
Chapter �

ITERATIVE METHODS FOR LCP�s

��� Introduction

The name iterative method usually refers to a method that provides a simple formula

for computing the �r � ��th point as an explicit function of the rth point� xr�� �

f�xr�� The method begins with an initial point x� �quite often x� can be chosen

arbitrarity	 subject to some simple constraints that may be speci
ed	 such as x� �� �	

etc�� and generates the sequence of points fx�� x�� x�� � � �g one after the other using

the above formula� The method can be terminated whenever one of the points in the

sequence can be recognized as being a solution to the problem under consideration�

If 
nite termination does not occur	 mathematically the method has to be continued

inde
nitely� In some of these methods	 it is possible to prove that the sequence fxrg
converges in the limit to a solution of the problem under consideration	 or it may be

possible to prove that every accumulation point of the sequence fxrg is a solution of

the problem� In practice	 it is impossible to continue the method inde
nitely� In such

cases	 the sequence is computed to some 
nite length	 and the 
nal solution accepted

as an approximate solution of the problem�

In this chapter we consider the LCP �q�M� which is to 
nd w� z � Rn satisfying

w �Mz � q

w� z �
� �

wT z � �

�����
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whereM 	 q are given matrices of orders n�n and n��	 respectively� We discuss several

iterative methods for solving this LCP �q�M�� All the methods that we have discussed

so far for solving this problem �the pivotal methods and the ellipsoid methods� have

the 
nite termination property� In contrast	 the iterative methods discussed here do

not in general terminate in a 
nite number of steps �even though the special structure

of the problem discussed in Section ��
	 makes it possible to construct a modi
cation

of the iterative method discussed there that terminates after a 
nite amount of work��

However	 these iterative methods have the advantage of being extremely simple and

easy to program �much more so than all the methods discussed so far in this book�

and hold promise for tackling very large problems that have no special structure �other

than possibly symmetry and�or positive de
niteness as required by the algorithm��

Most of the algorithms for solving nonlinear programming problems are iterative in

nature �see references �����	 �����	 ������� and the iterative methods discussed here can

be interpreted as specializations of some nonlinear programming algorithms applied to

solve a quadratic program equivalent to the LCP�

The word sequence here usually refers to an in
nite sequence� An in
nite se�

quence of points fxr � r � �� 
� � � �g in Rn is said to converge in the limit to the given

point x� if	 for each � � �	 there exists a positive integer N such that kxr � x�k � �

for all r �
� N � As an example the sequence in R�	 fxr � where xr � �

r
� r �

� � and

integerg converges to zero� However	 the sequence fxr � where xr � �
r
if r � 
s for

some positive integer s	 and xr � � if r � 
s� � for some positive integer sg does not
converge� A point x� � Rn	 is said to be a limit point or an accumulation point

for the in
nite sequence fxr � r � �� 
� � � �g of points in Rn	 if for every � � � and

positive integer N 	 there exists a positive integer r � N such that kxr�x�k � �� If x�

is a limit point of the sequence fxr � r � �� 
� � � �g	 then there exists a subsequence of

this sequence	 say fxrk � k � �� 
� � � �g	 which converges in the limit to x�	 where frk �
k � �� 
� � � �g is a monotonic increasing sequence of positive integers� If the sequence

fxr � r � �� 
� � � �g converges in the limit to x�	 then x� is the only limit point for this
sequence� A sequence that does not converge may have no limit point �for example	

the sequence of positive integers in R� has no limit point� or may have any number

of limit points� As an example	 consider the sequence of numbers in R�	 fxr � where
xr � �

r
	 if r � 
s for some positive integer s	 otherwise xr � � � �

r
	 if r � 
s � � for

some non�negative integer sg� This sequence has two limit points	 namely � and ��

The subsequence fx�s � s � �� 
� � � �g of this sequence converges to the limit point �	

while the subsequence fx�s�� � s � �� 
� � � �g converges to the limit point ��
The discussion in this section also needs knowledge of some of the basic properties

of compact subsets of Rn� See ���
���
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��� An Iterative Method for LCPs

Associated with PD Symmetric Matrices

The method discussed in this section is due to W� M� G� Van Bokhoven ���

�� We

consider the LCP �q�M� whereM is assumed to be a PD symmetric matrix� For q �� �	

�w � q� z � �� is the unique solution of the LCP �q�M�� So we only consider the case

q ��� �� For any vector x � �xj� � Rn we denote by jxj the vector �jxjj� in this section�

The symbol I denotes the identity matrix of order n� We will now discuss the main

result on which the method is based�

Theorem ��� Let M be PD and symmetric� The LCP �q�M� is equivalent to the

�xed point problem of determining x � Rn satisfying

f�x� � x ���
�

where f�x� � b�Bjxj� b � ��I �M���q� B � �I �M����I �M��

Proof� In ����� transform the variables by substituing

wj � jxj j � xj � zj � jxjj� xj � for each j � � to n �����

We verify that the constraints wj �� �	 zj �� � for j � � to n automatically hold	 from

������ Also substituing ����� in �w �Mz � q � ��	 leads to f�x� � x � �� Further	

wjzj � � for each j � � to n	 by ������ So any solution x of ���
� automatically leads to

a solution of the LCP �q�M� through ������ Conversely suppose �w� z� is the solution

of the LCP �q�M�� Then x � �
� �z � w� can be veri
ed to be the solution of ���
��

Some Matrix Theoretic Results

If A is square matrix of order n	 its norm	 dented by kAk	 is de
ned to be the Supremum
of fkAxkkxk � x � Rn� x �� �g� From this de
nition	 we have kAxk �

� kAk�kxk for all

x � Rn� See references ����	 ����	 �������

Since M is symmetric and PD	 all its eigenvalues are real and positive �see refer�

ences ����	 ���	 ����	 ������ for de
nition and results on eigenvalues of square matrices��

If ��� � � � � �n are the eigenvalues of M 	 then the eigenvalues of B � �I �M����I �M�

are given by �i �
����i�
����i�

	 i � � to n� and hence all �i are real and satisfy j�ij � � for

all i �since �i � ��� Since B is also symmetric we have kBk � Maximumfj�ij � i � �

to ng � ��

The Iterative Scheme for Solving �����

The scheme begins with an initial point x� � Rn chosen arbitrarily �say x� � ��� For

r �� 
 de
ne

xr�� � f�xr� � b�Bjxrj � �����
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The equation ����� de
nes the iterative scheme� Beginning with the initial point

x� � Rn chosen arbitrarily	 generate the sequence fx�� x�� � � �g using ����� repeatedly�
This iteration is just the successive substitution method discussed in Section 
���
 for

computing the Brouwer�s 
xed point of f�x�� We will now prove that the sequence

generated fx�� x�� � � �g converges in the limit to the unique 
xed point x� of ���
��

Convergence Theorems

Theorem ��� When M is PD and symmetric� the sequence of points fxrg de�ned

by ����� converges in the limit to x�� the unique solution of ���	�� and the solution �w��
z�� of the LCP �q�M� can be obtained from x� from the transformation ���
��

Proof� For any x� y � Rn we have kf�x��f�y�k � kB�jxj�jyj�k �� kBk�k�jxj�jyj�k �
kx � yk	 since k�jxj � jyj�k �� kx � yk and kBk � � as discussed above� So f�x� is a

contraction mapping �see reference ���
��� and by Banach contraction mapping theorem

the sequence fxrg generated by ����� converges in the limit to the unique solution x�

of ���
�� The rest follows from Theorem ����

We will denote kBk by the symbol 	� We known that 	 � �	 and it can actually

be computed by well known matrix theoretic algorithms�

Theorem ��� If x� is the unknown solution of ���	�� kx�k ��
kbk
����� �

Proof� From ���
� kx�k � k�b � Bjx�j�k �
� kbk � k�Bjx�j�k �

� kbk � 	kx�k� So

kx�k ��
kbk
����� �

Theorem ��� Let xr be the rth point obtained in the iterative scheme ����� and let

x� be the unique solution of ���	�� Then for r �� �� kx� � xr��k ��
�

�r

���
�kx� � x�k�

Proof� We have x� � xr�� � f�x�� � f�xr�� So kx� � xr��k � kf�x�� � f�xr�k �
�

	kx� � xrk �by the argument used in the proof of Theorem ��
	 since kBk � 	��

Applying the same argument repeatedly we get

kx� � xr��k �� 	rjx� � x�k � �����

Now	 for r � 
 we have xr�� � xr � f�xr� � f�xr���� So we have kxr�� � xrk �

kf�xr�� f�xr���k �� 	kxr � xr��k� Using this argument repeatedly	 we get
kxr�� � xrk �� 	r��kx� � x�k� for r � 
 � �����

