
Contents

1 Network Definitions
and Formulations 1
1.1 Introduction . 1
1.2 Notation and Preliminaries 13

1.2.1 Linear Programming Background 14
1.2.2 Paths, Chains, Trees, and Other Network Objects 20
1.2.3 Single Commodity Node-Arc Flow Models . . . 61
1.2.4 The Arc-Chain Flow Model 74

1.3 Formulation Examples 79
1.3.1 The Transportation Problem 79
1.3.2 The Assignment Problem 81
1.3.3 The Transshipment Problem 81
1.3.4 An Application In Short Term Investments . . . 83
1.3.5 Shortest Chain Problem 85
1.3.6 Project Planning Problems 85
1.3.7 Generalized Network Flow Problems 86
1.3.8 Applications In Routing 88

1.4 Exercises . 95
1.5 References . 120

i

ii

Chapter 1

Network Definitions
and Formulations

1.1 Introduction

Wanting to optimize is a basic human trait. We begin with an incident
which illustrates the fact that the urge to optimize provides universal
motivation.

When I joined the University of Michigan, we stayed in an apart-
ment close to campus. Our daughter was three years old then, and we
had a small poodle to which she was very much attached. One day
the poodle was missing. We searched the entire neighborhood for it,
but had no luck. Another day went by, but it did not return. Unable
to console my tearful daughter, I sought the advice of a colleague. He
suggested that I put an advertisement in the campus newspaper. They
recommended the offer of a reward for the poodle’s return. Everything
was agreed and they began running the advertisement offering a re-
ward of $150 for anyone who finds and returns the poodle. We were
very confident that this would bring quick results. A week passed by,
and I called the newspaper office to check the status. The girl who
received the call recognized my voice and asked whether I was the pro-
fessor with the missing poodle. I said yes, and asked to be connected
to the advertising manager. She said that he was out. I then asked to
be connected to his assistant. She said that he was out too. Then I

1

2 Ch.1. Definitions and Formulations

wanted to speak with the editor. She replied that he was out too. I
remarked “Goodness! Is everyone out?” She replied, “Yes Professor,
they are all out looking for your dog!”

In this story, all the people have an optimizing attitude which is
almost universal. With many successful optimization algorithms, and
modern digital computers for implementing them, many organizations
are using them routinely to optimize their operations.

While constructing an optimization model for a system these days,
the emphasis is on keeping it computable or tractable. The network
models discussed in this book are among the most tractable. We have
very efficient algorithms for solving them. Taking advantage of the
special structure, they are able to solve very large problems many times
faster than general purpose linear programming algorithms. Excellent
computer implementations of these algorithms are widely available. In
this book we discuss network algorithms in all their variety and depth.
In this chapter we discuss the basic network definitions and present
some formulation examples.

Networks, Nodes, Lines, Arcs, Edges, Subnetworks,
Graphs

A network is a pair of sets (N ,A), whereN is a set of points (also
called vertices or nodes) and A is a set of lines, each line joining a
pair of points, together with some associated data. Nodes i, j are said
to be adjacent if there is a line joining them.

A line joining i, j that can only be used in the direction from i to
j is called an arc, and denoted by the ordered pair (i, j) with a
comma, it is incident into j and out of i , node i is its tail , and j
is its head. If (i, j) is denoted by e, then i = tail(e), j = head(e). For
example (2, 1) is an arc in the network in Figure 1.1 with tail 2, and
head 1.

A line joining two points x, y that can be used either from x to y,
or from y to x, is called an edge and denoted by the unordered pair
(x; y) with a semicolon, it is incident at x and y. For example (4; 2)
is an edge in the network in Figure 1.1 incident at nodes 4 and 2.

There can be more than one arc with the same orientation, or more

1.1: Introduction 3

than one edge joining points i, j; such lines are called parallel lines.
They will then be denoted by (i, j)1, (i, j)2, etc. When the network
has such parallel lines, each of them is considered a separate distinct
line by itself. However, we assume, except in Chapter 8, that there are
no self loops, which are lines joining a point with itself. Figure 1.1
is a network with 8 points, 16 arcs, and 7 edges. Arcs (3, 5) and (2,
6) intersect in it, but their point of intersection is not a point in the
network. The network is a directed network if all the lines in it are
arcs, an undirected network if all the lines are edges, and a mixed
network if it has both arcs and edges.

5

7

6

82

4

1

3

Figure 1.1:

The degree of a point in a network is the number of lines incident
at it. In a directed network, the indegree (outdegree) of a node is
the number of arcs incident into (out of) it.
A subnetwork of G = (N ,A) is a network F = (N , Ā) with the

same set of points, but with Ā ⊂ A.
A partial network of G is a network (N̂ , Â) in which the set of

points is N̂ ⊂ N , and the set of lines is Â which is the set of all the lines
in G that have both their incident points in N̂ . This partial network
is also called the partial network or subnetwork of G induced
by the subset of nodes N̂ . A partial subnetwork of G is a partial

4 Ch.1. Definitions and Formulations

network of a subnetwork of G. For example, by omitting all the thick
and dashed lines and all the lines incident at node 8 in Figure 1.1, we
get the subnetwork in Figure 1.2. The partial network of the network
in Figure 1.1 induced by the subset of nodes {1, 2, 6, 8} is given in
Figure 1.3 (a) (on the left). See Figure 1.3 (b) (on the right) for a
partial subnetwork.

1 2

3

4

5

6

7

8

Figure 1.2: A subnetwork of the network in Figure 1.1.

2

6

81

(a) A partial network

of the network in Figure 1.1.

1

4

3

2 5 8

7

(b) A partial subnetwork

of the network in Figure 1.1.

Figure 1.3:

In a directed network, the forward star (reverse star) at a node
i is the set of all arcs incident out of (incident into) i. It is some-
times convenient to represent directed networks by storing the forward
stars of the nodes, or the reverse stars, or both. Searching through

1.1: Introduction 5

forward (or reverse) stars of nodes is a common operation in many net-
work algorithms, this representation is convenient for carrying out this
search. In a directed network G = (N ,A), for i ∈ N , the set A(i) =
{j : (i, j) ∈ A} is called the after i set, and B(i) = {j : (j, i) ∈ A} is
called the before i set.

Mathematically, an undirected network which has no self loops, is
called a graph if it has no parallel edges, or a multigraph other-
wise. A directed network which has no self loops is called a digraph
if it has no parallel arcs, or a multidigraph otherwise.What distin-
guishes these graphs from networks is the fact that networks usually
have some data such as arc lengths, or arc capacities associated with
points and/or lines. Our problems come with data; hence we will use
the term network to refer to our structures.

Application Areas

Network models are used extensively to analyze and optimize the
operation of many systems.

For example, vehicular traffic in highway systems is studied using
the network in which points are traffic centers and lines are roadway
segments joining pairs of points.

Similarly, airline systems, railroad systems, shipping systems, and
all transportation systems can be analyzed using appropriately defined
networks.

Natural gas, crude oil, or other fluid flows are analyzed using the
appropriate pipeline and/or ship or truck route networks.

The telephone network is the network for studying the flow of calls.

Economic models can be treated as network models by representing
factories, warehouses, and markets as points and by treating highways,
railroads, waterways, and other transportation channels as lines.

Even software and computer systems are analyzed using network
models. A software system is often a collection of many components
such as program modules, command procedures, data files, etc. The
execution-time relationships and data communications between them
form a directed network called the call graph of the program, nodes
in it are procedures, and each arc represents one or more invocations

6 Ch.1. Definitions and Formulations

of a procedure by another. Similarly, distributed computer systems
are analyzed using appropriate network models that represent their
working modes.

Network models find applications in the design and analysis of many
other types of systems, as most systems have to transmit goods or mes-
sages etc., through an appropriate transportation or communication
medium. The application of network algorithms to solve these models
benefits society by optimizing distribution, communication, and trans-
portation costs, and improving productivity.

Also, being pictorial, a network model is visually informative and
easy to construct and explain to top management.

Origin of Network Modeling, and Theory

The origin of network theory can be traced to the work of the famous
Swiss mathematician Leonhard Euler on the Königsberg bridges
problem in the year 1736.

The Königsberg bridges problem

The problem originated as a children’s game in Königsberg on the
banks of the river Pregel. There were two islands (denoted as land
areas 1, 4; 2, 3 denote the two banks of the river) and seven bridges
each joining a pair of land areas as in Figure 1.4. The question is: Is
there a route beginning in one of the land areas, passing through each
of the bridges exactly once, and returning to the initial land area at
the end?

The town’s children had long amused themselves running across
the various bridges endlessly trying to find such a route, but no one
succeeded.

It intrigued Euler, and when he grew up, he constructed a network
model and developed an elegant method to answer this question. He
represented each land area by a node, and each bridge by an edge
joining the corresponding pair of nodes as in Figure 1.5. The desired
route corresponds to one that begins at a node, traverses through each

edge exactly once, and terminates at the starting node. Such a route

1.1: Introduction 7

1

2

4

3

e
3

1
e

2
e

4
e

5
e

6
e

7
e

Figure 1.4: The Königsberg bridges.

is nowadays called an Euler route or Euler circuit. He proved that
such a route exists in an undirected network iff it is connected (i.e., it
is possible to pass from any node to any other node using the edges of
the network), and every node has even degree (Theorem 1.11 of Section
1.3.8). Since the network in Figure 1.5 contains nodes which are not of
even degree, the answer to the Königsberg bridges problem is: “no”.

1

23

4

e1

e2

e3 e4

e5
e6e7

Figure 1.5: Network for the Königsberg bridges problem model.

Euler provided an elegant answer to an existence question. Sec-

8 Ch.1. Definitions and Formulations

tion 1.3.8 discusses efficient methods for actually computing an Euler
route when it exists, and their application to solve important routing
problems.

Problems, Algorithms, Computational Complex-
ity

All the problems that we discuss in this book come with input
data. The word problem normally refers to the general question to be
answered, stated using mathematical symbols to represent the input
data. An instance of this problem is obtained by providing specific
values for all the input data symbols. For example, the maximum
value flow problem is the problem of finding a maximum value flow in
the single commodity flow network G = (N ,A, f, k, s̆, t̆) (f, k, s̆, t̆ are
data, their meanings are explained later). Finding the maximum value
flow in the specific network with data given in Figure 2.8 in Chapter
2, is an instance of this problem.

Measures of the largeness of a problem instance are provided
by its parameters such as its dimension (the total number of data
elements in it), or its size when all the data is rational (the total
number of digits in the data when it is encoded in binary form).

Algorithms are step-by-step procedures for solving problems. We
will measure the computational effort of an algorithm to solve a
problem instance by the number of basic operations (additions, sub-
tractions, multiplications, divisions, comparisons, lookups, etc.) that
it takes when it is applied to solve that instance.

We are interested in finding the most efficient (or the fastest, in the
sense of requiring the least computational effort in general) algorithms
to solve problems. We would expect the relative difficulty of problem
instances to increase in general with their largeness measure, so the
computational effort of an algorithm should be expressed in terms of
this largeness measure. But, even among problem instances with the
same largeness measure, the computational effort of an algorithm may
vary considerably depending on the actual values for the input data;
this makes it very difficult to develop efficiency measures for algorithms.

One possible measure of the efficiency of an algorithm, called the

1.1: Introduction 9

average computational complexity or the average time com-
plexity of the algorithm, is the average computational effort (i.e., the
mathematical expectation of the computational effort) expressed as a
function of the largeness of the instance, under the assumption that all
the input data are random variables with known distributions. Deriving
this average complexity requires complete knowledge of the probability
distributions of the data in the class of problem instances on which
the algorithm will be applied, this kind of detailed information is not
available in general. Therefore, we will not discuss this measure.

Another measure of efficiency of an algorithm is the empirical av-
erage computational complexity(i.e., the observed average com-
putational effort of the algorithm in computational experiments with
randomly generated data). This measure is used in an informal way; it
is not theoretically satisfactory, since the observed performance of the
algorithm may depend critically on the probability distributions used
to generate the data in the experiments.

A third measure of the efficiency of an algorithm, known as the
worst case computational complexity, is a mathematical upper-
bound (i.e., the maximum) for the computational effort needed by the
algorithm, expressed as a function of the largeness measure of the in-
stance, as the values of the input data elements take all possible values
in their range. This is the measure used commonly in computer sci-
ence to classify algorithms as good or bad; this is the measure that we
will use. So, in the text, computational complexity of an algorithm
refers to this worst case computational complexity function.

When n is some measure of how large a problem instance is (either
the size, or the dimension), an algorithm for solving it is said to be
of order nr or O(nr) if its worst case computational effort grows as
αnr, where α and r are numbers that are independent of the largeness
measure and the data in the instance. The n and m that appear in our
computational complexity measures are usually the number of nodes
and lines in the network.

As an example, consider the following problem that came up in
the previous discussion: Given a connected undirected network G =
(N ,A) with |N | = n ≥ 2, |A| = m, check whether all its nodes have
even degree. We now state a simple algorithm for this problem formally

10 Ch.1. Definitions and Formulations

in the style that we will use and determine its computational complex-
ity. The algorithm scans each edge once. It maintains numbers called
degree indices for the nodes, which become the degrees at termination.
The list is the set of unscanned edges.

Step 1 Initialization For each i ∈ N , set di, its degree index, to
0. List = A.

Step 2 Select an Edge to Scan If list = ∅, go to Step 4. Oth-
erwise, select an edge e from the list to scan. Delete e from the
list.

Step 3 Scanning Let e be the edge to be scanned. Add 1 to the
degree indices of each of the two nodes on e. Go to Step 2.

Step 4 Termination The vector of degree indices, d = (di : i ∈ N)
at this stage is the vector of degrees of the nodes in G. Check
whether all the di in it are even and find the answer to the prob-
lem. Terminate.

The work in this algorithm consists of 2m additions, and check-
ing the evenness of n integers (i.e., a total of 2m + n operations, in
terms of these operations). It will be shown later that m ≥ n − 1 in
this problem, so the computational effort of this algorithm in terms of
these operations is ≤ 4m; hence the computational complexity of this
algorithm is O(m). Therefore, given a connected undirected network
with m edges, the existence of an Euler route in it can be checked with
an effort of O(m), by the previous discussion.
In this simple problem n,m are parameters describing the dimen-

sion of the problem, there is no numerical data, and the computational
effort of the algorithm for it is 2m + n. In the algorithms that follow,
there will be numerical data, and the computational effort in them
usually depends not just on the dimension or size of the problem but
on the actual values of these numbers and possibly on the manner in
which the algorithm is executed (specific rules used to select edges or
nodes to scan, which may have been left open in the statement of the
algorithm, etc.). Therefore, to determine the computational complex-
ity of these algorithms it will be necessary to determine the maximum

1.1: Introduction 11

possible effort (or a reasonably close upper bound for it) as these data
elements take all possible values in their range.

An algorithm whose time complexity function is bounded above by
a polynomial function in the size of the problem instance is called a
polynomial time algorithm. If it is not a polynomial time algorithm,
it may have exponential time complexity or some other complexity
in the worst case.

A Network Model

We will now provide a network model for a typical production dis-
tribution problem.

A company makes chairs at 3 plants with wood, for which there
are 2 suppliers, and sells them through 3 wholesalers. Relevant data is
given in the following tables.

The whole process here can be seen as a flow of wood from the
suppliers, through the plants where it is converted into chairs, to the
wholesalers. There are limits, both lower and upper, on the amounts of
flow through the various points, and either costs or revenues associated
with these flows.

On an average a chair requires 20 lbs. of wood. It is convenient
to define a chair unit of wood to be 20 lbs. and measure all flows in
terms of chairs/day. The revenue obtained by selling chairs is treated
as negative cost.

Nodes in the network are S1, S2 (representing the two suppliers for
wood), P1, P2, P3 (the three plants), and W1,W2,W3 (the wholesalers).
Arcs in the network represent channels along which material is shipped

Plant Production cost Production capacity Lower bound
$/chair at plant in chairs/day on chairs made/day

1 8 1200 0
2 4 600 200
3 5 450 300

12 Ch.1. Definitions and Formulations

Supplier Cost of shipping Minimum quantity Selling
wood ($/lb) to to be purchased price of

plant from supplier wood ($/lb)
1 2 3

1 .02 .03 .04 8 tons .10
2 .05 .03 .03 10 tons .075

Plant Cost of shipping
($/chair) to wholesaler

1 2 3
1 2 1 1
2 1.5 2 1
3 1 1.5 2

Selling price 25 20 22
($/chair)

Max. chairs 2100 1600 1700
wanted/day

Min. chairs 500 400 300
wanted/day

between pairs of nodes. The flow amount on an arc (x, y) represents
the amount of material (chair units/day) shipped from x to y.
Figure 1.6 shows the network model. The 3 numbers on a node

are the lower and upper bounds for total flow either originating at
that node (for S1, S2) or passing through that node (for P1, P2, P3), or
being shipped to that node (W1,W2,W3), and the unit cost associated
with that flow. The number on each arc is the cost/unit flow on it.
Remember that a ton of wood is 100 chair units. The problem is to
find a flow vector in this network that minimizes the total cost subject
to the bounds specified.
In real world applications, the networks usually involve very large

numbers of nodes and arcs, but the mathematical structure of the prob-
lem remains very similar to that in this example.
Neglecting parallel lines, the total number of lines in a directed

network G = (N ,A) with |N | = n, |A| = m, can be at most n(n− 1).

1.2: Preliminaries & Notation 13

.8

.6

.6

1

.4

2

1.5

1

1

2

1

1

2

.6

300, 450, 5 300, 1700, - 22

400, 1600, - 20

500, 2100, - 25

200, 600, 4

0, 1200, 8

800, ,2

1000, ,1. 5

S
1

S 2

P
1

P
2

P
3

W
1

W
2

W
3

8
8

Figure 1.6: Network for the chairmaker’s problem. Lower and upper
bounds for flow on each arc are 0, ∞, respectively. Other data ex-
plained in para above.

If m is close to this number, the network is said to be dense. If m is
much less than n(n−1), the network is said to be sparse. The sparsity
of G is measured by how smallm is in comparison with n(n−1). In very
sparse networks, the number of nonparallel lines incident at any node
will be much smaller than the possible n− 1. The networks occurring
in most practical applications tend to be very sparse.

1.2 Notation and Preliminaries

In this section, G will denote the network (N ,A).
Let X, Y be two subsets of nodes, not necessarily disjoint. If G is

undirected, the symbol (X; Y) or (Y;X) denotes the set of all edges
in G with one node in X and another node in Y. For example, in the
network in Figure 1.5, ({1, 2} ; {3, 4}) = {e3, e2, e5, e6} and ({1, 2, 3}

14 Ch.1. Definitions and Formulations

; {2, 4}) = {e1, e4, e5, e6, e7}.
If G is directed, the symbol (X, Y) denotes the set of arcs in G

with tail in X and head in Y. So, in the directed case (X, Y), (Y, X)
may not be the same. For example, in the network in Figure 1.6, ({
P1, S1, S2}, { S1,P3,W2}) = {(P1,W2), (S1,P3), (S2,P3)}.

1.2.1 Linear Programming Background

The standard form for an LP (we will use this abbreviation for Lin-
ear Program) is (1.1), where A is a given real matrix of order m× n
and c = (cj) ∈ Rn. Without any loss of generality, we assume that
the rank of A is m; otherwise, if (1.1) is feasible, some of the equality
constraints in it must be redundant, and they can be eliminated one at
a time until in the remaining system the matrix of coefficients is of full
row rank. We also assume that each column vector of A is nonzero.
We denote by Ai·, A·j the i-th row vector, j-th column vector of A.

Minimize z(x) = cx

Subject to Ax = b (1.1)

x
>
= 0

In (1.1) A·j is said to be the original column, and cj the original
cost coefficient of xj, j = 1 to n; b = (bi) is called the vector of
original right hand side constants in (1.1).
A solution for (1.1) is a vector x satisfying Ax = b, whether or not

it satisfies x
>
= 0. A feasible solution is an x satisfying both Ax = b

and x
>
= 0.

A solution x for (1.1) is said to be a basic solution if the set {A·j
: j such that xj W= 0} is linearly independent. Assuming that A is of
full row rank, a basis for (1.1) is a square nonsingular submatrix of A
of order m. If B = (A·j1 , . . . , A·jm) is a basis for (1.1), the vector of
variables associated with the columns inB, namely xB = (xj1, . . . , xjm),
is known as the basic vector, and xD, the vector of all the variables
not in xB is known as the nonbasic vector, associated with it. Let
D denote the submatrix of A consisting of the columns of nonbasic

1.2.1: LP Background 15

variables. Then, after rearranging the variables, the constraints in
(1.1) can be written as:

BxB +DxD = b

(1.2)

xB
>
= 0, xD

>
= 0

Then the basic solution of (1.1) corresponding to this basic vector
is obtained by setting xD = 0 in (1.2) (i.e., fixing all the nonbasic
variables at their lower bound, which is the only finite bound on them)
and then solving (1.2) for the values of xB. This is given by:

xD = 0, xB = B
−1b (1.3)

The basic solution is said to be degenerate if at least one of the
components in B−1b is zero, nondegenerate otherwise. Thus every
basis for (1.1) leads to a basic solution; and conversely, every basic
solution of (1.1) corresponds to at least one basis for (1.1).
The basis B and the basic vector xB for (1.1) are said to be primal

feasible if the basic solution in (1.3) is feasible to (1.1) (i.e., if B−1b >=
0); otherwise they are primal infeasible. In the former case, the
solution in (1.3) is said to be a basic feasible solution abbreviated
as BFS for (1.1). Each BFS corresponds to an IRn extreme point of
the set of feasible solutions for (1.1), and vice versa. See Murty [1983].

Canonical Tableaus

The canonical tableau of (1.1) wrt the basis B or the basic vector
xB is obtained by multiplying the system of equality constraints in it
on the left by B−1. It is given below.

Basic x
variables

xB B−1A B−1b

16 Ch.1. Definitions and Formulations

When the basic and nonbasic columns are rearranged in proper
order as in (1.2), the canonical tableau becomes:

Basic xB xD
variables

xB I B−1D B−1b = b̄

The vector b̄ is known as the updated right hand side constants
vector in the canonical tableau. The column of xj in the canonical
tableau, B−1A·j = Ā·j is called the updated column of xj wrt the
basis B, or the associated basic vector xB. This can be computed from
the original column of this variable, and the basis inverse.

Interpretation of the Updated Column of a Nonbasic Variable
as the Representation of Its Original Column

The updated column Ā·j = (ā1j , . . . , āmj)
T of xj in the canoni-

cal tableau of (1. 1) wrt the basis B = (A·1, . . . , A·m) say, where
A·1, . . . , A·m are the original columns of the basic variables in xB, is
B−1A·j . So, A·j = BĀ·j = ā1jA·1 + . . . + āmjA·m (i.e., the updated
column Ā·j is the vector of coefficients in the representation of the
original column A·j as a linear combination of the basic columns, see
Murty[1983]). This is an important result relating updated columns
in canonical tableaus for (1.1) with the corresponding original columns
and the columns of the basis. This result is used later in deriving the
canonical tableau for the system of flow conservation equations of a sin-
gle commodity flow problem combinatorially without performing any
pivot steps.

EXAMPLE 1.1

Consider the following system of constraints for an LP.

1.2.1: LP Background 17

x1 x2 x3 x4 x5 x6 x7 b
1 −1 0 1 1 0 0 1
0 −3 1 1 1 1 0 2
1 0 1 0 1 1 1 7

xj
>
= 0 for all j

Consider the basic vector xB1 = (x1, x3, x4) for this problem. The
corresponding basis is B1.

B1 = (A·1, A·3, A·4) =

⎛⎜⎝ 1 0 1
0 1 1
1 1 0

⎞⎟⎠ , B−11 =

⎛⎜⎝ 1/2 −1/2 1/2
−1/2 1/2 1/2
1/2 1/2 −1/2

⎞⎟⎠
Canonical Tableau wrt The Basic Vector (x1, x3, x4)
Basic x1 x2 x3 x4 x5 x6 x7 b̄
variables
x1 1 1 0 0 1/2 0 1/2 3
x3 0 −1 1 0 1/2 1 1/2 4
x4 0 −2 0 1 1/2 0 −1/2 −2

We denote by A·j the original column of xj, and by Ā·j its updated
column in the above canonical tableau. So, Ā·2 = (1,−1,−2)T and it
can be verified that A·2 = A·1 − A·3 − 2A·4, as discussed above.
The basic solution of this system wrt xB1 is x̄ = (3, 0, 4,−2, 0, 0, 0)T ,

and since x4 = −2 < 0 in this solution, it is not a feasible basic solution
for this system.

The Dual Problem

Associate the dual variable πi with the ith equality constraint in
(1.1), i = 1 to m. Let π = (π1, . . . , πm) be the row vector of dual
variables. The dual of (1.1) is:

Maximize πb

Subject to πA·j
<
= cj, j = 1 to n. (1.4)

18 Ch.1. Definitions and Formulations

In matrix notation the constraints in (1.4) are πA
<
= c. Given

the basic vector xB = (xj1 , . . . , xjm) and the associated basis B, the
row vector cB = (cj1, . . . , cjm) is the associated original basic cost
vector. The dual basic solution corresponding to the basis B is
obtained by solving the system of dual constraints corresponding to
the basic variables in xB as equations, i.e.,

πA·j = cj , for each j = j1, . . . , jm (1.5)

or equivalently, πB = cB yielding π = cBB
−1. The dual slack vector

corresponding to the basis B is c̄ = (c − πA) = (c − cBB−1A), and it
is also known as the vector of reduced or relative cost coefficients
in (1.1) wrt the basis B. The dual basic solution obtained from (1.5) is
said to be dual feasible if it satisfies all the dual constraints in (1.4)

(i.e., if c̄
>
= 0). If this is satisfied, the basis B is said to be dual feasible

for (1.1). The BFS corresponding to a primal and dual feasible basis
is an optimum feasible solution for (1.1).
A feasible solution x̄ for (1.1) is optimal iff there exists a dual vector

π̄, such that x̄, π̄ together satisfy all the following conditions.

