
Contents

10 Blossom Algorithms for 1-Matching/Edge Covering Prob-
lems in Undirected Networks 669
10.1 The 1-Matching Problems 681

10.1.1 Blossom Algorithm for the Maximum Cardinal-
ity Matching Problem 714

10.1.2 The Minimum Cost Perfect Matching Problem . 718
10.1.3 The Minimum Cost Matching Problem 746
10.1.4 The Convex Hulls of Matching and Perfect Match-

ing Vectors . 753
10.1.5 Other Algorithms for Minimum Cost Matching

Problems . 754
10.1.6 Integer Valued Optimum Dual Solutions 755

10.2 1-Edge Covering Problems 757
10.2.1 Minimum Cost Edge Covers 760

10.3 Minimum Cost 1-Matching/Edge Coverings 779
10.4 The Minimum Cost 1-M/EC Problem with Specified

Cardinality . 807
10.5 Degree Constrained Subnetworks,

b-Matching Problems, and the
General Matching Problem 808

10.6 Exercises . 809
10.7 References . 820

i

ii

Chapter 10

Blossom Algorithms for
1-Matching/Edge Covering
Problems in Undirected
Networks

In this chapter we consider only undirected networks. Let G = (N ,A, c =
(cij)) be a given undirected network, with c as the vector of edge weights
or edge cost coefficients, and |N | = n, |A| = m. There may be parallel
edges, but we assume that there are no self loops or isolated nodes in
G. Each cij could be positive, 0, or negative. As defined in Section
1.2.2, a matching (or 1-matching to be specific, also called an
independent set of edges) in G is a subset of edges M ⊂ A that
contains at most one edge incident at node i, for each i ∈ N . The “1”
in the name “1-matching” refers to the fact that the degree in M of
every node is required to be

<
= 1. Hence, every pair of distinct edges

in a matching are node disjoint. In Figure 10.1, the set of thick edges
is a matching. The cardinality of a maximum cardinality matching in
G is known as the edge independence number of G, clearly this is
<
= n/2. The cost of a matching M is defined to be

�
(cij : over (i; j) ∈

M).

A perfect matching (or perfect 1-matching to be specific, also
called a one factor) in G is a matching M that contains exactly one

669

670 Ch. 10. Matching and Edge Covering Problems

edge incident at each i ∈ N . If a perfect matching M exists in G,
n must be even, and |M| = n/2. The network in Figure 10.1 has 12
nodes, and it has the wavy perfect matching.

When referring to a matching M, edges in it are called matching
edges, and those not in it are called nonmatching edges. A node i
is said to be a matched node in M if M contains an edge incident
at i, or an unmatched node wrt M otherwise. So, M is a perfect
matching iff there are no unmatched nodes wrt it. If, (i; j) ∈M, nodes
i, j are called mates of each other in M.

The algorithm for finding a minimum length postman’s route (an
ECR) in an undirected network G discussed in Section 1.3.8 required
a minimum cost perfect matching on the complete undirected network
H defined on the set of odd degree nodes in G. This is a very impor-
tant application of a matching problem in routing. The minimum cost
perfect matching problem is also used in an algorithm for finding a
near optimum tour whose cost is guaranteed to be no more than 50%
greater than the cost of an optimum tour in the Euclidean distance
traveling salesman problem, see Christofides [1976]. For other appli-
cations of matching problems see Fujii, Kasami, and Ninomiya [1969],
and Montreuil, Ratliff, and Goetschalckx [1987].

We will discuss efficient primal-dual algorithms called blossom al-
gorithms for several different types of matching problems, themaxi-
mum cardinality matching problem, theminimum cost perfect
matching problem, the problem of finding aminimum cost match-
ing among all matchings, and the parametric matching problem
of finding a minimum cost matching among all matchings of cardinality
γ treating γ as an integer parameter varying between 1 and un/2J. To
solve a maximum weight matching problem wrt an edge weight
vector, define the edge cost vector to be the negative of the edge weight
vector, and then find the minimum cost matching subject to the same
conditions. Both problems have the same set of optimum matchings,
and the minimum cost matching algorithms are shown to work for ar-
bitrary cost vectors.

A subset of edges E ⊂ A is said to cover the nodes in G if each
node in N is incident to at least one edge in E, and such a set is called
an edge cover or 1-edge cover to be specific, or a dominating

671

Figure 10.1: The symbols
>
=,

<
=,=, 0 inside the nodes identify the subset

N >
=,N <

=,N=,N 0 to which they belong. The set of thick edges is a 1-
M/EC.

edge set in G because the edges in E cover or dominate all the
nodes. For the network in Figure 10.1, the set of dashed edges is an
edge cover. A matching is an edge cover iff it is a perfect matching.
Since we assumed that there are no isolated nodes in G, A itself is an
edge cover in G. We will discuss efficient algorithms to find minimum
cardinality edge covers, and minimum cost edge covers.
Another type of covers usually discussed in graph theory are node

covers. These are subsets of nodes X ⊂ N that cover all the edges,
i.e., every edge in A is incident to at least one node in X. From Exer-
cise 1.28 we know that the node-edge incidence matrix of an undirected
network is totally unimodular iff the network is bipartite. Because of
this property, we can solve minimum cost node cover problems in G
by linear programming methods if G is bipartite. However, if G is not
bipartite, i.e., if it contains odd cycles, to find either a minimum cardi-
nality or minimum cost node cover, are difficult problems for which no
polynomially bounded algorithms are known. In contrast, in a general
undirected network a minimum cost edge cover can be found with a
computational effort of at most O(n3) using the blossom algorithms
discussed in this chapter. We do not discuss any algorithms for node
covers.

1-Matching/Edge Coverings

Let (N <
=,N=,N >

=,N 0) be a given partition of the node set N ,

672 Ch. 10. Matching and Edge Covering Problems

=
<

=

=
>

=
>

=
>

==

=
<

=
<

0

0 0

Figure 10.2: The symbols
>
=,

<
=,=, 0 inside the nodes identify the subset

N >
=,N <

=,N=,N 0 to which they belong. The set of thick edges is a 1-
M/EC.

where some of these subsets may be empty. A subset of edges E ⊂ A
is called a 1-matching/edge covering or 1-M/EC in short, wrt the

partition (N <
=,N=,N >

=,N 0) of N if -

every node i ∈ N <
= is incident to at most one edge in E

every node i ∈ N= is incident to exactly one edge in E

every node i ∈ N >
= is incident to at least one edge in E.

There are no constraints on the degrees of nodes in N 0 in E. The
notation for the subsets in the partition of N is very suggestive. See
Figure 10.2. One can easily see that 1-matching corresponds to N =

N <
=,N= = N >

= = N 0 = ∅; 1-perfect matching corresponds to N =

N=,N <
= = N >

= = N 0 = ∅; and 1-edge covering corresponds to N =

673

N >
=,N <

= = N= = N 0 = ∅. Hence all these are special cases of 1-M/EC.
We discuss efficient primal-dual blossom algorithms for the minimum
cost 1-M/EC problem.
Let E ⊂ A be an arbitrary subset of edges in G. Its incidence vector

is the 0-1 vector xE = (xEij) defined on A, where xEij = 1 if (i; j) ∈ E,
0 otherwise. Conversely, given a 0-1 vector x = (xij) defined on A, it
is the incidence vector of (and is therefore said to correspond to) the
subset of edges Ex = {(i; j) : xij = 1}.
A 0-1 vector x = (xij) defined on A is said to be a matching

vector, perfect matching vector, edge covering vector, or 1-
M/EC vector, if it is the incidence vector of a matching, perfect
matching, edge covering, or 1-M/EC, respectively.
In this chapter an edge vector in G always refers to a 0-1 vector

x = (xij) defined on A. The variable xij associated with edge (i; j) is
known as the decision variable associated with that edge in the
vector x. Given the edge vector x, we define for each i ∈ N

x(i) =
3
(xij : over j such that (i; j) ∈ A) (10.1)

Thus an edge vector x is

a matching vector iff x(i)
<
= 1, for each i ∈ N

a perfect matching vector iff x(i) = 1, for each i ∈ N
an edge covering vector iff x(i)

>
= 1, for each i ∈ N(10.2)

a 1-M/EC vector wrt parti-

tion (N <
=,N=,N >

=,N 0)
iff x(i)

⎧⎪⎪⎨⎪⎪⎩
<
= 1, for i ∈ N <

=

= 1, for i ∈ N=

>
= 1, for i ∈ N >

=

An Application of the Minimum Cost 1-M/EC
Problem in Integer Programming

Consider the following pure 0-1 integer programming problem

Minimize cy

674 Ch. 10. Matching and Edge Covering Problems

subject to Ay e (10.3)

yj = 0 or 1 for all j

where A = (aij) is a 0-1 matrix of order p× q, e is the column vector
of all 1’s in IRq, and denotes the vector of either

<
=,=, or

>
= for

each constraint. The well known set covering problem with many ap-
plications in airline crew scheduling, facility location, vehicle routing,
scheduling, etc., is a special case of (10.3) when consists of all

>
=

symbols. (10.3) has many applications.

First consider the case in which there are at most two nonzero
entries in each column of A. In this case, (10.3) is a 1-M/EC problem.
To see this, let N = {1, . . . , p} if each column of A contains exactly
two nonzero entries, N = {1, . . . , p, p+1} if some columns of A contain
only one nonzero entry. For i = 1 to p, node i in N is associated with
constraint i in the problem. Associate each column of A with an edge.
If A.j contains only one nonzero entry, in row i say, associate it with
the edge (i; p + 1) and make the cost of this edge equal to cj. If A.j
contains two nonzero entries; in rows h and w say; associate it with the
edge (h;w) and make the cost of this edge equal to cj. Let A be the

set of q edges associated with the columns in A. Define N <
=,N=,N >

=

to be the set of rows i = 1 to p in which the entry in

is
<
=,=,

>
= respectively. DefineN 0 = ∅ if every column ofA contains two

nonzero entries, or = {p+1} if there are some columns of A with a single
nonzero entry. Let G = (N ,A). Then, it can be verified that a min-
imum cost 1-M/EC vector in G wrt the partition (N <

=,N=,N >
=,N 0)

of N is an optimum solution of (10.3) and vice versa, in this case. As
an example consider the following instance of (10.3). Each column of
the coefficient matrix contains at most two nonzero entries among the
constraints. So, this instance is equivalent to a 1-M/EC problem. The
corresponding network, constructed as mentioned above, is given in
Figure 10.3. The variable yj in the problem corresponds to the edge
with cj marked on it in Figure 10.3, and cj is the cost of this edge in
the 1-M/EC problem.

Now consider the general case where there are columns in A with 3
or more nonzero entries. The best known methods for solving (10.3)

675

>
=

<
=

<
=

=

=

1 23

4

5

6 7

8

c
2

c
1

c
3

c
4

c
5

c
6

c
7

c
8

c
9 c

10

>
=

>
=

Figure 10.3: Node i is associated with constraint i. The symbol
>
=,=,

<
=

inside a node represents the type of constraint associated with it, and

the subset N >
=,N=,N <

= to which it belongs.

Constraint y1 y2 y3 y4 y5 y6 y7 y8 y9 y10
1 1 1 1

>
= 1

2 1 1 1
<
= 1

3 1 1 1 1
<
= 1

4 1 1 = 1
5 1 1 = 1

6 1 1
>
= 1

7 1 1
>
= 1

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 Min.

in this case are partial enumeration methods known as branch and
bound methods (see Murty [1976 of Chapter 1]). A basic operation in
this method is the bounding operation whose main function is to com-
pute a lower bound for the minimum objective value in the problem.
There is a lower bounding strategy for (10.3) based on the minimum

676 Ch. 10. Matching and Edge Covering Problems

cost 1-M/EC problem. It consists of identifying a subset I ⊂ {1, . . . , p},
so that every column of A contains at most two nonzero entries among
rows in the subset I. There may be many subsets I with this property,
the best among these is one with as large a cardinality as possible. In
branch and bound methods, a subset I like this is initially selected by
inspection, maximizing its cardinality to the extent possible. Once I
is selected, constraints in it are said to be included constraints, and
those outside it are called unincluded constraints. In the candidate
problems generated after one or more branching operations, the corre-
sponding set of included constraints is obtained automatically through
the branching strategy.
The lower bounding strategy relaxes the unincluded constraints us-

ing Lagrangian relaxation. Let Ī = {1, . . . , p}\ I; AI, AĪ the submatri-
ces of A consisting of all the rows in I, Ī respectively; and eI, eĪ the
subvectors of e corresponding to I, Ī respectively. Let uĪ = (ui : i ∈ Ī)
be a vector of Lagrange multipliers associated with the unincluded con-
straints satisfying

ui

⎧⎪⎪⎨⎪⎪⎩
<
= 0, if the ith constraint is

<
=

>
= 0, if it is

>
=

unrestricted, if it is =

(10.4)

Then the relaxed problem is

Minimize L(y, uĪ) = cy − uĪ(AĪy − eĪ)
subject to AIy I eI (10.5)

y is a 0, 1 vector

where I is the subvector of the original corresponding to the con-
straints in I. In (10.5), the ui for i ∈ Ī are given constants satisfying
(10.4), and only the y are the decision variables. Since each column
in AI has at most two nonzero entries, (10.5) can be solved directly
as a 1-M/EC problem as discussed above. It can be shown that the
optimum objective value in (10.5) is a lower bound for that in (10.3)
for any uĪ satisfying (10.4). In the branch and bound method one uses
a subgradient optimization procedure to select a uĪ satisfying (10.4) to

677

make the optimum objective value in (10.5) as large as possible, in or-
der to get a high quality lower bound for the optimum objective value
in (10.3), see Chapter 15 in Murty [1976 of Chapter 1].

Eliminating Parallel Edges

In the 1-M/EC problem associated with a partition of nodes (N <
=,

N=,N >
=,N 0) of N , an optimum solution set of edges can contain at

most one edge joining a pair of nodes i, j with i ∈ N <
= ∪ N= and

j ∈ N . Hence for each such pair of nodes, if there are parallel edges
joining them, keep only one of these parallel edges corresponding to the

minimum cost and delete all the rest. IfN >
=∪N 0 W= ∅, consider a pair of

nodes i, j in this set. If there are parallel edges joining this pair, define
U(i; j) to be the subset of these parallel edges consisting of all of them

with cost coefficient
<
= 0 if some of them belong to this category, or

the one associated with the minimum cost among these parallel edges
if all of them have cost coefficients > 0. Replace all the parallel edges
with a single edge (i; j) representing the set of parallel edges U(i; j)
in the original network, and make its cost coefficient equal to the sum
of the original cost coefficients of edges in U(i; j). If this edge (i; j) is
contained in an optimum 1-M/EC in the transformed network, replace
it with the set of parallel edges U(i; j) to get an optimum 1-M/EC in
the original network. So, in the sequel we assume that the network G
on which our problems are defined contains no parallel edges.

The Minimum Cost 1-M/EC Problem

The minimum cost 1-M/EC problem in the network G = (N ,A, c)
with the partition (N <

=,N=,N >
=,N 0) of N , is the following problem

(10.6), (10.7); and all the matching, edge covering problems that we
consider are special cases of this problem.

The coefficient matrix of the variables in (10.6) is a submatrix ofthe
node-edge incidence matrix of G. First consider the case where G is bi-
partite. In this case, the coefficient matrix in (10.6) is totally unimod-
ular (Exercise 1.28) and all the BFSs of (10.6) are themselves integer
vectors without even the integer constraint (10.7). Hence we can ignore

678 Ch. 10. Matching and Edge Covering Problems

1

2

3

Figure 10.4:

the integer restriction (10.7) and solve (10.6) as a continuous variable
LP by any algorithm that is guaranteed to terminate with an optimum
BFS when feasible solutions exist, and this provides an optimum so-
lution satisfying (10.7) automatically. Thus all these problems can be
solved directly by linear programming algorithms (for example, vari-
ants of the primal-dual Hungarian method of Chapter 3) in the case
when G is bipartite.

Minimize
3
(cijxij : over (i; j) ∈ A)

Subject to x(i)

⎧⎪⎪⎨⎪⎪⎩
<
= 1, for i ∈ N <

=

= 1, for i ∈ N=

>
= 1, for i ∈ N >

=

(10.6)

0
<
= xij

<
= 1 for all (i; j) ∈ A

and xij integer for all (i; j) ∈ A (10.7)

Now consider the case where G is not bipartite, i.e., it contains some
odd cycles. In this case (10.6) may have extreme point solutions which
violate (10.7); so (10.6), (10.7) is a genuine integer programming prob-
lem. As an example, consider (10.8), (10.9), the minimum cost perfect
matching problem in the network in Figure 10.4, with all edge cost
coefficients equal to −1.

Minimize − x12 − x13 − x23

679

subject to x12 + x13 = 1

x13 + x23 = 1 (10.8)

x12 + x23 = 1

x12, x13, x23
>
= 0

x12, x13, x23 integer (10.9)

Ignoring (10.9), the unique optimum solution of (10.8) is x = (x12,
x13, x23)

T = (1/2, 1/2, 1/2)T , which is a noninteger BFS of (10.8). Ac-
tually, (10.8), (10.9) together have no feasible solution.
Again consider the minimum cost edge covering problem in the

network in Figure 10. 4, with a cost coefficient of 1 for each edge. This
problem is

Minimize x12 + x13 + x23

subject to x12 + x13
>
= 1

x13 + x23
>
= 1 (10.10)

x12 + x23
>
= 1

0
<
= x12, x13, x23

<
= 1

x12, x13, x23 integer (10.11)

It can be verified that x = (1/2, 1/2, 1/2)T with an objective value
of 3/2, is again the unique optimum solution of (10.10) without (10.11).
The optimum objective value in (10.10), (10.11) together is 2. These
examples indicate that matching and edge covering problems in nonbi-
partite networks are nontrivial integer programs. The thing that makes
them nontrivial is the presence of odd cycles in nonbipartite networks.
The approach taken to solve these integer programs is to develop ad-

ditional linear constraints (usually called blossom constraints) such
that every extreme point solution of the system consisting of (10.6) and
the blossom constraints, is a feasible solution of (10.6), (10.7), and vice
versa. One then relaxes the integer restrictions (10.7), and solves the
LP (10.6) with the additional blossom constraints, by primal-dual or

680 Ch. 10. Matching and Edge Covering Problems

primal methods leading to extreme point optimum solutions when the
problem is feasible. The primal-dual algorithms of this type are called
blossom algorithms.

The Symmetric Assignment Problem

Consider the minimum cost perfect matching problem in the undi-
rected network G = (N ,A, c) with |N | = n even. If G is a bipartite
network with (N1,N2) as its bipartition, where |N1| = |N2| = n/2,
we have seen in Chapter 3 that the minimum cost perfect matching
problem in G is an assignment problem of order n/2. Even when G is
nonbipartite, the minimum cost perfect matching problem in G can still
be posed as an assignment problem, but with additional constraints.
In this case the formulation leads to an assignment problem of order
n (in comparison to the bipartite case where we had an assignment
problem of order n/2), and the additional constraints are symmetry
constraints, hence it is called a symmetric assignment problem.
Set up an n × n transportation array. In this array associate both

row i and column i with node i in G, for i = 1 to n. For i W= j, associate
the edge (i; j) in G with the pair of cells (i, j) and (j, i) in the array.
Hence, in this formulation, the cell (i, j) in the array is never individu-
ally considered by itself, it is always considered together with the cell
(j, i). If the edge (i; j) is included in the matching, both the cells (i, j)
and (j, i) will be cells with allocations in the corresponding assignment,
and vice versa. With this convention any perfect matching in G corre-
sponds to an assignment y = (yij) of order n, in which yij = yji for all
i, j. These are the symmetry constraints, and assignments satisfying
them are called symmetric assignments. Every perfect matching in
G corresponds to a symmetric assignment y with no allocations along
the main diagonal (i.e., yii = 0 for all i = 1 to n) and vice versa. Let
dij denote the cost coefficient in cell (i, j) in the array. To guarantee
that the cost of any perfect matching in G will be the same as that of
the symmetric assignment corresponding to it in the array, we need to
make sure that dij + dji = cij for each edge (i; j) ∈ A. In practice one
may prefer to take dij = dji = (1/2)cij for every (i; j). With this cost
matrix d = (dij) defined on the array, the minimum cost perfect match-
ing problem in G is equivalent to the symmetric assignment problem

10.1. 1-Matching Problems 681

in the array.
From the results in Chapter 1, we know that the matrix of coef-

ficients of the usual assignment constraints (for example, see (3.1) in
Chapter 3) is totally unimodular. Unfortunately, when the symmetry
constraints are added to this system, this total unimodularity prop-
erty is lost. Because of this, there is no guarantee that all the BFSs
of the symmetric assignment problem will be integer vectors. Hence
in the symmetric assignment problem, the integer requirements on the
variables have to be taken into consideration and cannot be ignored.
Thus, the formulation of the minimum cost perfect matching problem
as a symmetric assignment problem, does not lead to any direct linear
programming approaches to solve it.

10.1 The 1-Matching Problems

In this section we discuss results on the 1-matching problems on G =
(N ,A, c) with |N | = n, |A| = m, and efficient algorithms of worst case
computational complexity O(n3) for solving them.

Alternating and Augmenting Paths, APs, Alternating Trees

In Chapter 3 we have seen that alternating paths are a key ingre-
dient in the Hungarian method for the assignment problem, which is
the minimum cost perfect matching problem in a bipartite network.
By the 1950’s it was realized that alternating paths play a key role
in algorithms for matching problems in nonbipartite networks as well.
Let M be a given matching in G. A simple path P in G is said to
be an alternating path wrt M, or an M-alternating path if it
satisfies the following conditions (10.12). Usually the matching M is
understood from the context, then we simply refer to the path as being
alternating. By definition, all nodes on an alternating path, except
possibly the end nodes, are matched nodes.

Edges in P are alternately in M and not in M.
If any of the two end nodes (these are nodes inci-
dent to only one edge of P) is a matched node, P
contains the matching edge incident at it.

(10.12)

682 Ch. 10. Matching and Edge Covering Problems

Let P be an alternating path wrt a matchingM. Let A1,A2 be the
sets of matching, nonmatching edges on P. Let M1 = A2 ∪ (M\A1).
Clearly, M1 is obtained by making all the edges in A1 (the original
matching edges on P) into nonmatching edges, and all the edges in
A2 (the original nonmatching edges on P) into matching edges; and
it is another matching in G. We say that M1 is obtained from M by
changing the polarity of matching and nonmatching edges on
P, or just by rematching M using P.
An augmenting path wrt a matching M is an alternating path

both of whose end nodes are unmatched nodes. An augmenting path
always contains an even number of nodes and an odd number of edges.
If it contains 2r + 1 edges, r are matching edges, and the remaining
r + 1 are nonmatching edges. Thus the operation of rematching using
an augmenting path, increases the cardinality of the matching by one,
and hence is called an augmentation step. The name augmenting
path stems from this fact.

As an example, consider the paths P1 = 2, (2, 5), 5, (5, 8), 8, (8,
9), 9 ; P2 = 1, (1, 2), 2, (2, 5), 5 ; P3 = 1, (1, 3), 3, (3, 4), 4, (4, 6),
6 in the network in Figure 10.6. All these are alternating paths wrt
the wavy matching. Rematching the wavy matching using P1,P2,P3
leads to the matchings: M1 = {(5, 8), (7, 10), (3, 4)}, M2 = {(1,
2), (8, 9), (7, 10), (3, 4)}, M3 = {(1, 3), (4, 6), (7, 10), (8, 9), (2,
5)} respectively, in the network in Figure 10.6. It can be verified that
among these three alternating paths, only P3 is an augmenting path wrt
the wavy matching in Figure 10.6, and rematching using it increases
the cardinality of the matching from 4 to 5.

Verify that there is no augmenting path wrt the wavy matching in
the network in Figure 10.14.

An augmenting path begins at an unmatched node, and by moving
alternately through nonmatching and matching edges, it reaches an-
other unmatched node. To trace an augmenting path, it is convenient
to label the points along it alternately as outer (labeled with a +)
or inner (labeled with a −) nodes, beginning with an outer label for
the initial unmatched node. The last node will be an unmatched node
labeled as an inner node. All nodes which are reached after passing
through an odd (even) number of edges are inner (outer) nodes. That’s

10.1. 1-Matching Problems 683

why in some books outer, inner nodes are called even, odd nodes re-
spectively. We will now discuss a theorem due to Berge [1957] and
Norman and Rabin [1959] that shows the importance of augmenting
paths in the maximum cardinality matching problem.

THEOREM 10.1 A matching M in G is a maximum cardinality
matching iff there exists no augmenting path wrt it.

Proof If there exists an augmenting path wrt M, augmentation
using it leads to a matching of cardinality 1 + |M|, and hence M is
not a maximum cardinality matching.
Now supposeM is a matching in G that is not of maximum cardi-

nality. Let M∗ be a maximum cardinality matching in G. So, |M∗| >=
1+ |M|. Let A = (M ∪M∗)\(M∩M∗). Since bothM,M∗ are match-
ings, each of them contains at most one edge incident at any node.
Hence A is the disjoint union of some simple paths and simple cycles.
Each simple cycle in A consists alternately of an edge in M and an
edge inM∗, and hence contains an equal number of edges fromM and
fromM∗. Each simple path in A consists alternately of an edge inM
and an edge in M∗. Since |M∗| > |M|, these facts imply that there
must exist a simple path in A which contains more edges from M∗

than from M, and clearly that path will be an augmenting path wrt
M. So, if M is not a maximum cardinality matching, there exists an
augmenting path wrt it.

As an example consider the network in Figure 10.5 and the two
matchingsM(thick),M∗(wavy) in it, with one common edge (17; 18).
The set A = (M ∪M∗)\(M ∩M∗) consists of an even alternating

cycle containing the edges (11; 16), (14; 15), (12; 13) fromM, and the
edges (11; 12), (13; 14), (15; 16) fromM∗; and three augmenting paths
wrtM. They are the single edge augmenting path (8, 9); the second 1,
(1, 2), 2, (2, 3), 3, (3, 4), 4; and the third 5, (5, 6), 6, (6, 7), 7, (7, 10),
10.
Hence the maximum cardinality matching problem in G can be

solved by starting with an arbitrary matching (for example the empty
matching), searching for an augmenting path wrt it; and if one is found,
carrying out augmentation using it, and repeating the whole process

684 Ch. 10. Matching and Edge Covering Problems

8 9

1 2 3

5 6 7

10 11

12

13 15

16

17

18

14

4

Figure 10.5: M(M∗) is the matching of thick (wavy) edges. (17; 18) is
the only edge that is in both matchings.

with the new matching, until we reach a matching wrt which there is
no augmenting path. To implement this approach, we need an efficient
method for finding an augmenting path if one exists, or determining
that no augmenting path exists. The labeling routine discussed in
Section 3.1 provided a very efficient method for doing this in bipartite
networks. When the same labeling routine is applied on a nonbipartite
network, we will see that odd cycles in the network pose obstacles in
discovering augmenting paths.