We also have x� � x� � x� � x� � �x� � x��� So we have kx� � x�k �
� kx� � x�k �

kx� � x�k� Using this same argument repeatedly	 and the fact that the x� � limit

xt as t tends to �	 �and therefore limit kx� � xtk as t tends to � is ��	 we get

kx� � x�k ��
P�

t�� kxt�� � xtk �� kx� � x�k�P�
t�� 	

t
�
�from ������ � kx��x�k

����� � Using

this in ����� leads to kx� � xr��k ��
�

�r

���
�kx� � x�k for r �� ��
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Theorem ��	 If x� � �� we have kx� � xr��k �� 	r
� kbk
���

�
�

Proof� Follows from Theorem ������

Theorem ��� If x� � �� we have for r �� �� kxr��k �� kbk� �
��� � �r

���
�
�

Proof� We know that kx�k�kxr��k �� kx��xr��k� So kxr��k �� kx�k�kx��xr��k�
The result follows from this and Theorems ���	 ����

How to Solve the LCP �q�M� in a Finite Number of Steps

Using the Iterative Scheme �����

Initiate the iterative scheme ����� with x� � �� Then for r � � from Theorem ���	 we

know that there must exist an i satisfying

jxr��i j ��
kbkp
n

� �

� � 	
� 	r

�� 	

�
� �����

But from Theorem ���	 for the same i	 we must have jx�i � xr��i j �� kbk� �r

���
�
� So if

r is such that �p
n

�
�

��� � �r

���
�
� �r

����� 	 that is r � N �
�
log
� �����
���

p
n������

�

log	

�
for

the same i satisfying ����� we must have both xr��i and x�i nonzero	 and both have

the same sign� Hence	 after N � � iterations of ����� we know at least one i for which

x�i is nonzero	 and its sign� If x�i is known to be negative	 from �����	 the variable

wi is positive in the solution of the LCP �q�M� �and consequently zi � ��� On the

other hand	 if x�i is known to be positive	 from �����	 the variable zi is positive and

consequently wi � � in the solution of the LCP �q�M�� Using this information	 the

LCP �q�M� can be reduced to another LCP of order �n� �� as discussed in Chapter

�� Since N de
ned above is 
nite and can be computed once the matrix B is known	

after a 
nite number of steps of the iterative scheme �����	 we can identify a basic

variable in the complementary feasible basic vector for the LCP �q�M�	 and reduce

the remaining problem into an LCP of order �n � ��	 and repeat the method on it�

The same thing is repeated until a complementary feasible basic vector for the LCP

�q�M� is fully identi
ed� In ���

� W� M� G� Van Bokhoven has shown that the total

number of steps that the iterative method has to be carried out before a basic variable

in the complementary feasible basic vector for any of the principal subproblems in this

process is identi
ed	 is at most N 	 where N is the number depending on the original

matrixM 	 given above� So after at most nN steps of the iterative scheme ����� applied

either on the original problem or one of its principal subproblems	 a complementary

feasible basic vector for the LCP �q�M� will be identi
ed�
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Exercise

��� Consider the LCP �q�M� where

M �

��	 � AT

�A �


��
which comes from transforming an LP into an LCP� Here M is neither PD nor even

symmetric	 but is PSD� Show that �I �M��� exists in this case� De
ne	 as before

b � ��I �M���q	 B � �I �M����I �M�� Apply the transformation of variables as

in ����� in this LCP	 and show that it leads to the 
xed point problem ���
�� Consider

in this following iterative scheme for solving this 
xed point problem in this case�

x� � �

xr�� �
b� xr �Bjxrj



�

�����

Show that if the LCP �q�M� has a solution	 then the sequence fxrg generated by �����
converges to a solution of the 
xed point problem and that the limit of this sequence

leads to a solution of the LCP �q�M� in this case through the transformation ������

�W� M� G� Van Bokhoven ���

���

��� Iterative Methods for LCPs

Associated with General Symmetric Matrices

In this section we consider the LCP �q�M�	 in which the only assumption made is

that M is a symmetric matrix� The method and the results discussed here are due

to O� L� Mangasarian ����
�	 even through in some cases these turn out to be gener�

alizations of the methods developed in references �������� We begin with some basic

de
nitions� We assume that q ��� �	 as otherwise �w � q� z � �� is a solution of the

LCP �q�M��

A square matrix P � �pij� is said to be strictly lower triangular if pij � � for

i �� j� It is said to be strictly upper triangular if pij � � for all i �� j� Given a

square matrixM � �mij� it can be written as the sum of three matricesM � L�G�U 	

where

L �

�����������������	

� � � � � � �
m�� � � � � � �

m�� m��
� � � � �

���
���

���
���

mn� mn� � � � mn�n�� �


�����������������
� G �

�����������	
m�� � � � � �
� m�� � � � �
���

���
� � �

���
� � � � � mnn


����������� �
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U �

���������������	

� m�� m�� � � � m��n�� m��n

� � m�� � � � m��n�� m��n

���
���

���
� � �

���
���

� � � � � � � mn���n
� � � � � � � �


���������������
The matrices L	 G	 U de
ned above	 are respectively known as the strictly lower

triangular part	 the diagonal part and the strict upper triangular part of the

given square matrix M � If M is symmetric we will have LT � U �

Let z � �xj� � Rn be any column vector� We denote by x� � �x�j � where x
�
j �

Maximum f�� xjg	 for each j � � to n� The vector x� can be veri
ed to be the nearest

point in the nonnegative orthant to x�

The Iterative Method

Let x� �
� � be an arbitrarily chosen initial point in the nonnegative orthant of Rn�

The iterative method is de
ned by the formula

zr�� � �
�
zr � �Er�Mzr � q �Kr�zr�� � zr��

��
� ��� ��zr �����

for r � �� �� � � �	 where �	 � are parameters satisfying � � � �
� �	 � � �	 whose

values have to be chosen� for each r	 Kr is a strictly lower triangular or strictly upper

triangular matrix	 and Er is a positive diagonal matrix	 which together satisfy

Er � �I

yT
�
���Er��� �Kr � M

�

�
y � 
kyk�� for all y � Rn ������

for some positive numbers �	 
� Also fEr � r � �� �� � � �g	 fKr � r � �� �� � � �g are

bounded sequences of matrices� When Kr is strictly lower triangular	 ����� yields	

zr��� � �
�
zr� � �Er

���M��z
r � q��

��
� ��� ��zr� � and

zr��j � �
�
zrj � �Er

jj�Mj�z
r � qj �

j��X
l��

Kr
jl�z

r��
l � zrl ��

��
� ��� ��zrj � for j � 
 to n�

where Er
jj is the j

th diagonal entry in the diagonal matrix Er and Kr
jl is the �j� l�

th

entry in Kr� So in this case zr��j can be computed	 very conveniently	 in the speci
c

order j � �� 
� � � � � n� If Kr is strictly upper triangular	 ����� yields

zr��n ��
�
zrn � �Er

nn�Mn�z
r � qn�

��
� ��� ��zrn� and

zr��j ��
�
zrj � �Er

jj�Mj�z
r � qj �

nX
l�j��

Kr
jl�z

r��
l � zrl ��

��
�

��� ��zrj � for j � n� � to ��

and so in this case zrj�� can be computed very conveniently in the speci
c order j �

n� n� �� � � � � 
� ��
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How is the Iterative Method Obtained 	

The formula ����� for the iterative method is obtained by considering the quadratic

programming problem

Minimize f�z� � �
�z

TMz � qT z

Subject to z �� �
������

In this section f�z� denotes the function de
ned in ������� Remembering that M is

a symmetric matrix	 it can be veri
ed that every KKT point for ������ leads to a

solution of the LCP �q�M� and vice versa� The iteration ����� comes from an SOR

�Successive Overrelaxation� type of gradient�projection algorithm for solving �������

