*
exists and is nonnegative. Since A is a Z-matrix, for it to have a nonnegative inverse,
it sufficies if A is a P-matrix. The result follows from these and from Theorem 9.23.

[]

Theorem 9.25 If D — |L + U] is a P-matrix, then the sequence {z" : 7 =0,1,...}
generated by (9.38) with K = L or U or 0 and 0 < w < 1/max{M;;E;; : j =1
to n} where Mj;, E;; are the jth diagonal entries of the matrices M, E respectively,
converges to a solution z where (W = Mz + q, Z) is a solution of the LCP.

Proof. Follows from Theorem 9.23.

9.6 Iterative Methods for LCPs
Based on Matrix Splittings

The iterative scheme and the results discussed in this section are due to J. S. Pang
[9.18]. Consider the LCP (q, M), (9.1), of order n. If B, C are square matrices of order
n satisfying

M=B+C, (9.40)

(9.40) is said to be a splitting of the matrix M. Let F be a square nonnegative diagonal
matrix of order n with diagonal entries E;; < 1 for all . This iterative scheme generates
a sequence of points {z" : r = 0,1,...} by the following: Let B, C, be a splitting of
M as in (9.40), 2% € R" be an arbitrarily selected nonnegative vector. Given 2", solve
the LCP with data (¢", B) where ¢" = ¢+ (C + BE)z", and let the solution of this
LCP be (u™t! = B2+t 4 ¢", 2"+1). Then 2! is the next point in the sequence.

For this scheme to be practical, the matrix B should be such that the LCP (p, B)
can be solved easily for any p € R". If B is a diagonal matrix with positive diagonal
entries, or a triangular matrix with positive diagonal entries this will be the case. We
assume that the splitting B, C' of M is chosen so that the computation of the LCP
(p, B) is easily carried out. Matrix splittings are used extensively in the study of
iterative methods for solving systems of linear equations. The results in this section
show that they are also useful for contructing iterative methods to solve LCPs. It can
be verified that the iterative scheme discussed in Section 9.3 is a special case of the
scheme discussed here, obtained by setting, £ = (1 — A)I and the splitting B, C' given



384

by B =

CHAPTER 9. ITERATIVE METHODS FOR LCPs

K+ G/(Aw*), and C = (M — K) — G/(Aw*) where 0 < A < 1, w* > 0, and

K is either a strictly lower triangular or a strictly upper triangular matrix and G is a

diagonal matrix with positive diagonal entries.

Theorem 9.26 Suppose the following conditions hold:

(1)
(ii)

(I11)

(iv)

(v)

Proof.

B satisfies the property that the LCP (p, B) has a solution for all p € R";
B =U+V + CT with U, V being matrices satisfying conditions mentioned
below;

there exists a permutation matrix P such that the following matrices have
the stated partitioned structure.
\% 0 C 0
T _ T T _ IT
PVP—[0 0], PC’P—[0 0],
E 0 0 U=
T _ IT T _ I'T
PEP—[ 0 O]’ PUP—[_Ulr:pF 0 ],
with Vrr being symmetric positive definite matrix, whereT' C {1,...,n},T =

{1,...,n}\T, and Vpr is the matrix of V;; withi € T, j € T, etc.

the initial vector z° > 0 satisfies ¢z — Ugleq > 0.

Then every accumulation point, Z of the sequence {Z : r = 0,1,...} generated
by the scheme discussed above, satisfies the property that (w = Mz + q, Z)
is a solution of the LCP (q, M). Also if the following additional condition is
satisfied:

the matrix Arr = (V + C + CT)rr is copositive plus and there exists vectors

y&, y2 such that

qr + Arryp > 0. (9.41)
yr >0, qp— Uyt >0 (9.42)
then the sequence {z" : r = 0,1,...} generated by the above scheme is

bounded, and has an accumulation point.