Primal feasibility Ax̄ = b, x̄
>
= 0

Dual feasibility π̄A
<
= c (1.6)

Complementary slackness x̄j(cj − π̄A·j) = 0, for all j = 1 to n

Bounded Variable LPs

A bounded variable LP is a problem of the following form:

Minimize cx

Subject to Ax = b (1.7)

fj
<
= xj

<
= kj , for each j

whereA is a matrix of orderm×n, and f = (f1, . . . , fn)T , k = (k1, . . . , kn)T
are given lower bound and upper bound vectors satisfying f

<
= k. Some

1.2.1: LP Background 19

of the kj may be +∞, but we assume that f is finite. As before, we
assume that the rank of A is m, and that each column of A contains
at least one nonzero entry. Let B = (A·j1, . . . , A·jm) be a nonsingular
square submatrix of A of order m, and xB = (xj1 , . . . , xjm). Then xB
is the basic vector corresponding to the basis B for (1.7). Basic solu-
tions of (1.7) correspond to partitions of the variables, (xB, xL, xU),
where xB is a basic vector and xL, xU are the vectors of nonbasic vari-
ables made equal to their lower, upper bounds respectively in the basic
solution. Notice that xU should be such, that for every xj in it kj must
be finite. The basic solution corresponding to this partition is obtained
by solving for the values of the basic variables in xB from the system of
equations in (1.7) after fixing the nonbasic variables in xL, xU at their
respective bounds. It is:

xj = fj if xj is in xL, or kj if xj is in xU

xB = B−1
p
b−3 (fjA·j : over j s. t. xj ∈ xL) (1.8)

−3 (kjA·j : over j s. t. xj ∈ xU)
Q

The basic solution in (1.8) is said to be degenerate if the value of
at least one basic variable is equal to either its lower or upper bound;
nondegenerate otherwise. The solution in (1.8) is feasible to (1.7)
if the value of every basic variable satisfies the bounds on it, and in
this case the partition (xB, xL, xU) is said to be a primal feasible
partition, and the solution itself is called a basic feasible solution
(BFS). Thus every BFS for (1.7) is associated with a primal feasible
partition for it and vice versa.
Associate a dual variable πi to the ith equality constraint in (1.7),

i = 1 to m; dual variables µj , γj with the bound restrictions on xj (γj is
defined only if kj is finite), j = 1 to n. Let π = (πi), µ = (µj), γ = (γj)
denote the row vectors of these dual variables. The dual is:

Maximize πb+ µf−3(γjkj : over j s. t. kj is finite)

S. to πA·j + µj − γj = cj, for j s. t. kj finite (1.9)

πA·j + µj = cj, for j s. t. kj is ∞

20 Ch.1. Definitions and Formulations

µ
>
= 0, γ

>
= 0

The dual basic solution corresponding to the partition (xB, xL, xU)
is defined to be π = cBB

−1, where cB is the row vector of original basic
cost coefficients, and B is the associated basis. This partition is said
to be dual feasible if c̄ = c− πA = c− cBB−1A satisfies:

c̄j

l >
= 0 for each j such that xj ∈ xL
<
= 0 for each j such that xj ∈ xU

If these are satisfied, define for each j = 1 to n, µj = c̄j if c̄j >

0, µj = 0 if c̄j
<
= 0; and γj = −c̄j if c̄j < 0, γj = 0 if c̄j >= 0. Then verify

that (π = cBB
−1, µ, γ) satisfy (1.9).

A feasible solution x̄ for (1.7) is optimal iff there exists a dual vector

π̄, such that x̄, π̄ together satisfy primal feasibility (Ax̄ = b, f
<
= x̄

<
=

k), dual feasibility ((cj−π̄A·j) >= 0 for all j such that kj = +∞), and
the following complementary slackness conditions for optimality

cj − π̄A·j > 0 implies x̄j = fj

cj − π̄A·j < 0 implies x̄j = kj (1.10)

fj < x̄j < kj implies cj − π̄A·j = 0

1.2.2 Paths, Chains, Trees, and Other Network
Objects

A path P from x1(origin or initial node) to xk(destination or
terminal node) in G is a sequence of points and lines alternately,
x1, e1, x2, e2, . . . , ek−1, xk, such that for each r = 1 to k− 1, er is either
the arc (xr, xr+1) or the arc (xr+1, xr) or the edge (xr;xr+1) with some
orientation selected for it, which we will again treat as an arc. It is a
sequence of lines connecting the points x1 and xk, but the lines need
not all be directed towards xk. An arc whose orientation coincides
with (is opposite to) the direction of travel from origin to destination
is called a forward (reverse) arc of the path. A chain is a path
in which all the arcs are forward arcs. A path (chain) is said to be a

1.2.2: Network Objects 21

simple path (simple chain) if no point or line is repeated on it. See
Figures 1.7 (a), (b), 1.8. A path (chain) is said to be an elementary
path (elementary chain) if it does not pass through any line more
than once, but it may pass through nodes more than once. The chain in
Figure 1.7 (b) going through arcs e1 to e5 in that order is an elementary,
but not simple chain.

The network (N, A) where N is the set of distinct points and A is
the set of distinct lines on a path P , is called the underlying partial
subnetwork of G corresponding to P. A cycle (circuit) is a path
(chain) from a node back to itself satisfying the property that in the
underlying partial subnetwork (N, A) corresponding to it, each node in
N is incident to an even number of lines inA. A simple cycle (simple
circuit) is a cycle (circuit) in which no node or line is repeated, except
of course for the initial and terminal nodes which are the same. So, a
simple cycle is a cycle that does not contain another cycle as a proper
subsequence. Also, every cycle must either be simple itself or contain
a simple cycle as a subsequence. And every point has degree 2 in the
underlying partial subnetwork of a simple cycle. A cycle that does not
pass through any line more than once but may pass through nodes
more than once is called an elementary cycle.

Let x1, e1, x2, e2, . . . , eu−1, xu be a simple path P from x1 to xu W=
x1 in G. We can store P using node labels. The origin x1 has no
predecessors, so its predecessor index (or predecessor label)
is ∅. For 2 ≤ r ≤ u, xr−1 is the immediate predecessor of xr on P, so
the predecessor index of xr is xr−1. To remember the orientation of the
arc incident into it, we define the label on xr to be (xr−1,+) [(xr−1,−)]
if er−1 is (xr−1, xr) [(xr, xr−1)] i.e., a forward [reverse] arc on P . See
Figure 1.8. The simple path itself can be traced by a backwards trace
of these predecessor labels beginning at the terminal node. The last
arc on P is the forward arc (xu−1, xu) if the label on xu is (xu−1,+), or
the reverse arc (xu, xu−1) if that label is (xu−1,−). Now go back to the
predecessor node xu−1, look up the label on it and continue in the same
manner. The trace stops when the node with the ∅ label, the origin, is
reached. In simple chains all the arcs are forward, so for storing them,
only the predecessor indices are used without the +,− signs. In all
network algorithms, labels of this type are used; that’s why they are

22 Ch.1. Definitions and Formulations

x
1

x
2

x
3

x
4

x
5

x
6

e
1

e
2

e
3

e
4

e
5

x
1

x
2

x
3

x
4

x
5

e
4

e
5

e
3

e
1

e
2

(b) An elementary ,

but not a simple chain.

(a) A simple chain.

Figure 1.7:

called labeling algorithms. This labeling scheme is only useful for
representing simple paths; verify that it is not adequate to represent
nonsimple paths.

A simple cycle in a directed network G can be oriented in one of two
possible ways. An oriented cycle in a directed network is a simple
cycle for which an orientation has been selected. Arcs on an oriented
cycle are classified into forward arcs (those whose orientation coincides
with that of the cycle), and reverse arcs (those whose orientation is
opposite to that of the cycle). Changing the orientation of an oriented
cycle interchanges its sets of forward and reverse arcs. As an example,
consider the simple cycle 2, (2, 6), 6, (6, 8), 8, (7, 8), 7, (3, 7), 3, (2,
3), 2 in the network in Figure 1.12 (see later on). As it is written,
this simple cycle is oriented in the clockwise direction, with {(2, 6), (6,
8)} as forward arcs, and {(2, 3), (3, 7), (7, 8)} as reverse arcs. If this
simple cycle is oriented in the anticlockwise direction, these sets switch
their roles.

1.2.2: Network Objects 23

F

R

R

F

R

F

F

R

F

R

x
1

x
2

x
3

x
4

x
5

x
6

x
7

9
x

x
8

x
11

10
x(x , +)

1

(x , +)
3

(x , +)
4

(x , +)
8

(x , -)
2

(x , -)
5

(x , -)
6

(x , -)
7

(x , -)
10

9
(x , +)

ø

Figure 1.8: A path from x1 to x11. “F” indicates a forward arc, and
“R” indicates a reverse arc. This path is simple. Node labels for storing
it are entered by the side of the nodes.

The network G is said to be connected if there exists a path
between every pair of points in it. A network that is not connected is
just two or more independent connected networks put together. The
connected networks in it are called its connected components.
A directed network G = (N ,A) is said to be strongly connected

if there exists a chain from each node to every other node in it. If the di-
rected network G is not strongly connected, it can be separated into its
strongly connected components, where, each strongly connected
component of G is a maximal partial network of G that is strongly
connected.

Exercise

1.1 Suppose G = (N ,A) is a network with N = {1, . . . , n}, and A is
given as a list, listing the nodes on each line. Develop an efficient algo-
rithm to check whether G is connected, and, if it is not, to identify each
connected component in it. Determine its computational complexity.
Similarly, if G is a directed network, develop an efficient algorithm to
check whether it is strongly connected, and, if it is not, to identify its

24 Ch.1. Definitions and Formulations

1 2 3

1, (1, 2), 2, (2, 3), 3, (3, 2), 2, (2, 1),

1 which uses these two edges in

forward and backwards directions

is not a cycle.

1 2

1, (1, 2) , 2, (2, 1) ,1 consisting of

one of these parallel edges in the

forward and the other in the reverse

direction is a simple cycle.

1 2

Figure 1.9:

strongly connected components.

Lower Bounds, Capacities and Node-Arc Flow Variables

Let G = (N ,A) be a directed connected network. In single com-
modity flow models on G, the flow amount on arc (i, j) ∈ A (the
amount of commodity transported from node i to node j along this
arc, in units per unit time) is denoted by fi,j , or f(i, j), or just fij, and
called the node-arc flow amount or flow variable corresponding
to arc (i, j). In applications there are usually lower and upper bounds
specified on fij ; these are the lower bound, fij and capacity, kij ,
of arc (i, j) ∈ A. The arcs in A are arranged in some order, and
f = (fij), f = (fij), k = (kij) denote the flow, lower bound, and capac-
ity vectors in which these quantities are ordered in the same order as
arcs are in A. Often f = 0, but in some applications it may be nonzero.
We will always have f ≤ k.
If X, Y are two subsets of N , not necessarily disjoint, we define

f(X, Y) =
�
(fij : over(i, j) ∈ A with i ∈ X, j ∈ Y), i.e., it is the

sum of fij over arcs (i, j) in the set (X, Y) defined earlier. The symbols
f(X, Y), k(X, Y) carry similar meanings. When X is a singleton set
containing only one node, i say, we denote f(X, Y), f(X, Y), k(X,
Y) by f(i, Y), f(i, Y), and k(i, Y) respectively.

1.2.2: Network Objects 25

As an example, for the network in Figure 1.6, f({P1, S1, S2}, {S1,P3,
W2}) = fP1W2 + fS1P3 + fS2P3 . In this notation it can be verified that
f(N ,N) is the sum of the flow amounts on all the arcs in G; and
f(i,N), f(N , i) are the sums of the flow amounts on arcs in the forward
star, reverse star of i respectively. And if X1,X2 is a partition of X
(i.e., X1 ∪X2 = X, X1∩X2 = ∅), and Y1,Y2 is a partition of Y, then
f(X, Y) = f(X, Y1) + f(X, Y2) = f(X1,Y) + f(X2,Y) = f(X1,Y1)
+ f(X1,Y2) + f(X2,Y1) + f(X2,Y2).

In many single commodity flow models, two special nodes, one
called the source node (which we denote by s̆), and another called the
sink node (which we denote by t̆) are specified, and the commodity is
required to be shipped from s̆ to t̆ in G. All the other points are called
intermediate points or transit nodes in these models.

In some models, a unit cost coefficient cij, the cost per unit flow
on arc (i, j), is given for each arc, c = (cij) is the vector of these cost
coefficients.

With all this data, the network itself is denoted by the symbol G
= (N ,A, f, k, c, s̆, t̆). In some models there may be even more data
elements, in others less, then the network is denoted by a corresponding
symbol consisting of all the data elements in it.

Now consider the case where the network G = (N ,A) is undirected.
The edge (i; j) can be treated as the pair of arcs (i, j), (j, i) as in Figure
1.10 (a). In single commodity flow models, a flow of 10 units in the
direction i to j and 6 units in the direction j to i as in Figure 1.10 (b), is
equivalent to a net flow of 4 units from i to j as in Figure 1.10 (c) (this
argument is not valid if there are two are more distinct commodities
and the flows from i to j and j to i are of different commodities). So,
in single commodity flow models we can assume that each edge in the
network will only be used in one of the two possible directions. We
assume that lower bounds for flows along all the edges are 0, and that
the capacity restriction applies in the direction in which it is used.
Under this assumption, each edge in the network can be replaced by
a pair of arcs as in Figure 1.10 (a) with the same data holding for
both arcs in the pair. Hence, in the study of single commodity flow
problems, we assume without any loss of generality that the network
is a directed network.

26 Ch.1. Definitions and Formulations

i

j

i

j

Flow

= 10 6

i

j

Flow

= 4 0

i

j

(a) (b) (c)

Figure 1.10:

In network models, nodes usually represent processing centers, ware-
houses etc. In some of these models node capacities may be specified.
The node capacity of a node represents the maximum amount of mate-
rial that can either enter or leave the node. It represents the maximum
amount of flow that the node can process per unit time. As an illus-
tration, the network model for the chair making company problem in
Section 1.1 had node capacities specified. In Section 2.1 (Chapter 2),
we show how to transform this model so as to modify node capacities
into arc capacities.

Cuts, Cutsets

Let G = (N ,A) be a connected network. A cut in G is a subset
of lines, the deletion of all of which disconnects the network. First
consider the case where G is undirected. Cuts in undirected networks
are commonly used in the graph-theoretic study of electrical networks.
Let X ⊂ N , X̄ = N\X where X, X̄ are both nonempty. This partition
of N generates the cut (X; X̄) which is the set of all edges with one
node inX and the other in X̄. (X; X̄) is a disconnecting set because
it has the path blocking property (after deleting all the edges in
this set there exists no path in the remaining network from any node
in X to any node in X̄). The cut vector of this cut is its 0-1 incidence

vector over the set of edges A. For example, in the network in Figure
1.11 the cut ({ 1, 2, 3 }; { 4, 5, 6 }) = { e3, e4, e6, e7 }, and hence its
cut vector is (0,0,1,1,0,1,1,0,0,0) when the edges are arranged in the

1.2.2: Network Objects 27

e1

e2

e
3

e4

e
5

e
6

e7

e8

e
9

e
10

1

2

3

4

5

6

Figure 1.11:

order e1 to e10. A cutset in G is a minimal set of edges whose removal
disconnects G (i.e., it is a cut satisfying the property that no proper
subset of it is a cut). Equivalently, a cutset in the connected undirected
network G, is a minimal set of edges whose removal disconnects G into
exactly two connected components. As an example, in Figure 1.11 the
cut ({ 1, 2, 3 }; { 4, 5, 6 }) is a cutset. But the cut ({ 1, 6 }; { 2, 3, 4,
5}) is not a cutset.

1 2 3

4 5

6

7 8

Figure 1.12:

Now consider the case where the connected network G is directed.
Let G = (N ,A, f, k). Let X, X̄ be a partition of N with both the
sets nonempty. This partition generates a cut denoted by [X, X̄] it
consists of (X, X̄), called the set of forward arcs of this cut, and
(X̄, X) called the set of reverse arcs of this cut. Notice that the
order in which the sets X, X̄ are recorded in [X, X̄] is important,
switching them exchanges the forward and reverse arc sets in the cut.

28 Ch.1. Definitions and Formulations

In the network remaining after all the forward arcs of the cut [X, X̄]
are deleted, there exists no chain from any node in X to any node in X̄,
and if both forward and reverse arcs are deleted there exists no path
from any node in X to any node in X̄. Thus in directed networks while
a cut has the path blocking property, the set of forward arcs of a cut
by itself has the chain blocking property. In network algorithms
the concept of a cut plays a role dual to that of a path.

In the single commodity maximum value flow problem on the di-
rected connected network G = (N ,A, f, k, s̆, t̆), special cuts called cuts
separating the source s̆ and the sink t̆ play a significant role. These
are cuts [X, X̄] satisfying the property s̆ ∈ X and t̆ ∈ X̄. So deletion of
all the forward arcs of a cut separating s̆ and t̆ destroys all chains from
s̆ to t̆ even though there may be a path connecting them consisting
of reverse arcs, thus no flow is possible from s̆ to t̆ in the remaining
network.

The capacity of the cut [X, X̄] in G = (N ,A, f, k) is defined to be
k(X, X̄)− f(X̄,X).

Here again, a cut [X, X̄] is called a cutset if it is a minimal cut (i.e.,
if no proper subset of it is a cut). As an example, consider the single
commodity flow network in Figure 1.12. The cut [{ 1, 2, 7 }, { 3, 4, 5,
6, 8 }] has (2, 3), (2, 6), (7, 5), (7, 8) as forward arcs, and (3, 7), (4,
2) as reverse arcs. It is not a cutset since the cut [{ 1, 2, 3, 7, 4, 5 }, {
6, 8 }] with no reverse arcs and only (2, 6), (7, 8) as forward arcs is a
proper subset of it.

Forests and Trees

A forest in a network G is a partial subnetwork that contains no
cycles. In Figure 1.1 the dashed partial subnetwork, which is redrawn in
Figure 1.3(b), is a forest. A tree in G is a connected partial subnetwork
that contains no cycles. Each connected component of a forest is a tree.
The forest in Figure 1.3(b) contains two trees. A spanning tree in
a network is a subnetwork that is a tree. Hence a spanning tree in G
= (N ,A) is a subnetwork (N , Â) which is connected and contains no
cycles. In Figure 1.1 the subnetwork consisting of the thick lines is a
spanning tree.

1.2.2: Network Objects 29

A single isolated node by itself constitutes a tree, which we call
the trivial tree. It is the only tree which has no lines. Unless it is
mentioned otherwise, in the sequel the word tree refers to a nontrivial
tree.
A node in a treedd is called a terminal node, end node, pendant

node, or leaf node if its degree indd is 1 (i.e., if it is incident to exactly
one line in dd). For example, in the tree consisting of the thick lines
in Figure 1.1, 1 is a terminal node, but 2 is not. In the tree in Figure
1.14 nodes 1, 2, 3, 4, 8, 10 are the terminal nodes. The terminal nodes
of a tree are also called its leaves. An arc or edge in the tree incident
at a leaf node is called a leaf arc or leaf edge of the tree.

Exercises

1.2 Prove that every nontrivial tree has at least two terminal nodes.

1.3 Prove that if a line e1 is deleted from a tree dd, what is left is a
forest. Also, if e1 is a line incident to a terminal node i of dd, then
what is left after deleting e1 from dd is another tree and the trivial tree
containing only node i.

1.4 Let G be a connected network with n nodes. Prove that every
spanning tree in G contains n− 1 lines (Hint: use induction on n and
the results in previous exercises).

1.5 Let G be a network with n nodes, and dd a subnetwork of G
containing n−1 lines and no cycles. Prove that dd must be a spanning
tree in G. (You have to prove that dd is connected. Prove that any
subnetwork like dd must have a point whose degree in dd is one. Use
induction.)

1.6 Prove that a connected network in which the number of lines is
equal to the number of nodes −1 must be a tree.
1.7 If {e1, . . . , er} is a set of r lines containing no cycles in a connected
network, prove that there is at least one spanning tree containing all
of these lines.

30 Ch.1. Definitions and Formulations

1.8 Prove that there exists a unique simple path between every pair
of distinct nodes in a tree.

1.9 Prove that the number of lines is one half of the sum of the degrees
of the points in a network.

1.10 Prove that the number of odd degree nodes in a network must
be an even number.

1.11 In a network in which no point has a degree greater than 2,
prove that the number of nodes of degree one is an even number.

1.12 Prove that every chain from the source to the sink must contain
at least one forward arc of any cut separating them.

1.13 For any nonempty proper subset of nodesX ⊂ N in a connected
undirected network G = (N ,A), define AX to be the set of edges in A
with both their nodes from X. Let X̄ be the complement of X.

(i) Prove that (X; X̄) is a cutset of G iff (X, AX) and (X̄,AX̄) are
both connected networks.

(ii) If S is a cutset of G, and V1,V2 are the node sets of the two con-
nected components of (N ,A\S), then show that S = (V1;V2).

(iii) Prove that a cutset of G contains at least one in-tree edge of every
spanning tree in G. Further, show that a subset of edges S is a
cutset in G iff it is a minimal set of edges containing at least one
in-tree edge of every spanning tree in G.

(iv) Prove that a cycle and a cutset of G have an even number of
common edges.

Let G = (N ,A) be a connected network with |N | = n, |A| = m. A
subset of lines A⊂ A is said to be a cotree in G iff its complement
A\A is the set of lines in a spanning tree for G. The word “cotree” is

1.2.2: Network Objects 31

an abbreviation for complement of a spanning tree. So, for A to
be a cotree in G, a necessary condition is that |A| = m− n+ 1.
When considering a spanning tree dd in a network G, a line in G is

said to be an in-tree arc or in-tree edge if it lies in dd; otherwise it
is said to be an out-of-tree arc (edge). The set of out-of-tree lines
defines the cotree corresponding to dd.
Let i, j be the nodes on an out-of-tree line e in a spanning tree dd.

By Exercise 1.8, there exists a unique simple path P indd between i and
j. Hence, when e is included in dd a unique simple cycle containing
e is created (it consists of e and the path P), this is known as the
fundamental cycle of e wrt dd. As an example, in the spanning tree
consisting of the thick lines in Figure 1.1, (6, 5) is an out-of-tree arc.
The fundamental cycle associated with it is 6, (6, 5), 5, (4, 5), 4, (4, 2),
2, (2, 7), 7, (6, 7), 6. All the arcs on this cycle are in-tree arcs except
(6, 5).

By replacing an in-tree arc in the fundamental cycle associated with
the out-of-tree arc (i, j), by (i, j), a new spanning tree is obtained. As
we will see later, every basis for a single commodity pure network flow
problem in a connected directed network corresponds to a spanning
tree. And when this problem is solved by the simplex algorithm, every
pivot step is exactly the operation of obtaining a new spanning tree by
adding an out-of-tree arc and dropping an in-tree arc in its fundamental
cycle.

Trees are stored using node labels. These tree labels make it
possible to store in the computer all the information necessary to ma-
nipulate a tree. Their use has led to enormous improvements in the
efficiency of computer implementations of network algorithms. Some of
the node labels are: predecessor index (P), successor index (S), el-
der brother index (EB), younger brother index (YB),and thread
label (TH). Besides these, the distance of the node, the number of suc-
cessors of the node, and others are sometimes used in network codes.
The most commonly used of these labels are defined below. Each label
used in the data structure requires an array of length n = |N |, and it
imposes the work of updating this label whenever the tree changes in
the algorithm.

We will first discuss tree labels for storing a spanning tree dd in a

32 Ch.1. Definitions and Formulations

connected directed network G = (N ,A) with n = |N |. Modifications
to be made if G is undirected are mentioned later. Select any node
and designate it as the root node. Once the root node is selected, the
tree is called a rooted tree. A rooted tree is a tree with one of its
nodes identified as the root. The labels are generated by the following
procedure while drawing the tree with the root node at the top and the
other nodes below it level by level. In this procedure, nodes may be in
three possible states: unlabeled, labeled and unscanned, or labeled and
scanned. The present sets of unlabeled, labeled and unscanned nodes
are denoted by Y, X respectively.

Initialization Make the P, YB, EB indices of the root node all ∅,
and X = {root node}, Y = set of all non-root nodes.

Step 1 Select a node to be scanned Terminate if X = ∅. Oth-
erwise, select a node from X to scan.

Step 2 Scanning a node Let i be the node to be scanned, delete
it from X. Find J = {j : j ∈ Y and j is joined to i by an in-tree
arc }. Nodes in J are the sons or children or immediate
successors of i, and i is their parent or immediate prede-
cessor.

If J = ∅, i has no children, define its successor index S(i) = ∅.
If J W= ∅, arrange the nodes in J in some order, say j1, . . . , jr.
Then j1 is the eldest child of i. jp is an elder brother of jq (and
jq is an younger brother of jp) if p < q. The successor index of i,
S(i) is defined to be −j1[+j1] if the in-tree arc joining i and j1 is
(i, j1)[(j1, i)]. For each u = 1 to r, define the predecessor index
of ju, P(ju), to be +i[−i] if the in-tree arc joining i and ju is
(i, ju)[(ju, i)]. For each u = 1 to r, define the elder brother index,
EB(ju) to be ∅ if u = 1, ju−1 if u > 1 and the younger brother
index YB(ju) to be ∅ if u = r, ju+1 if u ≤ r − 1. Nodes j1, . . . , jr
are now labeled and unscanned; transfer them from Y to X. Go
to Step 1.

Thus, the elder brother index of any node is the youngest among its
elder brothers, and its younger brother index is the eldest among its

1.2.2: Network Objects 33

younger brothers, when these brothers exist. Figure 1.13 explains our
convention for the signs of the predecessor and successor indices. They
indicate the orientation of the in-tree arc joining a node and its parent.

i iS (i) = - j S (i) = + j

P () = + ij P () = - ijj j

Figure 1.13: Signs of indices when i is parent of j and the in-tree arc
joining them is (i, j) (on left), or (j, i) (on right). The successor index
of i, S(i) is ±j only if j is the eldest child of i.

All nonroot terminal nodes have no successor. Conversely, if S(i) =
∅, i must be a nonroot terminal node.
The ± signs on the successor and predecessor indices are used only

when dealing with a directed network. For a spanning tree in an undi-
rected network, all the indices are defined in exactly the same way with
the exception that the successor and predecessor indices carry no signs.

EXAMPLE 1.2

For the purpose of this illustration, only the in-tree arcs are given
in Figure 1.14; all the out-of-tree arcs and the remaining data on the
network is omitted. We assume that nodes which are brothers of each
other are arranged from left to right in Figure 1.14 for determining
the elder, younger brother relationships. This leads to the predecessor,
successor, and brother labels in the table given below, for the spanning
tree in Figure 1.14.