We will discuss the choice for the parameters �	 � and the matrices Er	 Kr in �����	

later on� We will now characterize the convergence properties of the iterative method

de
ned by ������

Convergence Theorems

Theorem ��
 Let E be a diagonal matrix with positive diagonal entries� Then

�w � M �z � q� �z� is a solution of the LCP �q�M� i� �z satis�es�
z � �E�Mz � q�

�� � z � �� for some or all � � � � ����
�

Proof� Suppose �w � M �z � q� �z� is a solution of the LCP �q�M�� Let � � � be

arbitrary� If j is such that �zj � �	 Mj��z � qj �� �	 we have ��zj � �Ejj�Mj��z � qj��
� �

�zj � ���Ejj�Mj��z � qj��
� � �� If j is such that Mj��z � qj � � and �zj �� �	 we have

��zj � �Ejj�Mj��z � qj��
� � �zj � �zj � �zj � �� So in this case �z satis
es ����
��

Conversely suppose �z � Rn satis
es ����
�� Then �z � ��z � �E�M �z � q��� �
� ��

Also	 if for some j	 we haveMj��z�qj � �	 then from ����
�	 � �
�
�zj��Ejj�Mj��z�qj�

��
� �zj � ��Ejj�Mj��z�qj�	 a contradiction� SoM �z�q �� � too� Now	 for any j between

� to n	 if �zj � �Ejj�Mj��z � qj� �� �	 we have � � ��zj � �Ejj�Mj��z � qj��
� � �zj �

��Ejj�Mj��z � qj�	 and hence we must have Mj��z � qj � �� On the other hand if �zj �
�Ejj�Mj��z � qj� � �	 we have � � ��zj � �Ejj�Mj��z � qj��

� � �zj � ��zj 	 and hence we

must have �zj � �� Thus depending on whether �zj ��Ejj�Mj��z� qj� in nonnegative or

negative	 we must have Mj��z � qj or �zj equal to zero� So �zT �M �z � q� � �� Together

with the nonnegativity proved above	 we conclude that �w � M �z � q� �z� is a solution

of the LCP �q�M��

Theorem ��� Let E be a diagonal matrix with positive diagonal entries and let

z � Rn� Then �z� � z�TE���z� � y� �� � for all y �� ��

Proof� We have �z� � z�TE���z� � y� �
Pn

j����z
�
j � zj��z

�
j � yj�
Ejj�� Here Ejj

is the jth diagonal entry of the matrix E� If j is such that zj �� �	 then z�j � zj � ��

If j is such that zj � �	 then �z�j � zj��z
�
j � yj�
Ejj � zjyj
Ejj �� � since yj �� �� So

�z�� z�TE���z��y� is the sum of non�postive quantities	 and hence is non�positive�
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Theorem ��� Let fzr � r � �� 
� � � �g be the sequence of points obtained under

the iterative scheme ������ If �z is an accumulation point of this sequence� then �w �

M �z � q� �z� is a solution of the LCP �q�M��

Proof� Since the initial point z� �� �	 and from ����� we conclude that zr �� � for all

r � �� 
� � � �� From strightforward manipulation it can be veri
ed that

f�zr���� f�zr� �

�
�
�Er�Mzr � q�

�T
��Er����zr�� � zr�

� �zr�� � zr�TM �zr���zr�
�

�
�
zr��������zr

�
� zr � �Er�Mzr � q

�Kr�zr�� � zr��
�T

��Er����zr�� � zr��

� �zr�� � zr�
�
M
� � ���Er��� �Kr

�
�zr�� � zr�

� �
� zr��������zr

�
� �zr � �Er�Mzr � q

�Kr�zr�� � zr���
�T
��Er���

�
zr��������zr

�
� zr

�
�

� �zr�� � zr�T
�
M
� � ���Er��� �Kr

�
�zr�� � zr�

������

From ����� we know that zr��������zr
�

�
�
zr��Er�Mzr� q�Kr�zr��� zr��

��
� Also

� � �� Using these	 and Theorem ���	 we conclude that the 
rst term in the right hand

side of ������ is �� �� So f�zr����f�zr� �� �zr���zr�T �M� ����Er����Kr
�
�zr���zr��

So	

f�zr�� f�zr��� �� �zr�� � zr�T
�
���Er��� �Kr � M




�
�zr�� � zr�

�
� 
kzr�� � zrk�

������

The last inequality ������ follows from the conditions ������� Since 
 � �	 ������ implies

that f�zr� � f�zr��� �� �� Hence ff�zr� � r � �� 
� � � �g is a monotone non�increasing

sequence of real numbers�

Let �z be an accumulation point of fzr � r � �� �� � � �g� So there exists a sequence
of positive integers such that the subsequence of zr with r belonging to this sequence

of integers converges to �z� Since fEr � r � �� �� � � �g	 fKr � r � �� �� � � �g are bounded
sequences of matrices	 we can again 
nd a subsequence of the above sequence of positive

integers satisfying the property that both the subsequences of Er and Kr with r

belonging to this subsequence converge to limits� Let frt � t � �� 
� � � �g be this 
nal
subsequence of positive integers� So limit zrt as t tends to � is �z� Also limits of Ert 	

Krt as t tends to � exist	 and denote these limits respectively by E and K� Since

each Er is a diagonal matrix satisfying Er �
� �I	 for some positive � for all r	 we

know that E � limits Ert as t tends to �	 is itself a diagonal matrix with positive

diagonal entries� Since f�z� is continuous	 we have f��z� � limit f�zrt� as t tends to

��� Since ff�zr� � r � �� �� � � �g is non�increasing sequence of real numbers	 and
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its subsequence ff�zrt� � t � �� 
� � � �g converges to the limit f��z�	 we conclude that

ff�zr� � r � �� �� � � �g is a non�increasing sequence of real numbers bounded below

by f��z�� Hence the sequence ff�zr� � r � �� �� � � �g itself converges� This and ������

together imply that � � lim
t���

�
f�zrt�� f�z��rt�

�
�
� lim

t���

kz��rt � zrtk� �� �� From

this and the fact that the sequence fzrt � t � �� 
� � � �g converges to �z	 we conclude that
the sequence fz��rt � t � �� 
� � � �g also converges to �z� These facts imply that

� � lim
t���

kz��rt � zrtk
� � lim

t���
k�zrt � �Ert�Mzrt � q �Krt�z��rt � zrt���� � zrtk

� �k��z � �E�M �z � q��� � �zk �

So we have ��z � �E�M�z � q��� � �z � �� So by Theorem ���	 �w � M �z � q� �z� is a

solution of the LCP �q�M��

Theorem ��� does not guarantee that the sequence fzr � r � �� �� � � �g generated
by the iterative method ����� has any limit points� When additional conditions are

imposed	 it is possible to guarantee that this sequence has some limit points�

Theorem ���� Let M be a symmetric and copositive matrix of order n� Suppose

fzs � s � �� 
� � � �g is an unbounded sequence �i� e�� limit kzsk as s tends to � is ��

satisfying zs �� � and f�zs� �� � for all s � �� 
� � � �� where � is a constant� Then� there

exists a subsequence fzst � t � �� 
� � � �g such that the sequence fyst � yst � zst

kzstk �
t � �� 
� � � �g converges to a point �y satisfying �y � �� �yTM �y � �� qT �y �

� �� If� in

addition� M is copositive plus� then �y also satis�es M �y � �� and in this case either

����
� or ������ have no solution z � Rn�

Mz � q � � ������

Mz � � ������

Proof� Since kzsk diverges to ��	 and zs �� �	 we have zs � � when s is su�ciently

large� Eliminating some of the terms in the sequence fzs � s � �� 
� � � �g at the beginning
of it	 if necessary	 we can therefore assume that zs � � for all s in the sequence� So

kzsk � � and hence ys � zs

kzsk is de
ned for all s� The sequence fys � s � �� 
� � � �g is
an in
nite sequence of points lying on the boundary of the unit sphere in Rn �i� e�	

satisfying kysk � � for all s�	 and hence if has a limit point �y	 and there exists a

subsequence fyst � t � �� 
� � � �g coverging to �y� Clearly k�yk � �	 and since ys � � for

all s	 we have �y � �� From the conditions satis
ed by the sequence fzs � s � �� 
� � � �g
we have