Define f(z) = g 2r+ 427 Mz. From the choice of z°, and the iteration formula

it is clear that 2" > 0 for all r, and that ¢r — U{:’%z’" > 0 for all » > 0. In order to
satisfy all these conditions, the matrix M need not be symmetric or PSD, but it must

be copositive plus (for condition (iv)), and a principal rearrangement of M is given by

So £(2)

[ Ar‘; UFF ]
_UFF 0

=gt zr + 2L Arrar/2. Hence

FEHY) = f(2") =
= (qr + Arrzp) T (557" — 48) + (o1 — 2f) T Are (77 = 21) /2
= (qr + Crrzf + (V + CT)rraf P T (207 — 24)

—(

21— 2R TVer (2p T — 21 /2

= (qr + Crrzh + (V + CT)ppaptt + Uppzlt )T (254 — 28)

—(

r

) (UL A~ Ulaf) — (A — o) Ver (4 — 4)/2

= (gr + Crrzk + (V 4+ CT)praf ™t + UpealtH)T (271 — E2") + (E — 1)2"

+

r

)r
2N ((gp = Uleat™) = (ap — Ulnzp)) — (27 = 28) " Ver (217 — 21)/2



9.7. EXERCISES 385

because (u"T1 = Bz"t1 44" 2" 1) solves the LCP (¢", B). From this we conclude that

—

FEHY) = F(Z) £ =5 (0" = 20) Vor (sp T — 21)

[IA

0. (9.43)

[N}

Now let z* be an accumulation point of the sequence {z" : r = 0,1,...} and let {z"* :
t =1,2,...} be a subsequence coverging to z*. This clearly implies by (9.43) that the
sequence {f(z") : r = 0,1,...} converges. As in the proof of Theorem 9.9, it can be
shown that in this case,

. re— 1 T __
tl_l)rgo 2 1_1)1’2o i =21 . (9.44)
Also, for each r; we have
ul =qr + Crrzf' " + Brrzft 20, 2" > Eppaft™! (9.45)
(u;t)T(z — Erpzpt™ 1) = (UQ)TzQ =0. (9.47)

Taking the limit as ¢ tends to co and usng (9.44), we conclude that (w* = Mz* +q, z*)
solves the LCP (q, M).

Suppose now that condition (iv) holds. We will first show that the sequence {zf. :
r=0,1,...} remains bounded. If not, by the results in Section 9.3, there must exist a
Zr satistying zr > 0, q%:ZF <0, ZITAFFZF = 0. Since Apr is copositive plus, this implies
that Appzr = 0. These facts contradict the existence of a solution to the system (9.41).
So {2z} :r=10,1,...} must be bounded.

Now we will prove that the sequence {z% :r =0,1,...} must be bounded too.
Suppose not. Then there exists a subsequence {z;f :t = 1,2,...} such that ||z I
diverges to +oo as t tends to oo. Let y* = = /||2'||. This normalized sequence
{y%t :t = 1,2,...} is bounded and hence has an accumulation point yr. Take a
subsequence of {y%t :t = 1,2,...} which converges to y%. Denote this subsequence
by {y% :s =1,2,...}. Since the sequence {z* : s = 1,2,...} is bounded, it has a
limit point. By considering a suitable subsequence again, if necessary, we can assume
that we finally have a subsequence {z;* : s = 1,2,...} which converges to z{:. Dividing
(9.45) by ||25°|| and taking the limit as s tends to oo, we get Brpys > 0. From
(9.47) we have (I = Err)21) T By ryr = 0, and since (I — Err) is a positive diagonal
matrix, this implies that (zl’i)TBny% = 0. Similarly, from (9.46), (9.47), we obtain
that (y%)T(qF + Bgpzp) = 0. Since By = Upp = BT r it follows that (y ) gz = 0.
This together with Brfy% > 0 and the fact that y_ 2 0 contradicts the ex1stence of
a solution to (9.42). So {2 :7=0,1,...} is also bounded. Hence the sequence {z"
r=20,1,...} is bounded when the additional condition (iv) holds.