34 Ch.1. Definitions and Formulations

1 2 3 4

5 6

78910

11 12

13

Root

Figure 1.14: A spanning tree

Predecessor, successor, brother labels for tree in Fig. 1.14
Node i 1 2 3 4 5 6 7 8 9 10 11 12 13
P(i) +5 -5 -6 -6 +9 -7 +12 +11 -11 +11 +13 -13 ∅
S(i) ∅ ∅ ∅ ∅ -1 +3 +6 ∅ -5 ∅ -10 -7 -11
YB(i) 2 ∅ 4 ∅ ∅ ∅ ∅ ∅ 8 9 12 ∅ ∅
EB(i) ∅ 1 ∅ 3 ∅ ∅ ∅ 9 10 ∅ ∅ 11 ∅

13 is the root node

The unique path in a rooted tree dd from a node j to the root node
is called the predecessor path of j in dd. It can be found by a
backward trace of the predecessor indices beginning with j recursively.
If P(j) = +i [−i], (i, j) [(j, i)] is the first arc in this path. Now look up
the node P(i) and continue in the same manner until the root node is
reached. As an example, the predecessor path of node 1 in the spanning
tree in Figure 1.14 is 1, (5, 1), 5, (9, 5), 9, (9, 11), 11, (13, 11), 13.

A node i is said to be an ancestor or predecessor of another node
j in the rooted tree dd if i appears on the predecessor path of j in dd,
in this case j is a descendent or successor of i.

1.2.2: Network Objects 35

The family of a node j in the rooted tree dd is the set consisting
of j and all the descendents of j, it is denoted by the symbol H(dd, j).
The level of a node in a rooted tree is defined to be the number of

lines on its predecessor path. Thus, the root node is the only level 0
node in a rooted tree. For any r, given the set of level r nodes, level
r + 1 is empty if none of the level r nodes have a successor, otherwise
level r+1 consists of the set all immediate successors of nodes in level
r.

Let (i, j) be an in-tree arc in a rooted tree dd. Then, one of the
nodes among i, j must be a parent and the other its child. If i is the
parent and j the child (i.e., P(j) = +i) this arc is said to be directed
away from the root node. On the other hand, if j is the parent and
i the child, this arc is said to be directed towards the root node.
See Figure 1.15.

For each in-tree line e in a rooted tree dd, son(e), parent(e) refer
to the son, parent nodes on it. Thus, if dd is a directed network and the
in-tree arc (i, j) is directed away from [towards the] root node, son(i, j)
= j, parent(i, j) = i [son(i, j) = i, parent(i, j) = j].

The set of younger brothers of a node j is empty if YB(j) = ∅,
or is the union of {YB(j)} and the set of younger brothers of YB(j)
otherwise. Using this recursively, the set of younger brothers of any
node can be found efficiently. In a similar manner, the set of elder
brothers of any node can be found recursively using only the EB indices.
The set of brothers of a node is the union of its sets of younger and
elder brothers.

The set of immediate successors of a node j is empty if S(j) = ∅, or
is the union of {S(j)} and the set of younger brothers of S(j) otherwise.
The set of descendents of a node j is empty if S(j) = ∅. Otherwise

it is the union of the set of immediate successors of j and the sets of
descendents of each of the immediate successors of j. The thread label
defined later, is designed to obtain this set very efficiently.

Let i, j be two nonroot nodes in a rooted tree dd. The first common
node on the predecessor paths of i and j is known as the apex on the
simple path between i and j in dd. The simple path between i and j
in dd is obtained by putting the predecessor paths of i and j together
and eliminating the common lines on them. As an example, the simple

36 Ch.1. Definitions and Formulations

i

j

j

i

Root

node.

If i is the predecessor of

j on in-tree arc (i , j) , this

arc is directed away from

the root node.

If j is the predecessor of

i on in-tree arc (i , j), this

arc is directed towards the

root node.

Figure 1.15: If son(i, j) = j as on the left [son(i, j) = i as on the right]
arc (i, j) is directed away from [towards the] root node.

path between 1 and 10 in the spanning tree in Figure 1.14 is 1, (5, 1),
5, (9, 5), 9, (9, 11), 11, (11, 10), 10. Node 11 is the apex on this path.

If dd is a spanning tree in G, and (i, j) is an out-of-tree arc, the
fundamental cycle of (i, j) wrt dd consists of arc (i, j) and the simple
path in dd from j to i. As an example, the fundamental cycle of arc
(10, 1) (not in the figure) wrt the spanning tree in Figure 1.14 is 10,
(10, 1), 1, (5, 1), 5, (9, 5), 9, (9, 11), 11, (11, 10), 10.

Letdd be a rooted spanning tree in a connected network G = (N ,A)
with |N | = n. Let e be an in-tree line. If G is undirected let X̄ =H(dd,
son(e)). If G is directed let X̄ be the set among H(dd, son(e)) and its
complement, which contains head(e). Let X = N\X̄. Let GX,GX̄
denote the partial networks of G, and ddX,ddX̄ the partial networks of
dd, induced by the sets of nodesX,X̄. ddX,ddX̄ are themselves spanning
trees in GX,GX̄; one or both of them may be trivial trees. So, both
GX,GX̄ are connected networks.X, X̄ is a partition of the node set in
G, this partition generates a cut in G. If G is undirected and (X; X̄) is

1.2.2: Network Objects 37

the cut, it is a cutset called the fundamental cutset corresponding
to the in-tree edgee in dd. If G is directed, the cut is [X, X̄]; it
is also a cutset and is called the fundamental cutset corresponding to
the in-tree arc e in dd. The only in-tree line in this fundamental cutset
is e. Each in-tree line leads to a different fundamental cutset; together
they form the set of fundamental cutsets wrt dd.
Thus, given a spanning tree dd in a network G, each line in dd defines

a fundamental cutset in G, and each line in the corresponding cotree
defines a fundamental cycle.
We now present some of the other tree labels used in network codes.

One is the number of successors denoted by NS(i) for node i.
Another is the distance or depth label which is the level of the node
in the tree.
Another commonly used label is the thread label. Let N = {1,

. . . , n} be the set of nodes in a rooted tree dd. A thread label for
dd is a one-to-one correspondence from N onto N satisfying certain
properties. Given such a correspondence ti, i ∈ N , define other maps
tri , i ∈ N by recursion: t1(i) = ti, for each i ∈ N ; tr(i) = tr−1(t1(i)),
for each i ∈ N , r ≥ 2. Then the correspondence ti, i ∈ N is said to
be a thread label for dd if for each i such that NS(i) W= 0 the set
{tr(i) : r = 1, . . . , NS(i) } is the set of all descendents of i. Many
types of thread labels satisfying these conditions can be defined, but
the most commonly used one is defined by:

ti =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

eldest son, i.e., S(i), if S(i) W= ∅

YB(i), if S(i) = ∅ and YB(i) W= ∅

YB index of first ancestor with a YB, if i has no son or YB

root node, otherwise

Given the thread labels (ti), the set of all descendents of node i
is the largest set of the form {ti, t2(i), . . . , tk(i)} such that the parent
of tk(i) is one of the nodes i, ti, . . . , t

k−1(i). So, we can find the set
of all descendents of any node i efficiently by recursive application of
the maps tr(i) for all r up to NS(i). As this is a commonly used

38 Ch.1. Definitions and Formulations

operation in network algorithms, maintaining the thread label can be
very advantageous. Also, the result in Exercise 1.19 states that the
number of ∅ entries in S(.) and YB(.) indices together is n + 1. This
indicates that the information in S(.) and YB(.) can be stored more
economically in the single thread index.
Given the thread label ti, i ∈ N , the preorder distance label ,

PD(i), and the last successor label , LS(i), corresponding to it, can
be defined for each i ∈ N as below.

PD(i) =

l
1, if i is the root
r + 1, if i W= root, where r is s.t. i = tr(root)

LS(i) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
i, if i has no successor

tr(i) otherwise, for r s.t. tr(i) is a descendent of i,
but tr+1(i) is not.

For the rooted tree in Figure 1.14, we provide these labels in the
following table. Figure 1.16 illustrates the thread labels for a rooted
tree with pointers.

NS(i), distance (di), thread index (ti), PD(i), and LS(i) node labels
for the rooted tree in Figure 1.18

Node i 1 2 3 4 5 6 7 8 9 10 11 12 13
NS(i) 0 0 0 0 2 2 3 0 3 0 6 4 12
di 4 4 4 4 3 3 2 2 2 2 1 1 0
ti 2 8 4 13 1 3 6 12 5 9 10 7 11

PD(i) 6 7 12 13 5 11 10 8 4 3 2 9 1
LS(i) 1 2 3 4 2 4 4 8 2 10 8 4 4

Thread labels facilitate the forward traversal of the tree, an opera-
tion performed many times in simplex based network codes. It can be
viewed as a connecting link or thread which passes through each node
exactly once in a top to bottom, left to right sequence starting from
the root node.

1.2.2: Network Objects 39

1

2

3

4

67

8

95 10

Root

Figure 1.16: The thread labels. The tree consists of solid lines. The
dotted arc (i, j) indicates that the thread label of i is j.

These tree labels are mainly used in simplex based algorithms for
network flow problems discussed in Chapter 5. Each basic vector for
the problem corresponds to a spanning tree, and a pivot step in the
algorithm consists of changing the spanning tree by adding an out-of-
tree arc to replace an in-tree arc in its fundamental cycle. The tree
changes by an arc in each step, and the tree labels are updated by very
efficient updating schemes. While the predecessor indices are enough
to trace the predecessor paths, the other indices make it possible for
updating the tree labels and the node price vector efficiently. Also, the
updating of the thread label can be carried out very efficiently. That’s
why many codes for the network simplex method use the thread label.

An outtree or a branching is a directed network which is a rooted
tree such that every arc on it is directed away from the root node. It
has exactly one arc incident into every node other than the root, which
has no arcs incident into it. See Figure 1.17. Similarly, an intree or
arborescence is a directed network which is a rooted tree such that
every arc in it is directed towards the root node (i.e., the predecessor
path of every node is a chain from that node to the root). It has exactly

40 Ch.1. Definitions and Formulations

one arc incident out of every node other than the root, which has no
arcs incident out of it.

2 3

4 5 6 7 8

1

Figure 1.17: An outtree or branching with node 1 as the root.

Tree Growth Subroutines

Several of the algorithms for maximum value flow problems (Chap-
ter 2), shortest chain problems (Chapter 4), minimum cost spanning
tree problems in undirected networks (Chapter 9) and blossom algo-
rithms for matching/edge covering problems (Chapter 10) use a scheme
that begins by selecting a node in the network, say p, and labeling it
with ∅. At this initial stage, p is the only labeled node, all the other
nodes are unlabeled.

General step A labeled node, say i, and one of its adjacent unla-
beled nodes, say j, are selected by some rule (this rule is problem
dependent, the line joining i, j has to satisfy certain properties
for the pair i, j to be selected) and j is labeled with i as its pre-
decessor index. The line joining i, j is known as the line used
in labeling node j. Now the scheme either terminates or moves
on to the next step.

At any stage of this scheme, let X denote the set of labeled nodes
and let A(X) denote the set of all lines used so far in labeling the nodes
in X. We have the following theorem.

THEOREM 1.1 At every stage of this scheme, the partial subnet-
work (X, A(X)) will be a tree spanning the nodes in the set X. It
is a rooted tree with its root at node p.

1.2.2: Network Objects 41

Proof Initially, the partial subnetwork (X, A(X)) is ({ p }, ∅), the
trivial tree consisting of node p. In each step, one new node is added
to the set X, if it is j, its immediate predecessor is an adjacent node
which is already in X, and the line joining it to j is added as a new
arc to the set A(X). This implies that (X, A(X)) is always connected
and that |A(X)| = |X|− 1. So, by the result in Exercise 1.6, (X,
A(X)) is always a tree spanning the nodes in X. Also, every node in
X has a unique immediate predecessor, except the node p which has
no predecessor, so, these predecessor labels make (X, A(X)) a rooted
tree with node p as the root node.

So, this scheme is actually a tree growth subroutine, growing a
rooted tree with its root node at p. Each step of the scheme is known
as a tree growth step. It adds one new node and a line connecting
it to an earlier in-tree node, to the tree. At any stage of this scheme,
the in-tree nodes are the labelled nodes, and the in-tree lines are the
lines joining each in-tree node and its immediate predecessor. In these
schemes, sometimes several trees may be grown simultaneously in the
network. The predecessor indices serve all the functions needed in these
schemes, and no successor or brother indices are maintained.

Methods for Selecting a Spanning Tree in a Network

Here we discuss two algorithms for selecting a spanning tree in
a connected network G = (N ,A), to initiate algorithms such as the
primal network simplex method discussed in Section 5.5.

ALGORITHM 1 : Initialization Here nodes may be in 3 possible
states: unlabeled, labeled and unscanned, or labeled and scanned.
List always refers to the set of labeled and unscanned nodes.
Select the root node, say n, and label it with ∅, and put it in the
list. All the other nodes are unlabeled initially.

General Step In a general step, select a node, say i, from the list to
scan. Delete i from the list. Find all unlabeled nodes j such that
either (i, j), or (j, i), or edge (i; j) is in A. For each such node j
include one of the lines joining it to i as an in-tree line. All these
nodes are children of i, give predecessor, EB, YB indices to them

42 Ch.1. Definitions and Formulations

and include them in the list, and give the successor index to i as
discussed above. If there are no unlabeled nodes left, we have a
spanning tree, terminate. If there are some unlabeled nodes but
the list is empty, G is not connected, terminate. Otherwise go to
the next stage.

In this algorithm, if nodes in the list are maintained in the order
in which they are labeled and in each stage the node for scanning is
selected by the FIFO rule (First In First Out, or first labeled first
scanned rule), then it is called the breadth-first search method,
and the spanning tree generated a breadth-first search spanning
tree in G.

ALGORITHM 2 : Initialization This algorithm introduces one
node and line into the tree per step. A denotes the set of lines in
A joining an in-tree and an out-of-tree node at the present stage.
This set is maintained in the algorithm. If at some stage there
are out-of-tree nodes, but A = ∅, G is not connected and the
algorithm terminates. Select the root node, say n and declare it
as an in-tree node. Make A = set of all lines incident at n.

General Step In a general step, select a line from A. Introduce this
line and the unlabeled node on it, say j, into the tree. If there
are no out-of-tree nodes, we have a spanning tree, terminate.
Otherwise, delete from A all lines incident at j that are currently
in it. Include in A all lines joining j to an out-of-tree node. Go
to the next step.

In this algorithm, if lines in the set A are maintained in the order
in which they are introduced into this set, and in each step the line
selected from it is chosen by the LIFO rule (Last In First Out rule,
i.e., the line chosen is always the one put into A most recently), then
the algorithm is called the depth-first search method, or DFS, and
the spanning tree generated a depth-first search, or DFS spanning
tree in G. A numbering of the nodes in the order of becoming in-tree
nodes is called a DFS numbering.

Exercises

1.2.2: Network Objects 43

1.14 Let dd1 denote a breadth-first search spanning tree in G with
root n. For each node i W= n, prove that the predecessor path of i in
dd1 is a shortest path between i and n (i.e., it contains the smallest
number of lines). Also prove that there cannot be an out-of-tree arc
wrt dd1 which joins a node and one of its descendents.

1.15 Let dd2 be a DFS spanning tree in G with root node n. Prove
that every line in G connects two nodes, one of which is an ancestor of
the other. Also prove that if i, j are leaf nodes in dd2, then there is no
line joining i and j in G.

1.16 Prove that every connected network has at least one spanning
tree.

1.17 Let G be a connected network. Prove that every cotree A in G
is a cutset-free subset of A. And for any cycle-free subset B ⊂ A, prove
that there exists a spanning tree in G including it. For any cutset-free
subset A ⊂ A, prove that there exists a cotree in G including it.

1.18 Let G = (N ,A) be a connected undirected network and dd a
spanning tree in it.

(i) If e is an out-of-tree edge, prove that the fundamental cycle of e
consists of exactly those in-tree edges of dd whose fundamental
cutsets contain e.

(ii) Prove that the fundamental cutset of the in-tree edge e1 con-
sists of exactly those out-of-tree edges whose fundamental cycles
contain e1.

1.19 Let dd be a rooted tree with n nodes. Let n1, n2 be the number
of nodes in it for which the S(.), YB(.) indices are respectively ∅. Prove
that the number of nodes for which the EB(.) is ∅ is n2. Also prove
that n1 + n2 = n+ 1.

Bipartite Networks

44 Ch.1. Definitions and Formulations

A simple cycle is said to be an odd cycle (even cycle) if it contains
an odd (even) number of lines.
A network G = (N ,A) is said to be a bipartite network if N

can be partitioned into two nonempty subsets N1 and N2 such that
every line in A joins a point in N1 with a point in N2 (i.e., there are
no lines in A joining a pair of points both of which are either in N1 or
in N2). The partition (N1, N2) is then called a bipartition of G, and
G itself denoted by (N1, N2 ; A). See Figure 1.18. As it is drawn, the
bipartiteness of the network in Figure 1.6 may not be apparent, but
taking the partition N1 = {S1, S2,W1,W2,W3}, N2 = {P1, P2, P3} it
can easily be verified to be so.

7

6

5

4

3

2

1

Figure 1.18: A bipartite network. Here ({1,2,3}, {4,5,6,7}) is the bi-
partition.

THEOREM 1.2 A network G = (N ,A) is bipartite iff it contains no
odd cycles.

Proof Clearly a network is bipartite iff each of its connected
components is. Without any loss of generality we assume that G is
connected, because otherwise the proof can be repeated for each con-
nected component separately.
Suppose G is bipartite, and (N1, N2) is a bipartition for it. While

traversing any cycle in G we move alternately to points in the sets N1,
N2, and hence every cycle in G must be an even cycle.
Now suppose G is a network which contains no odd cycles. Let 1 be

an arbitrary point in N . Define N1 = {i : either i = 1, or there exists

1.2.2: Network Objects 45

a simple path from 1 to i with an even number of lines}, N2 = N\N1.
Suppose two points j, p ∈ N1 are joined by a line (j, p) ∈ A. By
definition of N1, there are simple paths P1 between 1 and j, and P2
between 1 and p, both with an even number of lines. Let r = number
of common lines on P1, P2; r1 = number of lines on P1 not on P2; and
r2 = number of lines on P2 not on P1. Since r + r1, r + r2 are both
even, r1+ r2 is also even and it is > 0 since j W= p. So, combining (j, p)
with the lines on P1, P2 and then eliminating all the common lines on
P1 and P2 leaves a cycle with r1+ r2+1 = odd number of lines. Since
P1 and P2 are simple paths, this cycle decomposes into a collection of
line-disjoint simple cycles, at least one of which must be an odd cycle,
contradicting the hypothesis.

Suppose two points j, p in N2 are joined by a line (j, p) ∈ A. Since
G is connected, there are simple paths in G between 1 and j, or p,
and by the definition of N1 all these paths must traverse through an
odd number of lines. Either there exists a simple path between 1 and
j not containing p, or there exists a simple path between 1 and p not
containing j; suppose the first possibility holds. Take any simple path
from 1 to j not passing through p, and add the line (j, p) at its end.
This leads to a simple path from 1 to p traversing through an even
number of lines, contradicting p ∈ N2. Hence there cannot be any line
in G joining a pair of points in N2. Hence (N1, N2) is a bipartition for
G, and it is bipartite.

The following algorithm can be used to check whether a network
G = (N ,A) is bipartite and generate a bipartition for it, if it is. We
assume that G is connected, otherwise apply the algorithm on each
connected component of G and put the results together. X denotes
the set of included but unscanned nodes, and Y denotes the set of
unincluded nodes at any stage.

Step 1 Initialization Select a node, say 1 ∈ N . Make N1 = { 1 },
N2 = ∅, X = { 1 }, Y = N\ { 1 }.

Step 2 Select a node to scan If X = ∅, go to Step 4. Otherwise,
select a node from X to scan.

46 Ch.1. Definitions and Formulations

Step 3 Scanning Let i be the node to be scanned, delete it from
X. Let N I denote the set among the pair N1, N2 containing node
i, and N II denote the other set in this pair. Let J be the set of
all nodes in Y which are adjacent to i. If J W= ∅, check whether
there is a line in A joining a node in J with a node in N II, if so go
to Step 5. Otherwise, delete all nodes in J from Y and include
them in both X and N II, and return to Step 2.

Step 4 Termination The subsets N1, N2 at this stage form a
bipartition for G. Terminate.

Step 5 Proof of non-bipartiteness G is not bipartite, because
two nodes which should belong to the same set in the partition
are adjacent. Terminate.

Acyclic Networks

A directed network is said to be an acyclic network if it contains
no circuits. It may contain cycles, but not circuits. See Figure 1.19.

1

2

3

4

5 6

An acyclic network with

acyclic numbering of nodes.

1

2

3 4

5

6

A non-acyclic network. It has the

circuit with arcs (2, 3), (3, 4), (4, 2).

Figure 1.19:

1.2.2: Network Objects 47

THEOREM 1.3 A directed network G = (N ,A) is acyclic iff its
nodes can be numbered so that the number of tail(e) < the number of
head(e) for each e ∈ A.
Proof If G is acyclic, there must be at least one point i in it whose

before set B(i) = ∅ (otherwise, by tracing the arcs backwards one can
construct a circuit). Suppose there are r1 points like this, number them
1, 2, . . . , r1 in any order, and delete them and all the arcs incident at
them from G. Search the resulting network for points whose before set
in it is empty, and number them starting with r1 + 1. Repetition of
this process leads to the desired numbering.
If the nodes in G are numbered so that i < j for each (i, j) ∈ A,

clearly there cannot be any circuit in G; hence it is acyclic.

A numbering of the nodes in a directed network G in serial order so
that the number of tail(e) is < the number of head(e) for all arcs e is
called an acyclic numbering or topological ordering. The acyclic
numbering of the nodes in the network on the left in Figure 1.19 is
obtained by applying the procedure in the proof of Theorem 1.3.

Incidence Matrices

Let G be a directed network (N ,A) with n points and m arcs, and
no self-loops. Let E be the n×m matrix that has a row associated with
each point in G and a column associated with each arc in G, where the
column associated with (i, j) ∈ A has only two nonzero entries, a “1”
entry in the row associated with point i and a “−1” entry in the row
associated with point j. E, defined only for directed networks with no
self-loops, is known as the node-arc incidence matrix of G. As an
example, the node-arc incidence matrix for the network in Figure 1.20
is given below.

Arc → e1 e2 e3 e4 e5 e6 e7 e8 e9
Node 1 1 0 0 0 0 0 −1 1 1

2 −1 −1 0 0 0 1 0 0 0
3 0 1 1 0 −1 0 1 0 0
4 0 0 0 1 1 −1 0 0 −1
5 0 0 −1 −1 0 0 0 −1 0

48 Ch.1. Definitions and Formulations

e
1

e
9

e
5

e6
e 7

e 8

e
2

e
3

e 4

1

2 3

4

5

Figure 1.20:

Verify that the set of row vectors of a node-arc incidence matrix is
linearly dependent since their sum is 0. Also verify that the sum of
node-arc incidence vectors of arcs in a circuit is 0. Verify this for the
circuit in Figure 1.20 consisting of arcs e9, e5, e7. The general property
is stated in the following Exercise 1.22.

Exercises

1.20 Check whether the network in Figure 1.21 is bipartite.

1.21 Check whether the network in Figure 1.22 is acyclic. If so, pro-
vide an acyclic numbering of its nodes.

1.22 Let e1, . . . , er be the sequence of arcs in a cycle in a directed
network G with node-arc incidence matrix E. Orient this cycle some
way. Multiply the column vector of E associated with et by +1 if et is
a forward arc, or by −1 if it is a reverse arc of the cycle, and add over
t = 1 to r, show that this gives 0. Thus show that the set of column
vectors of E associated with arcs in a set containing a cycle form a
linearly dependent set for which there is a linear dependence relation
with all the coefficients 0, or ±1.

1.2.2: Network Objects 49

Figure 1.21:

1.23 Prove that the set of columns of the node-arc incidence matrix
E of a directed network, associated with the arcs in a set that contains
no cycles, must be linearly independent. (This set forms a forest. So,
there must be at least one terminal node. Use this repeatedly.)

1.24 Prove that the set of columns in E associated with arcs in a
spanning tree is linearly independent. (Use the fact that a tree has at
least one terminal node repeatedly.)

1.25 If E is the node-arc incidence matrix of a connected directed
network with n points, prove that its rank is n − 1. Also, prove that
any one of the row vectors of E could be deleted as a dependent row,
and the remaining matrix will be of full row rank.

1.26 If the directed network G has n points and consists of p con-
nected components, prove that its node-arc incidence matrix has rank
n− p.

A nonsingular square matrix D = (dij) is said to be an upper
triangular matrix if dij = 0 for all i > j. It is lower triangular
if DT is upper triangular, i.e., if dij = 0 for all j > i. A triangular

50 Ch.1. Definitions and Formulations

Figure 1.22:

matrix is a nonsingular square matrix that becomes a lower triangular
matrix after a permutation of its columns and/or rows. A square matrix
is triangular iff it satisfies the following properties.

1. The matrix has a row (or column) that contains a single nonzero
entry.

2. The submatrix obtained from the matrix by striking off the row
(or column) containing a single nonzero entry and the column
(row) in which that entry lies, also satisfies Property 1. The
same process can be repeated until all the rows and columns in
the matrix are struck off.

For example, the following matrix A can be verified to be triangular,
while B is not.

1.2.2: Network Objects 51

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 0
0 0 1 1 1 0
0 0 0 0 0 1
0 0 1 0 0 1
1 0 0 0 0 0
0 0 0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 1
0 0 1 1 0 0
0 0 0 0 1 1
1 0 0 0 1 0
0 0 1 0 0 0
0 1 0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
If D is a triangular matrix, the system of equations Dy = d can be

solved efficiently by back substitution. Identify the equation contain-
ing a single nonzero entry on the left hand side; solve that equation
for the value of the variable associated with the nonzero coefficient in
that equation; substitute the value of this variable in all the remaining
equations and continue in the same manner with the remaining system.
The same back substitution method can be applied to solve the system
of equations πD = c when D is triangular.

THEOREM 1.4 Every nonsingular square submatrix of E, the node-
arc incidence matrix of a directed network G, is triangular.

Proof Let D be a nonsingular square submatrix of order r of E.
Since every column vector of E contains only two nonzero entries, a +1
and a −1, the total number of nonzero entries in D is at most 2r. If it
is 2r, each column of D contains a +1 and a −1, and the sum of all the
rows of D is 0, contradicting its nonsingularity. So the total number
of nonzero entries in D is at most 2r − 1. Since D is nonsingular each
row of D must contain at least one nonzero entry. As D has r rows,
these facts imply that there must be at least one row of D with a single
nonzero entry, and that entry is either +1 or −1. The same argument
applies to the submatrix of D obtained by striking off a row containing
a nonzero entry, and the column of that entry. So D satisfies properties
1 and 2 mentioned above for triangularity, and hence is triangular.