�

kzstk� �
�

f�zst�

kzstk� �
�



�yst�TMyst �

qT yst

kzstk �

Taking the limit in this as t tends to ��	 we have � �
� �����y

TM �y	 and since M is

copostive and �y � �	 this implies that �yTM �y � �� Also	 we have �
kzstk �

�
f�zst �
kzstk �
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� ���kzstk�yst�TMyst � qT yst �� qT yst 	 since M is copositive and yst � �� Now taking

the limit as t tends to ��	 we get � �� qT �y�

If	 in addition	 M is copositive plus	 and symmetric	 �yTM �y � �	 �y � � implies

M �y � � by the de
nition of copositive plus� Also	 in this case	 if ������ has a solution z	

multiplying both sides of ������ by �yT on the left yields �since �y �� �� � � �yT �Mz�q� �

qT �y � zT �M �y� � qT �y �
� �	 a contradiction� Similarly	 if ������ has a solution z in

this case	 multiplying both sides of ������ on the left by �y � � yields � � �yTMz �

zT �M �y� � �	 a contradiction�

Hence ������ has no solution z in this case� Also the system ������ has no solution

z in this case�

Theorem ���� Suppose either

�a� M is a symmetric strictly copositive matrix� or

�b� M is a symmetric copositive plus matrix satisfying the condition that either

����
� or ������ has a feasible solution z�

Then the sequence fzr � r � �� �� � � �g generated by the iterative scheme ����� is bounded

and has an accumulation point which leads to a solution of the LCP �q�M��

Proof� From Theorem ��� we know that f�zr� �� f�z�� for all r � �� 
� � � �� If the

sequence fzr � r � �� �� � � �g is not bounded	 it must have a subsequence which diverges	
and using it together with the results in Theorem ����	 we get a contradiction� Hence

the sequence fzr � r � �� �� � � �g must be bounded� So it must possess an accumulation

point	 and by Theorem ���	 every accumulation point of this sequence leads to a solution

of the LCP �q�M��

Corollary ��� If M is symmetric� nonnegative and has positive diagonal elements�

the sequence fzr � r � �� �� � � �g obtained under ����� is bounded� and every accumula�

tion point of it leads to a solution of the LCP �q�M��

Proof� Follows from Theorem �����

Corollary ��� If M is symmetric� copositive plus� and either ����
� or ������ has

a feasible solution z� then the LCP �q�M� has a solution� In this case when the

complementary pivot method is applied on the LCP �q�M�� it cannot terminate in a

ray� it terminates with a solution for the problem�

Proof� Follows from Theorem ���� and Theorem 
���
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Exercise

��� Suppose that M is symmetric and copositive plus� If q � � and there exists a z

satisfying Mz � q �� �	 prove that the LCP �q�M� has a solution�

Now we state a theorem due to Ostrowski �Theorem 
��� in reference ������	 The�

orem ����� in reference ����
�� which we will use in proving Theorem ���� later on�

Theorem ���� If the sequence fxr � r � �� �� � � �g in Rn is bounded and limit

kxr�� � xrk as r tends to � is zero� and if the set of accumulation points of fxr �

r � �� �� � � �g is not a continuum �i� e�� a closed set which cannot be written as the

union of two nonempty disjoint closed sets�� then fxr � r � �� �� � � �g converges to a

limit�

Proof� See references ������ mentioned above�

Theorem ���� Suppose M is symmetric� copositive plus and nondegenerate� Then

the sequence fzr � r � �� �� � � �g obtained under ����� converges to a solution of the

LCP �q�M��

Proof� In this case the determinant of M is nonzero	 so M�� exists� The vector z �
M��e can be veri
ed to be a feasible solution for ������	 so by Theorem ����	 the

sequence fzr � r � �� �� � � �g of points obtained under the iterative scheme ����� for this
case is bounded	 and has at least one limit point� So the nonincreasing sequence of

real numbers ff�zr� � r � �� �� � � �g is also bounded and hence converges� From ������

we also conclude that limit kzr��� zrk as r tends to � is zero� By Theorem ��� every

accumulation point of fzr � r � �� �� � � �g leads to a solution of the LCP �q�M�� But the

LCP �q�M� has only a 
nite number of solutions in this case	 sinceM is nondegenerate

�Theorem ��
�� So the sequence fzr � r � �� �� � � �g has only a 
nite number of limit

points in this case� This	 together with the fact that limit kzr�� � zrk as r tends to
�� is zero	 implies by Theorem ���
	 that the sequence fzr � r � �� �� � � �g converges
to a limit	 say �z� By Theorem ���	 �z leads to a solution of the LCP �q�M��

Corollary ��� If M is symmetric and PD� the sequence fzr � r � �� �� � � �g produced
by the iterative scheme ����� converges to a point �z that leads to a solution of the LCP

�q�M��

Choice of Various Parameters in the Iterative Scheme �����

By setting Kr � �	 Er � E for all r	 where E is a diagonal matrix with positive

diagonal elements	 the iterative scheme ����� becomes the following scheme

z� �� �� an initial point

zr�� � ��zr � �E�Mzr � q��� � ��� ��zr� r � �� �� � � �
������
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where � � � 	 �	 � � � are chosen to satisfy th property that the matrix 
���E����M
is PD �to meet condition �������� This special scheme is a projected Jacobi over�

relaxation scheme �see reference ���������

By setting Kr � L or U 	 Er � E where E is a diagonal matrix with positive

diagonal entries we obtain the following scheme which is a projected SOR �successive

over relaxation� scheme�

z� �� �� an initial point

zr�� � ��zr � �E�Mzr � q �Kr�zr�� � zr���� � ��� ��zr� r � �� �� � � �
������

where � � � �
� �	 � � � satisfying the condition that

�� � 

Maximum fGjjEjj � j such that Gjj � �g ������

�where G is the diagonal part of M 	 and Gjj denotes the j
th diagonal element fo G if

the set fj � j such that Gjj � �	 j � � to ng is non�empty�� This is to meet condition
�������

In �����	 by setting Kr � L and U alternately	 we get the following projected

symmetric SOR scheme�

z� �� �� an initial point�

zr�� � ��zr � �E�Mzr � q � L�zr�� � zr���� � ��� ��zr� r � �� 
� �� � � �

� ��zr � �E�Mzr � q � U�zr�� � zr���� � ��� ��zr� r � �� �� �� � � �

���
��

where � � � �
� �	 � � � and E is a diagonal matrix with positive diagonal entries

satisfying �������

����� Application of These Methods to Solve

Convex Quadratic Programs

The LCP ������ corresponding to the quadratic program ������ is associated with a

matrix M which is not symmetric	 and hence the iterative methods discussed in this

section cannot be applied to solve it� Here we show that by treating the sign restrictions

on the variables	 also as contraints	 and writing down the KKT optimality conditions

for the resulting problem	 we can derive an LCP associated with a symmetric matrix

M corresponding to the problem	 if the objective function is strictly convex �i� e�	 if D

is PD�� We consider the quadratic program ������	 but include all the sign restrictions

under the system of constraints� This leads to a problem in the following form �

Minimize Q�x� � cx� �
�x

TDx

Subject to Ax �� b
���
��
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where A is a given matrix of order m � n� b	 c are given vectors	 and D is a given

symmetric matrix of order n� We assume that D is PD� So ���
�� is a convex program

with a strictly convex objective function� Associate the Lagrange multiplier ui to the

ith constraint in ���
��	 i � � to m	 and let u � �u�� � � � � um�
T � The Lagrangian for

this problem is L�x� u� � cx� �
�x

TDx � uT �Ax� b�� The KKT necessary optimality

conditions for this problem are �since D is symmetric�

�

�x
L�x� u� � cT �Dx� ATu � �

u �� �

uT �Ax� b� � �

Ax� b �� � �

���

�

Since D is assumed to be PD here	 D�� exists� So from the 
rst set of conditions

in ���

�	 we get x � D���ATu � cT �� Using this we can eliminate x from ���

��

Denoting the slack variables Ax� b by v	 this leads to the LCP

v � �AD��AT �u � ��b�AD��cT �

v �� �� u �� �

vTu � � �

���
��

So if ��u� �v� is a solution of the LCP ���
��	 then �x � D���AT �u�cT � is a KKT point for

the quadratic program ���
��� Applying Theorems ����	 ���� to the convex quadratic

program ���
��	 we conclude that an optimum solution of ��	
�� is a KKT point and

vice versa� So solving ���
�� is equivalent to solving the LCP ���
��� Since the matrix