Often, we have to deal with simple paths which have the property
that edges in it are alternately from a matchingM and not from it, we
will use the symbol “AP” to denote such paths. So, an AP between
nodes i, j wrt a matchingM is a simple path with its edges alternately
inM and out ofM. An AP may not be an alternating path as defined
in (10.12) because it may not satisfy the second property in (10.12).
For example the path 2, (2, 3), 3, (3, 4), 4, (4, 6), 6 in Figure 10.6
is an AP wrt the wavy matching, but it is not an alternating path as

10.1. 1-Matching Problems 685

defined in (10.12) because it does not contain the matching edge (2; 5)
incident at its end node 2. While we are developing alternating paths
in matching algorithms, in intermediate steps they will actually be APs
because they may not satisfy the second condition in (10.12) at that
time. But any path with which we carry rematching operation will
always be an alternating path as defined in (10.12).
An alternating tree wrt a matching M in G is a tree rooted at

an unmatched node and satisfying the property that the predecessor
path of every nonroot node in it is an AP (in the sense that it consists
alternately of matching and nonmatching edges). The labeling routine
of Section 3.1 to find an augmenting path, is equivalent to rooting
an alternating tree at an unmatched node, and growing it. In this
procedure list always refers to the set of labeled and unscanned nodes.
The procedure is initiated by selecting an unmatched node, r say, and
making it the root of an alternating tree by labeling it as an outer
node with the label (∅, +). At this stage the list = {r}. The tree
is grown by selecting nodes from the list in some order and scanning
them using the following rules.

(i) Scanning an Outer Node i Find all unlabeled nodes j satis-
fying (i; j) ∈ A, (i; j) W∈ M, label them as inner nodes with
the label (i, −), and include them in the list. Node i is their
immediate predecessor or predecessor index, and all these
nodes are the immediate successors of i. Now delete i from the
list.

(ii) Scanning an Inner Node i If i is unmatched, an augmenting
path has been found, and the tree is said to have become an
augmenting tree. The augmenting path is the predecessor path
of i. Terminate labeling.

If i is matched, and its mate j is unlabeled, label it with (i,+) and
include it in the list. In this case i is the immediate predecessor
or predecessor index of j, and j is the only successor of i. Now
delete i from the list.

At any stage, the set of in-tree edges is the set of edges joining the
labeled nodes to their immediate predecessors. Alternating trees can

686 Ch. 10. Matching and Edge Covering Problems

be verified to satisfy the following properties: The predecessor path
of any outer (inner) node consists of an even (odd) number of edges.
Each inner node has at most one immediate successor, and if it has
one, the edge joining them is a matching edge. If a node has two or
more immediate successors, that node must be an outer node. Each
inner node is incident to at most two in-tree edges, one of which must
be a nonmatching edge. Each outer node is incident to any number of
nonmatching in-tree edges, and one matching edge, excepting the root
which meets no matching edge. If i is a non-root outer node with label
(P(i), +), then P(i) must be its mate and an inner node. And the
in-tree simple path from any outer node to a descendent inner node
has an odd number of edges in it.

As an example, consider the network in Figure 10.6 with the wavy
matching in it. An alternating tree is rooted at the unmatched node 1
in this network and grown. Nodes are scanned in the order 1, 2, 3, 4,
and node labels are entered by the side of the nodes. When node 4 is
scanned, the unmatched node 6 became labeled and the tree became
an augmenting tree. The augmenting path is the predecessor path of
node 6, it is 6, (6, 4), 4, (4, 3), 3, (3, 1), 1. All the properties mentioned
above can be verified to hold in this tree.

8

(1, -).

(2, +)

(4, -)(3, +)

(1, -)

(4, -)

2 5

1

3 4 6

9

(ø, +)

7 10

Figure 10.6: Matching edges are wavy. The tree became augmenting
when unmatched node 6 is labeled.

In Section 3.1, 3.2, this scheme was applied on bipartite networks.

10.1. 1-Matching Problems 687

There, outer nodes correspond to rows of the transportation array,
and inner nodes to columns. Hence, the possibility of a pair of outer
nodes, or a pair of inner nodes, being joined by an edge in the network
never arises there. However when this labeling scheme is applied on a
nonbipartite network, it may happen that there exists an edge joining
a pair of outer nodes, or a pair of inner nodes (which indicates the
existence of odd cycles in the network) and this may prevent this simple
labeling scheme from discovering augmenting paths even when they
exist. As an example of this consider the network in Figure 10.7 with
the wavy matching in it. An alternating tree is rooted at the unmatched
node 1 and grown by scanning the nodes in the list in serial order. Node
labels are entered by the side of the nodes. The path at the bottom
of the network is an augmenting path, but the simple labeling scheme
has been unable to discover it because the unmatched node 12 could
not be labeled.

1

4

9

10

11 12

(1, -)

(2, +)

(3, +)

(5, -)

(6, +)

(7, +) (8, -)

(9, -)

(1, -)

(5, -)

(ø, +)

87

6

53

2

Figure 10.7: Matching edges are wavy. The augmenting path between
1 and 12 is not discovered when nodes are scanned in serial order.

Simple Blossoms

The labeling scheme failed to discover the augmenting path in the
network in Figure 10.7 because of the odd alternating cycle encountered
when nodes 10, 11 on the matching edge (10; 11) are both labeled as
inner nodes. This is the cycle marked with thick solid lines in the
following Figure 10.8.

688 Ch. 10. Matching and Edge Covering Problems

In general, an odd alternating cycle is encountered whenever
a pair of nodes on a matching (nonmatching) edge are both labeled
as inner (outer) nodes. Such a pair is called the identifying pair of
nodes for the odd alternating cycle. Let i, j be the identifying pair of
nodes. The first common node on the predecessor paths of i, j is known
as the base node for the odd alternating cycle, suppose it is t. Node
t has at least two successors, one on each of the predecessor paths of i
and j, and possibly others not on these paths. So, t must be an outer
node. Hence, the two edges incident at t on the predecessor paths of i
and j must be nonmatching edges. If i, j are both inner (outer) nodes,
the in-tree paths from t to i, and from t to j, are edge disjoint paths,
each containing an odd (even) number of edges. Hence in either case,
the in-tree paths from t to i, and from t to j, together with edge (i; j)
form an odd alternating cycle. Let NB be the set of nodes on this
odd cycle, and AB = {(i; j) : (i; j) ∈ A; i, j ∈ NB}. B = (NB,AB)
is the partial network of G determined by NB. B has the following
properties.

B is a partial network determined by an odd sub-
set of nodes of cardinality

>
= 3.

There is exactly one node in B, defined to be its
base node which is not incident to a matching
edge within B. All other nodes in B are incident
to a matching edge within B. The base may be
incident to a matching edge which is not an edge
in B.

(10.13)

There is a simple spanning cycle in B containing
all the nodes in B, in which the edges incident at
the base are nonmatching edges, and the others
are alternately matching and nonmatching edges.
This is the spanning odd alternating cycle in B.

A partial network B of G satisfying (10.13) is called a simple blos-
som wrt the present matchingM. B also satisfies the following addi-
tional property.

10.1. 1-Matching Problems 689

The base t of B is either an unmatched node (if
it is the root node); or there exists an alternating
path from t beginning with a matching edge, to
an unmatched node (the root node), with all its
edges outside B.

(10.14)

If the base node t is matched, its predecessor path meets the re-
quirement in (10.14), and is called the stem of the simple blossom B.
If the base node t is unmatched, it is the root node itself, and the stem
is empty (i.e., contains no edges), and in this case B is called a rooted
simple blossom. Since the base node is always an outer node, it can
be verified that the stem always contains an even number (which could
be 0) of edges. As an example, consider the alternating tree in the net-
work in Figure 10.7. The two inner nodes 11, 10 joined by a matching
edge are the identifying pair of nodes for a simple blossom whose base
node is 5. The set of nodes on this simple blossom is NB = {5, 6, 9,
11, 10, 8, 7}. See Figure 10.8.

........
.. ..

9

10

11

87

6

531

Figure 10.8: Matching edges are wavy. Simple blossom with base 5 is
in solid lines. Odd cycle is thick. Dotted portion is the stem.

An odd cycle is identified whenever the pair of nodes on an edge,
(h1;h2) say, are both labeled as outer or inner nodes. Suppose h1, h2
are both labeled as outer nodes. If (h1;h2) is a matching edge, both
h1, h2 are nonroot nodes since the root is unmatched, and if P(h1),
P(h2) are the immediate predecessors of h1, h2 respectively, both P(h1),
P(h2) must be inner nodes, so P(h1) W= h2, and (P(h1); h1) must be a
matching edge, a contradiction since the two edges (h1;h2), (P(h1); h1)

690 Ch. 10. Matching and Edge Covering Problems

incident at h1 cannot both be matching edges. So, (h1;h2) must be a
nonmatching edge, and this is a signal that a simple blossom has been
identified.

Suppose h1, h2 are both labeled as inner nodes. In this case, if
(h1;h2) is a nonmatching edge, an odd cycle in the network is of course
identified, but this odd cycle does not satisfy the last two properties in
(10.13) to qualify as a simple blossom. For example, in the alternating
tree in Figure 10.7, nodes 6, 7 on the nonmatching edge are both inner
nodes. The odd cycle in the union of the edge (6; 7), and the predeces-
sor paths of nodes 6, 7 is 6, (6, 5), 5, (5, 7), 7, (7, 6), 6, and this cycle
does not satisfy the last two properties in (10.13). Such odd cycles do
not pose obstacles in the way of the labeling scheme from identifying
augmenting paths, only simple blossoms do.

Whenever a simple blossom is identified in the process of growing
an alternating tree, we say that the tree has blossomed. By recog-
nizing simple blossoms when they occur, and developing methods for
handling them, the labeling scheme can be modified into a method that
is guaranteed to find an augmenting path if one exists. The method
of handling simple blossoms involves an operation called shrinking
them, and later on expanding them when necessary.

We will now describe some of the properties of simple blossoms.
Let B = (NB,AB) be a simple blossom wrt the matchingM in G, with
node t as the base node. LetMB =M∩AB. ThenMB is a maximum
cardinality matching in B, since all the nodes in B other than the base
node t are matched in it. There can be at most one matching edge
joining a node outside a simple blossom to a node inside it, and if
there is such a matching edge, it must be incident at the base node.

If i is an inner node in B, the portion of the predecessor path of i up
to the base node t, P1, is an AP between i and t, consisting of an odd
number of edges, and beginning with the nonmatching edge incident
at i on the odd cycle in B. By deleting all the edges on P1 from the
odd alternating cycle in B, we are left with another AP between i and
t, this one begins with the matching edge incident at i and has an even
number of edges.

If i is a non-base outer node in B, the portion of the predecessor
path of i up to t, P2, is an AP between i and t, consisting of an even

10.1. 1-Matching Problems 691

number of edges and beginning with the matching edge incident at
i. The AP between i and t consisting of an odd number of edges is
obtained by deleting all the edges on P2 from the odd alternating cycle,
this path begins with the nonmatching edge incident at i.
As an example, consider the non-base node 9 in the simple blossom

in Figure 10.8. The AP between 9 and the base node 5 consisting of
an even number of edges is 9, (9, 6), 6, (6, 5), 5; and the AP consisting
of an odd number of edges is 9, (9, 11), 11, (11, 10), 10, (10, 8), 8, (8,
7), 7, (7, 5), 5.
A simple blossom has an empty stem iff its base is the root of the

alternating tree, i.e., it is a rooted simple blossom. The simple blossom
in Figure 10.7, with 4, 5 as the identifying pair of nodes is a rooted
simple blossom.

Shrinking a Simple Blossom into a Pseudonode

Let B = (NB,AB) be a simple blossom wrt a matching M in G,
discovered during the growth of an alternating tree. At this stage we
store this simple blossom (its base node, its identifying pair of nodes,
and all the nodes on it together with the present labels on them). This
stored information is sufficient to recognize all the current matching
edges in this simple blossom (for example, if i ∈ NB has label (g,+)[
(g,−)], then (g; i) is a current matching [nonmatching] edge on the
odd alternating cycle in B); and the APs between any non-base node i
and the base node, beginning with the matching or nonmatching edge
incident at i on the odd alternating cycle in B. Then we perform an
operation called shrinking the simple blossom B into a single
new node known as a pseudonode (to distinguish it from the original
nodes), which we denote by the same symbol B. This operation is es-
sentially that of replacing all the present nodes in the simple blossom B
by the single pseudonode B. This operation is also called contraction
in graph theory.
Introduce the pseudonode B. For each p ∈ N\NB, if p is joined to

one or more nodes in NB by edges in A of which there is a matching
edge, introduce a new edge (p;B) and make it a matching edge. If all
the edges in A joining p to nodes in NB are nonmatching edges, make
the new edge (p;B) into a nonmatching edge.

692 Ch. 10. Matching and Edge Covering Problems

(2, +)

(3, +)

(1, -)

4

12

(ø, +)

3

2

1

(1, -)

B1

Figure 10.9: Network after shrinking the simple blossom in Figure 10.8
in the original network in Figure 10.7, into the pseudonode B1.

Then eliminate all the nodes in NB, and all the edges in A which
are incident to at least one node in NB. In the resulting network, give
the pseudonode B the same label as that on the base of the simple blos-
som B, so, it will be an outer node. For each p ∈ N\NB which was
an immediate successor of a node in the simple blossom B before the
shrinking, change the immediate predecessor of p into the pseudonode
B, but leave its inner, outer status unchanged. Now the shrinking op-
eration is completed. Let G1 denote the resulting network, andM1 the
remaining matching in it. G1 is said to have been obtained by shrinking
the simple blossom B into the pseudonode B. M1 is a matching in G1,
and it contains an edge incident at B iff the base in the simple blossom
B was a matched node (if t was the base node of the simple blossom
B, and (t; g) was the matching edge incident at it in M, M1 contains
(B; g)). Define the base of the pseudonode B to be the base of the
simple blossom B. The labels on nodes in G1 define an alternating tree
wrtM1. Thus, after the shrinking of a simple blossom, a matching and
an alternating tree are available in the resulting network. G1 is known
as the current network, and M1, the current matching in it.

The pseudonode B is an unmatched node in G1, iff the base of the
simple blossom B was the root, in this case pseudonode B is called a
rooted pseudonode, it becomes the root node in the alternating tree
in G1. This shows that the number of unmatched nodes in G1 wrtM1,
is exactly the same as the number of unmatched nodes in G wrt M.

10.1. 1-Matching Problems 693

9

10

11 12

(6, +)

(7, +) (8, -)

(9, -)

(ø, +)

87

6

B
2

(, -)B
2

(, -)B
2

Figure 10.10: Network after shrinking the simple blossom defined by
{4,2,1,3,5} in the original network in Figure 10.7, into the pseudonode
B2.

Also, the number of nodes in G1 is |N |− |NB|+1, and since |NB| >= 3
and odd, this number is

<
= |N |− 2. Thus the operation of shrinking a

simple blossom into a pseudonode reduces the total number of nodes
in the network by an even number

>
= 2, but leaves the total number of

unmatched nodes unchanged.

The importance of simple blossoms and the process of shrinking
them, arises from the following procedure, and Theorem 10.2 that
comes later.

Procedure for Deriving an Augmenting Path P
in G from an Augmenting Path P1 in G1

Let M be a matching in the original network G = (N ,A), and
B = (NB,AB) a simple blossom in G wrt M with base node t, which
is shrunk into the pseudonode B resulting in the current network G1

and current matching M1. Let P1 be an augmenting path in G1 wrt
M1. Here we discuss a procedure for obtaining an augmenting path P
wrt M in G from P1.
If P1 does not contain the pseudonode B, all the nodes and edges

on P1 are original nodes and edges in G itself, and hence P1 itself is
an augmenting path wrt

694 Ch. 10. Matching and Edge Covering Problems

12

3

78

9

10

6

54

13

11

12

Figure 10.11: Network G. M is the wavy matching. B the partial
network of NB = {5,4,9,10,8,7,6}, is a simple blossom.

M in G. Now suppose P1 contains the pseudonode B. We consider two
cases.

Case 1 B is an end node on P1. Since P1 is an augmenting path in
G1, B must be unmatched in this case. Let (q;B) be the edge in P1
incident at B. There must exist an i ∈ NB such that (q; i) ∈ A, and
since B is unmatched, (q; i) W∈M. If i = t let P I be the edge (q; t). If
i W= t, let P I be the path between q and t consisting of (q; i), and the
AP from i to t beginning with the matching edge incident at i in the
odd cycle in the simple blossom corresponding to B. Replace the edge
(q;B) in P1 by the path P I, this leads to P , an augmenting path in G
wrt M.

Case 2 B is an intermediate node on P1. In this case there exists an
edge (q1;B) ∈M1, and an edge (B; q2) W∈M1 incident at B on P1. So,
(q1; t) ∈ M, and there exists an i ∈ NB such that (i; q2) ∈ A\M. If
i = t let P I be q1, (q1, t), t, (t, q2), q2. If i W= t let P I be the AP between
q1 and q2 beginning with the matching edge (q1; t), then going from t
to i using the AP on the odd cycle in the simple blossom corresponding
to B ending with the matching edge incident at i, and then finally the

10.1. 1-Matching Problems 695

11

12

13

B

1

3

2

Figure 10.12: Network G1 obtained after shrinking B in Figure 10.11
into the pseudonode B.

nonmatching edge (i; q2). Replace the pair of edges (q1;B), (B; q2) on
P1 by the path P I, this converts it into an augmenting path P in G
wrt M.

In both cases the augmenting path P in G is said to have been
obtained by expanding the pseudonode B on P1. This operation
of expanding the pseudonode B on P1 uses the stored information
about the simple blossom corresponding to B.

As an example consider the current network in Figure 10.10 ob-
tained by shrinking the simple blossom determined by the set of nodes
{4, 2, 1, 3, 5} in the original network in Figure 10.7 into the pseudon-
ode B2. B2, (B2, 7), (7, 8), 8, (8, 10), (10, 11), 11, (11, 12), 12 is
an augmenting path wrt the wavy matching in the network in Figure
10.10. By expanding the pseudonode B2 on it as described in Case
1 above, we get the augmenting path between nodes 1 to 12 at the
bottom of the original network in Figure 10.7.

For another example consider the original network G in Figure
10.11, and the current network G1 obtained after shrinking the sim-
ple blossom defined by the subset of nodes {5, 4, 9, 10, 8, 7, 6} in G
into the pseudonode B. P1 = 1, (1, 2), 2, (2, 3), 3, (3, B), B, (B,
11), 11, (11, 12), 12 is an augmenting path in G1. By expanding the
pseudonode B on it as described in Case 2 above, we obtain the aug-
menting path 1, (1, 2), 2, (2, 3), 3, (3, 4), 4, (4, 9), (9, 10), 10, (10,
11), 11, (11, 12), 12 in G.

696 Ch. 10. Matching and Edge Covering Problems

THEOREM 10.2 Let M be a matching in G = (N ,A). Let B =
(NB,AB) be a simple blossom in G wrt M, which is shrunk into the
pseudonode B, resulting in the current network G1 with the current
matching M1.

(i) If there exists an augmenting path in G1 wrt M1, then there exists
an augmenting path in G wrtM.

(ii) If B satisfies (10.14), and if there exists an augmenting path in G
wrt M, then there exists an augmenting path in G1 wrt M1.

Proof (i) follows from the expansion procedure discussed above.
To prove (ii), let P be an augmenting path in G wrt M. Let t be
the base node of B. If P contains no nodes from NB, P itself is an
augmenting path in G1, we are done.
Now suppose P contains one or more nodes from NB. We consider

two cases.

Case 1 One of the End Nodes of P is in NB Since P is an
augmenting path, its end nodes are unmatched. So, B must be an
unmatched node in G1, and t must be an end node of P. The path
P may go in and out of the simple blossom B several times, but let
i be the successor of the last node in NB on P as you travel along it
beginning at t. Replace the entire portion of the path P from t to i by
the single edge (B; i), this converts P into an augmenting path P1 wrt
M1 in G1.

Case 2 The Only Nodes from NB on P are Intermediate
Nodes Let p1, p2 be the end nodes of P . As you travel from p1 to p2
along P, let q1, q2 be the first and last nodes of NB encountered, with
(s1; q1) as the edge leading to q1, and (q2; s2) as the edge leading out of
q2.
If t is unmatched, replace the entire portion of the path P from s1

to p2 by the single edge (s1;B) and let the resulting path be called P1.
If t is a matched node and one of the two edges (s1; q1), (q2; s2) is a

matching edge, say (s1; q1), replace the portion of the path P from s1
to s2 with the pair of edges (s1;B), (B; s2) and let the resulting path
be called P1.

10.1. 1-Matching Problems 697

Suppose t is a matched node and both the edges (s1; q1), (q2; s2) are
nonmatching edges. By hypothesis, B satisfies (10.14). Let (t; i1) be
the matching edge incident at t. Define the following paths in G.

P1 = portion of the path from p1 to s1 on P
P2 = portion of the path from s2 to p2 on P
P3 = stem of B, beginning with (t; i1), to an unmatched node , iu, say.

P4 = AP from i1 to iu obtained by deleting (t; i1) from P3
If P1 and P3 have no common nodes, let P1 be the path P1 ∪

{(s1;B), (B; i1)} ∪ P4.
If P1 and P3 have common nodes, but P2 and P3 have no com-

mon nodes, let P1 be the path (P4 in reverse direction from iu to i1)
∪{(i1;B), (B; s2)} ∪ P2.
Now consider the case where both P1 and P2 have nodes in common

with the stem P3. As you travel on P2 in reverse direction (i.e., from
p2 to s2) let ĩ be the first node encountered on P3. Likewise let î be the
first node encountered on P3 as you travel on P1 from p1 to s1. Since
P1 and P2 are node disjoint (because P is a simple path) ĩ W= î. As you
travel from iu to t along P3 suppose ĩ comes after î (the case where î
comes after ĩ is handled in a symmetric way). Define

P5 = portion of the path from ĩ to p2 on P2
P6 = portion of the path from iu to ĩ on P3
P7 = portion of the path from ĩ to i1 on P3

Verify that P5 and P3 are disjoint and P7 is disjoint with both P1 and
P2. Also the edge on P5 incident at ĩ will be a nonmatching edge. If
the edge incident at ĩ on P6 is a matching edge define P1 to be P5∪P6.
If the edge incident at ĩ on P6 is a nonmatching edge define P1 to be
P1 ∪ {(s1;B), (B; i1)} ∪ P7 ∪ P5.
It can be verified that P1, so constructed in each case discussed

above, is an augmenting path in G1. This completes the proof of (ii).

The result in part (ii) of Theorem 10.2 depends critically on the
hypothesis that the simple blossom B satisfies (10.14). If B does not

698 Ch. 10. Matching and Edge Covering Problems

1 2 3 4

5 6

7 8 9

12

11

10

Figure 10.13: Network G1. M1 is the wavy matching, it has maximum
cardinality in G1.

satisfy (10.14), there may not exist an augmenting path in G1 wrtM1,
even though there exists an augmenting path in G wrt M. Consider
the network G in Figure 10.13 with the wavy matchingM. The partial
network determined by the subset of nodes {4, 5, 6, 7, 11} is a simple
blossom in G satisfying (10.13) but not (10.14). Shrinking this simple
blossom into the pseudonode B leads to the current network G1 in
Figure 10.14 with the wavy matchingM1. The path on the top of G is
an augmenting path wrt M. It can be verified that M1 is a maximum
cardinality matching in G1, and hence no augmenting path exists in
G1 wrt M1.

8 9 101 2 3 B

12

Figure 10.14: Network G1. M1 is the wavy matching, it has maximum
cardinality in G1.

10.1. 1-Matching Problems 699

All simple blossoms that we encounter in the blossom algorithm for
the maximum cardinality matching problem discussed later will always
satisfy (10.14). However, in the blossom algorithm for the minimum
cost matching problem, we sometimes encounter simple blossoms not
satisfying (10.14), that algorithm has special routines for handling such
simple blossoms.

Nodes and edges in the current network G1 are called current
nodes, current edges respectively. A current node may either be
an original node or a pseudonode. As mentioned earlier, G1 now has a
rooted alternating tree wrt the current matchingM1. Continue growing
the alternating tree in G1 by resuming labeling, using the same scheme
discussed earlier.

Simple Blossoms in the Current Network, Blossoms

When labeling is resumed in G1, a new simple blossom, say B2,
satisfying (10.13) wrt the current matching M1 in it, may be identi-
fied. The signal for this is the same as before, i.e., when two nodes
on a current matching (nonmatching) edge are labeled as inner (outer)
nodes. In this case, the alternating tree being grown is said to have
blossomed again. B2 is identified exactly as before, its base node is the
first common node on the predecessor paths of the identifying pair of
nodes; and the odd alternating cycle in it consists of the current edge
joining the identifying pair of nodes, and the portions of their predeces-
sor paths up to the base node. If this simple blossom does not contain
the pseudonode formed earlier, say B1, it is itself a simple blossom in
G wrt M. Otherwise, B2 is a simple blossom in the current network
containing the pseudonode B1 as a node on it.

Let NB2 be the set of original nodes which are either current nodes
in B2, or those contained within a pseudonode which is a current node
in B2. Let AB2 = {(i; j) : (i; j) ∈ A, i, j ∈ NB2}. Then the partial net-
work (NB2,AB2) is called a blossom in the original network G wrtM,
and B2 in the current network G

1 is the simple blossom corresponding
to it.

In general, a blossom in G wrt the matchingM is a partial network
B = (NB,AB) satisfying the following properties.

700 Ch. 10. Matching and Edge Covering Problems

|NB| is an odd number >
= 3

MB =M ∩AB is a maximum cardinality match-
ing in B that leaves exactly one node unmatched.
This unique unmatched node, t say, is called the
apex of B. Notice that t may be a matched node
in G, with the matching edge incident at it not in
AB.

(10.15)

There is a simple blossom corresponding to B in
the current network at the stage that B is discov-
ered. Some of the nodes on this simple blossom
may be pseudonodes formed in earlier stages. It
satisfies (10.13) in the current network and cur-
rent matching at the stage that it is discovered.
NB is the set of original nodes which are either
nodes on this simple blossom, or contained within
pseudonodes on it.

Whenever a new blossom is discovered, the simple blossom corre-
sponding to it is stored by storing all the current nodes on it together
with the labels on them, its identifying pair of nodes and its base node;
and it is then shrunk into a new pseudonode, p say, exactly as before.
Then p gets the same label as on the base node on the simple blossom,
and the predecessor index of any immediate successor of that base node
is changed into p. The new pseudonode p and its descendents are put
in the list of labeled and unscanned nodes, and the current alternat-
ing tree is grown again by resuming labeling. In matching algorithms,
blossoms may be found and shrunk repeatedly.

The base of a blossom B is defined to be the base node of the
simple blossom corresponding to it. If the base is an original node, it
is the same as the apex of the blossom. If the base is a pseudonode,
the apex of the blossom is the apex of its base node. Blossoms B
discovered in the maximum cardinality matching algorithm also satisfy

10.1. 1-Matching Problems 701

the following additional property.

The simple blossom corresponding to it is either a
rooted simple blossom (i.e., the base is the root of
the alternating tree in the current network when it
is discovered), or there exists an alternating path
beginning with the current matching edge incident
at the base, to an unmatched node in the current
network, such that none of the nodes on this path
other than the base are in the simple blossom.
This alternating path is the stem of this simple
blossom.