COROLLARY 1.1 Let Ē be the matrix obtained by deleting any row
vector from E, the node-arc incidence matrix of a connected directed
network G with n nodes and m arcs. Ē of order (n − 1) × m is of
full row rank. Let B be a basis for Ē, and d = (d1, . . . , dn−1)T , c =

52 Ch.1. Definitions and Formulations

(c1, . . . , cn−1). Consider the system of equations, By = d. Since B is
triangular, and all the entries in it are 0, or ±1, when this system is
solved by the back substitution method discussed above, its solution will
be of the form y = (yj) with each yj =

�n−1
i=1 αidi, where all the αi are

0, or ±1. similarly, the solution to the system of equations, πB = c,
is of the form, π = (πi) with each πi =

�
βjcj, where all the βj are 0,

or ±1. Hence, if d, c are integer vectors, the solutions to these systems
are also integer vectors.

A real matrix A = (aij) is said to be totally unimodular if the
determinant of every square submatrix of it is either 0, or ±1. Since
each element aij can be looked at as the entry in a square submatrix
of A of order 1, if A is totally unimodular, all aij have to be 0, or ±1.
As examples, consider the following matrices:

A =

X
1 0
1 −1

~
, B =

X
1 1
1 −1

~
The determinant of A is −1, and clearly A is totally unimodular.

The determinant of B is −2, and so B is not totally unimodular.
THEOREM 1.5 TOTAL UNIMODULARITY PROPERTY The node-
arc incidence matrix E of a directed network is totally unimodular.

Proof We have shown in Theorem 1.4 that every nonsingular
square submatrix of E is triangular. This, combined with the fact that
all the entries in it are 0 or ±1, implies that the determinant of every
nonsingular square submatrix of E is ±1, proving the theorem.

We will now discuss a result relating total unimodularity to inte-
grality of extreme points of polyhedra, due to Hoffman and Kruskal
[1958].

THEOREM 1.6 Let A be an integer matrix of order m× n, and let
K(b) be the set of feasible solutions of

Ax ≤ b

x ≥ 0

The following three conditions are equivalent.

1.2.2: Network Objects 53

(i) A is totally unimodular.

(ii) For all integral b such that K(b) W= ∅, all the extreme points of
K(b) are integer.

(iii) Every nonsingular square submatrix of A has an integer inverse.

Proof The fact that (i) implies (ii) follows by applying Cramer’s
rule. The fact that (i) implies (iii) follows from the definitions.
Introduce slack variables and write down the system of constraints

defining K(b) as

Ax+ Is = b (1.11)

x, s ≥ 0

Let D be a square submatrix of A of order r which is nonsingular.
We will now show that (ii) implies that D−1 is an integer matrix. Af-
ter rearranging the variables and the constraints if necessary, we can
assume that D is the submatrix of A contained in rows 1 to r and
columns 1 to r. Let B denote the basis for (1.11) consisting of columns
A·1, . . . , A·r and I·r+1, . . . , I·m, and let the associated basic vector be
denoted by y. So, B has the form given below, where Im−r is the unit
matrix of order m− r, and hence B−1 has the form given.

B =

X
D 0
F Im−r

~
, B−1 =

X
D−1 0
−FD−1 Im−r

~

Let I denote the unit matrix of order m, and let i be an integer
between 1 to r. Select an integer column vector ξ ∈ IRm such that
ξ + B−1I·i ≥ 0. Take b to be B(ξ + B−1I·i) = Bξ + I·i, which is an
integer vector since Bξ, I·i are integer vectors. With this b vector, the
BFS of (1.11) corresponding to the basis B is

all nonbasic variables = 0, y = ξ +B−1I·i ≥ 0 (1.12)

Since this b vector is integer, by (ii) the y in (1.12) must be integer,
i.e., since ξ is an integer vector, B−1I·i must be integer, and hence

54 Ch.1. Definitions and Formulations

(D−1)·i must be integer. Since this is true for all i = 1 to r,D−1 must
be an integer matrix. That is, (ii) implies (iii).
We will now show that (iii) implies (i). Let D be any square nonsin-

gular submatrix of A. Since D−1 is integer by (iii), the determinant of
(D−1) is integer, and since this is 1/determinant(D), determinant(D)
must be ±1. Since this applies to all square nonsingular submatrices
of A,A must be totally unimodular. So, (iii) implies (i).
Hence (i), (ii), (iii) are equivalent.

As a generalization of total unimodularity, an integer matrix A of
order m × n and rank r is said to be unimodular if every one of
its square submatrices of order r has determinant 0, or ±1. There is
no condition on the determinants of A of order r − 1 or less. Clearly
every totally unimodular matrix is unimodular, but the converse may
not be true. As an example, the matrix given below is unimodular
but not totally. This is followed by a theorem relating unimodularity
to integrality of extreme points of a polyhedron defined by constraints
different from those in the previous theorem.⎛⎜⎝ 1 0 0 −1 0 0

2 1 0 −2 −1 0
2 2 1 −2 −2 −1

⎞⎟⎠
THEOREM 1.7 Let A be a given integer matrix of order m × n.
Consider the system

Ax = b, x ≥ 0 (1.13)

Without any loss of generality we assume that rank(A) is m. The
following statements are equivalent.

(i) A is unimodular

(ii) Whenever b is an integer vector, every BFS of (1.13) is an integer
vector.

(iii) Every basis for (1.13) has an integer inverse.

1.2.2: Network Objects 55

Proof The proof of this theorem is very similar to that of the
previous. We will first show that (ii) implies (iii). Let B be a basis for
(1.13) associated with the basic vector xB. Select an i between 1 to m,
and choose an integer column vector ξ ∈ IRm such that ξ+B−1I·i ≥ 0.
Take b in (1.13) to be B(ξ+B−1I·i) = Bξ+ I·i, which is integer. With
this integer b-vector, the BFS of (1.13) corresponding to the basis B
is xB = B

−1b = ξ + B−1I·i ≥ 0, and all nonbasic variables = 0. Since
ξ is an integer vector, by (ii), B−1I·i = (B−1)·i must be an integer
vector. Since this is true for all i, B−1 must be an integer matrix. So,
(ii) implies (iii).
To show that (iii) implies (i), let B be a basis for (1.13). Since

determinant(B−1) = 1/(determinant(B)), if B−1 is an integer matrix,
determinant(B−1) is integer, and hence determinant(B) is ±1. Since
this must hold for all bases for (1.13), (i) must hold.
The fact that (i) implies (ii) follows by using Cramer’s rule. Hence

(i), (ii), (iii) are equivalent.

Let G = (N ,A) be a connected directed network with n nodes,
and m arcs, and let dd be a spanning tree in G. Let e1, . . . , en−1 be
the arcs in dd, and en, en+1, . . . , em be the out-of-tree arcs. Orient each
fundamental cycle so that the out-of-tree arc on it is a forward arc. For
p = n to m and t = 1 to m define

λtp =

⎧⎪⎨⎪⎩
0 if et not on fundamental cycle of ep

+1 if et is a reverse arc on this cycle
−1 if et is a forward arc on this cycle

For each p = n to m, the row vector (λ1p, . . . ,λmp) is the incidence
vector of the fundamental cycle of the out-of-tree arc ep, and
the matrix L of order (m− n+ 1)×m consisting of these row vectors
is known as the fundamental cycle-arc incidence matrix of G wrt
dd. And the matrix λ = (λtp : t = 1 to n − 1, p = n to m) of order
(n−1)× (m−n+1) is known as the in-tree arc-fundamental cycle
incidence matrix of G wrt dd. The matrix λ is the transpose of the
submatrix of L consisting of its columns corresponding to in-tree arcs.
As an example, for the network in Figure 1.20 and the spanning tree

consisting of the thick arcs, the in-tree arc-fundamental cycle incidence

56 Ch.1. Definitions and Formulations

matrix is given below.

Fundamental cycle of
out-of-tree arc

e5 e6 e7 e8 e9
In-tree arc e1 0 0 −1 1 1

e2 0 −1 1 −1 −1
e3 −1 1 0 1 1
e4 1 −1 0 0 −1

For t = 1 tom let E·t be the column vector of the node-arc incidence
matrix E of G corresponding to the arc et. Then from the result in
Exercise 1.22 we have

E·p =
n−13
t=1

λtpE·t (1.14)

for p = n to m. Thus (λ1p, . . . ,λn−1,p) are the coefficients in the rep-
resentation of the node-arc incidence vector of out-of-tree arc ep as a
linear combination of the node-arc incidence vectors of in-tree arcs.
For t = 1 to n − 1, let [Xt, X̄t] be the fundamental cutset of the

in-tree arc et in dd. For t = 1 to n− 1, p = 1 to m, define

gtp =

⎧⎪⎨⎪⎩
0 if ep is not in [Xt, X̄t]
+1 if ep is in (Xt, X̄t)
−1 if ep is in (X̄t,Xt)

Then (gt1, . . . , gtm) is known as the fundamental cutset vector
corresponding to the in-tree arc et. The (n−1)×m matrix Q con-
sisting of these rows is known as fundamental cutset-arc incidence
matrix of G wrt dd.
Now consider an undirected network G = (N ,A) which has no self

loops. The node-edge or vertex-edge incidence matrix of G has
a row corresponding to each node and a column corresponding to each
edge in G. The entry in the row corresponding to node i and column
corresponding to edge e is 1 if e contains i, 0 otherwise. As an example,
the node-edge incidence matrix of the network in Figure 1.5 is given
below.

1.2.2: Network Objects 57

Edge → e1 e2 e3 e4 e5 e6 e7
Node 1 1 1 1 1 1 0 0

2 1 0 0 1 0 1 0
3 0 1 1 0 0 0 1
4 0 0 0 0 1 1 1

The determinant of the submatrix of this matrix given by rows 1,
2, 4 and columns 4, 5, 6 is −2. So, the node-edge incidence matrix may
not be totally unimodular in general.

Exercises

1.27 Let A = (aij), be a matrix with aij ∈ {−1, 0, 1} for all i, j, in
which each column has at most two nonzero entries. Prove that A is
totally unimodular iff its rows can be partitioned into two sets so that

(a) If two nonzero elements of a column have the same sign, they are
in different sets.

(b) If two nonzero elements of a column have different signs, they are
in the same set.
(Heller and Tompkins [1958])

1.28 Show that the determinant of the node-edge incidence matrix of
an odd cycle is not in {−1, 0, 1}. Prove that the node-edge incidence
matrix of an undirected network is totally unimodular iff the network
is bipartite.

1.29 LetH be an integer matrix of orderm×n. Prove that the matrix
A = (H

...I) where I is the unit matrix of orderm, is unimodular iff H is
totally unimodular. Thus show that any matrix of order m× n which
contains the unit matrix of order m as a submatrix is unimodular iff it
is totally unimodular.

1.30 Let A be an integer matrix of order m×n and rank r. If r = m
and B is a basis for A, prove that A is unimodular iff determinant(B)
= ±1 and the matrix Ā = B−1A is totally unimodular. If r < m let B

58 Ch.1. Definitions and Formulations

be a square nonsingular submatrix of A of order r. Rearrange the rows
and columns of A so that this submatrix comes to the top left corner,
as in AI.

AI =

X
B D
F H

~

Prove that A is unimodular iff (B
...D) and (BT

...F T) are unimodular.
Since both these matrices are of full row rank, their unimodularity can
be characterized in terms of total unimodularity as in the case above.
(K. Truemper)

1.31 Let G = (N ,A) be a directed connected network with n nodes
and m arcs, and let dd be a spanning tree in G. Let E be the node-arc
incidence matrix, and L the fundamental cycle-arc incidence matrix of
G wrt dd. Do the following: (i) Prove L is totally unimodular and its
rank is m− (n− 1) (i.e., its rows form a linearly independent set). (ii)
Prove LET = 0. (iii) Prove that the incidence vector (written as a
row vector) of any elementary cycle in G can be expressed as a linear
combination of the rows of L, with all the coefficients in the expression
being either 0,or ±1. (iv) Prove that a (m − n + 1) × (m − n + 1)
square submatrix of L is nonsingular iff the columns of this submatrix
correspond to a cotree. (v) Let dd2 be a spanning tree in G. Prove that
the fundamental cycle-arc incidence matrix of G wrt dd2 is (L(d̄d2))−1L,
where L(d̄d2) is the square submatrix of L consisting of columns in L
corresponding to the cotree wrt dd2. (W. Mayeda [1972])
1.32 Let L,Q be the fundamental cycle-arc incidence matrix, and the
fundamental cutset-arc incidence matrix respectively, wrt a spanning
treedd in a connected directed network G = (N ,A) with |N | = n, |A| =
m. Do the following: (i) Prove that Q is of full row rank. (ii) Prove
that QLT = 0, LQT = 0. (iii) Rearrange the arcs in A so that all
the m− n+ 1 out-of-tree arcs wrt dd appear first, and then the n− 1
in-tree arcs appear. Also, rearrange the columns of Q,L according to

this order. Let Q = (Q1
...Q2), L = (L1

...L2), after this rearrangement.
Columns in Q1, L1 correspond to out-of-tree arcs wrt dd; and columns
in Q2, L2 correspond to in-tree arcs. Then prove that Q2 = In−1, L1 =

1.2.2: Network Objects 59

Im−n+1, and Q1 = −LT2 . (iv) Prove that Q is totally unimodular (use
the result in the previous bit) (v) Let A⊂ A, |A| = n−1, and let Q(A)
be the submatrix of Q consisting of columns in Q corresponding to arcs
in the set A. Prove that Q(A) is nonsingular iff A is the set of arcs
in a spanning tree for G. (vi) Let dd2 be any spanning tree in G and
Q(dd2) be the submatrix of Q consisting of columns in Q corresponding
to in-tree arcs in dd2. Prove that the fundamental cutset-arc incidence
matrix wrt dd2 is (Q(dd2))−1Q. (vii) Prove L is totally unimodular.
Let A⊂ A, |A|= m − n + 1, and let L(A) be the submatrix of L
corresponding to arcs in the set A. Prove that L(A) is nonsingular iff
A is a cotree in G.

Matchings and Assignments

Let G = (N ,A, c) be an undirected network with c as the vector of
edge cost coefficients. A matching in G is a subset of edges M⊂ A
containing at most one edge incident at any node. For example, in the
network in Figure 1.23, the set of thick edges forms a matching. The
cost of a matching is defined to be the sum of the cost coefficients of
edges in it. A matching is said to be a perfect matching if it contains
exactly one edge incident at each node. In Figure 1.23, the set of wavy
edges is a perfect matching.
Consider an undirected bipartite network with its bipartition N1 =

{R1, . . . , Rn}, N2 = {C1, . . . , Cn}. A perfect matching in this network
is called an assignment or an assignment of order n, it can be
represented by a 0-1 square matrix x = (xij) of order n where xij = 1
if the edge (Ri;Cj) is in the assignment, or 0 otherwise. We will also
call such matrices as assignments. The xij in an assignment satisfy the
constraints (1.15), (1.16).

n3
i=1

xij = 1, for all j = 1 to n

n3
j=1

xij = 1, for all i = 1 to n (1.15)

xij ≥ 0, for all i, j

60 Ch.1. Definitions and Formulations

and xij = 0 or 1, for all i, j (1.16)

Any feasible solution x = (xij) to (1.15) is called a doubly sto-
chastic matrix, and an assignment is a 0-1 doubly stochastic matrix
(it is also a permutation matrix, or a 0-1 square matrix containing
a single “1” entry in each row and column). Here is an assignment x̄
of order 4. ⎛⎜⎜⎜⎝

0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

⎞⎟⎟⎟⎠ (1.17)

Let jr be the column which has the unique “1” entry in row r, r =
1 to n, in an assignment x of order n. Then the only nonzero variables
in x are xr,jr , for r = 1 to n. In this case we will denote the assignment

1

2 3

4 5

6 7

8

9

10

11

12

Figure 1.23: The thick edges form a matching in this network. The set
of wavy edges is a perfect matching.

x by the set of its unit cells, namely {(1, j1), . . . , (n, jn)}. In this
notation, the assignment x̄ in (1.17) will be denoted by {(1, 2), (2, 4),
(3, 1), (4, 3)}.

1.2.3: Single Commodity Flow Models 61

Assignments are useful to model situations in which there are two
distinct sets of objects of equal numbers, and we need to form them
into pairs, each pair consisting of one object of each set. For example,
N1 might be a set of n boys, and N2 a set of an equal number of girls.
If each boy in N1 marries a girl in N2, the resulting set of couples will
be an assignment. Sometimes we will take both the sets N1, N2, to
be {1, . . . , n}. It should be understood that they refer to the serial
numbers of distinct sets of objects.

1.2.3 Single Commodity Node-Arc Flow Models

In these models, it is assumed that the flow of the material is carried out
independently along each line of the network. Consider the directed
flow network G = (N ,A, f, k, s̆, t̆). The variable fij represents the
amount of material transported from i to j along the arc (i, j) ∈ A,
and the vector f = (fij) is known as the node-arc flow vector, or
just the flow vector.
The quantity

�
j∈B(i) fji = f(N , i) is the total amount of material

flowing into node i, and
�
j∈A(i) fij = f(i,N) is that flowing out of node

i, these two quantities must be equal if i is an intermediate node. The
net amount of material leaving the source node s̆, f(s̆,N) − f(N , s̆),
is known as the value of the flow vector f , and denoted by v(f)
or v. Since all the material leaving the source has to eventually reach
the sink, the net amount reaching the sink, f(N , t̆) − f(t̆,N) should
be equal to v too. So, a flow vector f is a feasible flow vector in G
if it satisfies the following constraints:

f(i,N)− f(N , i) =
⎧⎪⎨⎪⎩

v if i is source
−v if i is sink
0 if i is an intermediate node

(1.18)

and f ≤ f ≤ k (1.19)

Unless otherwise specified, we will assume that the source node has
an unlimited amount to be shipped out and that the sink can receive
an unlimited amount. The constraints in (1.18) are known as flow
conservation equations. For any arc (i, j), the associated variable

62 Ch.1. Definitions and Formulations

fij appears in exactly two equations in (1.18); once with a coefficient
of + 1 in the equation corresponding to node i, and another time with
a coefficient of −1 in the equation corresponding to node j. Hence,
the coefficient matrix of the flow variables fij in (1.18) is the node-arc
incidence matrix of G. As an example, consider the network in Figure
1.24. The flow conservation equations for this network are shown in
the table given below. Verify that the flow vector marked in Figure
1.24 is feasible (e.g.,total amount reaching node 5 is 6 units along (3,
5). Total amount leaving node 5 is 6 units, 2 along (5, 2) and 4 along
(5, 4). So conservation holds at node 5, etc.) This flow vector has a
value of 7 units.

f12 f13 f23 f24 f52 f34 f35 f54 f46 f56 −v
Node 1 1 1 1 0

2 −1 1 1 −1 0
3 −1 −1 1 1 0
4 −1 −1 −1 1 0
5 1 −1 1 1 0
6 −1 −1 −1 0

Verify that the coefficient matrix of the flow variables in the conser-
vation equations is the node-arc incidence matrix E of G. If q denotes
the node-arc incidence vector of the hypothetical (s̆, t̆) arc, the con-
straints on f for feasibility are: Ef − qv = 0, and f ≤ f ≤ k. The
maximum value flow problem in G is to maximize v subject to
these constraints.
If f = (fij) is a feasible flow vector in G, for each (i, j) ∈ A, kij−fij

is known as the residual capacity of arc (i, j) wrt f . The arc (i, j) is
said to be saturated in f if its residual capacity is 0, i.e., if fij = kij .
In general, there may be several source nodes where material is

available, and several sink nodes where it is required. The exogenous
flow at a node, or flow that is external to the network, refers to the
quantity of such material at these nodes. At node i the exogenous flow
will be denoted by Vi, the convention is that if Vi > 0, then i is a source
with Vi units available; and if Vi < 0, i is a sink with a requirement
of |Vi| units. If Vi = 0, there is no exogenous flow at i, and it is a

1.2.3: Single Commodity Flow Models 63

6 6

2

3 75

5

8

10

Source Sink

6

2

71

6

6

2

1

4

19

1

2 4

5

6

3

X

X

_

Figure 1.24: Capacities are entered in the gaps on the arcs. Lower
bounds are all 0. If flow on an arc is nonzero, it is entered inside a
little square by its side.

transit node. Sometimes −Vi is called the requirement at node i.
The vector V = (Vi) leads to the right-hand side constants vector in
LP formulations of network flow problems.
When there are several source and sink nodes in a single commod-

ity flow problem, we assume that the material from any source can
be shipped to any sink. Otherwise, if some sources can only ship to
certain sinks, it becomes necessary to keep track of the flows from each
source separately, and the problem becomes amulticommodity flow
problem.
The general LP type problem in the connected directed single com-

modity flow network G = (N ,A, f, k, V), with node-arc incidence ma-
trix E is

Minimize cf

Subject to Ef = V (1.20)

64 Ch.1. Definitions and Formulations

f ≤ f ≤ k

Since the sum of all the row vectors of E is 0, a necessary condition
for the existence of a feasible flow vector in G is:

3
i∈N

Vi = 0 (1.21)

When G is connected, from the results in the previous section it is
clear that the system (1.20) contains exactly one redundant equality
constraint. Any one of the equality constraints in (1.20) may be treated
as a redundant constraint and eliminated, making the remaining system
nonredundant.
Let |N | = n, |A| = m. Number the arcs in G as et, t = 1 to m, and

denote the flow amount on et by ft. Select any node, say node n, and
delete the equality constraint corresponding to it from (1.20). Let the
remaining system of equations there be

Ēf = V̄ (1.22)

Since G is connected, Ē is of full row rank. From Theorem 1.4
we know that every basis for Ē is triangular. The result in Corollary
1.1 implies that every basic solution of (1.22) is an integer vector if
f, k, V are integer vectors. If an LP has an optimum solution it has
one which is a BFS. So, we conclude that if the data in an LP type
single commodity pure network flow problem is integer, and it has
an optimum solution, then it has one in which all the flow amounts
are integer. This includes the maximum value flow problem, and the
minimum cost flow problem (1.20).
From the results in Section 1.2.2, we know that the set of columns

of Ē associated with the arcs in a cycle is linearly dependent and that
associated with a forest in G is linearly independent. These facts im-
ply that every basic vector for (1.22) consists of node-arc flow variables
associated with arcs in a spanning tree in G and vice versa. Let B
denote a basis for (1.22) with its basic columns corresponding to the
in-tree arcs, e1, . . . , en−1 of a spanning tree dd in G. Let D be the ma-
trix consisting of the nonbasic columns. When partitioned into basic,
nonbasic parts this way, (1.22) becomes

1.2.3: Single Commodity Flow Models 65

f1, . . . , fn−1 fn, . . . , fm

B D V̄

Select node n as the root node for dd. Let (λ1p, . . . ,λmp) be the
incidence vector of the fundamental cycle of the out-of-tree arc ep, p = n
to m, and let λ be the in-tree arc-fundamental cycle incidence matrix.
Let Ē·t denote the column of Ē associated with the arc et, t = 1 to m.
Then from (1.14) we have Ē·p =

�n−1
t=1 λtpĒ·t, for p = n to m. This

implies that D = Bλ, or B−1D = λ. Hence the canonical tableau of
(1.22) wrt the basis B is:

f1, . . . , fn−1 fn, . . . , fm

I λ B−1V̄

So, the updated nonbasic part in the canonical tableau of (1.22)
is always the in-tree arc-fundamental cycle incidence matrix wrt the
spanning tree consisting of the basic arcs, and hence can be constructed
combinatorially without the need to perform any pivot steps. This also
leads to the following property.

DANTZIG PROPERTY In every canonical tableau for the
system of conservation equations in a single commodity flow problem
in a pure network, all the entries are always 0, or ±1.
As an example consider the network in Figure 1.20. Select node 5

as the root node and eliminate the equation corresponding to it from
the system of conservation equations for this network. This leads to
the next tableau.

f1 f2 f3 f4 f5 f6 f7 f8 f9
1 0 0 0 0 0 −1 1 1 V1
−1 −1 0 0 0 1 0 0 0 V2
0 1 1 0 −1 0 1 0 0 V3
0 0 0 1 1 −1 0 0 −1 V4

For this system (f1, f2, f3, f4) is a basic vector. It corresponds to
the spanning tree with thick arcs in Figure 1.20. The canonical tableau
of this system wrt this basic vector is:

66 Ch.1. Definitions and Formulations

Basic f1 f2 f3 f4 f5 f6 f7 f8 f9
variable

f1 1 0 0 0 0 0 −1 1 1 V̂1
f2 0 1 0 0 0 −1 1 −1 −1 V̂2
f3 0 0 1 0 −1 1 0 1 1 V̂3
f4 0 0 0 1 1 −1 0 0 −1 V̂4

It can be verified that the updated nonbasic part under the nonbasic
variables f5 to f9 is exactly the in-tree arc-fundamental cycle incidence
matrix derived earlier in Section 1.2.2.

Computing the Inverse of a Basis for Ē Combinatorially

Let B be a basis for (1.22). Suppose it corresponds to the spanning
tree dd with in-tree arcs e1, . . . , en−1. Here we discuss how to com-
pute B−1 combinatorially without the need to perform any pivot steps.
Introduce artificial arcs em+t = (t, n), t = 1 to n− 1, joining each non-
root node to the root node n. With these artificial arcs, the node-arc
incidence matrix of the augmented network has the following form:

Row In-tree Out-of-tree Artificial
corresponding arcs arcs arcs
to node e1, . . . , en−1 em+1, . . . , em+n+1
1
2

B D In−1
...

Root node n −1 . . .− 1
From this table, and the above discussion, it is clear that the in-tree

arc-fundamental cycle incidence matrix of the artificial arcs is B−1, and
B−1 can therefore be computed directly from the network.
As an example, consider the basis B given by the submatrix of the

node-arc incidence matrix of the network in Figure 1.20, corresponding
to nodes 1 to 4 and arcs e1, . . . , e4. To find B

−1, include artificial arcs
(i, 5), i = 1 to 4. Figure 1.25 just depicts the in-tree arcs and the
artificial arcs which are dashed.

1.2.3: Single Commodity Flow Models 67

6 6

2

3 75

5

8

10

Source Sink

6

2

71

6

6

2

1

4

19

1

2 4

5

6

3

X

X

_

Figure 1.25:

The remaining matrix, after eliminating the row corresponding to
root node 5 from the node-arc incidence matrix of the network in Figure

1.25, is (B
...I) given below. The in-tree arc-fundamental cycle incidence

matrix for the network in Figure 1.25 is given next and it can be verified
that it is B−1. This is followed by Theorem 1.8 stating a fundamental
property of basis inverses in pure network flow problems. This result
is used in Chapter 5 to develop purely combinatorial techniques for
resolving the problem of cycling under degeneracy in the primal simplex
algorithm for single commodity pure network flow problems, without
the need for maintaining B−1.