AD��AT is symmetric this is an LCP associated with a symmetric matrix	 and can

be solved by the iterative methods discussed above� In particular	 let L	 G	 U be

respectively the strictly lower triangular part	 the diagonal part	 and the strictly upper

triangular part of the matrix AD��AT � Generate the sequence fur � r � �� �� � � �g in
Rm by the following iterative scheme �

u� �� � selected arbitrarily

ur�� � �ur � �E�AD��ATur � b� AD��cT �Kr�ur�� � ur����
���
��

where E is a diagonal matrix with positive diagonal entries	 Kr is either L or U and

� � � � 

 Maximum fGjjEjj � j such that Gjj � �g ���
��

Note that ���
�� corresponds to setting � � � in ������ Also ���
�� is the condtion

������ for this case� Also	 using ���
��	 ur�� is computed from ur in the speci
c order

j � �� 
� � � � � n if Kr � L	 or in the speci
c order j � n� n � �� � � � � � if Kr � U 	as

discussed earlier� We have the following theorems�
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Theorem ���� Each accumulation point �u of the sequence fur � r � �� �� � � �g
generated by ���	�� satis�es the property that ��v � AD��AT �u� �b� AD��cT �� �u� is
a solution of the LCP ���	
�� and �x � D���AT �u� cT � is the optimum solution of the

quadratic program ���	���

Proof� Follows by applying Theorem ��� to this case�

Theorem ���� does not	 of course	 guarantee that the sequence fur � r � �� �� � � �g
generated by ���
�� has an accumulation point� This requires some more conditions

on ���
�� as discussed below in Theorem �����

Theorem ���	 If the set of feasible solutions of ���	�� has an interior point �i� e��

there exists an x satisfying Ax � b� and D is symmetric PD� then the sequence fur �
r � �� �� � � �g generated under ���	�� is bounded� and has at least one accumulation

point� Each accumulation point �u satis�es the statement in Theorem �����

Proof� Since Ax � b is feasible	 there exists a � � � such that the set of feasible

solutions of

Ax �� b� �e ���
��

is nonempty� Fix � at such a positive value� Since the set of feasible solutions of ���
��

is nonempty	 and Q�x� is strictly convex	 the problem of minimizing Q�x� subject to

���
�� has an optimum solution and it is unique� Suppose this optimum solution is �x�

The KKT necessary optimality conditions for this problem are

cT �Dx� ATu � �

u �� �

Ax �� b� �e

u�Ax� b� �e� � � �

���
��

So there exists a �u � Rm such that �x	 �u together satisfy ���
��� Hence �AD��AT ��u�

��b�AD��cT � �� �e � �� This is like condition ������ for the LCP ���
��� Using this	

this theorem follows from Theorem �����

����� Application to Convex Quadratic Program

Subject to General Constraints

The constraints in a quadratic program may be either linear inequalities or equations�

Here we discuss how to apply the iterative scheme to solve the quadratic program

directly without carrying out any transformations 
rst to transform all the constraints

into inqualities� We consider the quadratic program

Minimize Q�x� � cx� �
�x

TDx

Subject to Ax �� b

Fx � d

���
��
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where A	 F are given matrices of orders m � n	 k � n respectively� b	 d	 c are given

vectors� and D is a given symmetric positive de
nite matrix of order n� Associate the

Lagrange multiplier ui	 to the i
th inequality constraint in ���
��	 i � � to m� and the

Lagrange multiplier �t to the t
th equality constraint in ���
��	 t � � to k� Let u � �ui�	

� � ��t�� The Lagrangian for this problems is L�x� u� �� � cx� �
�x

TDx�uT �Ax� b��
�T �Fx� d�� Since D is symmetric	 the KKT necessary optimality conditions for this

problem are �
�

�x
L�x� u� �� � cT �Dx� ATu� FT � � �

u �� �

uT �Ax� b� � �

Ax� b �� �

Fx� d � � �

���
��

From ���
�� we get x � D���ATu � FT � � cT �� Using this we can eliminate x from

���
��� When this is done	 we are left with a quadratic program in terms of u and

� associated with a symmetric matrix	 in which the only constraints are u �
� �� The

iterative scheme discussed above	 specialized to solve this problem	 becomes the fol�

lowing� Let L	 G	 U be respectively the strict lower triangular part	 the diagonal part	

and the strict upper triangular part of

��	A
F


��D�� 
AT FT �� Generate the sequence

f�ur� �r� � r � �� �� � � �g by the following scheme

�u�� ��� selected arbitrarily to satisfy u� �� ����	ur��

�r��


�� �

��	ur

�r


��� �E

���	A
F


��D�� 
AT FT �

��	ur

�r


��
�
��	A
F


��D��cT �
��	 b
d


���Kr


��	ur��

�r��


���
��	ur

�r


�����
������

where	 as before	 E is a diagonal matrix with positive diagonal entries	 Kr is either L

or U 	 � is a positive number satisfying ���
��	 and

��	u
�


��� � ��	u�

�


��
In ������	 if Kr � L	 ur��j are computed in the order �� 
� � � � �m 
rst and then �r��

is computed� If Kr � U 	 �r�� is 
rst computed and then ur��j are computed in the

order j � m�m��� � � � � �� We have the following theorems about this iterative scheme	

corresponding to Theorems ����	 ���� discussed earlier�

Theorem ���� Each accumulation point ��u� ��� of f�ur� �r� � r � �� �� � � �g generated
by ���
�� satis�es the property that ��u� ��� �x � D���AT �u� FT �� � cT ��� satis�es ���	��

and �x is the optimum solution of the quadratic program ���	���

Proof� Similar to Theorem �����
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Theorem ���
 If there exists an �x satisfying A�x � b� F �x � d� and the set of rows

of F is linearly independent� then the sequence f�ur� �r� � r � �� �� � � �g generated by

���
�� is bounded� and at last one accumulation point�

Proof� Similar to Theorem �����

����� How to Apply These Iterative Schemes in Practice

In practice we can only carry out the iterative scheme up to a 
nite number of steps	

and obtain only a 
nite number of elements in the sequence� Usually the iterative

scheme can be terminated whenever the current element in the sequence satis
es the

constraints in the LCP to a reasonable degree of accuracy	 or when the di erence

between successive elements in the sequence is small�

Exercise

��� Consider the LP
Minimize ��x� � cx

Subject to Ax �� b
������

where A is a given matrix of order m � n	 and b	 c are given vectors� Suppose this

problem has an optimum solution	 and let �� denote the unknown optimum objective

value in this problem� Now consider the following quadratic programming pertubation

of this LP where � is a small positive number

Minimize �
�x

Tx� cx

Subject to Ax �� b
����
�

i� Prove that if ������ has an optimum solution	 there exists a real positive number

�� such that for each � in the interval � � � �� ��	 ����
� has an unique optimum

solution �x which is independent of �	 and which is also an optimum solution of

the LP �������

ii� If �
 is the nonnegative optimal Lagrange multiplier associated with the last con�

straint in the following problem	 where �� is the optimum objective value in ������	

prove that the �� in �i� can be selected to be any value satisfying � � �� 	 �
	� � If

�
 � �	 �� can be chosen to be any postive number�

Minimize �
�x

Tx

Subject to Ax �� b

�cx �� ���

�O� L� Mangasarian and R� R� Meyer �������
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��� Sparsity Preserving SOR Methods

For Separable Quadratic Programming

The iterative SOR methods discussed in Section ��� for quadratic programming require

the product of the constraint matrix by its transpose which can cause loss of both

sparsity and accuracy� In this section we discuss special sparsity preserving versions

of the general SOR algorithms presented in Section ��� for the LCP associated with

a symmetric matrix	 or equivalently for the quadratic program with nonnegativity

constraints only� these versions are given in a simple explicit form in terms of the rows

of the matrix M 	 and very large sparse problems can be tackled with them� Then

we specialize these algorithms into SOR algorithm for solving separable quadratic

programming problems that do not require multiplication of the constraint matrix

by its transpose� The algorithms and the results discussed in this section are from