(10.16)

As an example consider the network in Figure 10.15 with the wavy
matching in it. An alternating tree is rooted at the unmatched node 1
and grown by scanning the nodes in serial order. We show the detection
and shrinking of two simple blossoms, at the end of which we have the
current network shown in Figure 10.17.
Let G1 = (N 1,A1) be the current network at some stage after some

blossoms have been shrunk. Nodes in N 1 are called current nodes,
they may be either pseudonodes, or original nodes in N not contained
in any blossoms shrunk so far. Let p ∈ N 1 be a current node. We will
say that an original node i is inside p or that p contains i inside
it, if either i = p, or if i is a node in the blossom corresponding to p.
An original edge (i; j) ∈ A is said to be inside p if both i and j are
inside p. Another pseudonode q which is not a current node is said to
be inside p if the set of original nodes inside q is a subset of the set of
original nodes inside p.
When a pseudonode is just formed, it is a current node in the current

network at that stage. Afterwards, it might get absorbed inside another
pseudonode, at which stage it is said to have become dormant. We
will say that a pseudonode is a current pseudonode or outermost
pseudonode if it is a current node at that stage, or a dormant
pseudonode if it is contained inside another pseudonode.

Levels of Pseudonodes and Blossoms, and Their Nesting Prop-
erties

702 Ch. 10. Matching and Edge Covering Problems

Original nodes refer to nodes in N in the original network G. They
are defined to be level 0 nodes. For the sake of consistency, the base
node and the apex node corresponding to a level 0 node is defined to
be that node itself. A simple blossom, all the nodes on which are level
0 nodes is said to be a level 1 simple blossom, and the pseudonode
into which it is shrunk is called a level 1 pseudonode. In general,
for any s

>
= 1, a level (s + 1) simple blossom is one, at least one

node on which is a level s pseudonode, and all other nodes on which
are either pseudonodes of level

<
= s, or original nodes. For any s

>
= 1,

the blossom (pseudonode) corresponding to a level s simple blossom is
called a level s blossom (pseudonode). Outermost pseudonodes may
be of any level, and at each stage there may be outermost pseudonodes
of various levels in the current network. We will use the term labeled
node to always mean a current node in the current alternating tree
labeled as an outer or inner node, which may be either an original node
not contained in any pseudonode, or an outermost pseudonode.

The base node of a simple blossom, pseudonode, or blossom, is the
node on the corresponding simple blossom that is not contained on
any matching edge within that simple blossom. Its apex node is the
original node in the corresponding blossom, that is not contained on
any matching edge inside that blossom. So, for any simple blossom,
pseudonode, or blossom, the apex node is the same as the apex of its
base node.

After some blossom shrinkings, let G1 denote the current network
at some stage. Let u be the total number of blossoms that have been
shrunk into pseudonodes up to this stage. Let these blossoms, or the
pseudonodes corresponding to them, be B1, . . . , Bu. For v = 1 to u
let NBv be the set of original nodes contained within Bv. We will now
discuss some of the properties of the blossoms at this stage.

THEOREM 10.3 Each shrinking operation leads to a new current
network in which the number of current nodes is reduced by an even
number

>
= 2.

Proof Each simple blossom consists of an odd number of current
nodes

>
= 3. When it is shrunk, all the nodes in the simple blossom are

10.1. 1-Matching Problems 703

eliminated and just one new pseudonode introduced. This leads to the
result stated in the theorem.

THEOREM 10.4 The class of subsets {NB1 , . . . ,NBu} has the prop-
erty that for v, w, if NBv ∩NBw W= ∅, then one of them is a subset of
the other.

Proof From the manner in which blossoms are identified and
shrunk, it is clear that if NBv ∩NBw W= ∅, one of Bv or Bw is contained
within a pseudonode on the simple blossom corresponding to the other.
The theorem follows from this.

A class of subsets satisfying the property discussed in Theorem
10.4 is known as a nested class of subsets. Thus the class of subsets
of original nodes contained within the pseudonodes at any stage will
always be a nested class of subsets.

THEOREM 10.5 If NBv ⊃ NBw then |NBv | >= 2 + |NBw |.

Proof SinceNBv ⊃ NBw , Bw must be contained within a pseudon-
ode on the simple blossom corresponding to Bv. This simple blossom
must have at least two other nodes besides the pseudonode containing
Bw. These facts imply the theorem.

THEOREM 10.6 The total number of pseudonodes of all levels, which
are either current nodes, or contained within other outermost pseudon-
odes is always

<
= (n/2).

Proof This theorem can be proved very easily and directly from
Theorem 10.3. However, we provide here a somewhat lengthy proof
giving information on bounds for the number of pseudonodes of various
levels. We consider all the pseudonodes at this stage in the current
network G1, let rt be the number of pseudonodes of level t = 1, 2, . . .
among these. So, we have to prove that

�
t rt

<
= (n/2). Each level

1 pseudonode is obtained by shrinking a simple blossom in G, which
contains at least 3 nodes. So r1

<
= (n/3). Let S1 denote the set of all

level 1 pseudonodes, and original nodes of G which are not contained
in any level 1 pseudonode. Nodes in S1 are the nodes on the simple

704 Ch. 10. Matching and Edge Covering Problems

blossom corresponding to any level 2 pseudonode. We have |S1| <
=

r1 + n− 3r1 = n− 2r1. Each simple blossom corrresponding to a level
2 pseudonode consists of at least 3 nodes from S1, so r2

<
= (n− 2r1)/3.

So, r1 + r2
<
= ((n− 2r1)/3) + r1 = (n/3) + (r1/3) <= (n/3) + (n/32).

In a similar manner, for t
>
= 2, define St to be the set of all

pseudonodes of level t, and all original nodes and pseudonodes of levels
<
= (t− 1) which are not contained within any pseudonode of level <= t.
The nodes in the simple blossom corresponding to any level (t + 1)
pseudonode are those from the set St, each of these simple blossoms
contains at least three nodes from St. Using the same arguments as
above, and induction, it can be seen that |St| <

= rt + |St−1| − 3rt
<
= n − 2r1 − 2r2 − . . . − 2rt. So, rt+1

<
= (n − 2r1 − . . . − 2rt)/3.

So, rt+1 + rt + . . . + r1
<
= ((n − 2r1 − . . . − 2rt)/3) + rt + . . . + r1

= (n/3) + (r1 + . . .+ rt)/3
<
= (n/3) + (n/32) + . . .+ (n/3t+1), for any

t
>
= 2. Hence

3
t

rt
<
=

∞3
t=1

n

3t
=
n

3
(1 +

1

3
+
1

32
+ . . .)

=
n

3
(1− 1

3
)-1 =

n

3
× 3
2
=
n

2

This proves the theorem.

THEOREM 10.7 The number of unmatched nodes in the current
network G1 wrt the current matching M1 is always the same as the
number of unmatched nodes in the original network G wrt the match-
ing M in it.

Proof Consider the operation of shrinking one simple blossom into
a pseudo- node. All the nodes on the simple blossom, with the possible
exception of its base node, are matched nodes. If the base node is a
matched (the unmatched root) node, the pseudonode into which this
simple blossom is shrunk will be a matched (the new unmatched root)
node after it is formed. Thus each shrinking operation leaves the total
number of unmatched nodes unchanged, which implies the theorem.

10.1. 1-Matching Problems 705

THEOREM 10.8 Let B be a blossom in G wrt the matchingM. Let t
be the apex node of B, and j W= t an original node inside B. There exist
two edge disjoint APs in B from j to t, one beginning with the matching
edge incident at j, and the other beginning with a nonmatching edge
incident at j.

Proof Let B1 be the simple blossom corresponding to the blossom
B. Suppose the base node of B1 is q, and let p be the node in B1 that
contains j inside it. First suppose p W= q. Since B1 is a simple blossom,
there exist two edge disjoint APs from p to q on its alternating cycle,
one beginning with the matching edge incident at p on it, and the
other beginning with the nonmatching edge incident at p on it. Let
these paths be P1,P2 respectively. Expand the pseudonodes on these
paths, always expanding those of the highest level among the remaining
pseudonodes first, using the procedure described earlier. This leads
eventually to the alternating paths from j to t in the statement of the
theorem. If p = q, go into the pseudonode q and repeat the same
argument there.

As an example consider the simple blossom in Figure 10.16 corre-
sponding to the pseudonode B2 in the current network in Figure 10.17,
or the blossom in the original network in Figure 10.15 defined by the
subset of original nodes {4, 5, 8, 9, 7, 12, 11, 10, 6} corresponding to
B2. The base node of B2 is B1, and its apex node is 4. 11 is an original
node inside B2. 11 is a node on this simple blossom and the AP in it
beginning with the matching edge incident at 11 to the base B1 is 11,
(11, 12), 12, (12, B1), B1. We now expand the pseudonode B1 on this
path. The simple blossom corresponding to B1 can be seen from Figure
10.15, node 12 is connected only to node 5 in this simple blossom by
a nonmatching edge. So, expanding the pseudonode B1 on the above
path leads to the AP 11, (11, 12), 12, (12, 5), 5, (5, 8), 8, (8, 9), 9, (9,
7), 7, (7, 4), 4 in the original network in Figure 10.15, from 11 to 4.

THEOREM 10.9 Let B = (NB,AB) be a blossom in G wrt the
matching M, with t as its apex node. If B satisfies (10.16), either
t is unmatched inM, or t is a matched node and there exists an alter-
nating path wrtM from t beginning with the matching edge incident at

706 Ch. 10. Matching and Edge Covering Problems

it, to an unmatched node such that none of the edges on this path are
from AB.

Proof If the stem of the simple blossom corresponding to B is
empty, t is the unmatched root node, otherwise t is a matched node
and the required path is obtained by expanding this stem.

THEOREM 10.10 (i) If there exists an augmenting path in the cur-
rent network G1 wrt the current matching M1, then there exists an
augmenting path in the original network G wrt the matching M in it.
(ii) If all the pseudonodes in G1 correspond to blossoms which satisfy
(10.16), and if an augmenting path exists in G wrtM, then there exists
an augmenting path in G1 wrt M1.

Proof The current network and the current matching in it change
after each blossom shrinking. The result here follows by applying the
results in Theorems 10.2 and 10.9 after each successive blossom shrink-
ing.

Once an alternating tree is rooted at an unmatched node r, another
unmatched node can only join it as an inner labeled node, and if that
happens the tree is said to have become an augmenting tree . If the
unmatched node labeled is i, its predecessor path P1 in the current
network is an augmenting path. The corresponding augmenting path
P in G between the apex of i and r is obtained by expanding the
pseudonodes on P1, always expanding the highest level pseudonode,
one at a time. Hence pseudonodes are expanded in reverse order to the
one in which they are formed.
By Theorem 10.6, if there exists an augmenting path in G wrt the

matching M, containing the root node r, then the alternating tree
grown will become an augmenting tree after at most (n/2) blossom
shrinking operations. If an augmenting path is discovered, a rematch-
ing operation is carried out. If there are still some unmatched nodes,
the whole procedure can be repeated with the new matching.
As an example, consider the alternating tree rooted at the un-

matched node 1 and grown in the network G in Figure 10.15 with
the wavy matching M. We adopt the rule of selecting the node with

10.1. 1-Matching Problems 707

(1, -)(2, +)
(4, -)

(5, +)

(6, +)

(7, +)

(4, -)

(4, -)

13

11

10

8

9 7

6

5

4

3

2 1

(ø, +)

12

Figure 10.15: Network G.M is the wavy matching. Labels are recorded
by the side of the nodes.

the least serial number among those in the list for scanning. Nodes 8,
9 are the identifying pair for the simple blossom defined by the subset
of nodes {9, 8, 5, 4, 7}, which is shrunk into the pseudonode B1 result-
ing in the current network in Figure 10.16. Labeling is continued after
shrinking B1.

Nodes 11, 12 are the identifying pair of nodes for the simple blossom
defined by the subset of nodes {11, 12, B1, 6, 10} which is shrunk into
the pseudonode B2 resulting in the current network in Figure 10.17.
When tree growth is resumed, the unmatched node 13 is labeled, and
the alternating tree in Figure 10.17 has become an augmenting tree
with the horizontal path between nodes 1 and 13 as an augmenting
path. We derive the corresponding augmenting path in the original
network by expanding the pseudonode on it, and rematch. This leads

708 Ch. 10. Matching and Edge Covering Problems

(, -)B
1

1

3

2

(1, -)(6, +)

(10, -)

(2, +)

(, -)B
1

(ø, +)

B
1

6

12

10

11

13

Figure 10.16: Labeling is continued after shrinking B1.

to the new matching marked with thick edges in Figure 10.18. A new
alternating tree is rooted at the unmatched node 3 and grown. After
nodes 3, 2, 1 are labeled, we are unable to label any more, even though
the tree has not become an augmenting tree, and has not blossomed.
We discuss the implications of this next (in this example, the original
network has 13 nodes, and the thick matching in Figure 10.18 has 6
edges, so clearly this matching is a maximum cardinality matching).

Hungarian Trees and Their Properties

At some stage it may happen that the current alternating tree has
not become an augmenting tree, it has no blossoms to be shrunk, and
it cannot grow any further (i.e., labeling cannot be continued any fur-
ther). At this stage we say that the alternating tree has become hun-
garian, and the tree itself is called a Hungarian tree. By the above
results, this can only happen if there exists no augmenting path wrt
the present matching M, beginning with the unmatched root node r
in G. Clearly the only unmatched node in a Hungarian tree is its root
node.

10.1. 1-Matching Problems 709

(, -)B2

1

3

2

(1, -)(2, +) (ø, +)

13 B2

Figure 10.17: Labeling continued. Unmatched node 13 is labeled.

An example of a Hungarian tree is the tree consisting of nodes 3,
2, 1 rooted at the unmatched node in Figure 10.18.

THEOREM 10.11 A Hungarian tree contains an odd number of cur-
rent nodes, all but the root node in which are matched nodes contained
on in-tree current matching edges. The total number of original nodes
contained within the current nodes in a Hungarian tree is odd, and all
but the apex of the root node among these is a matched node.

Proof Since a Hungarian tree has not become an augmenting
tree, all nonroot nodes in it must be matched nodes lying on current
in-tree matching edges. This also implies that the number of current
nodes in the Hungarian tree is one plus twice the number of current
matching edges in it, which is an odd number. Since every current node
contains an odd number of original nodes inside it, the total number
of original nodes inside current nodes in this Hungarian tree is also an
odd number. As all the current nodes in the Hungarian tree other than
the root node are matched, all the original nodes inside current nodes
in it are matched except the apex of the root node.

Let NH be the set of original nodes contained within nodes on a
Hungarian tree H in the current network. Let GH = (NH ,AH) be the
partial network of the original network determined by NH , and MH

the set of edges in the present matchingM in G contained within GH .
Theorem 10.11 implies that all the nodes in NH excepting the apex of

710 Ch. 10. Matching and Edge Covering Problems

(3, -) (2, +)

Hungarian

tree

13

11

10

8

9 7

6

5

4

3

2 1

(ø, +)

12

Figure 10.18: New matching edges are thick. New alternating tree
rooted at 3, and grown.

the root node in the Hungarian tree H, are matched by the matching
edges in MH . So, |NH | is odd, and MH is a maximum cardinality
matching in GH .

THEOREM 10.12 All leaf nodes in a Hungarian tree must be outer
nodes.

Proof Let j W= root be a leaf node in a Hungarian tree. If j is
an inner node, and it is unmatched, the tree is an augmenting tree
contrary to the hypothesis that it is hungarian. If j is matched, let its
mate be p. If p is unlabeled, it can be labeled, a contradiction. If p
is already labeled, it is not the root since it is matched, and it cannot
be an outer node because for every nonroot outer node its predecessor
must be its mate. So, if p is an outer node, j must be its predecessor,
contradiction to the fact that j is a leaf node. Hence p must be an

10.1. 1-Matching Problems 711

inner node. But since (j; p) is a current matching edge, if j, p are both
inner nodes, they are the identifying pair for a blossom that can be
shrunk, contradiction to the hungarianness of the tree. Hence j must
be an outer node.

THEOREM 10.13 If (i; j) is a current edge with i in a Hungarian
tree and j not in it, then i must be an inner node.

Proof On the contrary, suppose i is an outer node. If (i; j) is a
nonmatching edge, then j could have been labeled, contradicting the
fact that the tree has become hungarian. If (i; j) is a matching edge,
then j must be the predecessor of i, contradicting the fact that j is not
an in-tree node. So, i must be an inner node.

COROLLARY 10.1 Suppose the current network contains a Hun-
garian tree. If an edge in this network is incident at node i which is
an outer node in the Hungarian tree, then that edge must contain an
inner node in this Hungarian tree at its other end.

Proof Follows directly from Theorem 10.13.

THEOREM 10.14 G = (N ,A) is the original network with the match-
ing M in it. An alternating tree is rooted at an unmatched node r
and grown. It becomes the Hungarian tree H at the stage when G1 =
(N 1,A1) is the current network. NH is the set of original nodes con-
tained within current nodes on H, and NH = N\NH. GH = (NH ,AH),
GH = (NH ,AH) are the partial networks of G determined by NH ,NH

respectively. MH =M∩AH, andMH is a maximum cardinality match-
ing in GH. Then MH ∪MH is a maximum cardinality matching in G.

Proof Let M1 be the current matching in G1. Let A = {(i; j) :
i ∈ NH , j ∈ NH , (i; j) ∈ A }. Since all nodes in NH other than r are
matched by matching edges within AH , all edges in A are nonmatching
edges, so A ∩ M = ∅. Let Â = {(i; j) : (i; j) ∈ A, at least one of i or
j is in NH } = AH∪ A. So, M̂ =M∩ Â =M∩AH =MH . Let N̂ be

712 Ch. 10. Matching and Edge Covering Problems

the set of nodes on edges in Â, and Ĝ = (N̂ , Â). We will now prove
thatMH is a maximum cardinality matching in Ĝ. Define

N 1
H = Set of all current nodes in H

N̂ 1 = N 1
H ∪ (N̂ \NH) = Set of all current nodes

corresponding to original nodes in N̂
Â1 = Set of current edges with at least one node in N 1

H

Ĝ1 = (N̂ 1, Â1) = Current network corresponding to Ĝ

M̂1 = M1 ∩ Â1
A1 = {(p; q) : p ∈ N 1

H , q ∈ N̂ \NH , (p; q) ∈ A1}

By previous arguments, A1 ∩ M̂1 = ∅ and the only nodes in Ĝ1 which
are unmatched inM1 are those in N̂ \NH , and the root node of H. So
any augmenting path wrt M1 in Ĝ1 must contain at least one node in
N̂ \NH as a terminal node.
Suppose P is an augmenting path in Ĝ1 wrt M̂1 beginning with an

unmatched node p ∈ N̂ \NH , to another unmatched node q ∈ N̂ 1. Give
the nodes on this path alternately outer and inner designations (the
reader is cautioned not to confuse these outer and inner designations
with the outer and inner labels already existing on nodes in H) begin-
ning with an outer designation for p. If P contains any nodes from N 1

H ,
the fact that all the edges in A1 are nonmatching edges, and Theorem
10.13 together imply that any node from N 1

H in P bears an inner or
outer designation iff it is an inner or outer labeled node respectively in
H. Since P is an augmenting path, its terminal node q must bear an
inner designation, and since all nodes labeled as inner nodes in H are
matched nodes, q cannot be a node in H, and hence q must also be a
node in N̂ \NH .
Hence an alternating path in Ĝ1, starting from an unmatched node

in N̂ 1 outside the Hungarian tree H, can only be an augmenting path
if it terminates at another node outside H. But an augmenting path
always consists of an odd number of edges. So, if the first edge in an
augmenting path in Ĝ1 is a current edge joining a node in N̂ \NH to a
current inner labeled node in H, then the last edge on this path must be
a current edge joining an outer labeled node in H with an unmatched

10.1. 1-Matching Problems 713

node. This is impossible by Theorem 10.13. Hence there exists no
augmenting path wrt the current matching M̂1 in Ĝ1. By Theorem
10.10, this implies that there exists no augmenting path in Ĝ wrt M̂.
Hence M̂ =MH is a maximum cardinality matching in Ĝ.

Now let N be any other matching in G. Let N̂ = N ∩ Â, and
NH = {(i; j) : (i; j) ∈ N, and i and j are both in NH}. Then N =

N̂ ∪NH . By definition, |MH | >= |NH |. Since M̂ =MH is a maximum

cardinality matching in Ĝ, we have |MH | >= |N̂|. These facts imply that
|MH ∪MH | >= |N|, so MH ∪MH is a maximum cardinality matching
in G.

So, to find a maximum cardinality matching in G, start with an
arbitrary matching, root an alternating tree at an unmatched node and
grow it. If the tree blossoms, shrink the blossom. If the tree becomes
augmenting, trace the augmenting path, rematch using it, and repeat
the procedure with the new matching. If the tree becomes hungarian,
identify the set NH of all the original nodes contained within that
Hungarian tree. LetMH be the set of all matching edges in the present
matching, both of whose incident nodes are inNH . Delete all the nodes
in NH and all the edges which contain at least one node from NH , let
the remaining network be GH . The union of MH and a maximum
cardinality matching in GH , is a maximum cardinality matching in
G. The problem of finding a maximum cardinality matching in the
smaller network GH remains. For that, root an alternating tree at an
unmatched node in GH and repeat this process with it.

A different procedure is to root an alternating tree at each un-
matched node in G and grow them all simultaneously. This is called
a planted forest. In general the forest will consist of disjoint alter-
nating trees each rooted at a separate unmatched node. This forest
growth procedure leads to a more efficient algorithm than the proce-
dure of growing only one alternating tree at a time. When growing
a forest, it is necessary to maintain the identity of the rooted tree to
which each labeled node belongs. The current network G1 = (N 1,A1)
changes each time a simple blossom is shrunk in this forest growth
process. Edges in the present G1 can be generated as they are needed,
and we outline methods for doing it efficiently here.

714 Ch. 10. Matching and Edge Covering Problems

The original network is stored by storing A. Each new pseudon-
ode created is given a distinct identification number when it is formed;
and we store the numbers of the current nodes on the simple blossom
corresponding to it, together with the present labels on them; its iden-
tifying pair of nodes, base and apex nodes; and the set of original nodes
contained inside it. We store the present matching M, and update it
whenever it changes in augmentation steps. We store N 1, the set of
numbers of all the current nodes, and update it whenever it changes.
If i is an original node which is a current node, the set of current

edges incident at i is {(i; p) : p ∈ N 1 and p contains a j inside it such
that (i; j) ∈ A}. This set can be easily generated from the stored data
whenever needed. If i is a matched node, let its mate be j, the current
matching edge incident at i is (i; p) where p is the unique current node
containing j inside it.
If p is a pseudonode which is a current node, the set of current

edges incident at p is {(p; q) : q is a current node such that there
exists an original node i inside p, and an original node j inside q, with
(i; j) ∈ A}. There can exist at most one original node i inside p such
that it is joined to an original node j outside p by a matching edge.
If no such node i exists, p is unmatched. If such a node i exists, find
its mate j, and the current node q containing j inside it, then (p; q)
is the current matching edge incident at p. All this can be generated
efficiently from the stored information whenever needed.
In practice, it seems to be convenient to also maintain and update

the set of current matching edges, but generate all other data about
the current network from the stored information as needed. We also
maintain a record of all the pseudonodes in which each node lies, in
the order of outermost first, this information is needed for expanding
the pseudonodes on a path containing the node.

10.1.1 Blossom Algorithm for the Maximum Car-
dinality Matching Problem

Based on the ideas discussed so far, we provide an augmenting path
method called the blossom algorithm for finding a maximum cardi-
nality matching in an undirected network G = (N ,A). It grows an al-

10.1.1. Cardinality Matching Blossom Algorithm 715

ternating forest with an alternating tree planted at each unmatched
node. In this algorithm, an augmenting path is identified when a pair
of trees become augmenting trees together, the augmenting path will
then be the alternating path between the root nodes of these trees.
M, G1 = (N 1,A1), M1 always denote the present matching in G, the
present current network, and the present current matching respectively.
In the algorithm, node labels have 3 entries, the predecessor index, the
symbol + (for outer nodes) or − (for inner nodes), and the root in-
dex, in that order. List always refers to the present set of labeled and
unscanned nodes.

BLOSSOM ALGORITHM FOR THE
MAXIMUM CARDINALITY MATCHING PROBLEM

Step 1 Initialization Choose an initial matching (it could be ∅) in
G.

Step 2 Rooting an Alternating Forest If there are no unmatched
nodes, go to Step 7. Otherwise root an alternating tree at each
unmatched node i, by labeling it with (∅,+, i). List now consists
of all these root nodes.

Step 3 Select A Node to be Scanned If list = ∅, go to Step 7.
Otherwise select one node from the list to scan and delete it
from the list.

Step 4 Scanning Let the node to be scanned be the current node i
with label (P(i), ±, r).

Scanning an Outer Node If i is an outer node, for each j W=
P(i) such that (i; j) is a current edge (all these will be nonmatch-
ing edges) do the following.

If j is an already labeled outer node associated with a root W= r,
an augmenting path has been found, go to Step 5.

If j is an already labeled outer node with the same root r, the
alternating tree containing i and j has blossomed, go to Step 6.

716 Ch. 10. Matching and Edge Covering Problems

If j is an already labeled inner node, continue.

If j is unlabeled, label it with (i,−, r) and include it in the list.

Scanning an Inner Node If i is an inner node, it cannot be
unmatched since all unmatched nodes are outer root nodes, let
(i; j) be the current matching edge incident at i.

If j is already labeled, it must be an inner node too. If the root
indices of i and j are the same, the tree containing them has
blossomed, go to Step 6. If the root indices of i, j are different,
an augmenting path has been found, go to Step 5.

If j is unlabeled, label it with (i,+, r) and include it in the list.

Go back to Step 3.

Step 5 Augmentation We come to this step when scanning has
revealed a pair of adjacent current nodes i, j associated with
different root nodes r(i) W= r(j), such that either i, j are both
outer nodes and (i; j) W∈ M1, or i, j are both inner nodes and
(i; j) ∈M1. Combine the predecessor paths of i, j together with
edge (i; j), leading to the path P1. P1 is an augmenting path
between r(i) and r(j). Let t1, t2 be the apex nodes of r(i), r(j).
Find the corresponding augmenting path P between t1 and t2 in
G by expanding all the pseudonodes on P1. Erase all the labels on
the nodes in the two trees containing i, j, and throw away all the
blossoms in them (this operation is called dismembering the
two trees). Rematch using P, and revise the current matching
accordingly. Nodes t1, t2 are matched in the new matching. If
there are no trees left in the forest go to Step 7, otherwise put all
the outer current nodes in the list and go back to Step 3.