Basic arcs Artificial arcs
e1 e2 e3 e4 (1, 5) (2, 5) (3, 5) (4, 5)
1 0 0 0 1 0 0 0
−1 −1 0 0 0 1 0 0
0 1 1 0 0 0 1 0
0 0 0 1 0 0 0 1

68 Ch.1. Definitions and Formulations

Fundamental cycle
of artificial arc

In-tree arc e1 1 0 0 0
e2 −1 −1 0 0
e3 1 1 1 0
e4 0 0 0 1

Unisign Property of Rows of Basis Inverses
in Pure Network Flow Problems

THEOREM 1.8 Let Ē be the matrix remaining after the row cor-
responding to the root node n is deleted from the node-arc incidence
matrix E of a directed connected network G = (N ,A). Let B be a
basis for Ē associated with the spanning tree dd with its columns cor-
responding to in-tree arcs e1, . . . , en−1, say, in that order. Then all the
nonzero entries in (B−1)t· are −1 if et is directed away from the root
node, or +1 if et is directed towards the root node, in dd.

Proof From the procedure for computing B−1 discussed above,
we see that the jth entry in (B−1)t· is: 0 if et is not on the fundamental
cycle of (j, n); +1 [−1] if et is on this fundamental cycle with an orien-
tation opposite to [same as] that of (j, n) (i.e., if et is directed towards
[away from] the root node n). This clearly implies the result in the
theorem.

Optimality Conditions

Consider the minimum cost flow problem (1.20) in the directed sin-
gle commodity flow network G = (N ,A, f, k, c, V). In the dual problem
there are dual variables πi associated with the flow conservation equa-
tion at node i, they are called dual variables, or node prices, or
node potentials. The complementary slackness optimality conditions
for a feasible flow vector f are the existence of a dual vector π = (πi)
satisfying: for each (i, j) ∈ A, if

1.2.3: Single Commodity Flow Models 69

πj − πi > cij then fij = kij

πj − πi < cij then fij = fij

πj − πi = cij then fij ≤ fij ≤ kij
The potential difference πj − πi is known as the tension across

the arc (i, j) in the node potential vector π, the optimality condi-
tions depend only on these tensions, and not directly on the poten-
tials themselves. Two different node potential vectors that differ by
a constant give rise to the same tension vector. The tension vector is
actually −πE where E is the node-arc incidence matrix. The quantity
c̄ij = cij − (πj − πi) is known as the reduced cost coefficient of arc
(i, j) wrt π.

Flow Augmenting Paths

Let f = (fij) be a feasible flow vector of value v in the directed
single commodity flow network G = (N ,A, f, k, s̆, t̆). A path P from s̆
to t̆ is said to be a flow augmenting path (FAP) wrt f if it satisfies

fij

l
< kij for forward arcs (i, j) on P
> fij for reverse arcs (i, j) on P

The reason for this name can be easily explained. Let 6 = min
{61, 62} where 61 = min { (kij − fij) : (i, j) a forward arc on P }, 62 =
min { (fij− fij) : (i, j) a reverse arc on P}. 61(62) is defined to be +∞
if there are no forward (reverse) arcs on P . 6 is called the residual
capacity of the FAP P , it is > 0. Define a new flow vector f̂ = (f̂ij)
by

f̂ij =

⎧⎪⎨⎪⎩
fij if (i, j) is not on P
fij + 6 if (i, j) is a forward arc on P
fij − 6 if (i, j) is a reverse arc on P

Then, f̂ is a feasible flow vector of value v̂ = v + 6. This operation
of computing f̂ from f is called the flow augmentation step using

70 Ch.1. Definitions and Formulations

the FAP P . After this step, P is no longer an FAP wrt the new flow
vector f̂ .
As an example, consider the feasible flow vector f in Figure 1.24.

The thick path from source to sink with forward arcs (1, 2), (5, 4), (3,
5), (5, 6), and reverse arcs (5, 2), (3, 4) is an FAP wrt f . 61 = min
{8− 6, 6− 4, 10− 6, 7− 0} = 2, 62 = min {2− 0, 1− 0} = 1. 6 = min
{2, 1} = 1. The new flow vector obtained after flow augmentation is
f̂ = (f̂12, f̂13, f̂23, f̂24, f̂52, f̂34, f̂35, f̂54, f̂46, f̂56) = (7, 1, 6, 2, 1, 0, 7, 5, 7,
1). It has value 8. This example indicates that an FAP need not be a
simple path. However, in the labeling algorithms discussed in Chapter
2, all FAPs identified will be simple paths.
Several of the algorithms discussed in later chapters use subroutines

which generate FAPs, and hence they are called augmenting path
methods.
An FAP is said to be a flow augmenting chain, FAC, if it is a

chain (i.e., if all the arcs on it are forward arcs).
A feasible flow vector of value v in G is said to be a maximum

value feasible flow vector if v is the maximum value attainable in
G, or a maximal or blocking feasible flow vector if there exists
no FAC wrt it.

EXAMPLE 1.3

Every maximum value flow vector is maximal, but the converse may
not be true. Figure 1.26 illustrates this point.

Residual Cycles and the Residual Networks G(f), G(f,π)

Let f = (fij) be a flow vector in a directed, connected, single com-
modity flow network G = (N ,A, f, k, c, s̆, t̆) satisfying the bound con-
ditions on all the flow variables (i.e., f ≤ f ≤ k), but may or may not
satisfy flow conservation at the nodes.
If an arc (i, j) ∈ A satisfies fij < kij , the flow amount on it can be

increased by an amount equal to its residual capacity of κij = kij − fij
without violating the upper bound, hence it is called a residual arc

1.2.3: Single Commodity Flow Models 71

Source Sink1

2

4

1 1

11

3

Source Sink1

3

4

2

1

1

1

Figure 1.26: Two copies of a network. Each arc has lower bound 0 and
capacity 1. The flow on an arc is entered in a box by its side if it is
nonzero. The one on the left is a maximum value feasible flow vector
of value 2. The one on the right has value 1. It is a maximal flow, but
not of maximum value.

wrt f . The cost coefficient of this residual arc is naturally cij, since it
is the unit cost of increasing the flow on (i, j).

Likewise, if (p, q) ∈ A satisfies fpq > fpq, the flow on it can be
decreased by an amount equal to fpq − fpq without violating the lower
bound. This is equivalent to creating a new arc (q, p), which may not be
an arc in G, and increasing the flow on it from 0 by the same amount.
So, in this case, we call (q, p) a residual arc wrt f , and associate the
cost coefficient −cpq with it, since increasing the flow on it is the same
as decreasing the flow on the original arc (p, q). Construct the set of
arcs A(f) by the following rules.

1. For each (i, j) ∈ A satisfying fij < kij include the arc (i, j) in
A(f) with a + label, lower bound 0, capacity κij = kij − fij , and
cost coefficient cIij = cij.

2. For each (i, j) ∈ A satisfying fij > fij include the arc (j, i) in
A(f) with a − label, lower bound 0, capacity κji = fij − fij, and
cost coefficient cIji = −cij .

72 Ch.1. Definitions and Formulations

A(f) is the set of residual arcs and G(f) = (N ,A(f), 0,κ, cI)
is the residual network wrt f , it is very useful for determining flow
vectors that we can move to from f while maintaining bound feasibility.
Each arc in G(f) corresponds to an arc in G. (p, q) ∈ A(f) corresponds
to (p, q) in G if its label is +, or to (q, p) in G if its label is −. Under
this correspondence, every FAP from s̆ to t̆ wrt f corresponds to a
chain from s̆ to t̆ in G(f) and vice versa. Let C be any chain in G(f)
and P the path corresponding to it in G. If 6 = min {κij : (i, j) is an
arc on C}, then 6 > 0. In f , increase (decrease) the flow on all forward
(reverse) arcs of P by 6, this leads to a new flow vector in G which also
satisfies the bounds.

6

0, 10, 3

4, 15, 7 5, 5, 6

1, 3, 2
2, 8, 4

1 4

4 5

8

2
2

3

Figure 1.27: The network G and a bound feasible flow vector f in it.

When the residual network is used in the study of the maximum
value flow problem, no cost coefficients are used since there are no costs
in this problem.
As an example, consider the network G in Figure 1.27. On each

arc, the lower bound, capacity, and cost coefficient are entered in that
order, and a bound feasible (but conservation violating) flow vector f is
marked in little squares. The residual network G(f) is given in Figure
1.28 with the arc labels + or − entered.
Suppose we are given a bound feasible flow vector f , and a node

price vector π = (πi) in G. c̄ij = cij − (πj − πi) is the reduced cost
coefficient of arc (i, j) ∈ A. The residual network wrt f,π, G(f, π)
= (N ,A(f), 0,κ, c̄I) is the same as G(f), with the exception that the

1.2.3: Single Commodity Flow Models 73

3

4

0, 6, - 3

0, 4, 3

0, 11, 7
0, 6, - 4

0, 1, 2

0, 1, - 2

+

++ -

-

-

2

1

Figure 1.28: The residual network G(f).

arc cost coefficients in it are determined using c̄ as the cost vector in
G instead of c.

An oriented cycle CC in G is said to be a residual cycle wrt the
flow vector f = (fij) satisfying the bound conditions on all the flow
variables, if fij < kij on all forward arcs on CC, and fij > fij on all
reverse arcs in CC. The capacity of this residual cycle is defined
to be min. { kij − fij : (i, j) a forward arc on CC } ∪ {fij − fij :
(i, j) a reverse arc on CC}. For example, in the network in Figure
1.27, the oriented cycle 1, (1, 3), 3, (2, 3), 2, (1, 2),1 oriented in the
anticlockwise direction, is a residual cycle wrt the flow vector marked
there, of capacity 6. Notice that every residual cycle wrt f corresponds
to a simple circuit in the residual network and vice versa.

Feasible Circulations

A flow vector f = (fij) in a directed single commodity flow network G
= (N ,A, f, k) is said to be a feasible circulation if it satisfies the
bounds, f ≤ f ≤ k, and f(i,N)− f(N , i) = 0 for all i ∈ N (this is the
same as Ef = 0, where E is the node-arc incidence matrix of G). See
Figure 1.29 for an illustration.

74 Ch.1. Definitions and Formulations

0,1

0,5

0,1

0,1

0,1

1

2

3

4

1

2

1

11

Figure 1.29: Data on the arcs is lower bound, capacity in that order;
and flow amount in a box if it is nonzero.

1.2.4 The Arc-Chain Flow Model

Let G = (N ,A, f = 0, k, s̆, t̆) be a directed single commodity flow
network. In this model we determine various chains from s̆ to t̆, and
specify how much to ship directly from s̆ to t̆ across each of them.
The chains considered may have common arcs. Let C1, . . . , CP be all
the distinct chains from s̆ to t̆ in G, and let xh denote the amount of
material shipped along Ch, h = 1 to P . The xh are the decision variables
in this model, and x = (xh) is the arc-chain flow vector. Here, each xh
has to be clearly associated with its chain Ch. P is likely to be large,
and in specifying this vector x, it is only necessary to list the positive
xh in it, and the chains associated with them.

The value of the arc-chain flow vector x = (xh) (i.e., the
amount of material reaching the sink in it), is clearly

�
h xh. Let C(i, j)

denote the set of all the chains from s̆ to t̆ which contain the arc (i, j).
We will use the same symbol to represent the set of their indices. If
the arc-chain flow vector x = (xh) is implemented, the total amount
of this flow passing through arc (i, j) will be

�
(xh : over h ∈ C(i, j)).

This has to be ≤ kij for feasibility. So, the arc-chain formulation of the
maximum value flow problem in G is

1.2.4: Arc-Chain Flow Models 75

Maximize
3
h

xh

Subject to
3

h∈C(i,j)
xh ≤ kij for each (i, j) ∈ A (1.23)

xh ≥ 0 for all h

Given an arc-chain flow vector x = (xh), in G of value v, define
for each (i, j) ∈ A, fij(x) = �(xh : over h ∈ C(i, j)), and f(x) =
(fij(x) : (i, j) ∈ A). Then it can be verified that f(x) is a feasible
node-arc flow vector of value v It is the natural and unique node-arc
flow vector corresponding to the arc-chain flow vector x. Both have
the same value.
The reverse question is: Given a node-arc feasible flow vector f in

G, is there an arc-chain flow vector corresponding to it? We now study
this question and the relationship between the two flow models.

THEOREM 1.9 Let f̃ = (f̃ij) be a feasible node-arc flow vector in G
of value ṽ. If ṽ > 0 , there exists a chain from s̆ to t̆ in G such that
f̃ij > 0 on all arcs (i, j) along this chain.

Proof Assume that ṽ > 0. Call an arc (i, j) ∈ A a P-arc if f̃ij > 0.
We need to show that there is a chain from s̆ to t̆ consisting of P-arcs
only. Define X = { x : x ∈ N , there exists a chain from s̆ to x with
P-arcs only}. So, we need to show that t̆ ∈ X.
If C1 is a chain from s̆ to x with P-arcs only, and (x, y) is a P-arc, by

including (x, y) at the end of C1 we get a chain from s̆ to y with P-arcs
only. This observation leads to the following tree growth scheme to
determine the set X. s̆ is the root node. The list is always the present
set of labeled and unscanned nodes. Each labeled node is in the set X.
Since we are only interested in showing that t̆ is in the set X, we will
terminate the scheme whenever t̆ is labeled.

Step 1 Label s̆ with ∅. All other nodes are unlabeled. List = { s̆ }.
Step 2 If list = ∅, terminate. Otherwise select a node from it, say i to

scan as below. Delete i from list. Find J = { j: j unlabeled so far

76 Ch.1. Definitions and Formulations

and (i, j) is a P-arc}. Label each node in J with its predecessor
index i, and include all of them in the list.

Step 3 If t̆ is labeled, find its predecessor path by a backwards trace.
This path, written in reverse order beginning with s̆ is a chain to
t̆ with P-arcs only. Terminate.

If t̆ is unlabeled, go back to Step 2.

Suppose this scheme terminates without t̆ ever getting labeled.
Then, X = set of labeled nodes at this stage. Let X̄ = N\X. Since the
scheme has terminated, from the labeling rules used, we have f̃ij = 0
for all (i, j) ∈ A with i ∈X, j ∈ X̄, so f̃(X, X̄) = 0. From the
conservation equations, we have

f̃(i,N)− f̃(N , i) =
l
ṽ for i = s̆
0 for i W= s̆ or t̆

Summing these over i ∈ X, we get ṽ = f̃(X, N) − f̃(N ,X) =
f̃(X, X̄) - f̃(X̄, X) = − f̃(X̄, X), since f̃(X, X̄) = 0. Since all
f̃ij ≥ 0, this implies that ṽ = -f̃(X̄, X) ≤ 0, a contradiction to the
hypothesis that ṽ > 0. Hence it is impossible for the above scheme to
terminate without t̆ getting labeled. So, it would terminate in Step 3
by producing a chain from s̆ to t̆ with all arcs on it satisfying f̃ij > 0.

As an example consider the network in Figure 1.30, and the feasible
node-arc flow vector of value 24 marked in it. The above scheme is
applied on it leading to the predecessor indices entered by the side of
the nodes. The sink, node 4 is labeled. Its predecessor path written in
reverse order, yields the chain C1 = 1, (1, 2), 2, (2, 4), 4 in which all
the arcs are carrying positive flow.
If the above scheme is operated without Step 3, the set of labeled

nodes at termination will be the set X defined above.
We can use the following procedure based on the scheme in the

proof of Theorem 1.9 to obtain an arc-chain flow corresponding to a
given node-arc flow f̃ of value ṽ in G. If ṽ < 0 (this can happen if
there are some arcs incident into s̆ in G, and they carry positive flow)
it would imply that in the flow vector f̃ , actually |ṽ| units of material

1.2.4: Arc-Chain Flow Models 77

is flowing back from t̆ to s̆. So, if ṽ ≤ 0, define the arc-chain flow
vector corresponding to f̃ to be x̃ = 0, and terminate. On the other
hand, if ṽ > 0, find a chain from s̆ to t̆, C1 say, with positive flows
in f̃ on all its arcs. Define the arc-chain flow amount on C1 to be x̃1
= min { f̃ij : (i, j) an arc on C1 }. In f̃ subtract x̃1 from the flow
amounts on all the arcs of C1 leading to the new node-arc flow vector
f̂ say. f̂ is a feasible node-arc flow vector in G of value v̂ = ṽ − x̃1. If
v̂ ≤ 0 terminate, otherwise repeat this step with f̂ and continue in the
same way. The arc-chain flow amounts on the chains obtained until
termination define an arc-chain vector whose value is ≥ ṽ.

1

2

3

45

Source

Sink

9

10

20517

1

15 4 15 18

3

1

1

2
1 1

16

16 9

ø

169

Figure 1.30: Capacities are marked on the arcs and node-arc flow
amounts entered inside a box by the side of the arc. Predecessor labels
are entered by the side of the nodes. Scheme terminated when the sink
is labeled with 2.

For an example, we consider the node-arc flow given in Figure 1.30
of value 24. We take the first chain to be C1 [consisting of arcs (1, 2)
and (2, 4)] obtained above, and the arc-chain flow amount on it is min
{9, 16} = 9 = x̃1. We modify the node-arc flow vector by subtracting
9 from the flows on arcs (1, 2), (2, 4) and continue the same way. We
obtain the chains C2 [consisting of arcs (1, 3), (3, 4)] with an arc-chain

78 Ch.1. Definitions and Formulations

flow amount x̃2 = 9, C3 [consisting of arcs (1, 3), (3, 2), (2, 4)] with an
arc-chain flow amount x̃3 = 7, and the procedure then terminates. So,
the arc-chain flow vector obtained has positive flows on three chains
only, and its value is 9+9+7 = 25.
The arc-chain flow vector obtained by this procedure depends on

the chains obtained and the order in which they are obtained in the
procedure.

THEOREM 1.10 The maximum flow value from s̆ to t̆ in the directed
single commodity flow network G = (N ,A, f = 0, k, s̆, t̆) is the same,
irrespective of whether it is modeled using the node-arc or arc-chain
flow models.

Proof Since f = 0, f = 0 is a feasible flow vector of value 0.
Therefore, the maximum flow value in G is ≥ 0. Given a maximum
value feasible flow in G in either model, the methods discussed above
can be used to construct a corresponding flow of at least the same value
in the other model. This proves the theorem.

The arc-chain formulation typically has too many variables. It is
practical only under a method which operates by maintaining a small
set of chains on which the arc-chain flow amount is positive, and gener-
ates new chains to introduce into it one by one as necessary. Since each
chain corresponds to a column in the model, such approaches are called
column generation approaches; they are used together with the re-
vised simplex method. However, for single commodity flow problems,
the node-arc formulation leads to algorithms which are much more effi-
cient, and this model is therefore used commonly. For multicommodity
flow problems the arc-chain formulation leads to a reasonable solution
approach. This is discussed in Section 5.11.

Exercises

1.33 Consider the single commodity flow network in Figure 1.31 with
source node
1, sink node 11, 0 lower bound on all the arcs; capacity of 20 on all the
horizontal arcs, 10 on all the vertical arcs, and 25 on all the diagonal

1.3: Formulation Examples 79

1

2

3

4 5

6

7 8

9

10

11

8

10

2

6

20

18

4

20

7 2 4 21

9

17

10

10 155

2

Figure 1.31:

arcs. A node-arc flow vector is entered in the boxes on the arcs. Check
it for feasibility and find its value. Construct an arc-chain flow vector
from it. What is its value? Explain.

1.34 If the arc-chain formulation of the maximum value flow problem
in the directed single commodity flow network G = (N ,A, 0, k, s̆, t̆) has
an optimum solution, prove that it has one in which the arc-chain flow
amounts are nonzero on at most m chains, where m = |A|.

1.3 Formulation Examples and Applica-

tions

1.3.1 The Transportation Problem

A minimum cost flow problem on a directed network is called a trans-
portation problem if: (1) every node is either a source node or a sink

80 Ch.1. Definitions and Formulations

103 tons

197 tons

Plant 3

Plant 2

- 133 tons

- 96 tons

Plant 1

- 71 tons

Source

nodes

Sink

nodes

Mine 1

Mine 2

0, , 9

0, , 16

0, , 14

0, , 28
0, , 29

0, , 19

8

8
8

8
8

8

Figure 1.32: Bipartite network representation of the transportation
problem. Data on each arc is its lower bound, capacity, and cost per
unit flow. Exogenous flow amounts are entered by the side of the nodes.

node (so, there are no intermediate or transit nodes), and (2) every arc
in the network joins a source node to a sink node. So it is a minimum
cost flow problem on a bipartite network. We give an example of an
uncapacitated (i.e., kij = ∞ for all the arcs) transportation problem.
A steel company wants to minimize the total shipping bill for trans-
porting iron ore from two mines to three steel mills subject to the data
given below. A bipartite minimum cost flow model for it is shown in
Figure 1.32.

Shipping cost(cents/ton) Availability
Plant → 1 2 3
Mine 1 9 16 28 103

2 14 29 19 197
Requirement 71 133 96

1.3.3: Transshipment Problem 81

1.3.2 The Assignment Problem

An assignment problem is a transportation problem in which the num-
ber of source nodes is equal to the number of sink nodes, and all the

Expected annual sales in zone,
if candidate assigned to zone.

Zone → 1 2 3 4
Candidate 1 90 85 139 73

2 60 130 200 112
3 60 130 200 112
4 111 88 128 94

availabilities and requirements are equal to one. Here is an example: A
large corporation is introducing a new product. There are 4 marketing
zones, each requires a marketing director. Four candidates have been
selected for these positions. Company estimates of the sales generated
in the various zones are given in the table above, depending on which
candidate is appointed in each zone. Assign candidates to zones to
maximize total annual sales. This is a special bipartite minimum cost
flow problem.

1.3.3 The Transshipment Problem

The transshipment problem is a minimum cost flow problem on a di-
rected network which may not be bipartite, and in which there may be
intermediate nodes, arcs joining a pair of sources, or a pair of sinks.
Here is an example: A company manufacturing steel shelving cabinets
has 3 plants, 2 packing units and 3 sales outlets. Plants 1 and 2 make
shelves, and plant 3 makes the bars, screws and all the other com-
ponents. Production of every item is measured in units of the item
needed for one cabinet. Plant 1 has a production capacity of 20,000
cabinets/day, but the paint shop in it is small and can handle only
10,000 cabinets/day. Shelves made in plant 1 can be shipped in any
quantity to plant 2 for painting as it has a very large paint shop. Plant
2 has a production capacity of 50,000 cabinets/day. The shelves move
from plants 1 and 2 to plant 3, where they are combined with bars,

82 Ch.1. Definitions and Formulations

screws, etc. and shipped in bulk to either packing unit 1 or 2. Each
packing unit combines the shelves, bars, screws etc. and packs them
in cartons of one cabinet each. Shipping from the plants and packing
unit 2 is by truck. The routes have the capacities (in cabinets/day) and
costs (cents/cabinet) shown in Figure 1.33. Shipping from packing unit
1 to the retail outlets is carried out on water and is therefore cheaper.
Each packing unit can process at most 40,000 cabinets/day. The

daily demand at sales outlets 1; 2; 3 is 25,00; 15,000; 22,000 cabinets
respectively. We represent each plant, packing unit, sales outlet, by a
separate node. The lines joining nodes represent the shipping channel
between them. Data on each arc in Figure 1.33 is the lower bound (in
cabinets/day shipped), capacity, and cost/cabinet, in that order. The
problem is to determine an optimum production and shipping plan to
meet the requirements at minimum shipping cost.

Packing 2

0, 9000, 5

0, 12000, 10

0, 60000, 8

0, 50000, 12

0, , 8

0, 50000, 7

0, , 115

0, , 113

0, , 120

0, , 125

0, , 120

0, , 145

Packing 1

Sales 1

Sales 2

Sales 3

Plant 3

Plant 2

Plant 1

20000

50000

40000

40000

25000

15000

22000

8
8

8

8

8

8

8

Figure 1.33: Numbers on nodes corresponding to plants and packing
units are node capacities per day; and those on sales nodes are require-
ments per day.

Clearly, this is a minimum cost flow problem on a directed network
which is not bipartite. The node corresponding to plant 2 is a source
node, but it can also receive flow from other source nodes like plant 1.
That’s why problems like this are called transshipment problems.

1.3.3: Transshipment Problem 83

In the same manner, problems involving production, in-process in-
ventory, assembly, warehousing, or distribution can be represented as
minimum cost flow problems on directed networks. In this model, the
flow on each arc represents the amount of material (either finished or
semi-finished) transferred from one manu- facturing unit to another.
For such problems, clearly the node-arc flow model is the most direct.
Since many network flow applications are of this type, the node-arc
formulation is the one most commonly discussed.

1.3.4 An Application In Short Term Investments

A corporation receives money (income) from its dealers, and has ex-
penses to be paid out (expenditures) every week. Expenses are light in
the first half of the year, and tend to be high in the second half. In-
come, on the other hand, is normally high at the beginning and tends
to level off towards the end. The planning horizon is 52 weeks (a year),
and the corporation has surplus income at the beginning which it does
not need for its expenditures until later. There are several securities in
which the corporation can invest this surplus income on a short term
basis for an integer number of weeks from 1 to 52. The yield from the
pth security as a fraction of the amount invested is cpq, if the maturity
period is q weeks. The corporations expected income and expenditures
for each week of the year are given, as also a lower and upper bound
on the amount that can be invested in each security over the year by
company policy. The problem is to determine an optimal short term
investment plan to maximize the yield subject to the constraints. This
is a problem of analyzing various cash flow alternatives and can be
modeled as a network flow problem.

We provide a numerical example. To keep it small we consider a
planning horizon of a year divided into four equal periods and only
two securities, and we assume that all investments during a year have
to be cashed that year itself. The yield from these investments is not
treated as income for the company, but considered as if it were held
in a separate account which is to be maximized. The expected income
(in $1000 units) in the four periods is 200, 180, 150, 170. The corre-
sponding expenditures are 100, 110, 180, 250. The fractional returns

84 Ch.1. Definitions and Formulations

Profit

1

2

3

4

51

52

51

52

51

52

1

2

3

4

170

150

180

- 250

- 180

- 110

- 100

200

Security

nodes
Expense node

for period

.02

.01

.01

.01

.05
.06

.02

.05

.06
.09

.08

.02

Income node

for period

Figure 1.34:

from security 1 are 0.02, 0.05, and 0.08 if held for 1, 2, and 3 periods
respectively. The corresponding figures from security 2 are 0.01, 0.06,
0.09. No more than 150 units can be invested in any one security over
a year by company policy.