[

In [9.18] J. S. Pang, has established the convergence properties of the sequence
{z" :r=0,1,...} generated by the scheme discussed here, under various other sets of
conditions on M, B, C, q.
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9.7 Exercises

9.4 Consider the problem of finding z,y € R" satisfying

' +Dr+y>0, >0, y>0
b—z >0 (9.48)
eT (" +Dr+y)=yT(b—2)=0

where b > 0, ¢, D are given matrices of order n x 1 and n x n respectively. When D
is symmetric, these are the necessary optimality conditions for the quadratic program:
minimize cr + %xTDx, subject to 0 < & < b. A model of type (9.48) arises in the study
of multicommodity market equilibrium problems with institutional price controls (here
D is not necessarily symmetric).

1) Show that (9.48) is equivalent to the LCP (¢, M) where

T D I
= (5] =5 0)

2) Let A ={z:0 < 2 < b} and let Pa(y) denote the nearest point in A (in terms
of the usual Euclidean distance) to y. Give Z € A, define the corresponding
y=(y;) € R" by g, =0if z; < b;, or = —D;.T + ¢; if Z; = b;. We say that z
leads to a solution of (9.48) if (z,y) solves (9.48). Consider the following iterative
scheme. Choose 2° € A. For r = 0,1, ..., given z", define

2"t = APa (2" —wE(Dz" + ¥ + Kz — 2"))) + (1 — \)z" (9.49)

where 0 < A < 1, w > 0, E is a positive diagonal matrix of order n, and K is
either the strictly lower or the strictly upper triangular part of D. Using the result
in Exercise 7.7, ZU;+1 in (9.49) can be determined in the order j = 1 to n if K
is the strictly lower triangular part of D, or in the order 7 = 1 to n if K is the
strictly upper triangular part of D. In the sequence {z" : r = 0,1,...} generated
by (9.49), z" € A for all r, so, it has at least one accumulation point. If D is
symmetric and Aw < 2/ (maximum{D;;E;; : j such that D;; > 0}), (here D;;,
E;; are the j*" diagonal entries in the matrices D, E respectively), prove that
every accumulation point of the sequence generated by (9.49) leads to a solution
of (9.48). In addition, if D is also nondegenerate, prove that the sequence {z" :
r = 0,1,...} generated by (9.49) in fact converges to a point Z that leads to a
solution of (9.48).

3) If D is a Z-matrix, not necessarily symmetric, and 2° € T = {z : z € A and
for each 4 either z; = b; or ¢; + D;.x > 0}, (for example, 2% = b will do) and
Aw <1/ (maximum{D;;E;; : j such that Dj; > 0}), prove that the sequence
{z" : 7 =0,1,...} generated by (9.49) is a monotonic sequence that converges to
a point Z leading to a solution of (9.48).
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4) A square matrix is said to be a H-matrix if its comparison matrix (which is a Z-
matrix by definition) is a P-matrix. If D is a H-matrix, not necessarily symmetric,
with positive diagonal elements, prove that the sequence {z" : r = 0,1,...} gen-
erated by (9.49), with w < 1/ (maximum{D;;F;; : j = 1 to n}) converges to the
point Z that leads to the unique solution of (9.48).

(B. H. Ahn [9.4])

9.5 For each i =1 to m, let f;(x) be a real valued convex function defined on R".
Let K = {z : fi(z) < 0,i =1 to m}. Assume that K # 0. Let z° € R" be
an arbitrary initial point. The following iterative method known as the method of
successive projection is suggested as a method for finding a point in K. Given z", let
2! be the nearest point in the set {z : f; (z) < 0} to z". The index i, is choosen by
one of the following

Cyclic Order : Here the indices {i, : 7 = 0,1,...} are choosen in cyclical order
from {1,2,...,m}. Soip =1,41 =2, ..., iy, = 1, ipyy1 = 2, and so on.

Most Violated Criterion : Here i, is the ¢ for which the distance between z"
and the nearest point to 2" in the set {z : fi(z) < 0} is maximum (ties for this
maximum are broken arbitrarily).

Prove that the sequence {z" : r = 0,1,...} converges to a point in K.
(L. M. Bregman [9.5])
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