Step 6 Blossom Shrinking We come to this step when scanning
has revealed a pair of adjacent current nodes i, j associated with
the same root node, such that either i, j are both outer nodes
and (i; j) W∈ M1, or i, j are both inner nodes and (i; j) ∈ M1.
i, j are the identifying pair of nodes for a simple blossom in the
current network, whose base node t is the first common node on

10.1.1. Cardinality Matching Blossom Algorithm 717

their predecessor paths. The nodes on this simple blossom are
the base node, and those remaining in these paths after elimi-
nating the common nodes on them; store these nodes together
with the predecessor index and the + or − indicator for outer,
inner status, in the labels on them. Shrink this simple blossom
into a pseudonode, say Bp. Change the predecessor index of all
the nodes outside this simple blossom which are immediate suc-
cessors of nodes on this simple blossom, into Bp. Give Bp the
same label as on the base node t. If t is unmatched, Bp becomes
the new root node of the tree containing it after the shrinking,
change the root index of all the nodes on the tree to Bp. Include
Bp in the list and go back to Step 3.

Step 7 Termination When we come to this step either we have
a perfect matching in G, or all the planted trees have become
Hungarian trees. In the latter case we say that the labeling has
become hungarian, and the forest has become a Hungarian forest.
The present matching in G is a maximum cardinality matching,
terminate.

Discussion

Each augmentation step increases the cardinality of the matching
by 1. So, Step 5 is carried at most n/2 times in the algorithm. Between
any two consecutive occurrences of Step 5, Step 6 can be carried out
at most n/2 times by Theorem 10.6, and Step 3 will be carried out at
most O(n) times. Each execution of Step 3 requires at most O(n) effort.
Each execution of Steps 5 or 6 requires tracing the predecessor paths,
which requires at most O(n) effort. Thus the overall work between two
consecutive occurrences of Step 5 requires at most O(n2) effort. So,
the overall computational effort in the algorithm is bounded above by
O(n3).

Comment 10.1 The pioneering work on the blossom algorithm is
due to Edmonds [1965a, b], and the original version of this algorithm
is due to him.

718 Ch. 10. Matching and Edge Covering Problems

10.1.2 The Minimum Cost Perfect Matching Prob-
lem

We consider the problem of finding a minimum cost perfect matching
in G = (N ,A, c = (cij)) with |N | = n, |A| = m and c as the vector
of edge cost coefficients. We assume that n is even, otherwise there is
no perfect matching in G. The problem is to find x = (xij : (i; j) ∈ A)
that

Minimizes z(x) =
3
(cijxij : over (i; j) ∈ A)

subject to x(i) = 1, for all i ∈ N (10.17)

xij
>
= 0 for all (i; j) ∈ A

xij integer for all (i; j) (10.18)

where x(i) is defined in (10.1). It is not necessary to include the con-

straint xij
<
= 1 in this problem, as the first constraint in (10.17) implies

it automatically. Let Y ⊂ N with |Y| odd and >
= 3. Define Y−(x) as

below. If x is a matching vector, (10.20) must hold.

Y−(x) =
3
(xij : over i, j both ∈ Y and (i; j) ∈ A) (10.19)

Y−(x) <
= (|Y|− 1)/2 (10.20)

The constraint (10.20) is known as the matching blossom in-
equality or matching blossom constraint corresponding to Y
for (10.17), (10.18). Each subset of N of odd cardinality

>
= 3 leads to

a blossom inequality, and every matching vector satisfies all matching
blossom inequalities. Let {Y1, . . . ,YL} be the set of all distinct subsets
of N of odd cardinality

>
= 3. Now consider the following LP.

Minimize z(x) =
3
(cijxij : over (i; j) ∈ A)

subject to x(i) = 1, for all i ∈ N
Y−σ (x)

<
= (|Yσ|− 1)/2, σ = 1 to L (10.21)

xij
>
= 0 for all (i; j) ∈ A

10.1.2. Min Cost Perfect Matching Problem 719

Every perfect matching vector in G is feasible to (10.21) and every
integer feasible vector for (10.21) is a perfect matching vector in G.
So, if an optimum solution of (10.21) is an integer vector, it is a mini-
mum cost perfect matching vector in G. We will discuss a primal-dual
algorithm for solving (10.21) known as the blossom algorithm for
the minimum cost perfect matching problem and show that if a
perfect matching exists in G, then this algorithm terminates with an
optimum solution of (10.21) which is an integer vector, and this integer
vector is therefore a minimum cost perfect matching vector in G.
To write the dual of (10.21), associate a dual variable πi with the

constraint corresponding to node i in (10.21), and a dual variable µσ
with the blossom inequality corresponding to the odd subset Yσ, σ = 1
to L. The dual variables πi are only associated with original nodes in
G, and hence are also called original node prices. The dual variables
µσ are known as pseudonode prices, the reason for this name will
become clear later. Let π = (πi), µ = (µσ). Since the number of odd
subsets of nodes, L, grows exponentially with n, the vector µ has a lot
of entries. Given the dual solution (π, µ), define for each (i; j) ∈ A

µ−(i; j) =
3
(µσ : over σ s.t. both i, j ∈Yσ) (10.22)

dij(π, µ) = πi + πj − µ−(i; j) (10.23)

The dual of (10.21) is

Maximize W (π, µ) =
3
i∈N

πi −
L3
σ=1

(|Yσ|− 1)(µσ)/2

subject to dij(π, µ)
<
= cij , for each (i; j) ∈ A (10.24)

µ
>
= 0

Given a dual feasible solution (π, µ), define A∗(π, µ) as in (10.25).
Since (π, µ) satisfies the first constraint in (10.24) as an equation for
each edge in A∗(π, µ), they are called equality edges wrt (π, µ), and
the subnetwork G∗(π, µ) = (N ,A∗(π, µ)) is known as the equality
subnetwork wrt (π, µ) for (10.21). The complementary slackness

720 Ch. 10. Matching and Edge Covering Problems

conditions for optimality in the primal, dual pair (10.21), (10.24) are
(10.26), (10.27) given below.

A∗(π, µ) = {(i; j) : (i; j) ∈ A, and dij(π, µ) = cij} (10.25)

xij > 0⇒ dij(π, µ) = cij , for each (i; j) ∈ A (10.26)

µσ > 0⇒ Y−σ (x) = (|Yσ|− 1)/2,σ = 1 toL (10.27)

The blossom algorithm is initiated with an initial dual feasible solution
(π0, µ0) in which µ0 = 0. If we can find a perfect matching in the equal-
ity subnetwork G∗(π0, µ0), it is a minimum cost perfect matching in G,
since the corresponding perfect matching vector x satisfies the com-
plementary slackness optimality conditions (10.26), (10.27) together
with (π0, µ0). For this we apply the maximum cardinality matching
algorithm of Section 10.1.1 on G∗(π0, µ0) beginning with the empty
matching. Suppose this leads to the matchingM1 in G∗(π0, µ0), corre-
sponding to the matching vector x1. So, all matching edges in M1 are
equality edges in A∗(π0, µ0) and (10.26), (10.27) hold for x1, (π0, µ0).
In the process of applying this algorithm blossoms may have been dis-
covered and shrunk into pseudonodes, leading to current equality
subnetworks G1∗(π

0, µ0) of the form (N 1,A1∗(π0, µ0)) where N 1 is
the set of current nodes, and A1∗(π0, µ0) is the set of current equality
edges.
IfM1 is not a perfect matching, we are left with a Hungarian forest

in the equality subnetwork G1∗(π
0, µ0), with a Hungarian tree rooted

at each unmatched current node in it. Each pseudonode at this stage
corresponds to a shrunken blossom wrt the present matching M1, the
set of original nodes inside it has odd cardinality

>
= 3, and hence there

is a blossom inequality and a dual variable µσ associated with it. By
the second property in (10.15) of blossoms, we verify that the present
matching vector x1 satisfies the blossom inequality corresponding to
every existing pseudonode (whether it is an outermost pseudonode or
not) as an equation.
To get things moving, the approach now goes to a dual solution

change step. The purpose of this is to obtain a new dual feasible solu-
tion, the equality subnetwork corresponding to which allows a match-

10.1.2. Min Cost Perfect Matching Problem 721

ing of higher cardinality than M1. This dual solution change step is
designed to satisfy the following properties.

(i) All present matching edges (which are equality edges now) remain
equality edges after the change, so that the present matching
vector x1 continues to satisfy (10.26) together with the new dual
solution.

(ii) The equality, nonequality status of all original edges contained
within any existing pseudonode remains unchanged, and all in-
tree current equality edges remain equality edges after the dual
solution change. So, all the existing alternating trees in the cur-
rent equality subnetwork, are also contained in the new current
equality subnetwork after the dual solution change.

(iii) In the new current equality subnetwork obtained after the dual
solution change, the existing forest is not hungarian, i.e., at least
one of the trees can grow, or there is at least one augmenting
path, etc. This makes it possible to repeat the application of
the maximum cardinality matching algorithm in the new current
equality subnetwork, beginning with the existing forest, and make
some movement in the algorithm.

(iv) In the new dual solution, some of the dual variables µσ may
be given positive values, but if a µσ is positive, the correspond-
ing subset of original nodes Yσ will always be the set of original
nodes inside an existing pseudonode (outermost or not). We have
already seen that the present matching vector satisfies the blos-
som inequality corresponding to every existing pseudonode as an
equation, so this guarantees that the complementary slackness
condition (10.27) continues to hold.

The application of the maximum cardinality matching algorithm is con-
tinued with the present alternating forest in the new current equality
subnetwork, and this process is repeated. The following summarizes

722 Ch. 10. Matching and Edge Covering Problems

the properties maintained by the algorithm.

It maintains a matching vector x, and (π, µ) al-
ways feasible to (10.24). It alternates between
changing the matching vector x, keeping (π, µ)
constant, using the maximum cardinality match-
ing algorithm in the equality subnetwork G∗(π, µ);
or changing (π, µ) keeping x constant.

xij = 1 implies that (i; j) ∈ A∗(π, µ), so, (10.26)
holds always.

(10.28)

µσ > 0 always implies that the associated Yσ

is the set of original nodes inside an existing
pseudonode, so (10.27) holds always. This also
guarantees that even though the dual vector µ =
(µσ) has a large number of entries, all but at most
(n/2) of them will be 0 at every stage. Hence, it
is only necessary to store values of µσ associated
with each pseudonode at that stage of the algo-
rithm. That’s why µσ are known as pseudonode
prices.

Changes in Blossoms after an Augmentation Step

Let x, (π, µ) be the solution pair at some stage during the matching
change phase of the algorithm. If an augmenting path P1 is discovered,
we would augment. In the maximum cardinality matching algorithm
we then discard all the existing blossoms on the two trees containing
nodes along P1. However, some of these blossoms may correspond to
pseudonodes associated with a positive µσ in the present dual solution
(π, µ) and discarding these blossoms will violate the third property in
(10.28). So, in this algorithm, all the blossoms along the augmenting
path are retained after augmentation, but changes have to be made
in the stored data on the simple blossoms corresponding to them, to
reflect the change in the matching caused by the augmentation step.
This is called the operation of revising all the blossoms along P1 .
We describe this operation now for a pseudonode B either on P1 or

10.1.2. Min Cost Perfect Matching Problem 723

q
2

(, +)

(b)

i
1

q
2

q
1

(, +)q
1

(a)

q
1

q
2

i
1

Figure 10.19: Before augmentation (a), and after (b). Matching edges
are wavy. In Figure 10.19 (a), P0 is thick. q1, q2 are not on the simple
blossom. Stored label on i1 is entered by its side.

inside some node on P1. Let P be the augmenting path in G∗(π, µ) cor-
responding to P1. Let i1 be the base node (which may itself be another
pseudonode) of B. When all the pseudonodes along P1 containing B
within them are expanded, we will get the portion of the augmenting
path passing through the simple blossom corresponding to B. We will
denote this portion of the path by P0. We consider two cases.
Case 1 Apex of Pseudonode B Is an Intermediate Node On P

In this case the augmenting path P passes through the matching
edge incident at the apex node of B, and leaves through either
the apex node or some nonapex node within B. We consider two
subcases.

Subcase 1 P Passes Only Through the Apex Node of B
In this subcase P0 appears as in Figure 10.19 (a). After the
augmentation is carried out, (q1; i1) becomes a nonmatch-
ing edge and (i1; q2) becomes a matching edge. The only
change needed in the stored data on this simple blossom, is
to change the label on its base node i1 as in Figure 10.19
(b).

Subcase 2 P Contains Some Nonapex Nodes Contained in B
In this subcase P0 appears as in Figure 10.20. The i-nodes

724 Ch. 10. Matching and Edge Covering Problems

...

...Base

node

q
1

i
1

2
i g - 2i g - 1i

gi

q
2

g + 1ig + 2i

Figure 10.20: Matching edges are wavy. P0, the thick path, contains
more than one node on the simple blossom corresponding to B. See
Figure 10.21 for position after augmentation.

are nodes on the simple blossom corresponding to B, and
q1, q2 are nodes outside B. The odd cycle in this simple
blossom remains the same, but augmentation changes the
matching edges along P0 into nonmatching edges and vice
versa. After augmentation (see Figure 10.21) (i1; i2) is a
matching edge, and i1 is no longer the base node, ig becomes
the new base node of this simple blossom, and its apex will
be the revised apex of ig (i.e., after the corresponding change
due to augmentation is carried out for ig). Change the label
on ig in the stored data to (q2,+). Change the labels on
both the neighbor nodes of ig on the odd cycle,

ig+1 and ig−1, to (ig,−). Change the labels on ig+2, ig−2 to
(ig+1,+) and (ig−2,+) respectively. Keep on changing the
labels along the odd cycle this way until all the node labels
are changed. The last pair of nodes to be relabeled in this
manner are the new identifying pair of nodes for this simple
blossom. It is clear that the odd alternating cycle in this
simple blossom, the new matching and nonmatching edges
in it, can all be retrieved by the procedures discussed earlier

10.1.2. Min Cost Perfect Matching Problem 725

g + 1(i , +)

...

...

(, +)q
2

g - 1(i , +)

(, -)gi

(, -)gi

q
1

i
1

2
i g - 2i g - 1i

gi

q
2

g + 1ig + 2i

New base

node

Figure 10.21: Position after augmentation in the simple blossom in
Figure 10.20. New base node and new node labels are indicated.

using the revised labels on the nodes.

Case 2 Apex of Pseudonode B Is a Terminal Node of P In
this case i1, the base node of B is an unmatched node. We again
consider two subcases.

Subcase 1 P Contains Only the Apex Node of B In this
subcase P0 appears as in Figure 10.22 (a). After the aug-
mentation (q1; i1) becomes a matched edge, change the stored
label on i1 as in Figure 10.22 (b).

Subcase 2 P Contains Some Nonapex Nodes Contained in B
In this subcase P0 appears as in Figure 10.23. In this sub-
case ig becomes the new base node after augmentation, and
the revision is carried out as in Subcase 2 of Case 1. See
Figure 10.24.

After the augmentation, the existing two alternating trees contain-
ing nodes on the path used are no longer rooted at unmatched nodes,
in fact all the nodes on these two trees are matched. So, we erase these
two trees by erasing the present labels on the current nodes in them,
and leaving all these current nodes as unlabeled

726 Ch. 10. Matching and Edge Covering Problems

q
1

i1

q
1(, +)

(a) (b)

i1

q
1

(ø, +)

Figure 10.22: Before augmentation (a), and after (b). P0 is thick in
Figure (a), and contains only unmatched base node i1. q1 is not on the
simple blossom of B. Stored label on i1 is entered by its side.

nodes. This operation is called chopping down the trees. Notice
the difference between the operation of dismembering the trees (in Step
5 of the algorithm in Section 10.1.1, all the blossoms on the trees are
thrown away), and that of chopping down the trees discussed here (only
the tree structures are eliminated, but all the current nodes on them
are left as unlabeled nodes in the current network).

Each of the out-of-tree (i.e., unlabeled) current nodes which are
pseudonodes, are matched nodes, and the blossoms corresponding to
them satisfy the conditions (10.15) wrt the present matching, but they
may not satisfy (10.16). This is another difference between the algo-
rithm in Section 10.1.1, and the one to be discussed here.

When the growth of the remaining alternating trees in the present
G1∗(π, µ) is resumed, it is possible that some of the unlabeled pseudon-
odes get labeled. In this process they may get labeled either as outer or
inner nodes. In Section 10.1.1, pseudonodes were always outer nodes,
and carried the same label as their base nodes. Here these labels may
be quite different. Also, pseudonodes may be labeled as inner nodes.

In the algorithm to be discussed in this section a freshly shrunk
pseudonode always gets labeled as an outer node, its label at that time
will be the same as that on the base node of the corresponding simple

10.1.2. Min Cost Perfect Matching Problem 727

...
Unmatched

base node

...

i
1

g - 2i

g - 1igi

q
2

g + 1i

Figure 10.23: Matching edges are wavy. P0 is thick, it contains more
than one node on the simple blossom of B. See Figure 10.24 for position
after augmentation.

blossom before it was shrunk. So, any inner labeled pseudonode in the
current network must have received that label after remaining as an
unlabeled node for some time.

THEOREM 10.15 Let pseudonode p be an outer labeled current node,
then the blossom corresponding to p satisfies (10.16).

Proof If p is unmatched, it is the root of its alternating tree
and (10.16) is satisfied trivially. Suppose p is matched. The root of
its alternating tree is unmatched. In this case, the alternating path
required in condition (10.16) can be obtained from the predecessor
path of p.

Hence in the algorithm to be discussed in this section, the only
pseudonodes whose blossoms may not satisfy (10.16) are inner labeled
pseudonodes. When there are pseudonodes in G1∗(π, µ) violating (10.16),
there may exist augmenting paths wrt the present matching in G∗(π, µ),
and yet there may not exist any augmenting path in G1∗(π, µ) wrt the
current matching. Hence these pseudonodes may prevent us from dis-
covering augmenting paths in G∗(π, µ) through operations on G1∗(π, µ).
The only reason for keeping such pseudonodes is to satisfy the third
property in (10.28), if the dual variables µσ corresponding to them

728 Ch. 10. Matching and Edge Covering Problems

(i , -)g (q , +)
2

g - 1(i , +)

(i , -)g

...

i
1

g - 2i

g - 1igi

q
2

g + 1i

New base

node

...

Figure 10.24: New base node, new labels after augmentation are indi-
cated.

are strictly positive in the present dual solution. Therefore, whenever
there is a pseudonode which is an inner current node associated with
µσ = 0 in the present dual solution, we unshrink that pseudonode into
the simple blossom corresponding to it. This unshrinking operation
is discussed next.

Unshrinking an Inner Labeled Pseudonode Associated with
µσ = 0

Outer

node (j , - , r)
1

j
1 B j

2

Figure 10.25: Wavy edge is a current matching edge. Inner labeled
pseudonode B associated with µσ = 0 to be unshrunk. Label of B is
by its side.

This operation is carried out only on pseudonodes which are in-
ner labeled current nodes associated with µσ = 0. Let B with label

10.1.2. Min Cost Perfect Matching Problem 729

(, - , r)
2i

(, + , r)gi

...

..

(i , - r)g - 1

(i , + , r)
1

(j , - , r)
1

j
1

j
2

gi

i
1 2i

Figure 10.26: Connecting the tree through the alternating path in the
simple blossom, after a pseudonode is unshrunk.

(j1,−, r) be such a pseudonode. So, j1, is an outer node and (j1;B)
is a current nonmatching edge. By earlier discussion such a pseudon-
ode will always be matched, let (B; j2) be the current matching edge
incident at it. See Figure 10.25. Let GB = (NB,AB) be the simple
blossom corresponding to B. Since (j1;B) is a current in-tree non-
matching edge, there must exist an i1 ∈ NB such that (j1; i1) is a
current equality edge at the stage that pseudonode B was formed. Ei-
ther i1 is the base node of B, or there exists an AP in GB from i1
beginning with the matching edge incident at i1, to its base node. Let
this path be i1, (i1, i2), i2, . . . , (ig−1, ig), ig, with ig being the base node
of GB (if i1 is itself the base node, g = 1, and this path is the empty
path containing no edges). So, (ig; j2) is a current matching edge at
the stage that pseudonode B was formed. See Figure 10.26.

Unshrinking of B replaces it with the simple blossom GB with all
its nodes and edges on it. Each of the current edges of the form (p;B)
are replaced by edges of the form (p; i) for i ∈ NB. After the unshrink-
ing, all the nodes in NB become current nodes. Update the current
matching by replacing the single current matching edge (B; j2) from
it by (ig; j2) and all the matching edges within the simple blossom
GB. The alternating tree that contained B before unshrinking, is con-
nected again by labeling the newly introduced nodes along the path

730 Ch. 10. Matching and Edge Covering Problems

j1, (j1, i1), i1, . . . , ig, (ig, j2), j2 alternately as inner and outer nodes as
indicated in Figure 10.26.
In the algorithm discussed below, the dual solution change routine

has the effect of reducing the value of µσ corresponding to pseudon-
odes which are inner labeled current nodes. So, after each dual solution
change step, we always check for possibilities of carrying out unshrink-
ing.
The operation of unshrinking is not needed in the blossom algo-

rithm for the maximum cardinality matching problem, it is needed in
the blossom algorithms for minimum cost matching problems. The
reader is cautioned not to confuse the two operations of expanding
pseudonodes along an alternating path, and unshrinking pseudonodes.
A dormant period for a pseudonode B begins when it is just ab-

sorbed inside another newly formed pseudonode (i.e., when it just be-
came dormant), and it ends when the pseudonode B becomes a current
node again due to all the pseudonodes containing it inside becoming
unshrunk.
In the algorithm described below, the matching change phase stops

when we reach a current equality subnetwork containing a Hungarian
forest. This state is characterized by the following conditions.

No alternating tree can grow any further (i.e., the list of
labeled and unscanned nodes is empty). There are no aug-
menting paths in the current equality subnetwork wrt the
current matching. There are no blossoms which can be
shrunk. There are no inner labeled pseudonodes associated
with pseudonode price µσ = 0.

These are the Hungarian forest conditions for the blossom algo-
rithm for minimum cost matching problems, and when they are sat-
isfied we say that the labeling has become hungarian. The algo-
rithm then goes to the dual change phase, which obtains a new dual
feasible solution satisfying the following properties: All the present
matching edges, and the present alternating trees lie in the new equal-
ity subnetwork, but the Hungarian forest conditions are not satisfied
in it anymore. So, in the new equality subnetwork, at least one of tree
growth, augmentation, blossom shrinking, or pseudonode unshrinking

10.1.2. Min Cost Perfect Matching Problem 731

steps can be carried out when labeling is resumed. And the method
continues.

BLOSSOM ALGORITHM FOR THE MINIMUM
COST PERFECT MATCHING PROBLEM

Step 1 Initialization An initial dual feasible solution is (π0 =
(π0i), µ

0) where µ0 = 0 and π0i = (1/2)(min. {cij : (i; j) ∈ A}) for
each i ∈ N . Choose an initial matching (could be empty) in the
equality subnetwork G∗(π0, µ0).

Step 2 Rooting an Alternating Forest If there are no unmatched
nodes, go to Step 10. Otherwise root an alternating tree at each
unmatched node i, by labeling it with (∅,+, i). List now consists
of all these root nodes.

Step 3 Select a Node to be Scanned If list = ∅, go to Step 8.
Otherwise select one node from the list to scan and delete it from
the list.

Step 4 Scanning Let the node to be scanned be the current node
i with label (P(i), ±, r).

Scanning an Outer Node If i is an outer node, for each j W=
P(i) such that (i; j) is a current equality edge (all these will be
nonmatching edges) do the following.

If j is an already labeled outer node associated with a root W= r,
an augmenting path has been found, go to Step 5.

If j is an already labeled outer node with the same root r, the
alternating tree containing i and j has blossomed, go to Step 6.

If j is an already labeled inner node, continue.

If j is unlabeled, label it with (i,−, r) and include it in the list.
Scanning an Inner Node If i is an inner node, it cannot be
unmatched since all unmatched nodes are outer root nodes, let
(i; j) be the current matching edge incident at i.

732 Ch. 10. Matching and Edge Covering Problems

If j is already labeled, it must be an inner node too. If the root
indices of i and j are the same, the tree containing them has
blossomed, go to Step 6. If the root indices of i, j are different,
an augmenting path has been found, go to Step 5.

If j is unlabeled, label it with (i,+, r) and include it in the list.

Go back to Step 3.

Step 5 Augmentation We come to this step when scanning has
revealed a pair of adjacent current nodes i, j associated with dif-
ferent root nodes r(i) W= r(j), contained on an augmenting path.
Combine the predecessor paths of i, j together with edge (i; j),
leading to the path P1. P1 is an augmenting path between r(i)
and r(j) in the current equality subnetwork. Let t1, t2 be the apex
nodes of r(i), r(j). Find the corresponding augmenting path P
between t1 and t2 in the present equality subnetwork in G by
expanding all the pseudonodes on P1. Rematch using P, and
revise all the blossoms along P1 as discussed above. Chop down
the two trees containing nodes on P1. If there are no unmatched
nodes, go to Step 10, otherwise put all the outer current nodes
in the list and go back to Step 3.

Step 6 Blossom Shrinking We come to this step when scanning
has revealed a pair of adjacent current nodes i, j associated with
the same root node, which are the identifying pair for a simple
blossom in the current equality subnetwork. Identify this simple
blossom, store all the necessary data on it, and shrink it into a
new pseudonode Bp, label Bp, revise the root index of all the
current nodes in the tree, revise the labels on the immediate
successors of nodes in this simple blossom, revise N 1 and M1,
exactly as in Step 6 of the algorithm in Section 10.1.1. Include
Bp in the list and go back to Step 3

Step 7 Pseudonode Unshrinking Unshrink all pseudonodes that
are current inner nodes with the associated pseudonode price
µσ = 0 in the present dual solution. Revise the set of current
matching edges, and the set of current nodes accordingly. In-
clude in the list all the new outer labeled nodes in the simple

10.1.2. Min Cost Perfect Matching Problem 733

blossoms corresponding to the unshrunk pseudonodes. Repeat
this procedure again if necessary, until there are no pseudonodes
that are inner labeled current nodes associated with µσ = 0. Go
back to Step 3.

Step 8 Dual Solution Change We reach this step if we do not
yet have a perfect matching, and the Hungarian forest conditions
are satisfied. This implies that the present matching is a max-
imum cardinality matching in the current equality subnetwork.
Let (π, µ) be the present dual feasible solution. Compute the fol-
lowing using the convention that the minimum in the empty set
is +∞.

δ1 = Min. {cij − dij(π, µ) : (i; j) ∈ A, i[j] is in-
side an outer [an unlabeled] current node}

δ2 = Min. {1
2
(cij − dij(π, µ)) : (i; j) ∈ A, i and

j are inside distinct outer current nodes}
δ3 = Min. {1

2
µσ : σ s. t. Yσ is the set of orig-

inal nodes inside a current inner labeled
pseudonode}

δ = Min. {δ1, δ2, δ3}
If δ = +∞, go to Step 9. If δ is finite, it will be positive (this is
proved below), define the new dual solution to be π̂ = (π̂i), µ̂ =
(µ̂σ) where

π̂i =

⎧⎪⎨⎪⎩
πi + δ for all i inside outer current nodes
πi − δ for all i inside inner current nodes
πi for all i inside unlabeled nodes

µ̂σ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

µσ + 2δ if Yσ is the set of original nodes in
a current outer labeled pseudonode

µσ − 2δ if Yσ is the set of original nodes in
a current inner labeled pseudonode

µσ otherwise

Find G∗(π̂, µ̂). Include all outer current nodes in the list. If
δ = δ3 go to Step 7. If δ < δ3 go to Step 3.