The network model is in Figure 1.34. It contains an income node
and an expense node for each period, with the exogenous flow at them
in money units entered by the side. Flow of money directly from an
income to an expense node represents its use to meet expenses without
being invested. Money flows through security nodes represent invest-
ments, and the data on the arcs joining a security node to an expense
node represents the fractional yield on the flow through that arc. There
is also a node called profit which accumulates the excess income of this

1.3.3: Transshipment Problem 85

company over its expenses (remember that yield from investments is
only counted in the objective function, and does not enter as a flow
anywhere in this model).
In addition to the flow conservation equations, we have two other

constraints. The sum of the flows on thick arcs has to be ≤ 150.
Likewise, the sum of the flows on the dashed arcs has to be ≤ 150.
These constraints are not of the network flow conservation type. So,
this is a minimum cost network flow problem with additional linear
constraints. An algorithm for such models is discussed in Chapter 6.
In constructing this model we treated the yield from investment as

the objective function, and because of this it did not enter the flow at
all. So flows across the investment arcs only consist of the principal
amount, this guarantees that if a certain amount of money enters an
arc (i, j) at node i, the same amount comes out at node j. Networks
in which this property holds are called pure networks. All the prob-
lems we discussed so far involved only such networks. If the return
on investment is also treated as income, then an amount of 100 units
entering an investment arc (i, j) carrying 2% interest at node i, would
become 102 units by the time it comes out at node j. Networks with
this property are called networks with gains or losses, or generalized
networks. An example of a generalized network flow problem is given
in Section 1.3.7, and we present algorithms for solving them in Chapter
8.

1.3.5 Shortest Chain Problem

This is the problem of finding a shortest chain from an origin to a des-
tination in a network G = (N ,A, c) with c as the vector of line lengths.
This problem appears as a subproblem in many network applications.
Shortest chain algorithms are discussed in Chapter 4.

1.3.6 Project Planning Problems

Large projects usually involve many individual jobs. There may be
some interdependence among the jobs, some of them cannot possibly
be started until others have been completed. This defines a precedence

86 Ch.1. Definitions and Formulations

ordering among the jobs, which can be represented by an acyclic net-
work. Given the time needed for completing each job, the minimum
time necessary to complete the project can be computed by solving a
longest chain problem. Also, it may be possible to shorten the time
needed to complete some jobs by spending extra money. In that case,
the problem of determining how much of this extra money to spend
on each job in order to complete the overall project within a specified
duration at minimum extra cost can be posed as a minimum cost flow
problem on an augmented network. This is the problem of computing
the project cost curve as a function of project duration (see Chapter
7). This class of problems find many applications for network methods.

Plant 3

Plant 2

Plant 1

Mixing

unit 1

Mixing

unit 2

Ware-

house 1

Ware-

house 2

Ware-

house 3

0, , 3, .9

0, 2000, 3, .9

0, 12000, 3, .9

0, , 5, .9

0, , 5, .9

0, , 8, .98

0, , 10, .98

0, , 15, .98

0, , 20, .98

0, , 30, .98

0, , 30, .98

0, , 35, .98

10000

8000

8000

2000

6000

3000

Source

8

8

8

8

8

8
8

8
8

8

Figure 1.35:

1.3.7 Generalized Network Flow Problems

Consider a directed network in which flow entering an arc (i, j) at node
i gets multiplied by a factor pij before it reaches node j. This may hap-

1.3.3: Transshipment Problem 87

pen, for example, if losses occur during transit. If at least one of these
multipliers is not equal to 1, such networks are called generalized
networks, and flow problems on them are called generalized net-
work flow problems. In contrast, the networks discussed so far are
called pure networks, and the multiplier associated with every line
is 1 in them.

Here is an example of a generalized network flow problem: A com-
pany manufactures 20-lb. bags of fertilizer containing N (nitrogen)
and Ph (phosphorous) in fixed proportion. Their plant 1 manufactures
urea containing N. Their plant 2, located near their phosphate mine,
can only process a limited quantity of phosphate rock into a chemical
compound containing Ph. The rest of phosphate rock is shipped to
plant 3 for processing. Each plant ships its output to either of two
mixing units where the chemicals are blended into fertilizer containing
N and Ph in specified proportion and packed into 20-lb. bags. These
bags are then shipped to 3 warehouses from which they are sold to
retail outlets. From mixing unit 1, material is sent to warehouses by
rail, but mixing unit 2 can only ship by truck. Rail transportation is
cheaper, so sometimes fertilizer bags are sent from mixing unit 2 to
mixing unit 1 for shipping by rail.

There is usually a 10% loss in transit due to spillage in the rock and
chemicals shipped from the plants. There is also a loss of approximately
2% due to spoilage in the fertilizer bags shipped from mixing units to
warehouses.

We measure each compound in units of it needed per 20-lb. bag
of fertilizer. Plant 1 has a capacity of 10,000 bags/day. Plants 2 and
3 can process 2,000, and 12,000 bags/day respectively. Each mixing
unit can process and ship 8,000 bags/day. It is assumed that the lower
bound, capacity and shipping cost on arc (i, j) apply to fij , the flow
entering this arc at its tail node i. The remaining data is given in
Figure 1.35. Numbers by the side of Plant 1, and Mixing units 1, 2
are the associated node capacities. Numbers by the side of warehouse
nodes are requirements. Data on each arc is its lower bound, capacity,
cost per unit flow, and the multiplier, in that order.

The problem is to find a feasible flow vector that minimizes the
shipping cost.

88 Ch.1. Definitions and Formulations

In the same manner, distribution problems in water, electric power,
etc., where losses occur in transmission, can be modeled as generalized
network flow problems. Algorithms for them are discussed in Chapter
8.

1.3.8 Applications In Routing

In this section, G denotes a connected undirected network (N ,A, c)
where N = {1, . . . , n}, A = {e1, . . . , em}, ct is the length of et, t = 1 to
m, and c = (ct) ≥ 0. For instance G might represent the street network
of a town. There may be parallel edges in G. di denotes the degree of
node i in G.
An edge covering route (ECR) or postman’s route in G is

an elementary cycle that begins at a node, travels along every edge at
least once in some sequence, and returns to the starting node at the
end. If an ECR passes lt times through et, t = 1 to m, its length is�
t ltct. The problem of finding a minimum length ECR is known as

the Chinese postman problem.
An Euler route is an ECR that passes through each edge of the

network exactly once. Since c ≥ 0, if an Euler route exists in G, it
must be a minimum length ECR.

THEOREM 1.11 (Euler, 1736) There exists an Euler route in the
connected undirected network G iff the degree of every node is even in
it.

Proof If Euler routes exist in G, select one and orient each edge
in the direction in which it travels along that edge. An Euler route is
a cycle. So, among those edges incident at a node, if the number with
orientation leading into the node is r, then the number with orientation
leading away from the node must also be equal to r. This implies that
the degree of that node is 2r, even. Hence, if an Euler route exists in
G, the degree of every node must be even.
If every node in G has even degree, we discuss below an algorithm

and prove that it will produce an Euler route in G.

An undirected network is said to be an Eulerian network if it is
connected and every node has an even degree in it.

1.3.8: Routing Applications 89

Assume that G is Eulerian. A convenient way to represent an Euler
route, is the edge pairing representation which we will describe
now. Let Υ denote the Euler route j1, g1, j2, g2, j3, . . . , gm, jm+1 = j1 in
G. So, {g1, . . . , gm} is a permutation of A and gt = (jt; jt+1), for each
t = 1 to m. In Υ, edge gt is followed by gt+1, hence we say that the
edges (gt, gt+1) are paired in it, for t = 1 to m. Also g1, gm are the
first and last edges. We indicate this by including (0, g1), (gm,∞) as
pairs. These are called the starting and finishing pairs. This leads
to the edge pairing representation for Υ as a list of ordered pairs

(0, g1), (g1, g2), . . . , (gm−1, gm), (gm,∞)

The number of pairs in this representation is 1 + |A|. The initial
and final edges can be retrieved from the starting and finishing pairs.
The initial node is the common node on these edges. The initial edge
is travelled in the direction away from the initial node. If (gt, gt+1) is a
pair in the representation, these edges must have a common node, say
j; the route arrives at j by travelling through gt and leaves through
gt+1. Each edge in G appears in exactly two pairs in an edge pairing
representation, as the left hand member in one and the right hand
member in the other. It is not necessary to record the various pairs in
the representation in any particular order, but an order convenient to
the driver is the order of travel.

As an example consider the Euler route in Figure 1.36 that begins at
node 1, and travels through the edges in the orientation marked by their
side. Its edge pairing representation is (0, e1), (e1, e2), (e2, e3), (e3, e4),
(e4, e5), (e5, e6), (e6, e7), (e7,∞).
The parity of an integer is even if that integer is even, odd oth-

erwise.

THEOREM 1.12 Let CC be an elementary cycle, and Pij an elemen-
tary path between nodes i and j in G. The operation of deleting all the
edges in CC from G, or duplicating all the edges in CC leaves the parity
of the degree of every node unchanged. The operation of duplicating all
the edges on the path Pij changes the parity of the degrees of nodes i
and j, but leaves that of all the other nodes unchanged.

90 Ch.1. Definitions and Formulations

1

4

5

6

e
1

e2

e
3

e4

e5

e6

e7

3

2

Figure 1.36: An Euler route with node 1 as the initial node.

Proof CC contains an even number of edges incident at every node.
Pij contains an odd number of edges incident at i and j, but an even
number at every other node. The results follow from these and the fact
that the parity of an integer is unchanged by subtracting or adding an
even number to it, but changes when an odd number is added to it.

The algorithm for finding an Euler route in an Eulerian network G
maintains a route which is always an elementary cycle, and grows it
until it becomes an Euler route. At some stage, let Ĝ be the network
consisting of the edges in G not traversed in the present route. Ĝ may
not be connected, but each connected component in it is Eulerian by
Theorem 1.12. Select a node i that is incident to some edges in the
present route and to some not in it. Let (g0, g1) be an edge pair in
the present route containing node i. Form an elementary cycle, CC
say, beginning and ending at i in Ĝ, and record it in edge pairing
representation. Let h0, h1 be the first and last edges travelled on this
cycle, so i is the common node on them. Delete the edge pair (g0, g1)
from the route, and include into it the edge pairs (g0, h0), (h1, g1) and
all the edge pairs other than the starting and finishing pairs of CC. This
has the effect of inserting CC into the route. The new route follows the
old one until the edge g0 is traversed to reach node i, then follows CC

1.3.8: Routing Applications 91

e1

e2

e3

e4

1 2

34

Figure 1.37:

until it is completed, and then follows the old route again. The new
route contains more edges than the old. Repeat the same procedure
until every edge is included in the route.

As an example, consider the Eulerian network in Figure 1.37. Start
with the route {(0, e1), (e1, e2), (e2, e3), (e3, e4), (e4,∞)} consisting of
the cycle CC1 marked with arrows in Figure 1.37. When all the edges
e1 to e4 traversed in the route are deleted from this network we get
the network in Figure 1.38. This is connected, but in general such
remaining networks may not be connected. We select node 3 on the
route which is incident to some edges in the remaining network, and
we find the cycle CC2 = {(0, e5), (e5, e6), (e6, e7), (e7,∞)} beginning at
node 3 in the remaining network, marked with arrows in Figure 1.38.
Inserting CC2 into the route leads to the new route {(0, e1), (e1, e2),
(e2, e5), (e5, e6), (e6, e7), (e7, e3), (e3, e4), (e4,∞)}. Now the edges e5,
e6, e7 on CC2 are deleted from the remaining network in Figure 1.38,
and the method is continued in the same manner.

During the algorithm, edges belong to two sets, the included (in the
present route) and unincluded. The following symbols will be used; p
denotes the initial node of the new elementary cycle being formed; g0, g1
denote either 0,∞, or the left and right edges in a pair in the present
route incident at p; a denotes the first edge of the new elementary

92 Ch.1. Definitions and Formulations

e
5

e6

e
7

1 2

34

Figure 1.38:

cycle being formed incident at p; x denotes the present node on the
new elementary cycle being formed; e denotes the unincluded edge
incident at x selected for the new elementary cycle, and y the other
node on it; and e1 denotes an unincluded edge incident at y.

Algorithm for Finding an Euler Route

Step 1 Initialization Select any node, say 1, and an edge e0 inci-
dent at 1. Set g0 = 0, g1 = ∞, p = 1, x = 1, e = e0, a = e0. All
edges are unincluded.

Step 2 Select an unincluded edge Let y be the node W= x on e.
Select an unincluded edge W= e incident at y, make it e1 and go
to Step 3. If none, we will have y = p. Go to Step 4.

Step 3 Make an edge pair Include the edge pair (e, e1) in the list
for the new cycle. Now e is included. Make e1 into the new e, y
into the new x, and go to Step 2 to select new y and e1.

Step 4 Merging the cycle into the route Form the pairs (g0, a)
and (e, g1) and insert these and all the other pairs generated in
various occurrences of Step 3 in this cycle generation effort, into
the route. Now e is included. Go to Step 5.

1.3.8: Routing Applications 93

Step 5 Setup for new cycle If there are no unincluded edges,
terminate. Otherwise, find a node incident to both included and
unincluded edges, and make it the new p. Choose an edge pair
containing p from the route, delete it from the list for the route,
and make the right and left members in it the new g0, g1 respec-
tively. Select an unincluded edge incident at p and make it the
new e. Make a = e, x = p, and go to Step 2.

The reason for y = p when no unincluded edges are found incident
at y in Step 2 is the following. At this stage e = (x; y) and all edges
other than it incident at y are included. Suppose y W= p. What we have
traced so far is a path from p to y. All the edges on this path from
p up to x are ‘included’. The number of unincluded edges incident at
y is an even integer, and the present edge e = (x; y) is one of them,
hence there must be at least one more unincluded edge incident at y,
a contradiction to our hypothesis. Hence when the algorithm arrives
at Step 4 we must have y = p, and the elementary cycle being traced
must be complete, and e is the last edge on it.
Each time Step 4 is completed, a new elementary cycle is formed

and inserted into the route, and the set of remaining (i.e., unincluded)
edges forms one or more Eulerian networks. Each time Step 3 or 4 is
carried out, one new edge is ‘included’, so together they occur m = |A|
times in the algorithm. If |N | = n, Step 2 takes at most O(n) effort,
and it is automatically followed by Step 3 or 4. So, with an effort of at
most O(nm), the algorithm is guaranteed to find an Euler route in G.

Comment 1.1 This algorithm for finding an Euler route in an
Eulerian network is due to J. Edmonds and E.L. Johnson [1973]. Their
paper discusses other ways of representing Euler routes, and several
other algorithms for finding Euler routes.

Now consider the case where G is connected, but not Eulerian. So,
the total number of odd degree nodes in G is a positive even number.
Suppose these are 1,. . . , 2p. Let Φ be an ECR that passes lt times
through edge et, t = 1 to m. Obtain the network GΦ by copying the
edge et exactly lt times, for t = 1 to m. Then Φ must be an Euler route
in GΦ, and hence every node in GΦ must be an even degree node. For

94 Ch.1. Definitions and Formulations

t = 1 to m, define bt = 1 if lt is odd, 2 otherwise. Let G̃ be the network
in which the edge set contains exactly bt copies of et for t = 1 to m.
Since lt − bt ≥ 0 and even for each t, G̃ is Eulerian too. Let Φ̃ be an
Euler route in G̃. The length of Φ̃ is

�m
t=1 btct ≤

�m
t=1 ltct = length of

Φ. This clearly implies that there exists an optimum (i.e., minimum
length) ECR in G which passes through each edge of G at most twice.
Hence we consider only such ECRs in the sequel. A minimum length
ECR of this type must minimize the sum of lengths of edges in Ā, the
subset of edges that it passes through twice.

Every odd degree node in G becomes an even degree node, and
every even degree node remains an even degree node when edges in
the repeated set Ā are duplicated in G. By Theorem 1.12, this implies
that the odd degree nodes 1, . . . , 2p can be partitioned into p pairs, say
(i11, i12), . . . , (ip1, ip2), such that there is a path from ir1 to ir2 among
the set of edges Ā, and Ā is the set of edges on these paths. As an
example, consider the ECR 1,e1, 4, e6, 3, e5, 2, e3, 1, e2, 3, e2, 1, e1,
4, e4, 2, e3, 1, in the network in Figure 1.39. In this ECR, the thick
edges {e1, e2, e3} have been traversed twice. This set is the union of
two paths 1,e2, 3 and 2,e3, 1, e1, 4 between the pairs of odd degree
nodes 1, 3 and 2, 4 respectively. In order to minimize the sum of the

e

e
2

3
e4

e
5

e6

1

2

3

4

e
1

Figure 1.39: The thick edges are those traversed twice by the ECR
under consideration.

1.4: Exercises 95

lengths of the edges traversed twice, the path which has been duplicated
between a pair of odd degree nodes should be a shortest path. Also the
partitioning of the odd degree nodes in G into pairs should be done in
such a way that the sum of the lengths of the shortest paths between
the various pairs in the partition is minimized. Hence an optimum
ECR in G can be obtained by the following procedure.

1. Find the shortest paths between all pairs of odd degree nodes in
G. Let P(i, j) be a shortest path of length dij , for i W= j = 1, to
2p. Let D = (dij) be the 2p × 2p shortest path distance matrix
with dii =∞ for all i.

2. Let N̂ = {1, . . . , 2p}, Â = {(i, j) : i, j ∈ N̂ , i W= j},H = (N̂ , Â).
H is the complete undirected network on the set of odd degree
nodes in G. The arc (i, j) ∈ Â corresponds to the shortest path
P(i, j) between the odd degree nodes i, j in G, and we define its
weight to be dij. Find a minimum weight perfect matching in H.
The blossom algorithm discussed in Chapter 10 can be used for
this.

3. If {(i11; i12), . . . , (ip1; ip2)} is a minimum weight perfect match-
ing in H, an optimum pairing for the odd degree nodes in G is
(ir1, ir2), r = 1 to p. Duplicate all the edges along the shortest
paths P(ir1, ir2), r = 1 to p in G, obtaining an Eulerian network,
Ḡ. Find an Euler route in Ḡ. It is an optimum ECR in G.

The chinese postman problem provides an important application
for the blossom algorithms discussed in Chapter 10. Many routing
problems in trash collection, road sweeping, school bus route planning
etc. can be modeled using the chinese postman problem.

1.4 Exercises

1.35 Let G = (N ,A) be a non-Eulerian undirected connected network
with c as the vector of edge lengths. A subset of edges F in G is said
to be a feasible subset if their deletion from G makes each connected
component in the remaining network Eulerian. Discuss an efficient
algorithm for finding a minimum length feasible subset. (S. Biswas)

96 Ch.1. Definitions and Formulations

1.36 Prove that every doubly stochastic matrix, i.e., a feasible solu-
tion of (1.15), can be expressed as a convex combination of assignments.

1.37 Capacity Acquisition Problem A company requires a min-
imum of dh units of warehouse capacity in period h = 1 to n. Capacity
acquired at the beginning of period h and relinquished at the beginning
of period t is said to be acquired for the interval [h, t]. This costs cht
per unit. Let xht denote the units of capacity acquired for the interval
[h, t]. Let yj denote the units of acquired but unused capacity during
period j = 1 to n. Formulate the problem of finding a minimum cost
capacity acquisition to meet the requirements as an LP. Show that this
problem can be transformed into a network flow problem by simple
linear transformations. Do it for n = 4, and draw the corresponding
network. (Veinott and Wagner [1962])

1.38 A company making a single product has a production capacity
of 25,000 tons per period. They have to ship out respectively 15,000,
18,000, 30,000, and 8,000 tons in periods 1 to 4. The expected produc-
tion cost ($/ton) during periods 1 to 4 is 50, 60, 40, and 70 respectively.
The production during a period can either be shipped out in the same
period or stored for later shipment at a storage cost of $2/ton/period,
the charge being imposed on the quantity in storage at the end of the
period. Initial inventory is zero; final inventory at the end of period 4
should be zero too. Formulate the problem of determining an optimum
production storage plan as a transportation problem.

1.39 Application in Marketing Here is a multibrand, multiat-
tribute marketing model. Marketing is replete with examples where
two brands may have the same product attribute values but enjoy very
different market shares, so we include an additional component called
‘brand specific effect’ which measures the overall preference not ex-
plained by the attributes used in the model. This may depend on the
levels or the strategy of the brand’s marketing effort, etc. Let j = 1
to n be the different brands, i = 1 to m a representative sample of
consumers, p = 1 to t the relevant product attributes, yjp = brand
j’s value on the pth attribute, wip = estimated importance weight of
the ith customer to the pth attribute, bij =

�t
p=1wipyjp = preference

1.4: Exercises 97

measure of customer i for brand j, vj = brand specific effect of brand
j, and ci the brand chosen by the ith consumer.

bij
j → 1 2 3
i = 1 9 8 12

2 13 11 15
3 18 13 15
4 16 10 4
5 19 5 3
6 8 6 7

Given the vj, b
I
ij = bij+vj defines the overall preference of consumer

i to brand j. It is reasonable to assume that consumer i would choose
that brand j with the largest bIij , and this choice is not altered by
adding the same additive constant to all the vj. Thus, the vjs can only
be determined up to an additive constant. Given the vj , define si =
max {bIij : j = 1 to n}. The problem is to determine the vj to get the
best fit. Clearly, this requires minimizing

�m
i=1(si − bIi,ci). Show that

this can be done using algorithms for the transportation problem.
Consider the numerical problem in which n = 3, m = 6, c = (ci) =

(1, 1, 2, 2, 2, 3) and bijs are tabulated above. Obtain the best estimates
for (v1, v2, v3) from this data.
(Srinivasan [1979]).

1.40 Mold Allocation Problem in a Tire Plant To make a
tire, one has to set up a “mold” into a general purpose machine called
a “cavity” which is carried out by highly skilled personnel with spe-
cial equipment. Every cavity can produce any type of tire, given the
appropriate mold. Molds are very expensive, as they take 6 months
to prepare, and they usually outlast the product for which they are
designed, and hence are normally converted to another type. Assume
that setups are carried out only at the beginning of each period, and
consider the problem of determining the assignment of molds to cavi-
ties. The following data is given: n = number of periods in the planning

98 Ch.1. Definitions and Formulations

horizon, m = number of mold types, C = number of cavities available,
Tit = number of type i molds available during period t, kt = max. pos-
sible number of setups at the beginning of period t, lit = lower bound
on type i molds in cavities period t, and αit = cost ($) of setup of a type
i mold in a cavity at the beginning of period t. xio are predetermined
nonnegative integer constants that give the initial distribution of molds
in cavities. The decision variables (nonnegative integer variables) are:
xit = number of type i molds in cavities in period t, yit = number of
setups of type i molds performed at the beginning of period t, and zit =
number of takedowns (removal of molds from cavities) of type i molds
performed at the beginning of period t.

Formulate the problem of determining the optimum values of xit, yit, zit
subject to the stated constraints as a linear integer program. Develop
a transformation that permits the reduction of this problem into a
minimum cost flow problem. Carry out this transformation in the nu-
merical problem with m = 2 and n = 3 C = 15, x10 = 6, x20 = 5, and
the following data.

Tit lit αit
kt

i = 1 2 i = 1 2 i = 1 2
period 1 7 7 5 6 100 150 3

2 7 9 5 8 100 175 4
3 6 11 4 10 90 140 5

(Love and Vemuganti [1978])

1.41 Sometimes an activity can only be carried out if other activities
are also carried out. Here is the data on such a situation in which
there are 7 projects each of which can either be completely carried
out or not at all, and only if other specified projects are also carried
out. Formulate the problem of determining which subset of projects
should be carried out to maximize the total net profit, as a 0-1 integer
program, and show how it can be solved using a network flow approach.

1.4: Exercises 99

Project Net Return Project can be carried out
No. from project (million $) only if these other

projects are also carried out
1 10 2
2 −8
3 2 1,5
4 4 2,6
5 −5
6 3
7 2 3

(Williams [1982], and Baker [1984])

1.42 Allocating Oil Wells to Platforms The variable p is the
number of platforms to be built, and w is the total number of produc-
tion wells to be drilled in an oilfield, all with known locations. Plat-
forms have to be built first, the size and cost of each depends on the
number of wells to be drilled from it, and its location. The decision
variable tij is 1 if production well i is assigned to platform j, 0 other-
wise, for i = 1 to w, j = 1 to p, and mj =

�w
i=1 tij is the number of

production wells assigned to platform j. We are given gj(mj) = cost
of building platform j as a function of mj , a piecewise linear convex
function, and cij = cost to drill well i from platform j once it is built,
i = 1 to w, and j = 1 to p. A minimum cost allocation is obtained from
the following problem. Show that this problem can be transformed into
a minimum cost pure network flow problem.

minimize
w3
i=1

p3
j=1

cijtij +
p3
j=1

gj

X
w3
i=1

tij

~

subject to
p3
j=1

tij = 1, i = 1 to w

tij = 0 or 1 for all i, j.