O� L� Mangasarian �������

We consider the LCP ����� in which M � �mij� is a symmetric matrix� As

discussed in Section ���	 solving ����� is equivalent to 
nding a KKT point for the

quadratic programming problem ������� The SOR algorithm given here is a type of

gradient projection algorithm for ������ with � as the relaxation factor or step size that

must satisfy � � � � 
	 and is based on those discussed in Section ���� The algorithm

is the following� Choose z� �� � as the initial point� For r � �� �� � � � de
ne for j � � to

n�

zr��j � �zrj � ��j�

r��
j �

nX
t�j

mjtz
r
j � qj��

� ������

where �j �
�

mjj
if mjj � �	 and �j � � if mjj �� �� 
r��� � �	 
r��j �

Pj��
t�� mjtz

r��
t

for j � ��

Convergence Theorems

Theorem ���� Let M be a symmetric matrix� Then the following hold�

��� Each accumulation point of the sequence fzr � r � �� �� � � �g generated by the

iterative scheme ���

� leads to a solution of the LCP ������

�	� If M is symmetric and PSD and the system� Mz � q � �� has a solution z�

the sequence fzr � r � �� �� � � �g generated by ���

� is bounded and has an

accumulation point that leads to a solution of ������

�
� IfM is symmetric and PD the sequence fzr � r � �� � � � �g generated by ���

�

converges to a point �z that leads to the unique solution of the LCP ����� �i� e��

�w �M �z � q� �z� is the solution of the LCP��

��� If M is symmetric and PSD and ����� has a nonempty bounded solution set�

the sequence fzr � r � �� �� � � �g generated by ���

� is bounded and has an

accumulation point that leads to a solution of ������
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�

Proof� Part ��� follows from Theorem ���� Part �
� follows from Theorem ����� Part

��� follows from Corollary ���� To prove part ���	 notice that if the sequence fzr �

r � �� �� � � �g generated by ������ is unbounded	 by Theorem ����	 there exists a �y � Rn

satisfying� �y � �	 M �y � �	 qT �y �
� �� So	 if �w � M �z � q� �z� is a solution of �����	

then �M��z � ��y� � q� �z � ��y� is also a solution of ����� for all � �
� � �since �z � ��y �� �	

M��z � ��y� � q �� � and � �� ��z � ��y�T �M��z � ��y� � q� � �qT �y �� �� contradicting the

boundedness assuption of the solution set of ������

����� Application to

Separable Convex Quadratic Programming

Consider the quadratic program

Minimize cx� �
�x

TDx

Subject to Ax �� b

x �� �
������

where A is a given matrix of order m�n and D is a positive diagonal matrix of order n�

Let uT � Rm	 vT � Rn be the row vectors of Lagrange multipliers associated with the

constraints and sign restrictions in ������� From the necessary optimality conditions

for ������ it can be veri
ed that an optimum solution for ������ is given by

x � D���ATu� v � cT � ������

where �u� v� is an optimum solution of

Minimize �bTu� �
��A

Tu� v � cT �TD���ATu� v � cT �

Subject to �u� v� �� � �
������

The problem ������ is in the same form as ������ and so the iterative algorithm ������

can be applied to solve it� It leads to the following iterative scheme� Choose �u�� v�� ��
�	 � � � � 
� Having �ur� vr� de
ne for i � � to m�

ur��i �

�
uri �

�

kAi�D�
�
� k�

��
Ai�D

���
i�r�� �
mX
t�i

�At��
Turt � vr � cT �

�� bi

���

vr�� �
�
vr � ��ATur�� � vr � cT �

��
������

where 
i�r�� � � for i � �	 or �
Pi��

t���At��
Tur��i for i � �� Notice that the sparsity or

any structural properties that the constraint coe�cient matrix A may have are taken

advantage of in �������
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Theorem ���� The following hold�

��� Each accumulation point ��u� �v� of the sequence f�ur� vr� � r � �� �� � � �g gen�

erated by ���
�� solves ���
�� and the corresponding �x determined by ���

�

solves ���
���

�	� If fx � Ax � b� x � �g �� 
� the sequence f�ur� vr� � r � �� �� � � �g generated by

���
�� is bounded and has an accumulation point �u� v� and the corresponding

x determined by ���

� solves ���
���

Proof� Part ��� follows from Theorem ����� To prove part �
�	 if fx � Ax � b� x � �g ��

	 the perturbed positive de
nite quadratic program� minimize cx� �

�x
TDx subject to

Ax �� b� em�	 x � en�	 where et is the column vector of all ��s in R
t for any t	 has an

optimum solution �x� If ��u� �v� are the corresponding Lagrange multiplier vectors	 from

the KKT necessary optimality conditions we have

�x � D���AT �u� �v � cT � �� en� � �

AD���AT �u� �v � cT �� b �� em� � � �

These conditions are equivalent to the condition Mz � q � � in Theorem ���� for

the LCP corresponding to problem ������� Hence	 by Theorem ����	 the sequence

f�ur� vr� � r � �� �� � � �g generated by ������ is bounded	 and hence has an accumulation
point �u� v�� The corresponding x determined from ������ solves ������ by the result

in part ����

In ������ O� L� Mangasarian used the iterative scheme ������ to develop a spar�

sity preserving SOR algorithm for solving linear programs� These schemes are also

discussed in Section ���� �
�
���

Note ��� Suppose we have observations on the yield at at values of the temperature

t � �� 
� � � � � n� and it is believed that this yield can be approximated very closely by

a convex function of t� Let x�t� be a convex function in t	 and denote x�t� by xt
for t � �� � � � � n� The problem of 
nding the best convex approximation to the yield	

usng the least squares formulation	 leads to the quadratic programming problem � 
nd

x � �x�� � � � � xn�
T to

minimize
Pn

i���xi � ai�
�

subject to xi�� � xi �� xi � xi��� i � 
� � � � � n� �

This leads to the LCP �q�M�	 where

M �

����������������������	

� �� � � � � � � � �
�� � �� � � � � � � �
� �� � �� � � � � � �
� � �� � �� � � � � �

���
� � �

� � �
� � �

� � �
���

���
���

� � � � � � �� �


����������������������
and q � �a� � a�� a� � a�� a
 � a�� � � ��

T �
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J� S� Pang has tried to solve this class of LCPs for n � ���	 using various iterative

SOR methods discussed in this section and in Section ��� and found that convergence is

not obtained even after several thousands of iterations� The matrixM given above is a

very specially structured positive de
nite symmetric matrix	 and the pivotal methods

discussed in Chapters 
	� perform very well in solving LCPs associated with this matrix

M � An explanation for the poor performance �slow convergence� of SOR iterative

methods on LCPs associated with M can be given in terms of the eigenvalues of M �

At any rate	 this example shows that iterative methods may not perform well on some

classes of LCPs� These iterative methods are particularly useful for solving LCPs of

very large orders or those which lack special structure	 and thus are not easily handled

by pivotal methods�

��� Iterative Methods for General LCPs

The results in Section ��� have been generalized by B� H� Ahn to the case of LCPs in

which the matrixM may not be symmetric ������ We discuss his results in this section�

We want to solve the LCP �q�M� �����	 where M is a given matrix of order n	 not

necessarily symmetric�

Given any matrix A � �aij� we will denote by jAj the matrix �jaijj�� Also if A is

a square matrix of order n	 the matrix C � �cij� of order n where cii � jaiij for i � �

to n� and cij � �jaij j	 i� j � � to n	 i �� j	 is known as the comparison matix of A�

We will now discuss some results on which the algorithm will be based�

Suppose we are given a square matrix A of order n which is not necessarily sym�

metric� So some of the eigenvalues of A may be complex� The spectral radius of A

denoted by 	�A�	 is the maximum fj��j� � � � � j�njg where ��� � � � � �n are the eigenvalues
of A� See Ortega and Rheinboldt ������� for results on the spectral radius of A�

Theorem ���� Let x� y � Rn� Then �x � y�� �
� x� � y�� also x �

� y implies

x� �
� y�� Also �x� y�� �

� x� � y��

Proof� Follows by direct veri
cation�

Theorem ���� Let g�z� � �z � �E�Mz � q���� � � � and E is a diagonal matrix

with positive diagonal entries� �w � Mz � q� z� is a solution of the LCP �q�M� i�

g�z� � z�

Proof� Follows from Theorem ��� of Section ����

The Iterative Scheme

Choose z� �� � in Rn arbitrarily� Given zr	 determine zr�� from

zr�� �
�
zr � �E

�
Mzr � q �K�zr�� � zr�

���
� r � �� �� � � � ������
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where � � �	 E is a diagonal matrix with positive diagonal entries	 and K is either a

strictly upper triangular or a strictly lower triangular matrix� This scheme is a special

case of ����� discussed earlier in Section ���� We will now study the convergence

properties of the sequence fzr � r � �� �� � � �g when M is not necessarily symmetric�

Notice that the convergence properties of this sequence established in Section ��� using

the descent function �
�
zTMz� qT z	 need the symmetry of M 	 and hence may not hold

when M is not symmetric�

Convergence Properties

Theorem ���� The vectors in the sequence fzr � r � �� �� � � �g obtained using ���
	�

satisfy for each r � �� 
� � � �

jzr�� � zrj �� �I � �EjKj���jI � �E�M �K�j�jzr � zr��j � ������

Proof� From ������	 we have zr���zr � �zr��E�Mzr�q�K�zr���zr������zr���
�E�Mzr���q�K�zr�zr������ �

� ��zr�zr�����EM�zr�zr�����EK�zr���zr��
�EK�zr � zr����� from Theorem ��
�� So �zr�� � zr�� �

� ��I � �E�M �K���zr �
zr����� � ���EK�zr�� � zr���� We can obtain a similar result for zr � zr��	 that is

�zr�zr���� �
� ��I��E�M�K���zr���zr�������EK�zr�zr������ Remembering

that jxj � x����x�� for any vector x � Rn	 and adding the above two inequalities we

get jzr��� zrj �� jI ��E�M �K�j�jzr � zr��j��EjKj�jzr��� zrj� Since K is strictly

lower or upper triangular	 the matrix I � �EjKj is either a lower or upper triangular
matrix	 is invertible	 and has a nonnegative inverse� Using this we get ������ from the

last inequality�

Theorem ���� Suppose the iteration parameters �� E� K and the underlying

matrix satisfy 	�Q� � kQk � �� where Q � �I � �EjKj����jI � �E�M �K�j�� Then
the sequence of points fzr � r � �� �� � � �g generated by ���
�� converges to a point �z

where �w �M �z � q� �z� is a solution of the LCP�

Proof� Since 	�Q� � �	 by the result in Theorem ��

 we conclude that limit of

�zr��� zr� as r tends to�	 is zero� Also	 clearly Q �
� �� Now jzr� z�j �� jzr� zr��j�

� � � � jz� � z�j �� �Qr � � � � � I�jz� � z�j �� �I � Q���jz� � z�j	 �since kQk � �� �

a constant vector independent of r� So the sequence fzr � r � �� �� � � �g is bounded�

So it has a subsequence fzrt � t � �� 
� � � �g which converges to a limit	 �z	 say� So

lim
t�� jzrt��� �zj � lim

t�� jzrt��� zrt j� lim
t�� jz

rt � �zj � �	 which shows that limit zrt�� as

t tends to � is �z too� Now by the de
nition of zrt�� from equation ������	 and taking

the limit as t tend to ��	 we conclude that �z � ��z � �E�M �z � q���� So by Theorem

��
�	 �w �M �z � q� �z� is a solution of the LCP� Also	 as in the proof of Theorem ��

	

we can show that jzr�� � �zj �� Qjzr � �zj holds for all r� Since j	�Q�j � �� we conclude

that limit jzr � �zj as r tends to �� is zero� So the entire sequence fzr � r � �� �� � � �g
itself converges in the limit to �z�
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Theorem ���� Let L� D� U be respectively the strictly lower triangular� diagonal

and strictly upper triangular parts respectively of M � Let K be L or U or �� Let

B � I � �EjKj� C � jI � �E�M � K�j� A � B � C� If A is a P�matrix� then

the sequence fzr � r � �� �� � � �g generated by ���
�� converges to a point �z where

�w � M �z � q� �z� is a solution of the LCP �q�M��

Proof� From the de
nition of B	 we know that B is invertible and B�� �
� �� Also

C �
� �� So by 
����� of Ortega and Rheinboldt�s book �������	 	�B��C� � � i A��

exists and is nonnegative� Since A is a Z�matrix	 for it to have a nonnegative inverse	

it su�cies if A is a P �matrix� The result follows from these and from Theorem ��
��

Theorem ���	 If D � jL� U j is a P �matrix� then the sequence fzr � r � �� �� � � �g
generated by ���
�� with K � L or U or � and � � � � �
maxfMjjEjj � j � �

to ng where Mjj � Ejj are the jth diagonal entries of the matrices M � E respectively�

converges to a solution �z where �w �M �z � q� �z� is a solution of the LCP�

Proof� Follows from Theorem ��
��

��� Iterative Methods for LCPs

Based on Matrix Splittings

The iterative scheme and the results discussed in this section are due to J� S� Pang

������� Consider the LCP �q�M�	 �����	 of order n� If B	 C are square matrices of order

n satisfying

M � B � C � ������

������ is said to be a splitting of the matrixM � Let E be a square nonnegative diagonal

matrix of order n with diagonal entries Eii � � for all i� This iterative scheme generates

a sequence of points fzr � r � �� �� � � �g by the following� Let B	 C	 be a splitting of

M as in ������	 z� � Rn be an arbitrarily selected nonnegative vector� Given zr	 solve

the LCP with data �qr� B� where qr � q � �C � BE�zr	 and let the solution of this

LCP be �ur�� � Bzr�� � qr� zr���� Then zr�� is the next point in the sequence�

For this scheme to be practical	 the matrix B should be such that the LCP �p�B�

can be solved easily for any p � Rn� If B is a diagonal matrix with positive diagonal

entries	 or a triangular matrix with positive diagonal entries this will be the case� We

assume that the splitting B	 C of M is chosen so that the computation of the LCP

�p�B� is easily carried out� Matrix splittings are used extensively in the study of

iterative methods for solving systems of linear equations� The results in this section

show that they are also useful for contructing iterative methods to solve LCPs� It can

be veri
ed that the iterative scheme discussed in Section ��� is a special case of the

scheme discussed here	 obtained by setting	 E � ��� ��I and the splitting B	 C given
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by B � K � G
�����	 and C � �M �K� � G
����� where � � � � �	 �� � �	 and

K is either a strictly lower triangular or a strictly upper triangular matrix and G is a

diagonal matrix with positive diagonal entries�

Theorem ���� Suppose the following conditions hold�

�i� B satis�es the property that the LCP �p�B� has a solution for all p � Rn�

�ii� B � U � V � CT with U � V being matrices satisfying conditions mentioned

below�

�III� there exists a permutation matrix P such that the following matrices have

the stated partitioned structure�

PTV P �

��	V�� �
� �


�� � PTCP �

��	C�� �
� �


�� �

PTEP �

��	E�� �
� �


�� � PTUP �

��	 � U���UT

��
�


�� �

with V�� being symmetric positive de�nite matrix� where !!! � f�� � � � � ng� !!! �

f�� � � � � ng n !!!� and V�� is the matrix of Vij with i � !!!� j � !!!� etc�

�iv� the initial vector z� �� � satis�es q� � UT

��
z�� �

� ��

Then every accumulation point� �z of the sequence f�z � r � �� �� � � �g generated
by the scheme discussed above� satis�es the property that �w � M �z � q� �z�

is a solution of the LCP �q�M�� Also if the following additional condition is

satis�ed�

�v� the matrix A�� � �V �C �CT ��� is copositive plus and there exists vectors

y��� y
�
� such that

q� � A��y
�
� � �� ������

y�� �� �� q� � UT

��
y�� � � ����
�

then the sequence fzr � r � �� �� � � �g generated by the above scheme is

bounded� and has an accumulation point�

Proof� De
ne f�z� � qT� z��
�
�z

TMz� From the choice of z�	 and the iteration formula

it is clear that zr �
� � for all r	 and that q� � UT

��
zr �

� � for all r �
� �� In order to

satisfy all these conditions	 the matrix M need not be symmetric or PSD	 but it must

be copositive plus �for condition �iv��	 and a principal rearrangement of M is given by��	 A�� U��
�UT