734 Ch. 10. Matching and Edge Covering Problems

Step 9 Infeasibility We come to this step if δ = +∞ in a dual
solution change step. In this case there exists no perfect matching
in G (this is proved below).

Step 10 Optimality We come to this step if the matching in the
present G∗(π, µ) is a perfect matching, it is a minimum cost per-
fect matching in G, and the corresponding perfect matching vec-
tor is an optimum solution of (10.17), (10.18), or (10.21). Termi-
nate.

Validity of the Algorithm and Its Computational Complexity

THEOREM 10.16 If the present (π, µ) is dual feasible, in Step 8, δ
will either be finite and > 0, or +∞.

Proof We execute Step 8 only when the Hungarian forest condi-
tions are satisfied. This and the dual feasibility of (π, µ) implies that
each of the sets of which δ1, δ2, δ3 are minima, is either empty or con-
sists only of strictly positive entries. So, each of δ1, δ2, δ3 is either finite
and > 0, or +∞, hence the same thing holds for δ.

THEOREM 10.17 If (π, µ) is dual feasible just before executing Step
8, the vector (π̂, µ̂) obtained after completing the execution of Step 8 is
also dual feasible.

Proof By Theorem 10.16, δ > 0, and since δ
<
= δ3 and µ

>
= 0, we

have µ̂
>
= 0.

Let (i; j) ∈ A with i and j both contained within a current node in
the present G1∗(π, µ) which is a pseudonode. Whether this pseudonode
is unlabeled or labeled, it can be verified that in this case dij(π̂, µ̂) =

dij(π, µ)
<
= cij , the last inequality because (π, µ) is dual feasible. So,

(π̂, µ̂) satisfies the dual constraint corresponding to this edge (i; j).
This also points out that if dij(π, µ) = cij , then dij(π̂, µ̂) = cij, so the
equality, nonequality status of any edge contained within a pseudonode
is unaffected by a dual solution change step.
Now consider an edge (i; j) ∈ A with nodes i, j contained within

distinct current nodes, i in p, and j in q. Hence, in this case there exists

10.1.2. Min Cost Perfect Matching Problem 735

no pseudonode which contains both i and j. If p is outer labeled and q is
inner labeled, dij(π̂, µ̂) = π̂i+ π̂j = πi+πj = dij(π, µ)

<
= cij. If both p, q

are outer labeled, dij(π̂, µ̂) = π̂i+π̂j = πi+πj+2δ = dij(π, µ)+2δ
<
= cij

since δ
<
= δ2 and (π, µ) is dual feasible. If p is outer labeled and q is

unlabeled, dij(π̂, µ̂) = π̂i + π̂j = πi + πj + δ = dij(π, µ) + δ
<
= cij

since δ
<
= δ1 and (π, µ) is dual feasible. If p, q are either inner labeled

or unlabeled each, dij(π̂, µ̂) = π̂i + π̂j , and this is either πi + πj or

πi+ πj − δ or πi+ πj − 2δ, and πi+ πj = dij(π, µ)
<
= cij, this and δ > 0

implies that dij(π̂, µ̂)
<
= cij. Hence (π̂, µ̂) satisfies the dual constraint

corresponding to this edge (i; j) in all these cases. This completes the
proof that (π̂, µ̂) is dual feasible.
Since dij(π̂, µ̂) = dij(π, µ) for every (i; j) ∈ A with i inside an

outer labeled node, and j inside an inner labeled node, we see that
the equality, nonequality status of such edges is unaffected by a dual
solution change step.

The initial price vector (π0, µ0) is clearly dual feasible. By repeated
application of the result in Theorem 10.17 after each dual solution
change step in the algorithm, we conclude that all price vectors ob-
tained in this algorithm are dual feasible.

THEOREM 10.18 In this algorithm, all matching edges are always
equality edges. Also, after each dual solution change step, in-tree edges
remain equality edges.

Proof The initial matching M0 = ∅, so the property that all
matching edges are equality edges is trivially satisfied initially. Every
augmenting path discovered in the algorithm is a path in the equality
subnetwork at that stage, and new matching edges are only created
during the augmentation step (Step 5), so they are all equality edges
when they are created. If (i; j) is a matching edge at the beginning of
execution of Step 8, we must have, either (i) both i and j are contained
inside a current node which is a pseudonode (labeled or unlabeled), or
(ii) one of i, j is inside an outer labeled node and the other is within
an inner labeled node in the same tree, or (iii) both i, j are inside
distinct unlabeled nodes. The arguments in the proof of Theorem 10.17
imply that any such equality edge remains an equality edge wrt the new

736 Ch. 10. Matching and Edge Covering Problems

dual feasible solution obtained at the end of this Step 8. By repeated
application of these results we conclude that all matching edges are
always equality edges.
Each new in-tree edge created during scanning (Step 4) is always an

equality edge when it joins the tree. Each in-tree edge always joins an
outer to an inner node, and by the argument in the proof of Theorem
10.17, the equality, nonequality status of such edges remains unaffected
during a dual solution change step. By repeated application of this
result, we conclude that all in-tree edges are always equality edges.

Thus, after each dual solution change step, the existing alternating
forest is contained in the new current equality subnetwork, and its
growth can be resumed. If δ was equal to δ1 in that step, the edges
which produced the value for δ1 lead to new current equality edges,
using which the trees containing the labeled nodes on them can be
grown further, or a discovery of an augmenting path made. If δ was
equal to δ2 in that step, the edges which produced the value for δ2
lead to new current equality edges, using which the trees containing
the labeled nodes on them can be grown further, or a discovery of a
new blossom made. If δ was equal to δ3 in that step, all the current
inner labeled pseudonodes which produced the value for δ3 will now
have zero pseudonode price, and these can now be unshrunk. Thus
after an execution of Step 8, the existing alternating forest is one that
is no longer hungarian in the new current equality subnetwork, and
scanning can be resumed, and at least one tree growth step or Steps 5,
or 6, or 7 can be carried out.
Initially µ0 = 0. A µσ can become positive only during Step 8, and

there µσ is only made positive if the associated set Yσ is the subset of
original nodes corresponding to an outermost pseudonode. In Step 7
pseudonodes are unshrunk, but only if the corresponding pseudonode
price µσ is 0. Hence the third property in (10.28) holds throughout
the algorithm. The first property in (10.28) holds by the nature of
the algorithm, and the second holds by the results in Theorem 10.17.
Hence all the properties in (10.28) hold throughout the algorithm.

THEOREM 10.19 Let M, (π, µ), G1∗(π, µ), be the present matching
in G, present dual feasible solution, present current equality subnetwork

10.1.2. Min Cost Perfect Matching Problem 737

respectively, when the algorithm arrives at Step 8 at some stage. If
δ = +∞ in that Step 8, there exists no perfect matching in G, in fact
the present M is a maximum cardinality matching in G.

Proof Suppose δ = +∞ in that Step 8. So, all of δ1, δ2, δ3 are
+∞. δ3 = +∞ implies that there are no current nodes which are
inner labeled pseudonodes. So, all the inner labeled current nodes are
original nodes at this stage, and all pseudonodes that are current nodes
are either unlabeled or outer labeled. Define (π(λ) = (πi(λ)), µ(λ) =
(µσ(λ))) by

πi(λ) =

⎧⎪⎨⎪⎩
πi + λ for all i inside outer current nodes
πi − λ for all i inside inner current nodes
πi for all i inside unlabeled nodes

µσ(λ) =

⎧⎪⎨⎪⎩
µσ + 2λ if Yσ is the set of original nodes in

a current outer labeled pseudonode
µσ otherwise

The dual objective function W (π, µ) in (10.24) at this stage can be
written as

�
(fp(π, µ) : over current nodes p), where

fp(π, µ) =
3
(πi : over i inside p)−

3
((|Yσ|− 1)µσ/2 : over σ

s. t. Yσ is set of original nodes inside a pseudonode

within p)

If p is an unlabeled node it can be verified that fp(π(λ), µ(λ)) =
fp(π, µ) for all λ. Also, if p is an inner labeled node, it must be an orig-
inal node as mentioned above, and hence fp(π(λ), µ(λ)) = fp(π, µ)−λ.
Suppose p is an outer labeled current node. If p is an original node,

then fp(π(λ), µ(λ)) = fp(π, µ)+λ, because in this case πp(λ) = πp+λ. If
p is a pseudonode, letYσ1 be the set of original nodes inside it. Let S =
{σ : Yσ W= Yσ1 is the set of original nodes inside a pseudonode strictly
within p }. Then µσ(λ) = µσ for all σ ∈ S because the associated
pseudonode is not a current node. So

738 Ch. 10. Matching and Edge Covering Problems

fp(π(λ), µ(λ)) =
3
(πi(λ) : over i inside p)

−(|Yσ1| − 1)µσ1(λ)/2−
3
((|Yσ|− 1)µσ/2 : over σ ∈ S)

=
3
(πi : over i inside p) + |Yσ1 |λ

−(|Yσ1| − 1)µσ1 + 2λ)/2−
3
((|Yσ|− 1)µσ/2 : over σ ∈ S)

= fp(π, µ) + λ

So, if p is an outer labeled current node, whether p is an original or
pseudonode, fp(π(λ), µ(λ)) = fp(π, µ) + λ.
All the nodes in a Hungarian tree in G1∗(π, µ) are matched nodes

with the exception of the root node which is an outer labeled current
unmatched node. Each current matching edge (p; q) in a Hungarian
tree contains one inner labeled node and one outer labeled node, and
hence from the above facts we have fp(π(λ), µ(λ)) + fq(π(λ), µ(λ)) =
fp(π, µ)+fq(π, µ). If r is the root node of a Hungarian tree, since it is an
outer labeled node we have fr(π(λ), µ(λ)) = fr(π, µ)+λ. Since match-
ing edges are node disjoint, all the nonroot nodes in a Hungarian tree
can be partitioned into pairs, each pair being the two nodes on a cur-
rent matching edge in that tree. So, from the above,

�
(fp(π(λ), µ(λ)) :

over current nodes p in a Hungarian tree) =
�
(fp(π, µ) : over current

nodes p in that Hungarian tree) + λ. Summing over all the Hungarian
trees in G1∗(π, µ) and over all the unlabeled current nodes, we have

W (π(λ), µ(λ)) = W (π, µ) + λl

where l is the number of distinct Hungarian trees (same as the number
of unmatched nodes at this stage). Since δ = +∞, (π(λ), µ(λ)) remains
dual feasible for all λ

>
= 0 by Theorem 10.17, and W (π(λ), µ(λ)) =

W (π, µ) + lλ → +∞ as λ → +∞. Thus the dual problem (10.24) is
feasible and the dual objective function is unbounded above on it. By
the duality theorem of LP the primal problem (10.21) is infeasible in
this case. We have discussed earlier that every perfect matching vector
is feasible to (10.21), however, since (10.21) is infeasible in this case,
there exists no perfect matching in G.

10.1.2. Min Cost Perfect Matching Problem 739

We will now provide an alternate proof of this theorem which does
not need the duality theorem of LP. Let G1 denote the current network
consisting of all of the equality and nonequality edges. Suppose δ =
+∞ in Step 8 at some stage. So, all of δ1, δ2, δ3 are +∞. δ3 = +∞
implies that there are no inner labeled current nodes in G1 that are
pseudonodes. So, at this stage all the current nodes that are pseudon-
odes are either outer labeled in-tree nodes or matched unlabeled nodes.
Throw away (or dismember as discussed in Section 10.1.1) all the unla-
beled pseudonodes and replace that part of the network with the corre-
sponding original network, leaving the matching, nonmatching status

of each edge unchanged. This changes the current network G1 into G
1

say. G
1
contains all the alternating trees in G1, but all the nodes in

G
1
outside the alternating trees are matched original nodes. The fact

that δ1, δ2 are +∞ implies that the present forest is a Hungarian forest

in G
1
. Since G

1
is a current network corresponding to G containing a

Hungarian forest, this implies that the present matching (which is not
a perfect matching) is a maximum cardinality matching in G. So, there
exists no perfect matching in G in this case.

Let (π, µ), (π̂, µ̂) be the dual feasible solutions at the beginning and
end of a Step 8 in which δ is finite, and l the number of alternating
trees in the Hungarian forest (or the number of unmatched nodes in
G) at that stage. If M is the matching at that stage, l = n − 2|M|.
From the arguments in the proof of Theorem 10.19, we haveW (π̂, µ̂) =
W (π, µ)+ lδ. So the dual objective value strictly increases (by δ times
the number of unmatched nodes at that stage) each time Step 8 is
carried out.

Suppose the algorithm terminates in Step 10. Let x, (π, µ) be the
perfect matching vector, dual feasible solution at that stage. x, (π, µ)
together satisfy primal feasibility (10.21), dual feasibility (10.24), and
the complementary slackness conditions for optimality (10.26), (10.27).
So, by duality theory of LP, x is optimal to (10.21), and since it is a
perfect matching vector, it is a minimum cost perfect matching vector
in G.

We will now analyze the worst case computational complexity of
this algorithm. Define an iteration in this algorithm to begin just after

740 Ch. 10. Matching and Edge Covering Problems

an augmentation step has been completed (the first iteration of course
begins at the start), and end when the next augmentation is completed
(the final iteration may also end with the infeasibility conclusion). Thus
augmentation is carried out exactly once in each iteration, at the end
of that iteration (if the problem is infeasible, no augmentation occurs
in the final iteration). The algorithm goes through at most (n/2) iter-
ations.

Consider the ρth iteration in this algorithm. A newly formed blos-
som in this iteration is shrunk into a pseudonode, that is labeled as
an outer node when it is formed. This pseudonode can become an
unlabeled node only at the end of the iteration, only if it lies on the
augmenting path discovered in this iteration. Until an augmentation
step occurs after it is formed, this pseudonode either remains an outer
current node, or gets absorbed inside another pseudonode which is an
outer current node. So, by Theorem 10.6, the blossom shrinking step
(Step 6) can occur at most (n/2) times during this iteration.

Only pseudonodes which are inner current nodes are unshrunk dur-
ing the algorithm. This implies that any pseudonode which is unshrunk
in this ρth iteration must be a pseudonode formed in earlier iterations,
which is an existing pseudonode at the beginning of this iteration.
Again by Theorem 10.6, this implies that the pseudonode unshrinking
step (Step 7) can occur at most (n/2) times during this iteration.

Let Γ = set of all original nodes contained within outer labeled
current nodes, I = set of inner labeled current nodes. So, if i ∈ Γ, then
i is not contained within any current node in I. So, |Γ|+ |I| <= n.
After each execution of Step 8 we either terminate (if δ = +∞), or

δ is finite and equal to δ1, δ2, or δ3.

If δ is finite and = δ2, at least one new simple blossom will be shrunk
into a new outer labeled pseudonode when labeling is resumed. All the
pseudonodes which were inner labeled nodes on this simple blossom
before its shrinking, will be lost from the set I because of this shrinking,
but each original node contained within any such pseudonode will get
included in the set Γ after this blossom shrinking. So, |Γ| + |I| either
stays the same or increases in this shrinking step. Also, the maximum
number of times that this blossom shrinking step can occur in this
iteration is (n/2). Hence, the maximum number of dual solution change

10.1.2. Min Cost Perfect Matching Problem 741

steps in this iteration in which δ turns out to be finite and = δ2 is (n/2).
If δ is finite and = δ3, at least one pseudonode which is an inner

current node will be unshrunk when labeling is resumed. After the
unshrinking this pseudonode will be lost from the set I. However, at
least 3 nodes on the simple blossom replacing this pseudonode will get
labeled, at least 2 of them as inner nodes, and at least one as an outer
node. Hence, after the unshrinking, |I| increases by at least 1, and |Γ|
increases by at least 1, i.e., |Γ|+ |I| increases by at least 2.
If δ is finite and = δ1, at least one unlabeled current node gets

labeled as an inner node immediately after this dual solution change
step, as a result |I| increases by at least one, while |Γ| either stays the
same (if no more nodes are labeled) or increases (if some more nodes
are labeled). Hence, each dual solution change step in this iteration
in which δ is finite and equal to δ1 or δ3 has the effect of increasing
|Γ|+ |I| by at least 1, and hence the total number of such steps cannot
exceed n in this iteration.
Hence the total number of dual solution change steps in this itera-

tion cannot exceed (3n/2).
The computational effort in a dual solution change step, a pseudon-

ode unshrinking step, a blossom shrinking step, an augmentation step,
or a tree growth step, is clearly bounded above by O(m). Hence the
total computational effort in one iteration of this algorithm is bounded
above by O(nm). Hence the overall computational effort in this algo-
rithm is bounded above by O(n2m).
In a straightforward implementation of this algorithm, the values

of dij(π, µ) will be revised for each (i; j) ∈ A after each dual solution
change step, and this itself involves O(m) effort right away in this step,
and makes the overall complexity of this algorithm O(n2m). As it was
done for the Hungarian method for the bipartite matching problem in
Section 3.1, it is possible to implement this algorithm so that for any
(i; j) ∈ A, dij(π, µ) is computed at most twice per iteration. Because
of this, the improved implementation has an overall worst case compu-
tational complexity of O(n3) (Lawler [1976 of Chapter 1]). We discuss
this efficient implementation next.

An O(n3) Implementation on the Blossom Algorithm
for the Minimum Cost Perfect Matching Problem

742 Ch. 10. Matching and Edge Covering Problems

As before, we define an iteration in this blossom algorithm to begin
either at initialization, or just after an augmentation step (Step 5) is
carried out, and to finish when the next augmentation step is carried
out. So there are at most (n/2) iterations in the algorithm. In this
implementation, we will use a quantity denoted by αt(π, µ), and subsets
of original edges Γt(π, µ),∆tv(π, µ), defined for each current node t and
current edge (t; v) wrt the present dual solution (π, µ) as below.

αt(π, µ) = Min.{cij − dij(π, µ) : (i; j) ∈ A, i inside t,
j inside an outer current node W= t}

Γt(π, µ) = {(i; j) : (i; j) ∈ A attains the min.
in the definition of αt(π, µ)}

∆tv(π, µ) = {(i; j) : (i; j) ∈ A attains the min.
in min. {cpq − dpq(π, µ) : (p; q) ∈ A, p ∈ t, q ∈ v}}

We will now describe the work in one iteration and how it is exe-
cuted. Let G1 = (N 1,A1), (π, µ) be the current network, and the dual
feasible solution at the beginning of the iteration. Compute dij(π, µ)
for every (i; j) ∈ A, and αt(π, µ),Γt(π, µ) for all t ∈ N 1, and ∆tv(π, µ)
for all (t; v) ∈ A1. In subsequent steps in this iteration, we com-
pute dij(π, µ) only for those original edges (i; j) needed for updating
αt(π, µ),Γt(π, µ),∆tv(π, µ) at that stage; and we show that this needs
to be done at most once for any edge.

At some stage during this iteration, let G1 = (N 1,A1), (π, µ) be
the current network, and dual feasible solution. We will now describe
how the various tasks in the algorithm are carried out at this stage.

TO SCAN AN OUTER NODE For scanning an outer node v, look for
unlabeled current nodes t such that αt(π, µ) = 0 and Γt(π, µ) contains
an edge incident to an original node inside v; these are all the unla-
beled nodes which can be labeled from v. If αv(π, µ) > 0, labeling the
above nodes is all you can do when scanning v. If, on the other hand,
αv(π, µ) = 0, look for current outer labeled nodes t containing inside it
an original node j incident to an edge in Γv(π, µ). If one of these outer
nodes t has a root index different from that of v, the predecessor paths

10.1.2. Min Cost Perfect Matching Problem 743

of t and v together with the current edge (t; v) is an augmenting path,
go to the augmentation step (Step 5) and after this step terminate this
iteration and go to the next iteration. If no augmenting path is found,
using one of the above nodes t with the same root index as v, a sim-
ple blossom is identified in the current equality subnetwork, go to the
blossom shrinking step (Step 6).

UPDATINGOF αt(π, µ),Γt(π, µ),∆tv(π, µ) WHENANUNLABELED
NODE IS LABELED AS AN INNER NODE If an unlabeled current
node gets labeled as an inner node, there is no change in any of these
quantities or sets. Continue.

UPDATING WHEN AN UNLABELED NODE IS LABELED AS AN
OUTER NODE Suppose an unlabeled current node u becomes la-
beled as an outer node. For every other current node w such that
(u;w) ∈ A1 do the following: Find βw = cij − dij(π, µ) for some
(i; j) ∈ ∆uw(π, µ). If

αw(π, µ) < βw, no change in αw(π, µ) or Γw(π, µ)

αw(π, µ) = βw, replace Γw(π, µ) by Γw(π, µ) ∪∆uw(π, µ)

αw(π, µ) > βw, change value of αw(π, µ) to βw

and replace Γw(π, µ) by ∆uw(π, µ)

No change in the other quantities or sets.

UPDATING WHEN A BLOSSOM IS SHRUNK Suppose a new
pseudonode, t0 has just been formed. So, at this stage t0 is an outer
labeled node. Find out all current nodes t such that (t; t0) is a current
edge. For each such t, do the following: let D be the set of nodes tI on
the simple blossom corresponding to t0 such that (t; t

I) was a current
edge before t0 was formed. For each t

I ∈ D let νtt = cij − dij(π, µ) for
any (i; j) ∈∆tt (π, µ). Let βtt0 = min. {νtt : tI ∈ D}. Let Xt = union
of ∆tt (π, µ) over t

I ∈ D satisfying νtt = βtt0. If

αt(π, µ) < βtt0 , no change in αt(π, µ) or Γt(π, µ)

αt(π, µ) = βtt0 , replace Γt(π, µ) by Γt(π, µ) ∪Xt

αt(π, µ) > βtt0 , change value of αt(π, µ) to βtt0
and replace Γt(π, µ) by Xt

744 Ch. 10. Matching and Edge Covering Problems

Also define

∆tt0(π, µ) = Xt

αt0(π, µ) = min. {βtt0 : over outer current nodes
t such that (t; t0) is a current edge }

Γt0(π, µ) = union of Xt over t attaining the minimum

in the definition of αt0(π, µ)

This completes the updating in this case.

UPDATING WHEN A PSEUDONODE IS UNSHRUNK Suppose a
pseudonode v has just been unshrunk. For each node tI on the simple
blossom corresponding to v, and current edge (t; tI) incident at it af-
ter the unshrinking: compute αt (π, µ),Γt (π, µ),∆tt (π, µ) using their
definitions. Let νtt = cij − dij(π, µ) for any (i; j) ∈∆tt (π, µ).
For each node t such that (t; tI) is a current edge after the un-

shrinking for some tI on the simple blossom corresponding to v do the
following: Define βt = min. {νtt : tI an outer labeled node on the
simple blossom corresponding to v, and (t; tI) is a current edge after
the unshrinking}, Xt = union of ∆tt (π, µ) over all t

I attaining the
minimum in the definition of βt. If

αt(π, µ) < βt, no change in αt(π, µ) or Γt(π, µ)

αt(π, µ) = βt, replace Γt(π, µ) by Γt(π, µ) ∪Xt

αt(π, µ) > βt, change value of αt(π, µ) to βt

and replace Γt(π, µ) by Xt

TO CARRY OUT A DUAL SOLUTION CHANGE STEP Let (π, µ)
denote the present dual feasible solution. Clearly, in this step, δ1 =
min. {αt(π, µ) : t an unlabeled current node at this stage}, δ2 = min.
{1
2
αt(π, µ) : t an outer labeled current node at this stage}, and δ3, δ

are the same as defined in Step 8 of the algorithm. If the new dual
feasible solution is (π̂, µ̂), then

αt(π̂, µ̂) =

⎧⎪⎨⎪⎩
αt(π, µ)− δ if t is an unlabeled current node
αt(π, µ)− 2δ if t is an outer labeled current node
αt(π, µ) if t is an inner labeled current node

10.1.2. Min Cost Perfect Matching Problem 745

and the sets Γt(π̂, µ̂) = Γt(π, µ),∆tv(π̂, µ̂) =∆tv(π, µ).

If carried out this way, it can be verified that for each (i; j) ∈ A,
dij(π, µ) is computed at most twice during the entire iteration. We will
now analyze the computational complexity of this implementation, and
show that the effort per iteration is O(n2). First, consider the computa-
tional effort involved in updating after blossom shrinkings during an it-
eration. Suppose there are s blossom shrinkings in this iteration. None
of the resulting pseudonodes are unshrunk during this iteration. Let
g1, . . . , gs be the number of nodes on the simple blossoms corresponding
to blossoms, in the order in which they are discovered. When the first
pseudonode, t0 say, was formed in this iteration, the updating opera-
tions take at most (n− g1)g1 effort, since there are at most (n− g1)g1
edges of the form (t; tI) discussed above. After this first pseudonode
was formed, the number of current nodes is at most n− g1+1. So, the
effort involved in updating when the second pseudonode is unshrunk
in this iteration is at most g2(n − g1 + 1− g2). After this the number
of current nodes is at most (n − g1 + 1− g2 + 1) = (n − g1 − g2 + 2).
Continuing this argument, we see that the total effort in updating due
to blossom shrinking operations in this iteration is at most

g1(n− g1) + g2(n− g1 − g2 + 1) + . . .+ gs(n− g1 − . . .− gs + s− 1)
<
= n(g1 + g2 + . . .+ gs)

<
= n2

Now consider the computational effort involved in updating after
pseudonode unshrinking operations in this iteration. Let u be the
number of pseudonodes unshrunk in this iteration, let a1, . . . , au be
the number of nodes on the simple blossoms corresponding to these
pseudonodes in the order in which they are unshrunk. Let b1 be the
number of current nodes just before the first pseudonode is unshrunk
in this iteration.
Updating after the first unshrinking operation clearly requires at

most b1a1 effort. After this the number of current nodes is a1 + b1− 1.
So, the number of current nodes just before the second unshrinking in
this iteration is

<
= a1 + b1 − 1, and by the same argument, the effort

involved in updating after it is at most a2(a1 + b1 − 1). Similarly,
the number of current nodes just before the third unshrinking in this

746 Ch. 10. Matching and Edge Covering Problems

iteration is
<
= (a1 + a2 + b1 − 2). Continuing the argument in this way,

we see that the total effort in updating due to pseudonode unshrinking
operations in this iteration is at most

a1b1 + a2(a1 + b1 − 1) + a3(a1 + a2 + b1 − 2) + . . .+
au(a1 + . . .+ au−1 + b1 − (u− 1))

But b1 + a1 + . . .+ au − (u− 1) <= n. So, the above sum in reverse

order is
<
= (n−au)au+(n−au−au−1+1)au−1+ . . . <= O(n2), as before.

The computation of dij(π, µ) for all (i; j) ∈ A at the beginning
of this iteration takes O(m) effort. The total effort for tree growth,

augmentation, etc., in this iteration is clearly
<
= O(n2). Summing up,

we see that the overall effort in this iteration is O(n2). Since there are
at most (n/2) iterations, the overall effort in this implementation is at
most O(n3).