(Divine and Lesso [1972])

1.43 A department in a university has admitted n students in a term.
They have a1 graduate assistantships (GA’s, full tuition + stipend)

100 Ch.1. Definitions and Formulations

and a2 tuition fellowships (TF’s, tuition only) to offer. The variables
p1i , p

2
i , p

3
i denote the probabilities that the ith student accepts the ad-

mission if he is awarded GA, TF, or is not awarded any of these, respec-
tively, estimated by the admissions office based on their background.
Wi denotes a desirability rating given by the department to the ith
student for i = 1 to n. Formulate the problem of selecting the set
of students to be offered GA’s and TF’s, so as to maximize the total
expected desirability rating of the incoming batch (assume that if a stu-
dent is offered some aid and does not accept, then he is lost, and this
aid cannot be offered to someone else). (Chandrasekaran and Subba
Rao [1977])

1.44 Chromosome Classification Karyotying is a process by
which chromosomes are classified into groups by observing features like
size, shape, band structure induced by staining, etc. Suppose there are
n chromosomes to be assigned to m groups, and it is known that the
jth group has bj chromosomes. After observations, it has been esti-
mated that the probability of the ith chromosome belonging to the jth
group is pij, these pij are given. It is required to assign chromosomes to
groups so as to maximize the product of posterior probabilities subject
to achieving correct group totals. Formulate this as a transportation
problem.
(Tso [1986])

1.45 The Single Depot, Unconstrained Number of Vehicles
Bus Scheduling Problem There are n trips to be operated in
a planning interval T , each characterized by its starting and ending
time, starting and ending places, and by its line (company may operate
several lines, and typically incurs a penalty p1$ whenever trips of two
lines are combined into a bus schedule). Assume that trips are ordered
1, . . . , n, by increasing value of starting time. Trip j can follow trip
i in a bus schedule only if the starting time for trip j exceeds the
ending time for trip i plus the driving time from ending place of i to
starting place j computed with a fixed safety margin. All such pairs
are specified, as well as the dead-heading cost, qij , from ending place
of i to starting place of j for each such pair (i, j). Also, D, the cost
incurred by each bus used in the schedule is given. Formulate the

1.4: Exercises 101

problem of forming minimum cost bus schedules as an assignment or
transportation problem. Discuss how this formulation changes if there
is a bound on the maximum number of vehicles to be used. (Gavish and
Schweitzer [1974], Gavish, Schweitzer and Shlifer [1978], Pinto Paixão
and Branco [1987], Bertossi, Carraresi and Gallo [1987])

1.46 The Caterer Problem A caterer has to supply clean napkins
each day over a period of n days. Soiled napkins can be laundered by a
slow process that takes p days at a cost of r

>
= 0 per napkin, or by a fast

process that takes 0 < q < p days and costs d > r per napkin. Also new
napkins can be bought, each at a cost of b > d any day. The demand,
given to be ai napkins on the ith day, i = 1 to n, is to be met at least
cost. For the first q periods, napkins must be purchased since soiled
napkins cannot be laundered quickly enough for reuse. So, initially
a1 + . . .+ aq purchased napkins are needed. Denote the total number

of new napkins purchased by a0+a1+. . .+aq where a0
>
= 0 is treated as

a parameter. Prove that a feasible solution exists iff amin
<
= a0

<
= amax,

where

amin = max

⎧⎨⎩0;
q+h3
j=q+1

aj −
h3
i=1

ai, for h = 1, 2, . . . , n− q
⎫⎬⎭

amax =
n3

j=q+1

aj.

For given a0 satisfying these feasibility conditions, show that the
problem can be formulated as a (1 + n − q) × (n − q + 1) balanced
transportation problem with rows of the array corresponding to 0, day
1, . . . , day n− q, and columns corresponding to day q + 1, . . . , day n,
slack; and variables x0j = number of purchased napkins used on day
j, xij = number of napkins soiled on day i and reused on day j, for
i W= 0, j W= n + 1, xi,n+1 = slack variable. Develop a special direct
method of O(n) computational effort to find an optimum solution of
this transportation problem, based on the concept that slow laundered
napkins are reused at the earliest possible moment, while fast laun-
dering is delayed as much as possible. Solve the numerical problem

102 Ch.1. Definitions and Formulations

corresponding to data, n = 10, q = 2, p = 5, r = 2, d = 4, b = 10, (a0 to
a10) = (3, 7, 12, 2, 6, 9, 6, 13, 8, 14, 6).
Develop a special direct method to obtain optimum solutions for

all integer values of the parameter a0 in its feasibility range, and for
finding the best value for a0. Apply this method to find the optimum
a0 for the numerical problem given above. (Szwarc and Posner [1985]).

1.47 Application in School Planning The variablem is the num-
ber of school districts in a region, which has n schools in the public
school system. For i = 1 to m,ai is the number of students who will
attend the public schools from district i. For j = 1 to n, bj is the
maximum number of students that school j can accommodate (this is
typically the number of classrooms multiplied by the maximum num-
ber of students allowed per class, which is normally set at 25 or so.)
For i = 1 to m, j = 1 to n, cij is the distance between district i and
school j (this is usually the bird’s flight distance between the school
and the demographic center of gravity of the district). It is required
to determine the number of students in each district to be assigned to
each school so that no school is filled beyond its capacity, every stu-
dent gets assigned to a school, and the total distance between home
and school for all students is minimized (it is OK to split a district be-
tween schools, as the districts could be subdivided and renumbered).
Formulate this problem.

1.48 There are m insurance agents in a region divided into n small
localities called blocks. We are given the following information: wj =
expected workload (man-hours per year) in block j, j = 1 to n; dij =
distance of block j to the location of agent i = 1 to m, j = 1 to n; ai
= ideal fraction of workload in region to be assigned to agent i(ai > 0
for all i and

�
ai = 1); ai(1− fi), ai(1 + fi) = lower, upper bounds on

fraction of region’s workload to be assigned to agent i(0 < fi < 1).
Let xij = amount of workload in the block j assigned to agent i and

assume that travel cost of agent i to block j is xijdij . Give a network
flow formulation for assigning workloads to the agents, to minimize the
travel costs of all the agents put together. (Marlin [1981])

1.49 There are r distinct groups of people planning to vacation on
the beach together one night. The ith group has ni people in it, i = 1

1.4: Exercises 103

to r. There are p cars available for the drive, the jth car can seat dj
people, for j = 1 to p. It is required to find a seating arrangement so
that no two members of the same group are in the same car. Formulate
this as a network flow problem.

1.50 Natural Gas Distribution The gas pipeline network consists
of three supply systems, 1, 2 and 3. Supply system 1 consists of two
source nodes with supplies of 500 ft3 of gas each. Supply system 2
has a single source node with a supply of 1,000 ft3, and supply system
3 has two source nodes with supplies of 2,000 and 6,000 ft3. In each
supply system all the gas flows out through a transfer node to which
each source node in that system is connected by a pipeline. There are
two natural gas users in the network. The delivery to user 1 has to
be between 3,000 to 3,500 ft3, and the delivery to user 2 has to be
between 6,000 to 7,000 ft3. User 1 is connected by a direct pipeline
to supply systems 1 and 2, and user 2 is connected likewise to supply
systems 1 and 3. There is also a redistribution node which is connected
by pipeline to each supply system and to each user. Every pipeline
through the redistribution node has a capacity of 3,000 ft3. All other
pipelines in the network have a capacity of 2,000 ft3. Formulate the
problem of minimizing the total flow through the redistribution node
while meeting the delivery obligations.

1.51 Allocation of Contractors to Public Works A region is
geographically divided into r districts. In each district there is public
work to be carried out which has to be contracted out. There are
s1 experienced and s2 inexperienced contractors available. The work
is actually carried out by teams provided by contractors and sent to
the districts for this purpose. For j = 1 to s1 + s2, nj is the maximum
number of teams that the jth contractor can provide. For i = 1 to r and
j = 1 to s1 + s2, cij is the price quoted by the jth contractor to send
one team to district i for doing the work there. Ni is the minimum
number of contractors to be allocated to district i. By policy, each
district must get at least one team from an experienced contractor.
Give a network formulation for the problem of allocating teams from
the contractors to the districts, subject to the above constraints, at
minimum cost. Construct this network formulation for the following

104 Ch.1. Definitions and Formulations

data (cij are in units of $10, 000): r = 5, s1 = 2, s2 = 4, n = (nj) =
(3, 4, 6, 8, 10, 5), N = (Ni)= (2, 3, 4, 2, 3).

c = (cij) =

⎛⎜⎜⎜⎜⎜⎜⎝
35 48 21 33 41 28
56 29 19 22 38 50
45 48 43 41 46 43
65 58 54 59 52 51
76 81 79 80 69 68

⎞⎟⎟⎟⎟⎟⎟⎠
(Cheshire, McKinnon, and Williams [1984])

1.52 Budget Allocation There is a four-level hierarchy in the al-
location of a state’s educational budget. At the top is the state with
its educational budget. The next level consists of the various univer-
sities, or campuses which are separate budget entities. The next level
corresponds to colleges within each university. Finally, the lowest level
corresponds to the departments within each college. Formulate this as
a network flow problem, where the flow represents the budget alloca-
tion to the various units in each level. Each arc in the model will have
lower and upper bounds, where lower bound = minimal requirements,
and upper bound = budget request submitted by the unit administra-
tor. The total budget is constrained by availability of state funds for
education. An objective function which is composed of a weighted av-
erage of the allocations is to be optimized. The weights represent the
relative importance given to the unit by the decision makers (for exam-
ple, the weights may be proportional to the corresponding enrollment
projections).
Discuss the changes to be made in the formulation for determin-

ing the annual budget allocations in a multiyear planning horizon, if
transfers are allowed from one year to the next.

1.53 Industrial Estate Development A country is making a 15-
year plan for industrial land development. There are 17 sites where land
is available to be developed. The parameter ai denotes the maximum
amount of land (acres) available for industrial development at site i;
ci (in thousand $/acre) is the present cost (at the beginning of the
planning horizon) of developing industrial land at site i; and ri (in

1.4: Exercises 105

thousand $/acre) is the discounted revenue collectable over the lease
period for an acre of industrial land leased out at site i. This data is
tabulated below.

i 1 2 3 4 5 6 7 8

ci 130 130 35 31 31 18 87 26
ri 28 28 45 45 28 28 28 28
ai 250 350 32 532 350 60 74 30

i 9 10 11 12 13 14 15 16

ci 17 23 30 22 31 131 65 22
ri 28 28 28 102 113 142 85 113
ai 45 30 102 25 164 1593 321 2133

Sites 1 to 5 are considered highest priority sites. At these sites
there is a requirement that a minimum of 40, 50, 30, 50, and 50 acres
must be developed and leased out in the first 10 years of the planning
horizon. Sites 6 to 11 are at the next priority level. At these sites
there is a requirement that a minimum of 30 acres in each site must be
developed and leased out during the planning horizon. The projected
demand for industrial land development at all sites put together in year
t of the planning horizon is dt acres where dt = 300, 300, 300, 350, 350,
400, 400, 400, 400, 400, 450, 450, 450, 450, and 450, for t = 1 to 15
respectively. Formulate the problem of allocating land at the various
sites for industrial development, over the years of the planning horizon,
subject to the constraints mentioned above, so as to minimize the total
net discounted cost (cost of developing minus the discounted revenue
collected), as a minimum cost network flow problem. (Fong [1980])

1.54 A Minimum Cost Supply-Demand Problem Over an
n−period planning horizon a business person can buy, sell, or hold the
commodity for later sale, subject to the following constraints. In the

106 Ch.1. Definitions and Formulations

ith period, ki
>
= 0 is an upper bound on the amount of commodity

he can buy, di
>
= 0 is an upper bound on the amount of commodity

he can hold till next period, and fi
>
= 0 is a lower bound (because

of commitments made already) on the amount he sells. The buying,

selling and storage costs are ai
>
= 0, bi

>
= 0, ci

>
= 0 respectively in the

ith period. It is required to determine his optimum buying, selling,
holding plan over the planning horizon, in order to maximize the net
total profit. Formulate this as a minimum cost flow problem on an
acyclic network. (Ford and Fulkerson [1962])

1.55 A Transshipment Model for Leveling a Road Bed When
building a road through mountainous terrain, earth has to be redistrib-
uted from high points to low points to produce a relatively level road
bed. The engineer must determine the number of truckloads of earth
to move between various locations along the proposed road for leveling
the route. Thus, high points along the proposed road bed are viewed
as sources of earth, while the low points are correspondingly sinks. A
terrain graph is an undirected network with nodes on it representing
locations at which there are deficits (negative exogenous flow wi) or
surpluses (positive exogenous flow wi), and edges on it representing
the available routes for redistribution of earth, with the cost coefficient
c(e) of edge e representing the traversal cost of that edge. c(e) > 0 and�
wi = 0. A leveling plan is a nonnegative flow vector in this network

that fulfills the requirements at all the nodes. Formulate the problem
of finding a minimum cost levelling plan as a transshipment problem.
Construct this model for the road construction situation described in
Figure 1.40
(Farley [1980])

1.56 Machine Loading Problem There arem products to be pro-
duced on n machines. Each product can be produced on any machine,
but it takes pij units of machine time and costs Cij$ to produce one
unit of product i = 1 to m on machine j = 1 to n. At most bj units of
machine time is available on machine j = 1 to n, and it is required to
produce ai units item i = 1 to m during a period. Formulate the prob-
lem of finding an optimum production plan as a network flow problem.
(Iri, Amari and Takata [1968])

1.4: Exercises 107

3.9 8.7 1.4 1.1 16 3 - 2 1- 8

Figure 1.40: Locations on road bed are marked with circles, with the ex-
ogenous flow amount at that location entered inside the circle. Lengths
of edges are marked on them.

1.57 G = (N ,A) is a given directed network. For each i ∈ N , we
are given nonnegative integers aIi, a

II
i and b

I
i, b
II
i satisfying a

I
i
<
= aIIi and

bIi,
<
= bIIi . It is required to find a subnetwork G of G, satisfying the

property that for each i ∈ N the indegree of i in G is between aIi and
aIIi , and the outdegree of i in between b

I
i and b

II
i . Formulate this as a

flow problem.
Suppose we are also given a vector c of arc cost coefficients in G.

Define the cost of a subnetwork to be the sum of the cost coefficients of
arcs in it. Discuss a formulation for the problem of finding a minimum
cost subnetwork of G subject to the in- and outdegree constraints at
the nodes described above, as a flow problem.

Note 1.1 The corresponding degree constrained subnetwork problem
in undirected networks cannot be reduced to a max-flow problem, but
it can be posed as a matching problem. See Exercise 10.19.

1.58 A medical college has 57 students to be assigned to internships
at facilities over a period of 3 terms. There are 3 classes of facilities, 1)
speciality, 2) rehabilitation, and 3) general/acute. Each student must
intern for one term in a facility of each class. Each facility specifies
the maximum number of interns it can take each term. Each student
is allowed to specify three choices for each class of facility and when
(which of three terms) he or she desires to intern there. The problem is
to assign the students to the facilities for internship in a manner that
maximizes the number of students receiving their preferred facility in

108 Ch.1. Definitions and Formulations

the term they asked for it. Develop an efficient approach for solving
this problem.

1.59 Airline Fueling Problem Consider an n−leg flight for an
airline with S1 as the origin, Sn+1 as the destination, and the ith leg
consisting of a nonstop flight from Si to Si+1, i = 1 to n. We have the
following data: di = normal fuel requirement (tons) for ith leg; ti =
fuel capacity (tons) on this leg based on known load; si = maximum
fuel available (tons) for this plane at Si; ci = $/ton of fuel at Si; gi =
fuel remaining when Si+1 is reached per ton of extra fuel over di carried
at Si. Denoting by yi the tons of fuel purchased at Si; and by xi the
excess fuel in the plane tanks at the point of take-off from Si, i = 1 to
n, formulate the problem of minimizing the cost of fuel for this entire
flight, as a generalized network flow problem. (Queyranne [1982])

1.60 Steel Slab Cutting With A Flame Torch On a rectangular
steel slab a cutting pattern is laid out which is a planar multinetwork. It
is required to execute this cutting pattern using a flame torch. Cutting
always begins at a node. To begin, the torch has to be held at that
node for some time until the flame reaches from the top to the bottom
(called a blowthrough) and then the torch can be moved easily along
any simple path until it is lifted again. The torch cannot travel an
edge a second time. If it is necessary to return to a node after passing
through it once, it is necessary to make another blowthrough at it.
Discuss an algorithm for determining the flame torch route to minimize
the number of blowthroughs needed. What is the optimum objective
value? (Manber and Israni [1984])

1.61 There are n students in a projects course. There are m available
projects, with project i having a capacity of bi students, i = 1 to
m. Each student has to work on precisely one project. If there are
no students to work on a project, it can be dropped. A total of r
supervisors are available. Corresponding to each project a subset of one
or more supervisors who can supervise students working on that project
is specified. The parameter kp is the maximum number of students that
supervisor p can handle, p = 1 to r. Each student specifies a subset
of projects arranged in descending order of preference. The objective

1.4: Exercises 109

is to assign students to projects and supervisors so that each student
gets to work on a project that has his most preferred ranking, as far
as possible. Taking as an objective function the sum of the rankings
of the projects the students work on, formulate the problem of doing
these assignments as a minimum cost flow problem.

1.62 In a tournament there are n players. Every pair of players play
against each other precisely once, and the rules of the game exclude
draws. A vector of nonnegative integers (s1, . . . , sn) is called a score
vector for this tournament, if si, is the number of wins recorded by
the ith player in this tournament, for i = 1 to n. Given a nonnegative
integer vector b = (b1, . . . , bn), it is required to check whether b can be
the score vector in such a tournament. Formulate this as the problem
of finding a feasible flow vector in a capacitated bipartite network.

1.63 G=(N ,A, 0, k, V) is a directed connected single commodity flow
network with V as the vector of exogenous flow amounts at the nodes.
For each (i, j) ∈ A, rij$ is the cost of augmenting the flow capacity on
arc (i, j) by 1 unit. It is required to find the minimum budget necessary
for arc capacity augmentations in G in order to find a feasible flow
vector. Formulate this as a network flow problem.

1.64 Let G= (N ,A) be a directed network. X, Y are nonempty
disjoint subsets of N in G. A⊂ A is said to be an X, Y- separating
arc set in G, if the deletion of the arcs in A leaves no chain from any
node in X to any node in Y in the remaining network. Likewise a
subset of nodes Z ⊂ N\ (X 	 Y) is said to be an X, Y- separating
node set in G, if the deletion of the nodes in Z together with all the arcs
incident at them leaves no chain from any node in X to any node in Y
in the remaining network. Formulate the problem of finding a minimum
cardinality X, Y- separating arc and node sets in G as network flow
problems. Solve these problems for the network in Figure 1.35 with
X={1,2,3}, Y={10,11} using the algorithms discussed in the following
chapters.

1.65 There are n modules each of which has to be assigned to one
of two available processors. For j = 1 to n, cj1, cj2 are the costs of

110 Ch.1. Definitions and Formulations

executing module j on processors 1, 2 respectively. In addition to these
processor costs, there is a cost of communication between modules
assigned to different processors. So, the communication cost between
modules i, j is 0 if both i, j are assigned to the same processor, dij
otherwise. Given cj1, cj2, and dij for all i, j, formulate the problem of
assigning the modules to the two available processors so as to minimize
the total cost (processor costs + communication costs) as a minimum
capacity cut problem in an undirected network. Construct this model
for the problem with n = 4, and the other data given below, and obtain
an optimum solution.

dij for
cj1 cj2 i = 1 2 3 4

j = 1 50 20 x 5 20 0
2 60 30 5 x 34 18
3 11 15 20 34 x 10
4 15 10 0 18 10 x

(Dutta, Koehler, and Whinston [1982], Stone [1977])

1.66 Eulerian Trails in Directed Networks Given a directed
network, an Eulerian trail in it is a circuit that passes through each
arc exactly once. A directed network is said to be Eulerian if there
exists an Eulerian trail in it. Prove that a connected directed network
is Eulerian iff for every node in the network, its in-degree is equal to
its out-degree. Develop a version of the cycle tracing and inserting
algorithm of Section 1 · 3 · 8, to find an Eulerian trail in an Eulerian
directed network. (Ebert [1988])

1.67 Dairy Model A co-operative dairy region has n milk process-
ing factories, with factory j having a capacity of bj KL (Kilolitre)/day
of milk input, j = 1 to n. It has m milk suppliers with supplier i
producing ai KL milk/day, i = 1 to m. Γi is the subset of factories to
which supplier i can take his milk, i = 1 to m. For i = 1 to m, j ∈ Γi,
c1ij is the cost ($/KL) of transporting milk from supplier i to factory j.
Pj is the subset of other factories that factory j can ship oversupply

to, or get supplies from in case of undersupply; j = 1 to n, and c2j1,j2

1.4: Exercises 111

is the cost ($/KL) of shipping between factories j1, j2 : j1 = 1 to
n, j2 ∈ Pj1.
The parameter uj is the number of different process lines at factory

j with ljt, kjt as the lower and upper bounds (KL/day) on input and
c3jt as the cost ($/KL input) of processing at the tth process line t = 1
to uj , j = 1 to n. r is the total number of different dairy products
produced in the region, and gjtw is the yield of product w in product
units/KL milk input into process line t as factory j, j = 1 to n, t = 1
to uj, w = 1 to r.
It is required to measure the output of each product from each

process line in units of KL input milk, according to the average yield
from all process lines at all factories put together, rather than in prod-
uct units, so that all flows can be measured in KL milk units. In
terms of these KL milk equivalent units, d1w, d

2
w are the lower and up-

per bounds for daily production and vw is the return ($/unit) of product
w,w = 1 to r.
All milk supply has to be processed on the day of its production.

Formulate the problem of determining an optimal allocation plan so
as to maximize the net return as a generalized network flow problem.
(Mellalieu and Hall [1983])

1.68 School Assignment In a region, there are m school districts
with a school in each. For i = 1 to m, pi is the number of excess pupils
(if the school there has inadequate capacity, pi = 0 otherwise), and ci
is the excess school capacity (if it does, otherwise ci = 0), in district i.
The distance matrix (dij) between school districts, is given. As far as
possible, all pupils will attend the school in their district. All excess
pupils from a district with inadequate capacity have to be assigned to
a district with excess capacity, but all of them to one school only. (i.e.,
there should be no splitting of excess pupils from a district between
two or more schools).
Formulate the problem of assigning the excess pupils to schools

subject to the no split-constraint, so as to minimize the total distance
travelled by all the students as a 0-1 integer program. Show that
when the integer restrictions or the variables are relaxed, this prob-
lem can be solved as a generalized network flow problem. If the “no-
splitting” constraint can be ignored, show that the problem becomes a

112 Ch.1. Definitions and Formulations

straightforward transportation problem. Construct both these models
for the problem with the following numerical data: m = 7, p = (pi) =
(23, 18, 30, 20, 0, 0, 0), c = (ci) = (0, 0, 0, 0, 45, 50, 30), and develop an
efficient heuristic method based on network models to obtain a reason-
able solution to this problem.

d = (dij) =

to j = 5 6 7
from i = 1 14 23 12

2 30 22 10
3 25 14 37
4 20 26 27

(Bovet [1982])

1.69 Operator Scheduling The day is divided into 48 half-hour
intervals and ai is the number of operators required on duty at the
telephone company switchboard during the ith half-hour of the day
i = 1 to 48. Operators work in shifts called tours. Assume that
each tour has to be a continuous stretch of 6 or 8 half-hour intervals
beginning and ending with any of the half-hours. Let ci1, ci2 be the cost
of the tour per operator beginning with the ith half-hour, of length 3
or 4 hours respectively, i = 1 to 48.
Formulate the problem of determining the number of operators to

hire for each possible tour, so as to minimize the cost of meeting the
requirements, as a minimum cost flow problem. Construct the model
for the following numerical data. Here, the half-hour 1 is 7:00 a.m. to
7:30 a.m.; ai = 12, 20, 28, 46, 86, 158, 186, 200, 200, 200, 200, 200,
198, 198, 198,192, 186, 184, 178, 158, 128, 114, 92, 102, 124, 118, 117,
116, 104, 104, 104, 104, 108, 50, 50, 16, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, for i = 1 to 48; and ci1 = $17, ci2 = $22 for tours beginning with
3rd to 23rd half-hours, ci1 = $20, ci2 = $26 for tours beginning at 24th
to 27th half-hours, ci1 = $25, ci2 = $33 for tours beginning at 28th to
48th half-hours.
Assume now that the total duration of a tour may vary from 2 to

9 hours, and always consists of an integer number of half-hours. Tours
of duration 8 to 9 hours should include two half-hour breaks. Tours
of duration 5 to 71

2
hours should include one half-hour break. Tours

1.4: Exercises 113

of length 41
2
hours or less should consist of a continuous stretch. The

actual timing of the break periods defines a trick. An ideal trick is one
in which the breaks appear between work intervals of equal length. Al-
ternative tricks may be built from the ideal ones by allowing the break
periods to be shifted by one half-hour. Associated with each trick is
a cost, which is given. Given the demand for operators by half-hours,
the problem is to determine the assignment of operators to tricks at
minimum cost. Formulate this problem as a linear integer program-
ming problem. Discuss a heuristic approach for solving this problem
by solving the network flow model (as in (i) above) for an auxiliary
problem where the break periods are ignored temporarily. Then adjust
the demands to accommodate break periods in the generated tours,
which may create additional demand for operators that needs to be
filled again. (Segal [1974])

1.70 Transportation Scheduling In transportation applications,
the more difficult problem is to route or schedule vehicles or aircraft to
carry out the shipping, a combinatorial optimization problem. In this
application there are eight locations, the travel time between location
pairs in Airflying Minutes is given within brackets, and number of units
to be shipped between them is given in the line below it.

Each aircraft has a capacity of 9,000 units. All shipping has to be
completed in one night, starting at 10:00 p.m. and finishing at 5:00
a.m. Each aircraft used may start at any location at 10:00 p.m., and
can finish at any location. The stoptime between arrival and departure
at each location is a fixed 20 minutes independent of the quantities to
be loaded or unloaded or both.

(i) A total of 43,475 units have to be shipped out of location 1. Since
the capacity of a plane is 9,000 units, this implies that the number
of departures from location 1 has to be

>
= 5. Similarly, lower

bounds on the total number of departures from each location, and
the total number of arrivals at each location, can be obtained.
Treating these as the right-hand side constants and the travel
times as the costs, formulate the problem of determining a lower
bound on the total flying minutes needed in this problem (and

114 Ch.1. Definitions and Formulations

hence a lower bound for the number of planes needed for the task)
as a classical transportation problem.

units
to → 1 2 3 4 5 6 7 8 leaving
from
1 x (52) (71) (75) (70) (115) (115) (56)

19052 8244 4209 11970 0 0 0 43475

2 (49) x (38) (45) (56) (80) (80) (85)
25729 x 3637 1871 0 0 0 0 31237

3 (68) (38) x (31) (41) (43) (45) (77)
10044 6703 x 5456 0 5021 9264 0 36488

4 (72) (45) (31) x (70) (40) (37) (90)
2641 2234 667 x 0 6807 3836 0 16185

5 (70) (56) (41) (70) x (85) (60) (36)
0 0 0 0 x 0 0 7860 7860

6 (115) (80) (43) (40) (85) x (24) (120)
229 672 3483 2494 0 x 0 0 6878

7 (115) (80) (45) (37) (60) (24) x (95)
1581 0 7908 0 0 0 x 0 9489

8 (56) (85) (77) (90) (36) (120) (95) x
8010 0 0 0 0 0 0 0 8010

units 48234 28661 23939 14030 11970 11828 13100 7860
arriving

(ii) Discuss an approach (based on heuristics or integer programming
formulations) of taking the optimum solution of the transporta-
tion model in (i); and converting it into actual routes for the
planes, to complete the shipping task subject to the constraints
stated above, using the smallest number of planes.

(Wolters [1979])

1.71 Vehicle Scheduling

(i) A central office (CO) has to make u round trips. Trip r begins at
clock time tr at the CO and returns back at clock time Tr = tr+ar,

1.4: Exercises 115

where ar is the time duration needed to complete trip r and return
to the CO, r = 1 to u. The vehicle assigned to make trip r will
therefore be available for reassignment to another trip after clock
time Tr, if necessary. It is required to find the minimum number
of vehicles needed to carry out all these trips. Formulate this as
a minimum cost network flow problem.