��
�


�� �

So f�z� � qT� z� � zT�A��z�

� Hence

f�zr���� f�zr� �

� �q� �A��z
r
��

T �zr��� � zr�� � �zr��� � zr��
TA���z

r��
� � zr��



� �q� � C��z
r
� � �V � CT ���z

r��
� �T �zr��� � zr��

� �zr��� � zr��
TV���z

r��
� � zr��



� �q� � C��z
r
� � �V � CT ���z

r��
� � U��z

r��

�
�T �zr��� � zr��

� �zr��
�

�T �UT

��
zr��� � UT

��
zr��� �zr��� � zr��

TV���z
r��
� � zr��



� �q� � C��z
r
� � �V � CT ���z

r��
� � U��z

r��

�
�T ��zr�� � Ezr� � �E � I�zr��

� �zr��
�

�T ��q� � UT

��
zr��� �� �q� � UT

��
zr���� �zr��� � zr��

TV���z
r��
� � zr��

 �



��	� Exercises ��	

because �ur�� � Bzr���qr� zr��� solves the LCP �qr� B�� From this we conclude that

f�zr���� f�zr� �� ��



�zr��� � zr��

TV���z
r��
� � zr�� �� � � ������

Now let z� be an accumulation point of the sequence fzr � r � �� �� � � �g and let fzrt �
t � �� 
� � � �g be a subsequence coverging to z�� This clearly implies by ������ that the
sequence ff�zr� � r � �� �� � � �g converges� As in the proof of Theorem ���	 it can be

shown that in this case	

lim
t��

zrt��� � lim
t��

zrt� � z�� � ������

Also	 for each rt we have

urt� � q� � C��z
rt��
� � B��z

rt
�
�
� �� zrt �� E��z

rt��
� ������

urt
�
� q� � B��z

rt
�
�
� �� zrt

�
�
� � � ������

�urt� �
T �zrt� �E��z

rt��
� � � �urt

�
�T zrt

�
� � � ������

Taking the limit as t tends to� and usng ������	 we conclude that �w� �Mz��q� z��
solves the LCP �q�M��

Suppose now that condition �iv� holds� We will 
rst show that the sequence fzr� �
r � �� �� � � �g remains bounded� If not	 by the results in Section ���	 there must exist a

�z� satisfying �z� � �	 qT� z� �
� �	 �zT�A���z� � �� Since A�� is copositive plus	 this implies

that A���z� � �� These facts contradict the existence of a solution to the system �������

So fzr� � r � �� �� � � �g must be bounded�
Now we will prove that the sequence fzr

�
� r � �� �� � � �g must be bounded too�

Suppose not� Then there exists a subsequence fzrt
�

� t � �� 
� � � �g such that kzrt
�
k

diverges to �� as t tends to �� Let yrt
�

� zrt
�

kzrt

�
k� This normalized sequence

fyrt
�

� t � �� 
� � � �g is bounded and hence has an accumulation point y�
�
� Take a

subsequence of fyrt
�

� t � �� 
� � � �g which converges to y�
�
� Denote this subsequence

by fyrs
�

� s � �� 
� � � �g� Since the sequence fzrs� � s � �� 
� � � �g is bounded	 it has a

limit point� By considering a suitable subsequence again	 if necessary	 we can assume

that we 
nally have a subsequence fzrs� � s � �� 
� � � �g which converges to z��� Dividing
������ by kzrs

�
k and taking the limit as s tends to �	 we get B��y

�
�
�
� �� From

������ we have ��I � E���z
�
��

TB��y
�
�
� �	 and since �I � E��� is a positive diagonal

matrix	 this implies that �z���
TB��y

�
�
� �� Similarly	 from ������	 ������	 we obtain

that �y�
�
�T �q� � B��z

�
�� � �� Since B�� � U�� � �BT

��
	 it follows that �y�

�
�T q� � ��

This together with B��y
�
�
�
� � and the fact that y�

�
� � contradicts the existence of

a solution to ����
�� So fzr
�
� r � �� �� � � �g is also bounded� Hence the sequence fzr �

r � �� �� � � �g is bounded when the additional condition �iv� holds�

In ������ J� S� Pang	 has established the convergence properties of the sequence

fzr � r � �� �� � � �g generated by the scheme discussed here	 under various other sets of

conditions on M 	 B	 C	 q�
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��	 Exercises

��� Consider the problem of 
nding x� y � Rn satisfying

cT �Dx� y �� �� x �� �� y �� �

b� x �� �

xT �cT �Dx� y� � yT �b� x� � �

������

where b � �	 c	 D are given matrices of order n � � and n � n respectively� When D

is symmetric	 these are the necessary optimality conditions for the quadratic program�

minimize cx� �
�x

TDx	 subject to � �� x �� b� A model of type ������ arises in the study

of multicommodity market equilibrium problems with institutional price controls �here

D is not necessarily symmetric��

�� Show that ������ is equivalent to the LCP �q�M� where

q �

��	 cT

b


�� � M �

��	 D I
�I �


�� �


� Let """ � fx � � �� x �
� bg and let P��y� denote the nearest point in """ �in terms

of the usual Euclidean distance� to y� Give �x � """	 de
ne the corresponding

�y � ��yi� � Rn by �yi � � if �xi � bi	 or � �Di� �x � ci if �xi � bi� We say that �x

leads to a solution of ������ if ��x� �y� solves ������� Consider the following iterative

scheme� Choose x� � """� For r � �� �� � � �	 given xr	 de
ne

xr�� � �P��x
r � �E�Dxr � cT �K�xr�� � xr��� � ��� ��xr ������

where � � � �
� �	 � � �	 E is a positive diagonal matrix of order n	 and K is

either the strictly lower or the strictly upper triangular part of D� Using the result

in Exercise ���	 xr��j in ������ can be determined in the order j � � to n if K

is the strictly lower triangular part of D	 or in the order j � � to n if K is the

strictly upper triangular part of D� In the sequence fxr � r � �� �� � � �g generated
by ������	 xr � """ for all r	 so	 it has at least one accumulation point� If D is

symmetric and �� � 

 �maximumfDjjEjj � j such that Djj � �g�	 �here Djj 	

Ejj are the jth diagonal entries in the matrices D	 E respectively�	 prove that

every accumulation point of the sequence generated by ������ leads to a solution

of ������� In addition	 if D is also nondegenerate	 prove that the sequence fxr �
r � �� �� � � �g generated by ������ in fact converges to a point �x that leads to a

solution of �������

�� If D is a Z�matrix	 not necessarily symmetric	 and x� � T � fx � x � """ and

for each i either xi � bi or ci � Di�x �
� �g	 �for example	 x� � b will do� and

�� �
� �
 �maximumfDjjEjj � j such that Djj � �g�	 prove that the sequence

fxr � r � �� �� � � �g generated by ������ is a monotonic sequence that converges to

a point �x leading to a solution of �������
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�� A square matrix is said to be a H�matrix if its comparison matrix �which is a Z�

matrix by de
nition� is a P �matrix� If D is a H�matrix	 not necessarily symmetric	

with positive diagonal elements	 prove that the sequence fxr � r � �� �� � � �g gen�
erated by ������	 with � �

� �
 �maximumfDjjEjj � j � � to ng� converges to the
point �x that leads to the unique solution of �������

�B� H� Ahn ������

��	 For each i � � to m	 let fi�x� be a real valued convex function de
ned on Rn�

Let K � fx � fi�x� �
� �� i � � to mg� Assume that K �� 
� Let x� � Rn be

an arbitrary initial point� The following iterative method known as the method of

successive projection is suggested as a method for 
nding a point in K� Given xr	 let

xr�� be the nearest point in the set fx � fir �x� �� �g to xr� The index ir is choosen by

one of the following

Cyclic Order � Here the indices fir � r � �� �� � � �g are choosen in cyclical order
from f�� 
� � � � �mg� So i� � �	 i� � 
	 � � �	 im � �	 im�� � 
	 and so on�

Most Violated Criterion � Here ir is the i for which the distance between xr

and the nearest point to xr in the set fx � fi�x� �� �g is maximum �ties for this

maximum are broken arbitrarily��

Prove that the sequence fxr � r � �� �� � � �g converges to a point in K�

�L� M� Bregman ������
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