10.1.3 The Minimum Cost Matching Problem

Here we consider the problem of finding a minimum cost matching in
the undirected network G = (N ,A, c = (cij)) with c as the vector of
edge cost coefficients, |N | = n, and |A| = m, without any constraint
on the matchings cardinality. This problem is the same as in (10.17),

(10.18) except that the constraint x(i) = 1 is to be replaced by x(i)
<
= 1

for all i ∈ N ; exactly the same change has to be made in (10.21) to
get the corresponding LP formulation replacing the integrality require-
ments on the variables by the same blossom constraints. This is the
LP

Minimize z(x) =
3
(cijxij : over (i; j) ∈ A)

subject to x(i)
<
= 1, for all i ∈ N

Y−σ (x)
<
= (|Yσ|− 1)/2, σ = 1 to L (10.29)

xij
>
= 0 for all (i; j) ∈ A

where Yσ, σ = 1 to L are all the subsets of N of odd cardinality
>
= 3.

Define the dual solution π = (πi : i ∈ N), µ = (µσ : σ = 1 to L),

10.1.3. Min Cost Matching Problem 747

and the quantity µ−(i; j) for each (i; j) ∈ A as in (10.22), exactly as in
Section 10.1.2. The dual problem is

Maximize W (π, µ) = −3
i∈N

πi −
L3

σ=1

(|Yσ|− 1)(µσ)/2

subject to dij(π, µ)
<
= cij , for each (i; j) ∈ A (10.30)

π, µ
>
= 0

where
dij(π, µ) = −πi − πj − µ−(i; j) (10.31)

This formula for dij(π, µ) is different from that in (10.23) of Section
10.1.2, because of the difference in the degree constraints here. Also,
here π is restricted to be

>
= 0 for the same reason. Given a dual feasible

solution (π, µ), the set of equality edges wrt it is A∗(π, µ) defined below
in (10.32), and G∗(π, µ) = (N ,A∗(π, µ)) is the equality subnetwork wrt
(π, µ). The complementary slackness conditions for optimality in this
primal, dual pair of problems are (10.33), (10.34), (10.35) given below.

A∗(π, µ) = {(i; j) : (i; j) ∈ A, and dij(π, µ) = cij} (10.32)

xij > 0⇒ dij(π, µ) = cij , for each (i; j) ∈ A (10.33)

µσ > 0⇒ Y−σ (x) = (|Yσ|− 1)/2, σ = 1 . . . L (10.34)

πi > 0⇒ x(i) = 1 (10.35)

The blossom algorithm of this section maintains x, (π, µ) satisfying dual
feasibility (10.30), and (10.33), (10.34) throughout. In this problem, an
unmatched node i does not violate primal feasibility, but if πi > 0 for an
unmatched node i, then the complementary slackness condition (10.35)
is violated. For this reason, in this problem we classify unmatched
nodes into two classes: an unmatched node i is said to be an

exposed node if πi > 0 in the present dual solution

nonexposed node otherwise

Since nonexposed nodes do not violate any of the feasibility or optimal-
ity (complementary slackness) conditions, the algorithm tries to reduce

748 Ch. 10. Matching and Edge Covering Problems

the number of exposed nodes. This is done by alternating between two
phases, just as in the blossom algorithm of Section 10.1.2.
In the matching change phase, the dual solution (π, µ) is held

constant and the algorithm tries to find alternating paths wrt the
present matching, with an exposed node at at least one end of it. This is
done by growing an alternating forest with one alternating tree rooted
at each exposed node in the equality subnetwork G∗(π, µ). If an aug-
menting path, i.e., an alternating path between two exposed nodes, is
found, we rematch using it, the trees containing nodes on that path
are chopped down and the growth of the remaining trees, if any, is re-
sumed. Each augmentation step reduces the number of exposed nodes
by 2.
Even if an alternating path joining a matched node t associated

with πt = 0 beginning with the matching edge incident at it, to an
exposed node i is found, we rematch using it. This operation does not
change the cardinality of the matching, but converts i into a matched
node and t into an unmatched but nonexposed node (since πt = 0) and
thus reduces the number of exposed nodes by 1.
When such matching changes are not possible any more and a max-

imum cardinality matching in G∗(π, µ) is obtained, and there are still
exposed nodes left, the algorithm moves to a dual solution change
step. After this step, the process is repeated in the new equality sub-
network.
In all dual feasible solutions obtained during the algorithm, the

values of all the original node prices πi associated with exposed nodes
i at that stage will be the same.
If c

>
= 0 the empty matching is clearly a minimum cost matching.

So, we assume that cij < 0 for at least one (i; j) ∈ A.
Suppose x, (π, µ) are the present solutions. The matching change

phase of the algorithm stops now if the present current equality sub-
network G1∗(π, µ) contains a Hungarian forest with a Hungarian tree
rooted at each exposed node. This state is characterized by the follow-
ing conditions.

No alternating tree can grow any further (i.e., the list of
labeled and unscanned nodes is empty). There are no aug-
menting paths in the current equality subnetwork, no blos-

10.1.3. Min Cost Matching Problem 749

soms which can be shrunk, and no inner labeled pseudon-
odes associated with pseudonode price of µσ = 0. And
πi > 0 for all original nodes i contained within outer la-
beled nodes (this guarantees that there are no alternating
paths between an exposed node i and a matched node t
with πt = 0).

When all these conditions are satisfied, we say that the labeling has
become hungarian , and the alternating forest has become a Hun-
garian forest . Then the algorithm moves to the dual solution change
phase.

BLOSSOM ALGORITHM FOR THE MINIMUM COST MATCHING
PROBLEM

Step 1 Initialization Define the initial dual feasible solution to
be (π0 = (π0i), µ

0 = (µ0σ)) where µ
0 = 0 and π0i = (1/2)max.{0,

−cpq, for all (p; q) ∈ A}, for all i ∈ N . Choose x0 = 0 and the
corresponding initial matching M0 = ∅.

Step 2 Rooting an Alternating Forest If there are no exposed
nodes, go to Step 9. Otherwise root an alternating tree at each
exposed node i, by labeling it with (∅,+, i). List now consists of
all these root nodes.

Step 3 Same as Step 3 in the algorithm of Section 10.1.2

Step 4 Scanning Let the node to be scanned be the current node
i with label (P(i), ±, r).

Scanning an Outer Node If i is an outer node, for each j W=
P(i) such that (i; j) is a current equality edge do the following.

If j is an already labeled outer node associated with a root W= r,
an augmenting path joining two exposed nodes has been found,
go to Step 5.

If j is an already labeled outer node with the same root r, and
there is an original node t inside t such that πt = 0, an alternating

750 Ch. 10. Matching and Edge Covering Problems

path joining t to the apex node of r, beginning with the matching
edge incident at t has been found, go to Step 5.3.

If j is an already labeled outer node with the same root r, and
πt > 0 for all original nodes t inside j, the alternating tree con-
taining i and j has blossomed, go to Step 6.

If j is an already labeled inner node, continue.

If j is unlabeled, label it with (i,−, r) and include it in the list.

Scanning an Inner Node If i is an inner node, and it is an
unmatched nonexposed node, go to Step 5.2 (Augmentation 2
step).

If i is a matched inner node, let (i; j) be the current matching
edge incident at it. If j is already labeled, it must be an inner
node too. If the root indices of i and j are the same, the tree
containing them has blossomed, go to Step 6. If the root indices
of i, j are different, an augmenting path has been found, go to
Step 5.

If j is unlabeled, label it with (i,+, r) and include it in the list.

Go back to Step 3.

Step 5 Same as Step 5 in the algorithm of Section 10.1.2.

Step 5.2 Augmentation 2 Step We come to this step when scan-
ning has revealed an inner labeled node i which is an unmatched
nonexposed node. Let P1 be the predecessor path of i, it is an
augmenting path containing one exposed and one nonexposed un-
matched nodes. Find the corresponding augmenting path P in
G between i and the apex of the root node, by expanding the
pseudonodes on P1. Rematch using P. Revise all the blossoms
along P1, as discussed in Section 10.1.2. Chop down the tree con-
taining i. If there are no exposed nodes, go to Step 9. Otherwise
include all the outer labeled current nodes in the list and go to
Step 3.

10.1.3. Min Cost Matching Problem 751

Step 5.3 Rematching an Alternating Path between an Exposed
and a Matched Node with 0 Node Price We come to this
step when scanning has revealed an outer node i joined to another
outer node in the same tree by a current equality edge, such that
j is matched and contains inside it an original node t with πt = 0.
Let the root of this tree be r. Let P1 be the path consisting of
the edge (j; i) and the predecessor path of i. By expanding the
pseudonodes on P1, find the corresponding alternating path P
in G beginning with the matching edge incident at t to the apex
node of r. Rematch using P. This makes t unmatched, but since
πt = 0, it remains nonexposed. The apex of r is now matched.
Revise all the blossoms along P1 as discussed in Section 10.1.2.
Chop down the tree containing r. If there are no exposed nodes,
go to Step 9. Otherwise, include all the outer nodes in the list
and go back to Step 3.

Steps 6, 7 Same as Steps 6, 7 in the algorithm of Section 10.1.2.

Step 8 Dual Solution Change Step We reach this step only if
we still have exposed nodes in the present equality subnetwork
and the Hungarian forest conditions are satisfied. This implies
that the present matching is a maximum cardinality matching in
the current equality subnetwork. Let (π, µ) be the present dual
feasible solution. Compute the following using the convention
that the minimum in the empty set is +∞.

δ1 = Min. {cij − dij(π, µ) : (i; j) ∈ A, i[j] is in-
side an outer [an unlabeled] current node}

δ2 = Min. {1
2
(cij − dij(π, µ)) : (i; j) ∈ A, i and j

are inside distinct outer current nodes}
δ3 = Min. {1

2
µσ : σ s. t. Yσ is the set of orig-

inal nodes inside a current inner labeled
pseudonode}

δ4 = Min. {πi : i is inside an outer current node}
δ = Min. {δ1, δ2, δ3, δ4}

752 Ch. 10. Matching and Edge Covering Problems

Define the new dual solution to be π̂ = (π̂i), µ̂ = (µ̂σ) where

π̂i =

⎧⎪⎨⎪⎩
πi − δ for all i inside outer current nodes
πi + δ for all i inside inner current nodes
πi for all i inside unlabeled nodes

µ̂σ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

µσ + 2δ if Yσ is the set of original nodes in
a current outer labeled pseudonode

µσ − 2δ if Yσ is the set of original nodes in
a current inner labeled pseudonode

µσ otherwise

Find G∗(π̂, µ̂). If δ = δ4, π̂i = 0 for all unmatched nodes i, go
to Step 9. If δ < δ4 but = δ3 go to Step 7. If δ < δ4 and < δ3
include all outer current nodes in the list and go to Step 3.

Step 9 Optimality We only come to this step when we have a match-
ing M, the associated matching vector x, and dual feasible so-
lution (π, µ), and there are no exposed nodes. M is a minimum
cost matching in G. Terminate.

Discussion

By the manner in which scanning is carried out, it can be verified
that if p is a root node, it cannot contain inside it an original node
t with πt = 0. So, whenever we come to Step 5.3, the node j will
be a matched node (since it is an outer node and not a root node).
Also, by this property and the Hungarian forest conditions, when the
algorithm comes to Step 8, then δ4 is finite and strictly positive. It
can be verified that δ will always be finite and positive whenever Step
8 is carried out, and that (π, µ) remains dual feasible throughout the
algorithm. Also, verify that all matching edges are all equality edges,
and in-tree edges remain equality edges after each dual solution change
step. The equality, nonequality status of any edge contained within a
pseudonode, or any edge (i; j) ∈ A with i inside an outer node, and j
inside an inner node, remains unchanged during a dual solution change
step. The pair x, (π, µ) always satisfy (10.30), (10.33), (10.34).
By arguments similar to those in the proofs in Section 10.1.2, it can

be shown that if (π, µ), (π̂, µ̂) are the present and new dual solutions

10.1.4. Matching Vector Polytope 753

in a Step 8, then W (π̂, µ̂) = W (π, µ) + lδ, where l is the number of
alternating trees in the current equality subnetwork at that stage (same
as the number of exposed nodes at the beginning of this step). Thus
each execution of Step 8 increases the dual objective value strictly.
Exposed nodes are always outer nodes. Every time Step 8 is carried

out, the same δ is subtracted from the original node price of exposed
nodes, while it may be subtracted or added to the original node price
of other nodes. The initial node price is the same for all the nodes.
Hence, at every stage, the original node prices of all the exposed nodes
are the same, and their value is

<
= the original node price of any other

node.
Finally, when the algorithm arrives at Step 9, there are no exposed

nodes, and the complementary slackness condition (10.35) is also sat-
isfied. Since primal feasibility, dual feasibility, and the complementary
slackness conditions for optimality are all satisfied at this stage, and
the x-vector is an integer vector, it is a minimum cost matching vector
in G.
Steps 5 or 5.2 or 5.3 need to be carried at most n times in the al-

gorithm, since each of them reduces the number of exposed nodes by
at least 1. Define an iteration in this algorithm to begin just after one
of Steps 5, 5.2, or 5.3 is completed (the first iteration of course begins
at the start) and end when one of these matching change steps is com-
pleted next. So, the algorithm goes through at most n iterations. Us-
ing arguments similar to those in Section 10.1.2, it can be verified that
the computational effort in one iteration is bounded above by O(nm).
Hence, the overall computational effort in the algorithm is bounded
above by O(n2m), which can be reduced to O(n3) by implementing it
efficiently as discussed in Section 10.1.2.

10.1.4 The Convex Hulls of Matching and Perfect
Matching Vectors

Let K
<
=,K= denote the convex hulls of matching, perfect matching

vectors respectively in G = (N ,A). Irrespective of what the edge cost
vector c may be, we have shown in Section 10.1.3, that the LP (10.29)
has an optimum solution that is a matching vector in G, and that the

754 Ch. 10. Matching and Edge Covering Problems

blossom algorithm discussed there will find it. This implies that all the
extreme points of the set of feasible solutions of (10.29) are matching
vectors in G. Also, clearly every matching vector in G is an extreme

point of this set. Hence, K
<
= is the set of feasible solutions of (10.29),

i.e., (10.29) provides a linear constraint representation of K
<
=.

Using a similar argument, we conclude that (10.21) provides a linear
constraint representation of K=.

Here we proved that systems (10.21), (10.29) provide linear con-

straint representations of K=, K
<
= respectively, using the fact that

the blossoms algorithms discussed earlier, based on these systems, find
minimum cost extreme points of these polytopes, for all cost vectors
c. Direct polyhedral proofs of these results without any recourse to
algorithms, have been found recently, see Schrijver [1983].

10.1.5 Other Algorithms for Minimum Cost Match-
ing Problems

An algorithm that begins with a perfect matching in G and finds a min-
imum cost perfect matching by moving through a sequence of perfect
matchings of decreasing cost has been developed by Cunningham and
Marsh [1978]. This algorithm has all the features of the primal simplex
algorithm for solving LPs, and hence can be thought of as a primal
algorithm for the minimum cost perfect matching problem. Its worst
case computational complexity is also O(n2m), but it is not expected to
be computationally competitive with versions of the primal-dual blos-
som algorithms discussed above. Cunningham and Marsh [1978] also
developed methods for doing sensitivity analysis in the minimum cost
perfect matching problem using their primal algorithm. Another pri-
mal approach for the minimum cost perfect matching problem has been
developed based on negative cost alternating cycles. This approach is
also initiated with any perfect matching (with artificial edges, if nec-
essary) and it improves this matching successively over negative cost
alternating cycles, see Derigs [1986]. Another approach for the mini-
mum cost perfect matching problem is to start with any matching (M
= ∅ for example) satisfying the complementary slackness optimality

10.1.6. Integral Dual Optima 755

conditions with a dual feasible solution, and augment it successively
using shortest augmenting paths until a perfect matching is obtained,
see Derigs [1981, 1991].

10.1.6 Integer Valued Optimum Dual Solutions

Here we will prove that (10.30), the dual of the minimum cost match-
ing problem in G = (N ,A, c) has an integer optimum solution (π, µ)
whenever c is an integer vector.

THEOREM 10.20 If c is an integer vector, and x̃, (π̃, µ̃) are the min-
imum cost matching vector, and optimum dual solution, obtained by the
blossom algorithm of Section 10.1.3 when it is applied on G, then µ̃ and
2π̃ are integer vectors.

Proof Assume that c is an integer vector. Let (π, µ) be a dual
feasible solution obtained during the course of applying the blossom
algorithm of Section 10.1.3 on G. We will actually show that (π, µ)
satisfy the following properties.

1. µ and 2π are integer vectors.

2. Let T = set of all original nodes inside a current in-tree node.
Then πi− uπiJ = the fractional part in πi has the same value for
all i ∈ T, and this value is either 0 or 1/2.

By the definition of the initial dual feasible solution (π0, µ0) in Step
1, it is clear that both properties 1 and 2 hold for it.
Suppose properties 1 and 2 hold for a dual feasible solution (π, µ)

obtained at some stage in the algorithm. Since µ is an integer vector, if
(i; j) ∈ A is an equality edge at this stage such that i is inside a labeled
node, and j is inside an unlabeled node, then dij(π, µ) can only be equal
to cij, an integer, if πi − uπiJ = πj − uπjJ. This implies that property
2 continues to hold after tree growth steps occur. Properties 1 and
2 imply that in the ensuing dual solution change step, the fractional
part in δ2, if any, is 1/2, and that 2δ is integer. From the dual solution
updating formula, these facts imply that properties 1, 2 continue to
hold in the new dual feasible solution after a dual solution change step.

756 Ch. 10. Matching and Edge Covering Problems

Using this repeatedly, we verify that properties 1, 2 hold throughout
the algorithm. The theorem follows directly.

THEOREM 10.21 If c = (cij) is a vector in which all the entries are
0 or −1, (10.30) has an optimum solution (π, µ = 0) which is integer.

Proof Let cij = 0 or −1 for all (i; j) ∈ A. Let A2 = {(i; j) : cij =
−1}. Finding a minimum cost matching in G = (N ,A, c) in this case is
the same problem as finding a maximum cardinality matching in G2 =
(N ,A2). LetM2 be a maximum cardinality matching in G2, and let x

2

be the matching vector in G corresponding to the matchingM2. Define
the 0-1 vector π2 = (π2i) with π

2
i equal to 1 for exactly one node on each

edge inM2, and 0 at all other nodes. Verify that (π
2, µ2 = 0) is feasible

to (10.30) in this case, and that x2, (π2, µ2) satisfy the complementary
slackness optimality conditions (10.33), (10.34), (10.35) for the primal,
dual pair (10.29), (10.30) in this case. So, (π2, µ2) is an optimum
solution for (10.30) in this case, and it is integer, proving the theorem.

THEOREM 10.22 Suppose c is an integer vector. Then (10.30) has
an integer optimum solution (π, µ).

Proof Let (π̃ = (π̃i), µ̃) be the optimum dual solution obtained
when the minimum cost matching problem in G is solved by the blos-
som algorithm of Section 10.1.3. By Theorem 10.20, 2π̃ is an integer
vector. If π̃ is an integer vector, we are done. So, assume that π̃ is not
an integer vector. By Theorem 10.20, the fractional part of π̃i is either
0 or 1/2 for each i ∈ N . Let T = {i: the fractional part of π̃i is 1/2}.
For (i; j) ∈ A define cIij = −1 if both i and j are in T, 0 otherwise. Let
(πI, µI = 0) be an integer dual optimum solution for the minimum cost
matching problem in (N ,A, cI) constructed as in the proof of Theorem
10.21. Define (π∗ = (π∗i = uπ̃iJ + πIi), µ

∗ = µ̃). Clearly (π∗, µ∗) is an
integer feasible solution of (10.30). Also

W (π∗, µ∗) >
= −1

2
|T|+ (−3

i∈N
uπ̃iJ −

L3
σ=1

(|Yσ|− 1)µ̃σ/2)

10.2. 1-Edge Covers 757

= −3
i∈N

π̃i −
L3

σ=1

(|Yσ|− 1)µ̃σ/2)

= W (π̃, µ̃)

Since, (π∗, µ∗) is feasible to (10.30) and (π̃, µ̃) is optimal to it,
W (π∗, µ∗) >

= W (π̃, µ̃) implies that (π∗, µ∗) is an alternate optimum
solution for (10.30). Also, (π∗, µ∗) is an integer vector, so it is an
integer optimum solution of (10.30).

Exercises

10.1 Prove that (10.24), the dual of the minimum cost perfect match-
ing problem, always has an integer optimum solution if c is an integer
vector, and it has an optimum solution. Develop an algorithm for
finding such an integer optimum solution to this problem.

10.2 Show that the various matchings obtained during the succes-
sive iterations of the blossom algorithm for the minimum cost match-
ing problem of Section 10.1.3, are minimum cost matchings among all
matchings in G having the same cardinality as themselves.

10.3 Let ν be a positive integer. Show that the convex hull of all
matching vectors in G whose cardinality is ν, is the set of feasible
solutions of the system of constraints in (10.29) and the additional
constraint

�
(xij : over (i; j) ∈ A) = ν.

Comment 10.2 The proof of the integer property in this section
has been communicated to me by S. N. Kabadi. For a different proof
of this result, see Cunningham and Marsh [1978].

10.2 1-Edge Covering Problems

Let G = (N ,A) be an undirected connected network with |N | =
n, |A| = m. In this section, we discuss algorithms for minimum cardi-
nality and minimum cost edge covers in G. Define a star to be a tree

758 Ch. 10. Matching and Edge Covering Problems

A receiver

node

Transmitter

node

Figure 10.27: Two stars.

Figure 10.28: This network is not a star, as it has two nodes with
degree

>
= 2.

spanning at least two nodes, in which at most one node has degree
>
= 2.

See Figures 10.27, 10.28. In a star, if there is a node of degree
>
= 2, it

is known as the transmitter node; and all other nodes are known as
receiver nodes.

THEOREM 10.23 Every minimum cardinality edge cover in G is a
star forest.

Proof Let E be a minimum cardinality edge cover in G. E cannot
contain a cycle, because if it did, an edge from that cycle can be deleted,
leading to an edge cover of lower cardinality, a contradiction. So E is
a forest. If E is not a star forest, it must contain a path P consisting
of three or more edges. On this path P there are two adjacent nodes
both of which are of degree

>
= 2 in E. Deleting the edges joining these

two nodes in P , leads to an edge cover of lower cardinality than E, a
contradiction. Hence, E is a star forest.

THEOREM 10.24 (i) Let M̄ be a maximum cardinality matching
in G; and Ē a subset containing all the edges in M̄, and one

10.2. 1-Edge Covers 759

arbitrary edge incident at each unmatched node. Then Ē is a
minimum cardinality edge cover in G.

(ii) Let Ê be a minimum cardinality edge cover in G; and M̂ a subset
containing exactly one edge from each connected component of
(N , Ê). Then M̂ is a maximum cardinality matching in G.

Proof Let |M̄| = r. So, the number of unmatched nodes in G wrt M̄
is n− 2r. So, by construction, |Ē| = r + (n− 2r) = n− r = n− |M̄|,
and Ē is an edge cover.
By hypothesis, Ê is a minimum cardinality edge cover. So, by

Theorem 10.23, Ê is a star forest, hence each connected component
of (N , Ê) is a star tree. The subset M̂ defined in (ii) is clearly a
matching and |M̂| = number of connected components in (N , Ê). Take
a connected component of (N , Ê), (V,T) say. So, (V,T) is a star
tree. M̂ contains exactly one edge, e, say from T. So, if (V,T) has a
transmitter node, it must lie on e. So, the number of nodes in (V,T)
not on e is exactly |V| − 2, and |T\{e}| = |V| − 2. Summing up the
corresponding result over all the connected components of (N , Ê) and
using the above result leads to |Ê| = |M̂| + (n − 2|M̂|) = n − |M̂| >=
n−|M̄| (since M̄ is a maximum cardinality matching |M̄| >= |M̂|) = |Ē|,
by previous results. Since Ê is a minimum cardinality edge cover and
|Ê| >= |Ē|, Ēmust also be a minimum cardinality edge cover. Also, from
the above, we have |M̂| <= |M̄|, and since M̄ is a maximum cardinality
matching, M̂ must also be a maximum cardinality matching in G.

As an example, consider the network in Figure 10.18. M̄ = {(1;
2),(4; 7),(6; 10),(5; 12);(11; 13)} is a maximum cardinality matching
in this network. Node 3 is the only unmatched node wrt M̄. So M̄ ∪
{(3; 2)} is a minimum cardinality edge cover in this network.
Thus a minimum cardinality edge cover in G can be found by find-

ing a maximum cardinality matching in G first, and then using the
procedure described in (i) of Theorem 10.24. The computational effort
required by this method is bounded above by 0(n3).
A minimum cardinality edge cover in G can also be found directly by

starting with some edge cover (for example, A can be used as the initial
edge cover in G), generating reducing paths (these are analogous to

760 Ch. 10. Matching and Edge Covering Problems

augmenting paths in the maximum cardinality matching problem) and
using them to move to edge covers of lower cardinality, until an edge
cover wrt which no reducing path exists, is obtained. See White [1971]
and White and Gillenson [1975].

10.2.1 Minimum Cost Edge Covers

In this section we discuss an algorithm for finding a minimum cost
edge cover in G = (N ,A, c = (cij)). Defining an edge covering vector
x = (xij) in G as at the beginning of this chapter, this problem is the
integer program

Minimize z(x) =
3
(cijxij : over (i, j) ∈ A)

subject to x(i)
>
= 1 for all i ∈ N (10.36)

0
<
= xij

<
= 1, for all (i, j) ∈ A

xij integer for all (i, j) ∈ A (10.37)

Let Y ⊂ N with |Y| odd and >
= 3. Define

Y+(x) =
3
(xij over (i, j) ∈ A with at least one of i or j or both in Y)

(10.38)

Notice the difference in the definition of Y+(x) in (10.38) compared
to that of Y−(x) in (10.19). If x is an edge covering vector in G, and
|Y| is odd and >

= 3, we must have

Y+(x)
>
= (|Y|+ 1)/2. (10.39)

(10.39) is the covering blossom inequality or the covering blos-
som constraint corresponding to Y for the edge covering problem.
Also, observe the difference in the matching blossom constraint defined
in (10.20) and the covering blossom constraint. Let Y1, . . . ,YL be all

10.2.1. Min Cost Edge Covers 761

the distinct subsets ofN of odd cardinality
>
= 3. Consider the following

LP

Minimize z(x) =
3
(cijxij : over (i, j) ∈ A)

subject to x(i)
>
= 1 for all i ∈ N (10.40)

Y+
σ (x)

>
= (|Yσ|+ 1)/2, σ = 1 to L

0
<
= xij

<
= 1, for all (i, j) ∈ A

Every edge covering vector in G is feasible to (10.40) and every inte-
ger feasible solution of (10.40) is an edge covering vector in G. So, if
an optimum solution of (10.40) is an integer vector, it is a minimum
cost edge covering vector in G. Associate the original node price (dual
variable) πi to the constraint corresponding to node i in (10.40), for
each i ∈ N , and the dual variable (which can be interpreted as the
pseudonode price just as in Sections 10.1.2, 10.1.3) µσ to the blossom
inequality corresponding to Yσ,σ = 1 to L. Let π = (πi), µ = (µσ).
Given (π, µ), for each (i, j) ∈ A, define

µ+(i, j) =
3
(µσ : over σ s.t. Yσ contains

either i or j or both) (10.41)

dij(π, µ) = πi + πj + µ
+(i, j) (10.42)

The dual of (10.40) is

Maximize
3
i∈N

πi +
L3

σ=1

(|Yσ|+ 1)(µσ/2)−
3

(i,j)∈A
ξij

subject to dij(π, µ) − ξij + νij = cij , for (i, j) ∈ A (10.43)

all πi, µσ, ξij , νij
>
= 0.