(ii) Consider a generalization of the above problem in which there are
l types of vehicles (small, medium, large, etc.). Vr = {i : type i
vehicle is capable of making trip r}, r = 1 to u. air, andcir are the
time duration needed for a type i vehicle if it makes the rth trip,
and the corresponding cost, i ∈ Vr, r = 1 to u. It is required
to find an assignment of vehicles to trips, so as to minimize the
total cost of making all the trips. Discuss how the formulation in
(i) can be extended into a “modified” network flow problem, to
provide a practical approach for solving this problem.

(Dantzig and Fulkerson [1954], Diez-Canedo and Escalante [1977])

1.72 Matrix with the Consecutive 1’s Property Let A be a 0-1
matrix with the property that in each column all the 1’s are contiguous.
Prove that A is a totally unimodular matrix.

1.73 Let A be an m × n integer matrix and b ∈ IRn. Let P(b) =
{x : Ax <

=, b, x
>
= 0}. Prove that the following are equivalent:(i) A

is totally unimodular,(ii) for each integer vector b and integer r
>
= 1,

every integer vector in P(rb) can be expressed on the sum of r integer
vectors in P(b).
(Baum and Trotter [1978])

1.74 Let matrix D have rank r.

(i) If D is a unimodular matrix, prove that every extreme point of

Dx = d

g
>
= x

>
= 0

is an integer vector whenever d, g are integer vectors of appro-
priate dimension (some or all of the components of g could be
+∞).

116 Ch.1. Definitions and Formulations

(ii) Let A be a matrix of orderm×n, andQ(b) = {x : Ax = b, x >
= 0}.

Prove that A is unimodular iff for any integer vector b, integer
h
>
= 1, and integer vector x̄ ∈ Q(hb), there exist integer vectors

x̄t ∈ Q(b) for t = 1 to h such that x̄ = �h
t=1 x̄

t.

(iii) Let b be an integer vector. If Γ is a subset of IRn, a point x̂ ∈ Γ is
said to be a minimal vector in Γ if there does not exist an x ∈ Γ
satisfying x ≤ x̂. Let D(b) be the matrix whose row vectors
constitute the set of all minimal vectors among the set of integral
vectors in Q(b). Consider the following problems.

(1.24) (1.25)
maximize π e maximize π e
subject to πD(b) ≤ w subject to πD(b) ≤ w

π ≥ 0 π ≥ 0, and integral

where e is the vector of all 1’s. Prove that for every integer
r
>
= 1 and integer vector x̄ ∈ Q(rb), there exist integer vectors

x̄t ∈ Q(b) for t = 1 to r, such that x̄ =
�r
t=1 x̄

t iff for every
integer vector w; the optimum objective values α, β in (1.24),
(1.25) satisfy β = uαJ.
(Baum and Trotter [1977])

1.75 dd is a rooted spanning tree in G = (N ,A). We are given the
following: e is an in-tree arc, i, j, are the parent and son nodes on e.
X = H(dd, j) is the family of node j in dd. X̄ = N\X. Give rigorous
proofs of the following.

(i) For each p ∈X, the predecessor path of p must pass through node
j and actually must include e.

(ii) For each v ∈ X̄, the predecessor path of v does not pass through
node j.

(iii) For any out-of-tree arc in the cut [X, X̄], its fundamental cycle
with respect to dd must include e.

(iv) For any out-of-tree arc both of whose nodes are either in X or in
X̄, its fundamental cycle with respect to dd does not include e.

1.4: Exercises 117

1.76 Let A be a 0-1 matrix. It is said to have unique subsequence (or
precedence) if its rows can be ordered so that all columns with a one in
a particular row have their subsequent, that is next or precedent (i.e.,
previous) one, if it exists, in a unique common row. Notice that in a
matrix with unique subsequence or precedence property, there could be
more than two ones in each column. The following is a 0-1 matrix with
unique subsequence property with the rows in natural order. Prove
that a 0-1 matrix A with unique subsequence or precedence property
is totally unimodular. (Ryan and Falkner [1988])

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 1 1 0 1 1 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 1 0 0 1 0 1 0 1 0 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
1.77 Let G= (N ,A,s̆, t̆) be a connected directed network. Suppose
we are given a cut separating s̆ and t̆ in G as a subset of arcs. Discuss
a procedure for identifying a subset of nodes X ⊂ N such that this
cut is [X, X̄]. Is the choice of X unique? Also, prove that every cut
separating s̆ and t̆ in G is an arc disjoint union of cutsets separating s̆
and t̆.

1.78 Let G= (N ,A,0, k, V) be a connected directed single commodity
flow network with V = (V1, V2, . . ., Vr+1, 0, . . . , 0)

T as the vector of
exogenous flow values at the nodes, where V1 > 0, and V2 to Vr+1 are
all < 0. Let |N | = n, |A| = m; and let K denote the set of all feasible
node-arc flow vectors in G.
Prove that a flow vector f ∈ K is an extreme point of K iff the set

of arcs A(f) = {(i, j) : (i, j ∈ A and 0 < f ij < kij} constitutes a forest
in G. If f is an extreme point of K, prove that it is a nondegenerate
extreme point if the set of arcs A(f) constitutes a spanning tree in G,
degenerate extreme point otherwise.
Let f = (f ij) be an extreme point of K, and CC a simple cycle

in G with an orientation. Define ε+(CC, f),= min{kij − f ij : (i, j)

118 Ch.1. Definitions and Formulations

is a forward arc on CC}, ε−(CC, f) = min{f ij : (i, j) a reverse arc on
CC}, ε(CC, f) = min{ε+(CC, f), ε−(CC, f)}. Let µ(CC) = (µij(CC)) be the
incidence vector of CC given by µij(CC) = 0, if (i, j) is not on CC,+1, if
(i, j) is a forward arc on CC, and −1, if (i, j) is a reverse arc on CC. If
0 < ε(CC, f) < ∞, define the new flow vector f I = f + ε(CC, f)µ(CC).
Prove that f I is an adjacent extreme point of f on K iff the following
condition 1 holds.

Condition 1: The only cycle in the set of arcs in A(f) and CC put
together, is either CC, or CC with its orientation reversed.
Conversely, every adjacent extreme point of f on K is obtained as

f + ε(CC, f)µ(CC) for some simple cycle CC in G satisfying condition 1
and 0 < ε(CC, f) <∞.
If CC is a simple cycle satisfying condition 1 and ε(CC, f) =∞, show

that {f + λµ(CC) : λ
>
= 0} is an extreme half-line of K through f ,

and conversely every extreme half-line of K through f is obtained in
this manner from some simple cycle CC in G satisfying condition 1 and
ε(CC, f) = +∞.
If k =∞, prove that f ∈ K is an extreme point of K iff A(f) is a

tree with the source node 1 as the root, and the sink nodes 2 to r + 1
as terminal nodes.
Let k = ∞ and f, f I be two extreme points of K. Prove that f, f I

are adjacent iff the arcs in A(f I)\A(f) constitute a path which connects
two nodes in N and does not contain any other nodes of N, where N
is the set of nodes on arcs in A(f).
(Gallo and Sodini [1979])

1.79 Let f be a feasible flow vector of value v in the directed single
commodity flow network G= (N ,A,0, k, s̆, t̆, v) with k > 0 and finite.
Prove that f is an extreme flow (i.e., a basic feasible flow vector) iff
in every simple cycle CC satisfying the property that all the arcs in it
carry a positive flow amount in f , there is at least one saturated arc
wrt f .

1.80 Prove that a directed network G= (N ,A) is strongly connected
iff for every ∅ W= X ⊂ N ,X = N\X with X W= ∅, there exists an arc
(i, j) in A with i ∈ X and j ∈ X.

1.4: Exercises 119

1.81 Let G= (N ,A) be a directed connected network. Develop an
O(|A|) algorithm for finding all strongly connected components of G.
(Tarjan [1972])

1.82 Consider a finite Markov chain with transition probability ma-
trix P . It is required to identify all the transient states and classify the
remaining states into the various closed recurrent classes. Formulate
this problem as one of identifying all the strongly connected compo-
nents in a directed network, and develop an efficient algorithm for it.

Comment 1.2 The first paper using a network or graph model is
that of Euler [1736] on the Königsberg bridges problem.
The flow conservation equations (1.18) are also called Kirchhoff ’s

conservation law of flow to honor the pioneering work of G. Kirch-
hoff who formulated them while studying current distribution in elec-
trical networks (in electrical networks, flows satisfying these equations
are said to satisfy Kirchhoff ’s current (or first) law) in 1847. Al-
though current flows in electrical networks have been studied for a long
time, it was not until the 1940’s that network flows were used to model
and study transportation and distribution problems.
The pioneering book on network flows is that of Ford and Fulkerson

[1962], it played a significant role in stimulating research and finding ap-
plications for network flow models in many areas. Other books devoted
to network flows are Adel’son-Vel’ski, Dinic and Karzanov [1975], Bu-
sacker and Saaty [1965], Christofides [1975], Deo [1974], Derigs [1988],
Even [1979], Gondran and Minoux [1984], Hu [1969], Iri [1969], Jensen
and Barnes [1980], Kennington and Helgasson[1980], Lawler [1976],
Minieka [1978], Papadimitriou and Steiglitz [1982], Rockafellar [1984],
Swamy and Thulasiraman [1981], and Tarjan [1983]. The book by
Bodin, Golden, Assad and Ball [1983] deals with applications in rout-
ing. The book by Burkard and Derigs [1980] provides Fortran programs
for the special class of matching and assignment problems.
There are many texts in the related areas of graph theory and its

applications. Among them we list Berge [1962], Bondy and Murthy
[1976], Mayeda [1972], and Wilson [1972]. The book by Lovasz and
Plummer [1986] specializes in matching theory; it contains a nice sec-
tion describing the history of graph theory and network flow theory.

120 Ch.1. Definitions and Formulations

Most of the network problems that we discuss in this book are spe-
cial cases of linear programming problems, and some of the algorithms
discussed are specializations of variants of the simplex method of linear
programming. Among the many books on linear programming, we list
Bazaraa and Jarvis [1977], Chvatal [1983], Dantzig [1963], Gale [1960],
and Murty [1983].
The references listed in this chapter are classified into two parts,

books and research publications. The research publications in the sec-
ond part deal with network models for problems in a variety of ar-
eas, algorithms for computing Euler trails, and the chinese postman
problem. Several of the exercises given above are taken from these
publications.

1.5 References

Books in Network flows and related areas

G. M. ADEL’SON-VEL’SKI, E. A. DINIC, and A. V. KARZANOV, 1975, Flow
Algorithms (in Russian), Science, Moscow.
A. V. AHO, J. E. HOPCROFT and J. D. ULLMAN, 1974, The Design and Analy-
sis of Computer Algorithms, Addison-Wesley, Reading, MA.
A. BACHEM, M. GROTSCHEL and B. KORTE (Eds.), 1982, Bonn Workshop on
Combinatorial Optimization, North-Holland, Amsterdam.
M. S. BAZARAA and J. J. JARVIS, 1977, Linear Programming and Network Flows,
Wiley, NY.
C. BERGE, 1962, The Theory of Graphs, Methuen, London.
L. BODIN, B. GOLDEN, A. ASSAD, and M. BALL, 1983, Routing and Scheduling
of Vehicles and Crews: State of the Art, Special issue of COR, 10, no. 2, Pergamon
Press, NY.
F. BOESCH, 1976, Large Scale Networks: Theory and Design, IEEE Press, NY.
J. A. BONDY and U. S. R. MURTHY, 1976, Graph Theory with Applications,
American Elsevier, NY.
R. E. BURKARD and U. DERIGS, 1980, Assignment and Matching Problems: So-
lution Methods with Fortran Programs, Springer-Verlag, NY.
R. G. BUSACKER and T. L. SAATY, 1965, Finite Graphs and Networks, McGraw-
Hill, NY.
N. CHRISTOFIDES, 1975, Graph Theory; an Algorithmic Approach, Academic
Press, NY.
V. CHVATAL, 1983, Linear Programming, W. H. Freeman & Co. , NY.
G. B. DANTZIG, 1963, Linear Programming and Extensions, Princeton University

1.4: Exercises 121

Press, Princeton, NJ.
N. DEO, 1974, Graph Theory with Applications to Engineering and Computer Sci-
ence, Prentice- Hall, Englewood Cliffs, NJ.
U. DERIGS, 1988, Programming in Networks and Graphs, Lecture notes in Eco-
nomics and Mathematical Systems 300, Springer -Verlag, NY.
S. E. ELMAGHRABY, 1970, Some Network Models in Management Science, Springer-
Verlag, NY.
S. EVEN, 1979, Graph Algorithms, Computer Science press, Potomac, MD.
L. R. FORD and D. R. FULKERSON, 1962, Flows in Networks, Princeton Uni-
versity Press, Princeton, NJ.
D. GALE, 1960, The Theory of Linear Economic Models, McGraw-Hill, NY.
G. GALLO and C. SANDI (Eds.), 1986, Netflow at Pisa, MPS, 26.
M. R. GAREY and D. S. JOHNSON, 1980, Computers and Intractability: A Guide
to the Theory of NP-Completeness, W. H. Freeman & Co., NY, 2nd printing.
M. GONDRAN andM. MINOUX, 1984, Graphs and Algorithms, Wiley-Interscience,
NY.
E. HOROWITZ and S. J. SAHNI, 1978, Fundamentals of Computer Algorithms,
Computer Science Press, Rockville, MD.
T. C. HU, 1969, Integer Programming and Network Flows, Addison-Wesley, Read-
ing, MA.
M. IRI, 1969, Network Flow, Transportation and Scheduling, Academic Press, NY.
P. A. JENSEN and J. W. BARNES, 1980, Network Flow Programming, Wiley, NY.
J. KENNINGTON and R. HELGASON, 1980, Algorithms for Network Program-
ming, Wiley, NY.
D. KLINGMAN and J. M. MULVEY, (Eds.), 1981, Network Models and Associ-
ated Applications, MPS,15.
E. L. LAWLER, 1976, Combinatorial Optimization: Networks and Matroids, Holt,
Rinehart, and Winston, NY.
L. LOVASZ and M. D. PLUMMER, 1980, Matching Theory, North-Holland, Am-
sterdam.
W. MAYEDA, 1972, Graph Theory, Wiley-Interscience, NY.
E. MINIEKA, 1978, Optimization Algorithms for Networks and Graphs, Marcel
Dekker, NY.
K. G. MURTY, 1976, Linear and Combinatorial Programming, Krieger, Malabar,
FL.
K. G. MURTY, 1983, Linear Programming, Wiley, NY.
C. H. PAPADIMITRIOU and K. STEIGLITZ, 1982, Combinatorial Optimization:
Algorithms and Complexity, Prentice-Hall, Englewood Cliffs, NJ.
R. T. ROCKAFELLAR, 1984, Network Flows and Monotropic Optimization, Wiley-
Interscience, NY.
M. N. S. SWAMY and K. THULASIRAMAN, 1981, Graphs, Networks, and Algo-
rithms, Wiley-Interscience, NY.
R. E. TARJAN, 1983, Data Structures and Network Algorithms, CBMS-NSF Re-
gional Conference Series in Applied Math. SIAM, 44.

122 Ch.1. Definitions and Formulations

R. J. WILSON, 1972, Introduction to Graph Theory, Oliver and Boyd, Edinburgh.

Other References

B. M. BAKER, Sept. 1984, “A Network Flow Algorithm for Project Selection,”

JORS, 35, no. 9 (847-852).

K. R. BAKER, 1976, “ Work Force Allocation in Cyclical Scheduling Problems: A

Survey,” ORQ, 27, no. 1,ii (155-167).

M. L. BALINSKI, 1970, “On a Selection Problem,” MS, 17(230-231).

S. BAUM and L. E. TROTTER, Jr., 1978, “Integer Rounding and Polyhedral

Decomposition for Totally Unimodular Systems,” (15-23) in R. Henn, B. Korte,

and W. Oettli (Eds.), Arbeitstagung- über Operations Research und Optimierung,

Springer-Verlag, Berlin.

A. A. BERTOSSI, P. CARRARESI, and G. GALLO, 1987, “On Some Matching

Problems Arising in Vehicle Scheduling Models,” Networks, 17, no. 3(271-281).

J. BOVET, Aug. 1982, “Simple Heuristics for the School Assignment Problem,”

JORS, 33, no. 8(695-703).

R. CHANDRASEKARAN and S. SUBBA RAO, May-June 1977, “A Special Case

of The Transportation Problem,” OR, 25, no. 3(525-528).

M. CHESHIRE, K. I. M. McKINNON, and H. P. WILLIAMS, Aug. 1984, “ The

Efficient Allocation of Private Contractors to Public Works,” JORS, 35, no. 8(705-

709).

G. B. DANTZIG and D. R. FULKERSON, 1954, “Minimizing the Number of

Tankers to Meet a Fixed Schedule,” NRLQ, 1(217-222).

M. D. DIVINE and W. G. LESSO, April 1972, “Models for the Minimum Cost

Development of Oil Fields,” MS, 18, no. 8(B-378-387).

J. M. DIEZ-CANEDO and O. M-M. ESCALANTE, 1977, “A Network Solution to

a General Vehicle Scheduling Problem,”EJOR, 1(255-261).

R. C. DORSEY, T. J. HODGSON, and H. D. RATLIFF, 1975, “A Network Ap-

proach to a Multi-facility Multi-product Production Scheduling Problem Without

Back Ordering,” MS, 21(813-822).

A. DUTTA, G. KOEHLER, and A. WHINSTON, Aug.1982, “On Optimal Alloca-

tion in a Distributed Processing Environment,” MS, 28, no. 8(839-853).

J. EBERT, June 1988, “Computing Eulerian Trails,” IPL, 28, no. 2(93-97).

J. EDMONDS and E. JOHNSON, 1973, “Matching, Euler Tours and the Chinese

Postman’s Problem,” MP, 5(88-124).

L. EULER, 1736, “Solutio Problematis ad Geometriam Situs Pertinentis,” Com-

1.4: Exercises 123

mun. Acad. Sci. Imp. Petropol., 8(128-140): Opera Omnia(1), Vol. 7.

A. M. FARLEY, July 1980, “Levelling Terrain Trees: A Transshipment Problem,”

IPL, 10, nos. 4/5(189-192).

C. O. FONG, Oct. 1980, “Planning for Industrial Estate Development in a Devel-

oping Economy,” MS, 26, no. 10(1061-1067).

A. GALLO and C. SODINI, 1979, “Adjacent Extreme Flows and Application to

Minimum Concave Cost Flow Problems,” Networks, 9(95-121).

B. GAVISH and P. SCHWEITZER, 1974, “An Algorithm for Combining Truck

Trips,” TS, 8(13-23).

B. GAVISH, P. SCHWEITZER and E. SHLIFER, 1978, “Assigning Buses to Sched-

ules in a Metropolitan Area,” COR, 5(129-138).

P. R. HALMOS and H. E. VAUGHAN,1950, “The Marriage Problem,” American

Journal of Mathematics, 72(214-215).

I. HELLER and C. B. TOMPKINS, 1958, “Integral Boundary Points of Convex

Polyhedra,” (247-254) in H. W. Kuhn and A. W. Tucker (Eds.), Linear Inequalities

and Related Systems, Princeton University Press, Princeton, NJ.

A. J. HOFFMAN and J. B. KRUSKAL, 1958, “Integral Boundary Points of Convex

Polyhedra,” (223-246)in H. W. Kuhn and A. W. Tucker (Eds.), Linear Inequalities

and Related Systems, Princeton University Press, Princeton, NJ.

M. IRI, S. AMARI, and M. TAKATA, 1968, “Algebraical and Topological Theory

and Methods in Linear Programming with Weak Graphical Representation,” (421-

464) in K. Kondo (Ed.), RAAG Memoirs of the Unifying Study of Basic Problems

in Engineering and Physical Sciences by Means of Geometry, 4, G-iX, Gakujutsu

Bunken Fukyukai, Tokyo.

W. JACOBS, 1954, “The Caterer Problem,” NRLQ, 1(154-165).

R. R. LOVE, Jr., and R. R. VEMUGANTI, Jan.-Feb. 1978, “The Single Plant

Mold Allocation Problem with Capacity and Changeover Restrictions,” OR, 26,

no. 1(159-165).

T. L. MAGNANTI and R. T. WONG, 1984, “Network Design and Transportation

Planning: Models and Algorithms,” TS, 18(1-56).

U. MANBER and S. ISRANI, 1984, “Pierce Point Minimization and Optimal Torch

Path Determination in Flame Cutting,” Journal of Manufacturing Systems, 3, no.

1(81-89).

P. G. MARLIN, 1981, “Application of the Transportation Model to a Large Scale

Districting Problem,” COR, 8, no. 2(83-96).

P. J. MELLALIEU and K. R. HALL, June 1983, “An Interactive Planning Model

124 Ch.1. Definitions and Formulations

for the New Zealand Dairy Industry,” JORS, 34, no. 6(521-532).

E. MINIEKA, July 1979, “The Chinese Postman Problem for Mixed Networks,”

MS, 25 no. 7(643-648).

J. PINTO PAIXÃO and I. M. BRANCO, 1987, “A Quasi-Assignment Algorithm

for Bus Scheduling,” Networks, 17, no. 3(249-269).

M. QUEYRANNE, 1982, “The Tankering Problem,” CBA Working Paper Series,

University of Houston, Houston.

D. M. RYAN and J. C. FALKNER, June 1988, “On the Integer Properties of

Scheduling Set Partitioning Models,” EJOR, 35, no. 3(442-456).

J. RHYS, Nov. 1970, “A Selection Problem of Shared Fixed Costs and Network

Flows,” MS, 17, no. 3(200-207).

M. SEGAL, July-Aug. 1974, “The Operator Scheduling Problem: A Network Flow

Approach,” OR, 22, no. 4(808-823).

V. SRINIVASAN, Jan.1979, “Network Models for Estimating Brand-Specific Ef-

fects in Multi-Attribute Marketing Models,” MS, 25, no. 1(11-21).

H. S. STONE, Jan. 1977, “Multiprocessor Scheduling with the Aid of Network

Flow Algorithms,” IEEE Transactions on Software Engineering, SE-3(85-93).

W. SZWARC and M. E. POSNER, Nov.-Dec. 1985, “The Caterer Problem,” OR,

33, no. 6(1215-1224).

F. B. TALBOT and J. H. PATTERSON, July 1978, “ An Efficient Integer Program-

ming Algorithm with Network Cuts for Solving Resource Constrained Scheduling

Problems,” MS, 24, no. 11(1163-1174).

R. E. TARJAN, 1972, “Depth-First Search and Linear Graph Algorithms,” SIAM

Journal of Computing, 1(146-160).

M. TSO, 1986, “Network Flow Models in Image Processing,” JORS, 37, no. 1(31-

34).

A. F. VEINOTT, Jr., and H. M. WAGNER, 1962, “Optimal Capacity Scheduling-

I and II,” OR, 10, no. 4(518-546).

H. P. WILLIAMS, 1982, “Models with Network Duals,” JORS, 33(161-169).

J. A. M. WOLTERS, 1979, “Minimizing the Number of Aircraft for a Transporta-

tion Network,” EJOR, 3(394-402).

Index

For each index entry we provide
the page number where it is de-
fined or discussed first.

Acyclic numbering 47
APEX 35
Arcs 2

Forward 20
Reverse 20

Arborescence 39
Assignment 59

BFS 19
Degenerate 19
Nondegenerate 19

Backward trace 21
Basis inverse 66

Computing of 66
Unisign property 68

Bipartite network 44
Bipartition 44
Blocking property 28

Chain 28
Path 26

Branching 39
Breadth first search 42

Caterer problem 101
Chain 20

Elementary 21
Simple 21

Chinese postman 88
Circuit 21
Column generation 78
Computational complexity 9
Complementary slackness 20
Connected components 23

Strongly 23
Cotree 31
Cuts 26

Forward arcs of 27
Reverse arcs of 27

Cutset 27
Fundamental 37

Cycle 21
Elementary 21
Fundamental 31
Oriented 22
Residual 73
Simple 21

DFS 42
Numbering 42

Dantzig property 65
Degree 3

In 3
Out 3

Depth first search 42

125

126 Ch. 1. Definitions and Formulations

Digraph 5
Disconnecting set 26
Distance 37
Depth 37
Descendents 35
Dual feasibility 18

ECR 88
Edges 2

Covering route 88
Euler 6, 88

Circuit 6
Network 88
Route 6, 88

Exogenous flow 62

FAC 70
FAP 69
Feasible circulation 73
Flow augmenting 69

Chain 70
Path 69

Flow conservation 61
Flow vector 61

Arc-chain 74
Blocking 70
Maximum value 62
Node-arc 24, 61
Value of 61

Forest 28

Graph 5

Head node

Incidence matrices 47

Node-arc 47
Fundamental cycle-arc 55
Intree arc-Funda. cycle 55
Node-edge 56

Incidence vector 55
Incident 2

Into 2
Out of 2

Indices 31
Elder brother 31
Younger brother 31
Predecessor 31
Successor 31

Königsberg bridges 6

Labeling algorithms 22
Leaf 29

arc 29
Edge 29
Node 29

Matching 59
Multicommodity flow 63
Multigraph 5

Network 2
Acyclic 46

Directed 3
Generalized 86
Mixed 3
Pure 86
Residual 70
Undirected 3

Nodes 2
Ancestor 34

Index for Ch. 1 127

Capacities 26, 28
Descendent 34
Destination 20
End 29
Intermediate 25
Labels 31
Leaf 29
Origin 20
Parent 32, 35
Pendant 29
Prices 68
Root 32
Son 32, 35
Source 25
Sink 25
Terminal 29
Transit 25

Parallel lines 3
Partial network 3
Partitions of variables 19
Path 20

Predecessor 34
Primal feasibility 20
Predecesssor 21, 35

Immediate 32
Index 21, 31
Label 21
Path 34

Residual 62, 70, 72
Arc 70
Capacity 62, 69, 73
Network 72

Routing application 88

Saturated 62
Self-Loops 3
Star 4

Forward 4
Reverse 4

Subnetwork 3

Tail node 2
Tension 69
Thread 37
Topological ordering 47
Transhipment 81
Tree 28

Breadth first 42
Depth first 42
Growth 40
In 39
In-tree arc of 31
Labels 31
Out 39
Out of tree arc of 31
Rooted 32
Spanning 28
Trivial 29

Triangular 49

Unimodular 54
Totally 52

Unisign property 68