Hence the dual feasibility conditions for (π = (πi), µ = (µσ)) are

π
>
= 0, µ

>
= 0. (10.44)

762 Ch. 10. Matching and Edge Covering Problems

The complementary slackness conditions for optimality in the bounded
variable primal LP (10.40) and its dual (10.43) are: for each i ∈ N and
σ = 1 to L:

πi > 0 ⇒ x(i) = 1 (10.45)

x(i) > 1 ⇒ πi = 0 (10.46)

dij(π, µ) > cij ⇒ xij = 1 (10.47)

dij(π, µ) < cij ⇒ xij = 0 (10.48)

µσ > 0 ⇒ Y+
σ (x) = (|Yσ|+ 1)/2 (10.49)

Y+
σ (x) > ((|Yσ|+ 1)/2) ⇒ µσ = 0. (10.50)

The algorithm for the edge covering problem discussed below, is
based on the blossom algorithm for matching problems. At termina-
tion, it generates an edge covering vector, x̄, and dual feasible solution,
(π̄, µ̄) which together satisfy (10.45) to (10.50). Hence x̄ is optimal
to (10.40) and since it is an integer vector, it is a minimum cost edge
covering vector.
The algorithm maintains an E ⊂ A called the solution set of

edges, and the present edge vector x will always be xE. The vector x
is also called the present solution vector. The solution set of edges E is
partitioned intoM and A. The setM will always be a matching in G,
and A is called the set of covering edges. Throughout the algorithm
M ∩A will be ∅; and the set of nodes on edges in M, and the set of
nodes on edges in A, will be mutually disjoint.
Original nodes in N are classified as below during the algorithm.

Since M and A are always edge and node disjoint, every node is
uniquely classifed by this classification.

matched nodes - those incident with a matching edge
type 1 nodes - those incident with exactly on covering edge
type 2 nodes - those incident with two or more covering edges
exposed nodes - those incident with no edge from E =M ∪A.

Given the dual feasible solution (π, µ), define dij(π, µ) as in (10. 42)
and let

10.2.1. Min Cost Edge Covers 763

A∗(π, µ) = {(i, j) : (i, j) ∈ A, and dij(π, µ) = cij} (10.51)

Edges in A∗(π, µ) are the original equality edges in this problem
and G∗(π, µ) = (N ,A∗(π, µ)) is the equality subnetwork, wrt the
dual feasible solution (π, µ). In the algorithm, the set M will always
be a matching which is a subset ofA∗(π, µ). It tries to obtain matchings
of higher cardinality in G∗(π, µ) by growing alternating trees wrt M,
rooted at exposed nodes, in it. The alternating trees are grown with
the aim of discovering augmenting paths, which are special types of
alternating paths that can be used to augment either the matchingM,
or the set of solution edges E =M ∪A.
While growing the alternating trees, simple blossoms may be de-

tected and shrunk into pseudonodes. After some pseudonodes are
found, the original network G gets transformed into the current network
G1 = (N 1,A1). N 1 is the set of current nodes at the present stage,
these are either the original nodes not contained in any pseudonode,
or outermost pseudonodes. If F ⊂ A is a subset of original edges, the
set of current edges F1 corresponding to it is always defined to be

F1 = {(p; q) : p, q ∈ N 1, there exists i ∈ p, j ∈ q, s.th. (i; j) ∈ F}.
(10.52)

The sets of current edges corresponding toA∗(π, µ),M,A,E =M∪
A will always be denoted by A1∗(π, µ),M1,A1,E1 =M1∪A1. Edges in
A1∗(π, µ),M1,A1,E1 are respectively current equality edges, cur-
rent matching edges, current covering edges, and current so-
lution edges.
Simple blossoms in this algorithm are partial networks of the current

network satisfying the following properties.

It is a partial network of the current network
determined by an odd subset with

>
= 3 current

nodes.

764 Ch. 10. Matching and Edge Covering Problems

There exists a unique current node in it which is
incident with either exactly 2 or 0 current solution
edges within it, this node is called the base node
of the simple blossom.

(10.53)

There exists a simple spanning cycle containing all
the current nodes in it, which is an alternating cy-
cle. All solution edges on it other than those inci-
dent at the base node, are current matching edges.
If a0 is the base node, and a1, a2 are the current
nodes adjacent to a0 on the odd cycle; deleting
(a0; a1), (a0; a2) from the cycle, leaves an AP wrt
M1 (in the sense that edges on it are alternately
matching and nonsolution edges). (a0; a1) (a0; a2)
may be nonsolution edges or covering edges. Con-
sequently, every node in the simple blossom other
than the base node is incident with exactly one
solution edge on the odd alternating cycle in it.

When they are detected, simple blossoms are shrunk into pseudonodes
in the algorithm. The base node for a pseudonode is the base node on
the simple blossom corresponding to it. The apex node of a simple
blossom or the pseudonode into which it is shrunk, is the original node
inside it which is incident exactly to either 2 or 0 solution edges within
the simple blossom. For convenience we define the base node and apex
node for an original node to be that node itself. Hence the apex node
for a pseudonode is the apex node of its base node.
Simple blossoms and the pseudonodes into which they are shrunk

are classified in accordance with their configuration. To distinguish
between original nodes and pseudonodes we use roman letters to enu-
merate types of pseudonodes (type A, B, etc.). A pseudonode is:

rooted - if the base node is an exposed node (which will be
a root node). Correspondingly, the apex of this
pseudonode is also an exposed original node.

type A - if the base node is a matched node on a matching
edge joining the base to a node outside the simple
blossom.

10.2.1. Min Cost Edge Covers 765

type B - if the base node is incident to exactly one covering
edge joining the base node to a node outside the
simple blossom.

type C - if the base node is a type 2 original node, incident
to exactly two covering edges which are within
the simple blossom. The two edges incident at
the base node on the odd alternating cycle in the
simple blossom, are these covering edges.

type D - if the base node is itself a pseudonode which is
either a type C or another type D node.

Thus all the edges joining a node in a simple blossom to a node
outside are nonsolution edges, with the exception of the unique match-
ing or covering edge incident at the base node in type A or B simple
blossoms respectively. See Figure 10.29. The base node of a type A
(type B) pseudonode is the unique node on its simple blossom incident
to the matching (covering) edge joining it to a node outside the simple
blossom. The base node of a type C simple blossom is the unique type
2 original node on the two covering edges inside it. The base node of
a type D simple blossom is the unique type C or D pseudonode inside
it. The apex node of the various types of pseudonodes are:

type A (type B) - it is the unique original node inside it
joined by an original matching (covering)
edge to a node outside the pseudonode

type C or D - it is the unique type 2 original node inside
it

A new simple blossom detected during the tree growth process
(while scanning some node) will always be either a rooted or a type A
simple blossom. Type B, C, D pseudonodes are only created by trans-
formation of an existing rooted or type A pseudonode in a matching

and covering augmentation procedure in the algorithm.

If N1 is the set of original nodes corresponding to an existing
pseudonode, since |N | is odd and >

= 3, there is a covering blossom con-
straint corresponding to it. If x is the present solution vector, it can be
verified that x satisfies the covering blossom constraint corresponding
to this pseudonode as an equation if the pseudonode is a type A or

766 Ch. 10. Matching and Edge Covering Problems

Base
node

Base
node

Base
node

Base
node

Exposed
root node

Matched original
node or type A
pseudonode

Type 1 original node
or type B pseudonode

Type 2 original
node

Odd cycle in a rooted
simple blossom .

Odd cycle in a type A
simple blossom

Odd cycle in a type B Odd cy cle in a type C
simple blossomsimple blossom

Base
node

Type C or D
pseudonode

Odd cycle in a type D
simple blossom

Figure 10.29: Odd cycles in various types of simple blossoms. Wavy
(thick) edges are matching (covering) edges.

B or C or D pseudonode, and violates it if it is a rooted pseudonode.
Rooted pseudonodes may exist in intermediate stages of the algorithm
but they are eliminated before termination. If any blossoms remain at
termination of the algorithm, they will be of types A, B, C or D. Let

A− = {(i; j) : (i; j) ∈ A, cij <= 0} (10.54)

A minimum cost edge cover contains A−, so the algorithm maintains
A− ⊂ E always. Solution edges E are classified into matching and
covering edges as follows: matching edges (M) are the edges in the
components of (N ,E) consisting of single edges which are not in A−;
the remaining edges of E (i.e., all edges of A−, and all edges of E which
are adjacent to at least one other edge in E) are the covering edges.

10.2.1. Min Cost Edge Covers 767

The algorithm plants a rooted alternating forest with roots (each
labeled as an outer node) at each exposed node and grows them. The
objective of growing the alternating trees is to detect augmenting paths,
which are special APs of solution/nonsolution equality edges that allow
augmentations. Every time an augmentation is performed, at least one
exposed node becomes nonexposed. Once a node becomes nonexposed
it remains nonexposed in the sequel. When all nodes become nonex-
posed, the solution set of edges at that time will be a minimum cost
edge cover, and the algorithm terminates. The following additional
properties are always satisfied during the algorithm.

Properties Maintained by the Algorithm
π, µ always satisfy dual feasibility conditions (10.44).
E⊂ A− ∪A∗(π, µ), M ⊂ A∗(π, µ), A ⊃ A−.
A− ⊂ A1 ⊂ A1∗(π, µ) ∪A−.
If (N ,A) or (N 1,A1) has a connected component that is a single
edge, that edge is in A−.
πi = 0 if i is a type 2 node or a node on an edge in A−.
µσ > 0 implies that Yσ is the set of original nodes inside an
existing pseudonode.

dij(π, µ)
<
= cij for all (i; j) ∈ A\A−.

Each in-tree edge is in A1∗(π, µ)\A1.
If node i is an inner labeled current original node, πi > 0.
Each in-tree current node that is a pseudonode is either rooted,
or a type A labeled outer, or a type A labeled inner associated
with pseudonode price µσ > 0.
Every edge on the odd cycle in the simple blossom corresponding
to any pseudonode at any level is an equality edge.
Nodes on edges in A− are always current nodes, i.e., these nodes
will never be in any pseudonode.

At some stage of the algorithm, if E is not yet an edge covering in
G, no matching and covering augmentations are possible, no blossom
shrinking or pseudonode unshrinking steps are possible, and the list of
labeled and unscanned nodes is empty (i.e., no tree growth is possible),
the labeling at that stage is said to have become hungarian, and the
alternating trees at that stage are Hungarian trees in the current

768 Ch. 10. Matching and Edge Covering Problems

equality subnetwork. The trees constitute a Hungarian forest then,
and the following conditions will hold. When these conditions are sat-
isfied, the algorithm moves to the dual solution change step in the
algorithm.

Hungarian Forest Conditions
Each inner labeled current node is incident to exactly one match-
ing and one nonmatching current in-tree edge.
No node on an edge in A is in-tree or contained inside an in-tree
pseudonode.
If an original node i is inside an outer labeled pseudonode, πi >
0.
If Yσ is the set of original nodes in an inner labeled pseudonode,
µσ > 0.

In the following algorithm the tree growth step is constructed in
such a way that only outer nodes are scanned. The list always refers
to labeled and unscanned outer current nodes at that stage.

BLOSSOM ALGORITHM FOR THE MINIMUM
COST EDGE COVERING PROBLEM

Step 1 Initialization Let M = ∅,A = A−, π = (πi) = 0, µ =
(µσ) = 0 initially. If there are no exposed nodes, go to Step
13. Otherwise root an alternating tree at each exposed node i by
labeling it with (∅,+, i). List = set of all these root nodes now.

Step 2 Select a Node to Scan If list = ∅ go to Step 12. Other-
wise, select a node from it to scan, and delete it from the list.

Step 3 Scanning Let the node to be scanned be p with label (P(p),
+ , r). Do the following in the order given.

If there is an already labeled outer node j associated with a root
node s W= r such that (p; j) ∈ A1∗(π, µ), an augmenting path has
been found, go to Step 4.

10.2.1. Min Cost Edge Covers 769

If there is an already labeled outer node j associated with the
same root node r such that (p; j) ∈ A1∗(π, µ), the alternating tree
containing p, j has blossomed, go to Step 10.

If there is an original current node u such that (p;u) ∈ A1∗(π, µ)
and πu = 0, go to Step 5.

If there is an original current type 1 node or a type B pseudonode
v such that (p; v) ∈ A1∗(π, µ), go to Step 6.
If there is an unlabeled current node w that is a type C or D
pseudonode such that (p;w) ∈ A1∗(π, µ), go to Step 7.
Identify all j W= P(p) such that (p; j) ∈ A1∗(π, µ). Since we came
to this stage, j cannot be type 1, or 2, or B, C, or D, or exposed,
or a rooted pseudonode (in that case we would have already gone
to some other step). For each such j do the following: If j is
unlabeled, let (j; t) be the current matching edge incident at j,
label j with (p,−, r). If t is unlabeled and is a pseudonode inside
which there is an original node i associated with node price πi = 0
go to Step 8. Otherwise label t with (j,+, r) and include it in
the list.

Now p is labeled and scanned. Go to Step 11.

Step 4 Matching Augmentation We come to this step when
scanning or inspection has revealed a pair of current nodes p and
j associated with root indices r(p) W= r(j), contained on an aug-
menting path P1 which is obtained by combining the predecessor
paths of p and j with the edge (p; j). Let t1, t2 be the apex nodes
of r(p), r(j). Find the augmenting path P between t1 and t2 by
expanding the pseudonodes on P1. Rematch using P. Revise all
the blossoms along P1 as in Section 10.1.2. Chop down the two
trees rooted at r(p) and r(j). If there are no exposed nodes left,
go to Step 13. Otherwise change the list into the set of all outer
nodes and go back to inspection in Step 12, or Step 2, depending
on whether you arrived here from inspection or Step 3.

Step 5 Matching and Covering Augmentation Procedure 1 We
come to this step when scanning or inspection has revealed an

770 Ch. 10. Matching and Edge Covering Problems

outer current node p and an original current node u associated
with πu = 0, such that (p; u) ∈ A1∗(π, µ). (p, u) must be a non-
matching edge. Let the label on p be (P(p), +, r). Let j be an
original node inside p such that (j;u) ∈ A∗(π, µ). Let P1 be the
predecessor path of p. Find P, the alternating path from j to
the apex node of r, beginning with the matching edge incident
at j if j is a matched node (P may have no edges if for example
p = r = j) by expanding the pseudonodes along P1. Rematch
using P. Revise all the blossoms along P1 as discussed in Section
10.1.2. Chop down the tree rooted at r. If u is a type 1 or 2
node, add the edge (j;u) to the set A. If u is a matched node, let
(u;w) ∈M, delete (u;w) fromM, and add both (j;u) and (u;w)
to the set A. So, u becomes a type 2 node as a result of these
changes. p becomes a type 1 node if it is an original node; or a
type B pseudonode with j as its apex node, if it is a pseudonode.

Go to Step 13 if no exposed nodes are left. Otherwise change
the list into the set of all outer nodes at this stage and go back
to inspection in Step 12, or Step 2, depending on whether you
arrived at this step from inspection or step 3.

Step 6 Matching and Covering Augmentation Procedure 2 We
come to this step when scanning has revealed an outer current
node p and current type 1 or type B node v such that (p; v) ∈
A1∗(π, µ). Let h be the apex node of v. If v is a type 1 node, πv
must be > 0 (otherwise, by the order in which scanning is done
we would have gone to Step 5 instead of coming here) and hence
v is not on any edge in A−. If v is a type B pseudonode, since
its apex h is inside a pseudonode, h is not on any edge in A−.
Let (h; j1) be the unique covering edge incident at h. Since p is
an in-tree node, j1 W= p. So, the connected component of (N ,A)
containing (h; j1) must contain some edge other than (h; j1), this
other edge cannot be incident at h since h is a type 1 node, let
(j1; j2) be one such edge. So, j1 is a type 2 node.

Let P1 be the path consisting of the edge (v; p) and then the
predecessor path of p. By expanding the pseudonodes along P1,
obtain the alternating path P from h to the apex of the root

10.2.1. Min Cost Edge Covers 771

node r corresponding to p. If (j1; j2) ∈ A− or if the connected
component of (N ,A) that contains (j1; j2) has >= 3 edges, delete
(h; j1) from A, and then rematch using P . On the other hand,
if both (h; j1) and (j1; j2) ∈ A\A−, and the connected compo-
nent of (N ,A) containing (h; j1) contains just the two edges
(h; j1), (h; j2); delete both (h; j1) and (j1; j2) from A, rematch
using P and then include (j1; j2) as a new matching edge. Revise
all the blossoms along P1 as discussed in Section 10.1.2. Chop
down the tree rooted at r. If there are no exposed nodes left go
to Step 13. Otherwise change the list into the set of all outer
nodes and go back to Step 2.

Step 7 Matching and Covering Augmentation Procedure 3 We
come to this step when scanning or inspection has revealed an
outer labeled current node p and a type C or D pseudonode w
such that (p;w) ∈ A1∗(π, µ). Let i1 be the apex of w, and i2, i3
the pair of type 1 nodes inside w. So, (i1; i2), (i1; i3) ∈ A and all
nodes inside w other than i1, i2, i3 are matched nodes. Let s, j be
original nodes inside p, w respectively such that (s; j) ∈ A∗(π, µ).
By expanding the pseudonodes along the predecessor paths of p
find the alternating path P1 in G between s and the apex node
of the root associated with p, beginning with the matching edge
incident at s, if s and the apex of the root node of p are different.
By expanding the pseudonodes on the odd cycle in the simple
blossom corresponding to w, find the alternating path P2 in G
between i2 and i3 that is contained within w. Delete (i1; i2) and
(i1; i3) from A. When the two edges (i1; i2), (i1; i3) are added to
P2 it becomes a cycle, call it CC2. First make all the edges in
CC2 into nonmatching edges. Then traverse CC2 beginning from
j, making the edges traveled alternately into nonmatching and
matching edges beginning with the first edge incident at j kept
as a nonmatching edge, and returning to j at the end.

Then rematch using P1, and finally make (s; j) into a matching
edge. Revise all the blossoms that have nonempty intersections
with P1,CC2 as in Section 10.1.2. Chop down the tree containing
p. Now w becomes a type A pseudo- node with j as its apex. If

772 Ch. 10. Matching and Edge Covering Problems

there are no exposed nodes left go to Step 13. Otherwise change
the list into the set of all outer labeled current nodes, and go back
to Step 2, or the inspection in Step 12, depending on whether you
arrived at this step from Step 3 or inspection.

Step 8 Matching and Covering Augmentation Procedure 4 We
come to this step when scanning or inspection has identified an
inner labeled current node j joined by a current matching edge to
a pseudonode t that contains an original node i associated with
node price πi = 0, inside it. Let h be the apex of t. Let P1 be the
path consisting of the matching edge (t; j) and the predecessor
path of j. By expanding the pseudonodes along P1 obtain the
alternating path P from h to the apex of the root associated with
j.

In this procedure we convert t into a type C or D pseudonode
with i inside it (associated with πi = 0) as its apex node. For
this, obtain the alternating cycle CC from h (the present apex of t)
to h by expanding the pseudonodes on the odd cycle in the simple
blossom corresponding to t. Let (i; i1), (i; i2) be the edges on CC
incident at i. Let P2 be the path left between i1 and i2 when the
edges (i; i1), (i; i2) and node i are deleted from CC. First make all
the edges on CC into nonmatching edges. Then add (i; i1), (i; i2)
to the set A. Now make the edges along P2 as you travel from
i1 to i2, alternately nonmatching and matching edges beginning
with the edge incident at i1 as a nonmatching edge. Revise all the
blossoms on the odd cycle in the simple blossom corresponding
to t.

Rematch using P. Revise all the blossoms along P1. If there are
no exposed nodes left go to Step 13. Otherwise chop down the
tree containing j, change the list into the set of all outer current
nodes, and go back to inspection in Step 12, or Step 2 depending
on whether you arrived at this step from inspection or Step 3.

Step 9 Matching and Covering Augmentation Procedure 5 We
come to this step when inspection has identified an outer current
node j which is a rooted pseudonode containing within it an orig-

10.2.1. Min Cost Edge Covers 773

inal node i with πi = 0. Convert j into a type C or D pseudonode
with i as its apex node, as discussed in Step 8. If there are no
exposed nodes left, go to Step 13. Otherwise chop down the tree
containing j, change the list into the set of all outer current nodes
and go back to inspection in Step 12.

Step 10 Blossom Shrinking We come to this step when scanning
or inspection has revealed two outer current nodes p, j with the
same root index, such that (p; j) ∈ A1∗(π, µ). Identify the simple
blossom (it will either be rooted or type A) and shrink it into
a pseudonode as in Step 6 of the algorithm of Section 10.1.1.
Include the new pseudonode (now outer labeled) in the list, and
go back to inspection in Step 12 or Step 2 depending on whether
you arrived here from inspection or Step 3.

Step 11 Type A Pseudonode Unshrinking Identify all pseudon-
odes which are current nodes labeled as inner nodes (so they will
be type A) associated with pseudonode price µσ = 0. Unshrink
each of them as discussed in Section 10.1.2. Repeat this process
as often as possible. Go back to inspection in Step 12, or Step 2,
depending on whether you came to this step from inspection or
Step 3.

Step 12 Dual Solution Change We come to this step when the Hun-
garian forest conditions are satisfied. Let (π, µ) be the present
dual feasible solution. The new dual feasible solution is (π̂ =
(π̂i), µ̂ = (µ̂σ)) defined below.

∆1 = {i : i ∈ N is either an inner current
node, or contained inside an outer labeled
pseudonode}

∆2 = {i : i ∈ N is inside an unlabeled current
node}

∆3 = {i : i ∈ N is inside an outer current node}

774 Ch. 10. Matching and Edge Covering Problems

∆4 = {i : i ∈ N is either an outer current
node, or contained inside an inner labeled
pseudonode}

δ1 = Min. {πi : i ∈∆1}
δ2 = Min. {cij − dij(π, µ) : i ∈ ∆2, j ∈ ∆3 and

(i; j) ∈ A}.
δ3 = Min. {1

2
(cij − dij(π, µ)) : (i; j) ∈ A, and

i, j ∈∆3 but in different current nodes}
δ4 = Min. {1

2
µσ : Yσ is the set of original

nodes inside an inner current node that is
a pseudonode}

δ = Min. {δ1, δ2, δ3, δ4}

π̂i =

⎧⎪⎨⎪⎩
πi − δ for all i ∈ ∆1

πi + δ for all i ∈ ∆4

πi otherwise

µ̂σ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

µσ + 2δ if Yσ is the set of original nodes in
a current outer labeled pseudonode

µσ − 2δ if Yσ is the set of original nodes in
a current inner labeled pseudonode

µσ otherwise

Inspection

If δ = δ1, look for an original node u which is an inner current
node associated with π̂u = 0. If p is the predecessor of u, with
p, u apply Step 5. Repeat as often as possible. Then look for an
original node i with π̂i = 0 inside an outer current node j that is
a pseudonode. If j is rooted (type A) apply Step 9 (Step 8) with
it. Repeat as often as possible.

If δ = δ2, look for (i; j) ∈ A∗(π̂, µ̂) with i inside an unlabeled
node, and j inside an outer labeled node. Then include the cur-
rent node containing j in the list.

If δ = δ3, look for (i; j) ∈ A∗(π̂, µ̂) with i, j contained inside
different outer nodes. If the root nodes of the current nodes

10.2.1. Min Cost Edge Covers 775

containing i, j are different (the same) apply Step 4 (Step 10)
with them. Repeat as often as possible.

If δ = δ4 look for inner nodes that are pseudonodes associated
with µ̂σ = 0 and go to Step 11 if there are any.

Go to Step 2.

Step 13 Termination We reach this step when there are no ex-
posed nodes left. Let E, x, (π, µ) be the present solution set of
edges, its incidence vector, and the dual solution at this stage. E
is a minimum cost edge cover in G, x is the associated minimum
cost edge covering vector, and (π, µ) the optimum dual solution
(optimum for (10.43)).

Validity of the Algorithm and Its Computational Complexity

1. We will now show that δ is finite and > 0 whenever Step 12 is
carried out in the algorithm; and that the conditions :π

>
= 0, µ

>
=

0, dij(π, µ)
<
= cij for all (i; j) ∈ A\A−, hold throughout. Clearly,

these conditions hold initially, since π = 0, µ = 0 at that stage.
When the algorithm arrives at Step 12 at some stage suppose
(π, µ) is the dual solution and that these conditions hold. Each
of δ1 to δ4 is the minimum of a set of numbers, and every number
in each of these sets is

>
= 0 because of these conditions. Also,

if any number in any of these sets is 0, it can be verified that
it provides an opportunity to carry out one of Steps 4, 5, 8, 9,
10, or 11, or to label a new unlabeled node, contradicting the
Hungarian forest conditions which must hold when the algorithm
arrives at Step 12. Hence each of δ1 to δ4 is either finite and > 0
or +∞ (which happens when the set in which it is the minimum
is ∅).
So, δ is finite and > 0, or +∞. Suppose δ = +∞. So, all δ1 to δ4
must be +∞. δ1, δ4 are both +∞ implies that there are no inner
labeled nodes at this stage. Hence, the only labeled nodes must
be the root nodes which are outer labeled. Now, δ2, δ3 are both
+∞ implies that there are no edges joining a pair of outer labeled

776 Ch. 10. Matching and Edge Covering Problems

nodes, and no edges joining an outer node to an unlabeled node.
These facts imply that the root nodes are isolated nodes in G,
contradicting the hypothesis that G has no isolated nodes. Hence
δ cannot be +∞. So, δ is finite and > 0.
Let π̂, µ̂ be the new dual solution obtained in that Step 12. The
definition of δ1 and δ imply that π̂

>
= 0. The definition of δ4

and δ imply that µ̂
>
= 0. The definition of δ2, δ3, δ imply that

cij − dij(π̂, µ̂) >= 0 for all (i; j) ∈ A\A−. Hence if the conditions
mentioned above hold at the beginning of a Step 12, they con-
tinue to hold after that Step 12 is executed. Repeating the same
argument after each occurrence of Step 12, we conclude that these
conditions hold always and that δ > 0 and finite in every Step 12
carried out in the algorithm.

2. We will now show that M ∪ (A\A−) ⊂ A∗(π, µ) throughout the
algorithm, and that all in-tree edges are always in A1∗(π, µ) at
that stage. Also, all edges in the odd cycles of the various simple
blossoms corresponding to the various pseudonodes at any stage,
are equality edges at that stage.

Initially M = ∅ and A = A−, hence these statements hold then
trivially. Any new edge added to any alternating tree is always
from the A1∗(π, µ) at that stage. Also, from the dual solution
change formulas it can be verified that all in-tree edges continue
to remain in the new current equality subnetwork after a dual
solution change step because each in-tree edge joins an outer to
an inner node. A newly created matching edge is always from
A∗(π, µ) at that stage, by the manner in which matching and
covering augmentations are carried out. Also, during a dual so-
lution change step, a current matching edge is either in-tree, or
out-of-tree with both nodes on it unlabeled. From the dual so-
lution change formulas these facts imply that all matching edges
continue to remain in the new A∗(π, µ) after each dual solution
change step. Similarly it can be verified that all edges in A \A−
are always equality edges.

When a new simple blossom is discovered, it is clear that all the
edges on its odd cycle are equality edges. From the manner in

10.2.1. Min Cost Edge Covers 777

which the dual solution is changed, we can verify that these edges
remain equality edges as long as this simple blossom remains
shrunken as a pseudonode.

Hence all the statements made above hold throughout the algo-
rithm.

3. From these facts we verify that all the properties mentioned be-
fore the statement of the algorithm are all maintained in it. Let
E, x, (π, µ) be the solution set of edges, its incidence vector, and
the dual solution at termination. Since all the nodes are cov-
ered at that stage E is an edge cover in G. It can be verified
that x, (π, µ) together satisfy all the conditions (10.45) to (10.50).
Hence x is an optimum solution of (10.40). Since it is also a 0-1
vector, it is an optimum solution of (10.36), (10.37), and hence
an optimum edge covering vector for G, and therefore E is an
optimum edge cover.

4. We will now analyze the worst case computational complexity of
this algorithm. Each time one of Steps 4 to 9 occur, the number
of exposed nodes decreases by 1 or 2. So, Steps 4 to 9 can occur
at most n times. Define a stage in this algorithm to begin either
with the initial Step 1 (the initial stage) or after one of Steps
4 to 9 has just been completed, and to end when one of Steps 4
to 9 is completed the next time. So, there are at most n stages
in the algorithm, and in each stage, exactly one of Steps 4 to 9
occurs.

A newly shrunken pseudonode always receives an outer label
when it is formed, and it either remains outer labeled, or gets
absorbed inside another pseudonode till the end of the stage in
which it is formed. Thus by the results in Section 10.1, the total
number of times that Step 10 (blossom shrinking step) can occur
in a stage is at most (n/2).

Only inner labeled pseudonodes are unshrunk in the algorithm.
So, any pseudonode which is unshrunk in a stage must have been
formed in earlier stages. Hence, by the results in Section 10.1,

778 Ch. 10. Matching and Edge Covering Problems

Step 11 (pseudonode unshrinking step) can occur at most (n/2)
times in a stage.

Define J = {i : i ∈ N , and i is inside an outer node}, I = {p : p is
an inner labeled current node}, θ = |J|+|I|. Whenever a blossom
shrinking step (Step 10) is carried out, it can be verified that
|J| strictly increases, and that θ does not decrease. Whenever
a pseudonode unshrinking step (Step 11) is carried out, it can
be verified that θ strictly increases. Also, θ strictly increases
whenever a tree growth step occurs. And θ

<
= n.

Whenever Step 12 occurs with δ = δ1, it leads to Step 5 and
then the end of the stage. If Step 12 occurs with δ = δ2 or δ4,
a tree growth step, or pseudonode unshrinking step occurs, and
since θ increases by at least 1 in each of these steps, Step 12 with
δ = δ2 or δ4 can occur at most n times in a stage. Step 12 with
δ = δ3 leads to Step 4 or Step 10, and hence this can occur at most
1+(n/2) times in a stage. So, in a stage Step 12 can occur at most
1 + n+ (n/2) times. The computational effort in one of Steps 4
to 12 can be verified to be bounded above by O(m). So, the total
effort in a stage of this algorithm is bounded above by O(nm).
Since there are at most n stages, the overall computational effort
in this algorithm is bounded above by O(n2m).

The Convex Hull of Edge Covering Vectors

Let K
>
= denote the convex hull of edge covering vectors in G. If G

has some isolated nodes, it has no edge cover, and hence K
>
= = ∅, and

it can be verified that the set of feasible solutions of the system (10.40)
is also empty in this case. Under the assumption that there are no
isolated nodes in G, we will use the same fundamental proof technique

as in Section 10.1.4 to show that K
>
= is the set of feasible solutions of

(10.40). We have shown that the LP (10.40) has an optimum solution
which is an edge covering vector in G, and that the blossom algorithm
discussed above will find it irrespective of what the edge cost vector
c may be. This implies that all extreme points of the set of feasible
solutions of (10.40) are edge covering vectors in G. Also, every edge
covering vector in G is feasible to (10.40), and it is an extreme point of

10.3. Minimum Cost 1-M/ECs 779

the set of feasible solutions of this system since it is a 0-1 vector, and all
the variables in this system are bounded by 0 and 1. Thus the system
of constraints in (10.40) provides a linear constraint representation for

K
>
=, in all cases.

Comment 10.3 The blossom algorithm for the minimum cost edge
covering problem, and the results in this subsection are taken from
Murty and Perin [1982].

10.3 Minimum Cost 1-Matching/Edge Cov-

erings

Let G = (N ,A, c = (cij)) be the original undirected network with c

as the edge cost vector and (N <
=,N=,N >

=,N 0) as the partition of N .
Here we discuss a primal-dual blossom algorithm for the minimum cost
1-M/EC problem (10.6), (10.7). We will replace the integrality restric-
tions (10.7) by blossom constraints, thereby transforming the integer
program (10.6), (10.7) into an LP for which we develop a primal-dual

blossom algorithm. Let Y ⊂ N\N 0 with |Y| odd and >
= 3. There

are 2 different blossom constraints associated with Y; the matching
blossom constraint Y−(x) <

= (|Y| − 1)/2, and the covering blossom
constraint Y+(x)

>
= (|Y|+ 1)/2; where Y−(x) and Y+(x) are defined

as in (10.19), (10.38) respectively. From the definitions it is clear that

Y−(x) >= Y+(x) for every edge vector x in G. Every 1-M/EC vector x
satisfies the matching blossom constraint (edge covering blossom con-

straint) corresponding to Y if Y ⊂ N <
= (Y ⊂ N >

=) but may or may not
satisfy the covering blossom constraint (matching blossom constraint)
corresponding to such aY. IfY ⊂ N=, every 1-M/EC vector x satisfies
both the matching and edge covering blossom constraints correspond-
ing to Y. Whenever Y is any subset of N\N 0, every 1-M/EC vector
satisfies at least one of the matching or covering blossom constraints
corresponding to Y. We will introduce either the matching blossom
constraint or the edge covering blossom constraint corresponding to
Y, to replace the integer requirements (10.7). We use the symbols

780 Ch. 10. Matching and Edge Covering Problems

MB, CB to denote the class of all these Y for which the matching
blossom constraint, edge covering blossom constraint are introduced
respectively.

We will include Y in MB if Y ⊂ N <
= ∪ N=, and in CB if Y

⊂ N >
= ∪ N= and contains at least one node from N >

=. If Y ⊂ N <
= ∪

N= ∪ N >
= and contains at least one node from N <

= and from N >
=, it

will be included either in MB or in CB by a rule specified in the
algorithm. This rule is based on identifying a specific node in Y called
the BCI (blossom constraint identifier) node, using the dual solution

at that stage. If the BCI node is from N <
= (N >

=) Y will be included
in MB (CB). The classes MB, CB will be fully known only when
the algorithm has terminated. The modified LP corresponding to the
blossom constraint specification dictated by the choice of the classes
MB, CB is : find x = (xij) to

Minimize
3
(cijxij : over (i; j) ∈ A)

Subject to x(i)

⎧⎪⎪⎨⎪⎪⎩
<
= 1, for i ∈ N <

=

= 1, for i ∈ N=

>
= 1, for i ∈ N >

=

(10.55)

Y−(x) <
= (|Y|− 1)/2 for each Y ∈ MB

Y+(x)
>
= (|Y|+ 1)/2 for each Y ∈ CB

0
<
= xij

<
= 1 for all (i; j) ∈ A

It should be understood that (10.55) is not necessarily equivalent
to (10.6), (10.7). However, we develop a blossom algorithm that ob-
tains an optimum solution of (10.6), (10.7) provided it has a feasible
solution, using a modified LP of the form (10.55) with the blossom con-
straint specification classes MB, CB which are themselves obtained
during the algorithm. Associate the original node price πi for i ∈ N
to the first set of constraints (node degree constraints) in (10.55); and
the pseudonode price µσ to the blossom constraint corresponding to a
subset of nodes Yσ ∈MB∪CB. Given the classesMB, CB, the dual

10.3. Minimum Cost 1-M/ECs 781

feasibility conditions on π = (πi), µ = (µσ) reflecting the structure of
the primal problem (10.55), are

πi

⎧⎪⎪⎨⎪⎪⎩
= 0, for all i ∈ N 0

<
= 0, for all i ∈ N <

=

>
= 0, for all i ∈ N >

=

(10.56)

µσ

l <
= 0, for σ such that Yσ ∈MB
>
= 0, for σ such that Yσ ∈ CB

The dual of (10.55) is

Maximize
3
(πi : over i ∈ N)

+
3
(µσ(|Yσ|− 1)/2 : over σ s. t. Yσ ∈MB)

+
3
(µσ(|Yσ|+ 1)/2 : over σ s. t. Yσ ∈ CB)

+
3
(vij : over (i; j) ∈ A)

subject to (10.56) and (10.57)

dij(π, µ) + vij
<
= cij, for (i; j) ∈ A

vij
<
= 0, for (i; j) ∈ A

where for (i; j) ∈ A

µ(i; j) =
3
(µσ : over σ s. t. Yσ ∈MB contains both i and j)

+
3
(µσ : over σ s. t. Yσ ∈ CB contains either

i or j or both)

(10.58)

dij(π, µ) = πi + πj + µ(i; j)

Notice that the formula for dij(π, µ) in (10.58) is different from
those in earlier sections, since the structure of the LP (10.55) here is

782 Ch. 10. Matching and Edge Covering Problems

different from those in earlier sections. From the structure of (10.57),
it is clear that in an optimum solution (π, µ), v for it, we will have for
each (i; j) ∈ A, vij = min. {0, cij − dij(π, µ)}. Thus without any loss
of generality, we can eliminate the variables vij from the dual objective
function in (10.57) and express it purely in terms of (π, µ), leading to
W (π, µ) defined below in (10.59).

W (π, µ) =
3
(πi : over i ∈ N)

+
3
(µσ(|Yσ|− 1)/2 : over σ s. t. Yσ ∈MB)

+
3
(µσ(|Yσ|+ 1)/2 : over σ s. t. Yσ ∈ CB)(10.59)

+
3
(min. {0, cij − dij(π, µ)}: over (i; j) ∈ A)

The complementary slackness conditions for optimality in the pri-
mal, dual pair (10.55). (10.57) are: for all i ∈ N and (i, j) ∈ A

πi(x(i)− 1) = 0 (10.60)

dij(π, µ)

l
< cij implies xij = 0
> cij implies xij = 1

(10.61)

µσ((|Y|− 1)/2−Y−(x)) = 0, for σ s. t. Yσ ∈MB
µσ((|Y|+ 1)/2−Y+(x)) = 0, for σ s. t. Yσ ∈ CB

M
(10.62)

The algorithm maintains a subset of edges E ⊂ A called the solu-
tion set of edges, and the corresponding edge vector x = xE. Edges
not in E (i.e., those (i; j) with xij = 0) are called nonsolution edges.
Let

A− = {(i; j) : (i; j) ∈ A, i and j both in N >
= ∪N 0, and cij

<
= 0}
(10.63)

It is clear that if (10.6), (10.7) is feasible, then there exists a min-
imum cost 1-M/EC which contains A− as a subset. The algorithm
maintains E ⊃ A− always. Actually the initial solution set of edges E
will beA−. The algorithm maintains a dual feasible solution (π, µ) such

10.3. Minimum Cost 1-M/ECs 783

that x, (π, µ) together satisfy the complementary slackness conditions
(10.60). (10.61), (10.62) always. And if µσ W= 0, Yσ will be the set of
original nodes inside an existing pseudonode. E is partitioned intoM,
A whereM is a matching ; and A is called the set of covering edges
and it always includes A−, and every solution edge which is adjacent
to another solution edge. Every connected component of (N ,E) that
consists of a single edge (i; j) satisfying dij(π, µ) = cij will be in M.
Also, if there is a connected component of (N ,A) that consists of a
single edge (i; j), it will satisfy dij(π, µ) > cij. During the algorithm
an original node i is said to be a

Matched node if it is incident with a matching edge
Type 1 node if it is incident with exactly one edge from A

Type 2 node if i ∈ N >
= ∪ N 0, and it is incident with

>
= 2

edges from A
Type 0 node if there is no solution edge incident at it; and

either i ∈ N 0, or i ∈ N <
= and πi = 0

Exposed node if there is no solution edge incident at it; and

either i ∈ N >
= ∪N=, or i ∈ N <

= and πi < 0

Original nodes of types 1, 2, 0, or matched nodes are called non-
exposed nodes. Once a node becomes nonexposed, it remains nonex-
posed in the sequel, but its classification among matched, types 1, 2, 0
might change from step to step. The algorithm terminates either when
there are no more exposed nodes in G, or when it becomes clear that
it is impossible to convert any more exposed nodes into nonexposed
nodes.

If (π, µ) is the present dual feasible solution, define A∗(π, µ) =
{(i; j) : (i; j) ∈ A and dij(π, µ) = cij }, where dij(π, µ) is defined
as in (10.58). Edges in A∗(π, µ) are the original equality edges,
and G∗(π, µ) = (N ,A∗(π, µ)) is the equality subnetwork of G wrt
(π, µ). The algorithm plants an alternating tree at each exposed node
and grows these trees wrt M in G∗(π, µ). During this process, sim-
ple blossoms may be discovered and shrunk into pseudonodes. The
nodes in N 0 or any node on an edge in A− will never be contained on
any simple blossom, and hence will never be inside any pseudonode.

784 Ch. 10. Matching and Edge Covering Problems

Blossoms and pseudonodes into which they are shrunk are classified by
the configuration of the simple blossom corresponding to them. The
various types of simple blossoms, blossoms, and pseudonodes are

Types, rooted, A,B,C,D defined exactly as in Section 10.2.2
Type E if the base node has no solution

edge incident at it, but is either a

type 0 node inN <
=, or another lower

level type E pseudonode

Thus the apex node of a type E pseudonode is always the unique

type 0 original node in N <
= contained inside it, with no solution edge

incident at it. IfNB is the set of original nodes inside a type E pseudon-
ode, there exists no solution edges joining a node in NB to one outside
it.

A newly formed pseudonode will always be a type A or a rooted
pseudonode when it is formed. Types B,C,D,E pseudonodes are ob-
tained through transformation of a type A or rooted pseudonode dur-
ing an augmentation step. G1 = (N 1,A1) denotes the current network.
M1,A1,E1 = M1 ∪A1 denote the set of current matching, covering,
and solution edges respectively. A type A (B) current pseudo- node
in G1 is incident with a current matching edge (exactly one current
covering edge). Type C,D,E and rooted current pseudonodes are inci-
dent with no current solution edges. Note that there is no pseudonode
incident with 2 or more current solution edges.

The BCI Node of a Blossom

BCI (blossom constraint identifier) nodes are only defined for

blossoms and pseudonodes containing nodes from both N <
= and N >

=

inside them. Let GB = (NB,AB) be a blossom identified during the

algorithm which has been shrunk into the pseudonode B. If NB ∩N
<
=

and NB ∩N
>
= are both nonempty we identify an original node j tying

for the minimum in (break ties arbitrarily)

Min. {|πi| : i ∈ NB ∩ (N
<
= ∪N >

=)} (10.64)

10.3. Minimum Cost 1-M/ECs 785

A node j selected among those attaining the minimum in (10.64) is
known as the BCI node for the blossom GB or the pseudonode B. If

the BCI node j ∈ N <
= (j ∈ N >

=) NB is included in the classMB (CB)
and the matching (covering) blossom constraint corresponding to GB is
introduced. Once a BCI node for a pseudonode B is selected, it never
changes in the algorithm as long as B remains, also its BCI node con-
tinues to tie for the minimum in (10.64) as long as B remains a current
node. If the pseudonode B gets absorbed into another pseudonode,
its BCI node may not tie for the minimum in (10.64) during the dor-
mant period for B, but it will start being satisfied again as soon as the
dormant period ends and B becomes current again.

If p is a pseudonode containing other pseudonodes inside it, it is
possible that p has a BCI node different from the BCI nodes of pseudon-
odes inside it. Also, p may belong in the classMB or CB, and contain
inside it other pseudonodes which belong in either class or both.

Properties Maintained By the Algorithm

Here we summarize the properties maintained by the algorithm.
Labeled nodes are always either exposed nodes or matched nodes. Ex-
posed nodes are the roots of alternating trees and labeled as outer
nodes, so all inner nodes will always be matched nodes. All in-tree
edges will always be current equality edges from the set A1∗(π, µ)\A1

at that stage. The following properties always hold.

(π, µ) is always dual feasible.
M ⊂ A∗(π, µ),A ⊃ A−,E ⊂ A− ∪A∗(π, µ).
If (i; j) W∈ E then dij(π, µ) <= cij .
x(i) > 1 implies i ∈ N 0 ∪N >

= and πi = 0.

x(i) < 1 implies that either i ∈ N 0 ∪ N <
= with πi = 0, or

i ∈ N\N 0 and is an exposed node.
µσ < 0 implies that Y

−
σ (x) = (|Yσ| − 1)/2; µσ > 0 implies that

either Y+
σ (x) = (|Yσ|+ 1)/2, or Y+

σ (x) = (|Yσ|− 1)/2 with Yσ

being the set of original nodes inside a rooted pseudonode.

786 Ch. 10. Matching and Edge Covering Problems

Nodes inN 0 and those on edges inA− are never contained inside
any pseudonode, and πi = 0 always for these nodes i.
No type 1,2, or 0 nodes, or type B,C,D, or E pseudonodes will
ever be in-tree nodes.

At some stage of the algorithm, if E is not yet a 1-M/EC; and no
augmentation, blossom shrinking, pseudonode unshrinking steps are
possible; and the list of labeled and unscanned nodes is empty (i.e.,
no tree growth is possible), we have a Hungarian forest. The following
properties are satisfied at that time, and the algorithm moves to a dual
solution change step.

Hungarian Forest Conditions
Each inner node is either matched or type A, incident with a
matching edge joining it to an outer node.

There exists no node i ∈ N <
= which is an outer current node

with πi = 0.

There exists no inner node i ∈ N >
= ∪N 0 with πi = 0.

If Yσ is the set of original nodes inside a current inner pseudon-
ode, then µσ W= 0.
There exists no current equality edge joining an outer to a non-
inner (outer or unlabeled) node.
There exists no outer current pseudonode containing inside it

an original node i ∈ N <
= ∪N >

= with πi = 0.

In the blossom algorithm described below, list always refers to the
set of labeled and unscanned outer current nodes. The tree growth step
in the algorithm is constructed in such a way that only outer nodes are
scanned.

BLOSSOMALGORITHMFOR THEMINIMUMCOST 1-M/EC PROB-
LEM

Step 1 Initialization Initially let M = ∅,A = A−, µ = (µσ) = 0;
and π = (πi) where πi = 0 for all i ∈ N

>
= ∪N 0, and = min. {0,

cjg : (j; g) ∈ A } for all i ∈ N <
= ∪ N=. If there are no exposed

10.3. Minimum Cost 1-M/ECs 787

nodes, go to Step 13. Otherwise root an alternating tree at each
exposed node i by labeling it with (∅,+, i). List = set of all these
root nodes now.

Step 2 Select a Node to Scan If list = ∅ go to Step 12. Other-
wise, select a node from it to scan, and delete it from the list.

Step 3 Scanning Let the node to be scanned be p with label (P(p),
+, r). Do the following in the order given.

If there is an already labeled outer node j associated with a root
node s W= r such that (p; j) ∈ A1∗(π, µ), an augmenting path has
been found, go to Step 4.

If there is an already labeled outer node j associated with the
same root node r such that (p; j) ∈ A1∗(π, µ), the alternating tree
containing p, j has blossomed, go to Step 10.

If there is an original current node u ∈ N 0∪N >
= such that (p;u) ∈

A1∗(π, µ) and πu = 0, go to Step 5.
If there is an original current type 1 node or a type B pseudonode
v such that (p; v) ∈ A1∗(π, µ), go to Step 6.
If there is an unlabeled current node w that is a type C or D
or E pseudonode, or a type 0 original node, such that (p;w) ∈
A1∗(π, µ), go to Step 7.
Identify all j W= P(p) such that (p; j) ∈ A1∗(π, µ). Since we came to
this stage, j cannot be type 0, 1, or 2, or B, C, D, or E, or exposed,
or a rooted pseudonode (in that case we would have already gone
to some other step). For each such j do the following. If j is
unlabeled, let (j; t) be the current matching edge incident at j,

label j with (p,−, r). If t is unlabeled and either t ∈ N 0 ∪N <
=

with πt = 0, or t is a pseudonode inside which there is an original

node i ∈ N <
= ∪N >

= associated with node price πi = 0 go to Step
8. Otherwise label t with (j,+, r) and include it in the list.

Now p is labeled and scanned. Go to Step 11.

Step 4 Matching Augmentation Same as Step 4 in the algorithm
of Section 10.2.1.

788 Ch. 10. Matching and Edge Covering Problems

Step 5 Matching & Covering Augmentation Procedure 1 Same
as Step 5 in the algorithm of Section 10.2.1.

Step 6 Matching & Covering Augmentation Procedure 2 Same
as Step 6 in the algorithm of Section 10.2.1.

Step 7 Matching & Covering Augmentation Procedure 3 We

come to this step when scanning or inspection has revealed an
outer current node p and a current node w which is either type
C,D,E, or 0, and (p;w) ∈ A1∗(π, µ). If w is type C or D, this step
is carried out exactly as Step 7 in the algorithm of Section 10.2.1.

Suppose w is either type 0 or E. Let i1 be the apex node of w.
Let P1 be the path obtained by adding (p;w) to the predecessor
path of p. Obtain the augmenting path P in G connecting i1 with
the apex of the root node associated with p, by expanding the
pseudonodes along P1. Rematch using P. Revise all the blossoms
along P1 as in Section 10.1.2. Chop down the tree containing p.
If there are no exposed nodes left, go to Step 13. Otherwise,
change the list into the set of all outer labeled current nodes and
go back to Step 2 or inspection in Step 12 depending on whether
you arrived here from Step 3 or inspection.

Step 8 Matching and Covering Augmentation Procedure 4 We
come to this step when scanning or inspection has identified an
inner labeled current node j joined by a current matching edge

to a current node t, where either t ∈ N 0∪N <
= with πt = 0, or t is

a pseudonode containing inside it an original node i ∈ N <
= ∪N >

=

with πi = 0.

Let P1 be the predecessor path of j. Remove the matching edge
joining the apex nodes of j and t fromM and remove (j; t) from
M1. Rematch using P1 and revise all the blossoms along it as in
Section 10.1.2. If t is a pseudonode and i ∈ N >

= convert t into a
type C or D pseudonode with i as its apex, as in Step 8 in the

algorithm of Section 10.2.1. If t is a pseudonode and i ∈ N <
=,

rematch within t to convert it into a type E pseudonode with i
as its apex.

10.3. Minimum Cost 1-M/ECs 789

t gets converted into type 0, C, D, or E. If there are no exposed
nodes left, go to Step 13. Otherwise, chop down the tree con-
taining j, change the list into the set of all outer labeled current
nodes, and go back to Step 2 or inspection in Step 12 depending
on whether you arrived here from Step 3 or inspection.

Step 9 Matching and Covering Augmentation Procedure 5 We
come to this step when inspection or blossom shrinking has iden-

tified an outer labeled current node t such that either t ∈ N 0∪N <
=

with πt = 0, or t is a pseudonode containing inside it an original

node i ∈ N <
= ∪N >

= with πi = 0. Rematch the predecessor path
of t and revise all the blossoms along it as in Section 10.1.2. If t
is an original node, this process converts it into type 0. If t is a
pseudonode, either convert it into type C or D with i as its apex

if i ∈ N >
=, or into type E with i as its apex if i ∈ N <

=. If there are
no exposed nodes left, go to Step 13. Otherwise chop down the
tree containing t, change the list into the set of all outer labeled
current nodes and go back to inspection in Step 12, or Step 10,
or Step 2.

Step 10 Blossom Shrinking We come to this step when scanning
or inspection has revealed two outer labeled current nodes p, j
with the same root index, such that (p; j) ∈ A1∗(π, µ). This is an
indication that the alternating tree containing p, j has blossomed.
The simple blossom will either be rooted or type A. Identify the
simple blossom and shrink it into a pseudonode as in Step 6 of
the algorithm of Section 10.1.1. Include the new pseudonode, say
B, which will now be an outer node, in the list. Let NB be the

set of original nodes inside this pseudonode. If NB ⊂ N
<
= ∪N=

(NB ⊂ N >
= ∪ N= and NB ∩ N

>
= W= ∅) include NB in the class

MB (CB). In these two cases no BCI node is defined for this

pseudonode. If NB ∩ N
<
= W= ∅ and NB ∩ N

>
= W= ∅, then define

the BCI node of the pseudonode B to be a node j attaining

the minimum in (10.64), breaking ties arbitrarily. If j ∈ N >
=

(j ∈ N <
=) include NB in the class CB (MB). If there is an

790 Ch. 10. Matching and Edge Covering Problems

i ∈ N <
= ∪N >

= inside B with πi = 0 carry out Step 9. Return to
Step 2 or inspection in Step 12, depending on whether you came
here from Step 3 or inspection.

Step 11 Type A Pseudonode Unshrinking Same as Step 11 in
the algorithm of Section 10.2.1.

Step 12 Dual Solution Change We come to this step when the
Hungarian forest conditions are satisfied. Let (π, µ) be the present
dual feasible solution. Define (adopt the convention that the min-
imum in the empty set is +∞)

δ1 = Min. {−πi : i ∈ N
<
= is a current outer node}

δ2 = Min. {πi : i ∈ N
>
= is a current inner node}

δ3 = Min. {−πi : i ∈ N
<
= is inside a current outer la-

beled pseudonode in the class MB}
δ4 = Min. {πi : i ∈ N

>
= is inside a current outer labeled

pseudonode in the class CB}
δ5 = Min. {−1

2
µσ : Yσ ∈ MB is the set of original

nodes in a current inner labeled pseudonode}
δ6 = Min. {1

2
µσ : Yσ ∈ CB is the set of original nodes

in a current inner labeled pseudonode}
δ7 = Min. {1

2
(cij − dij(π, µ)) : (i; j) ∈ A, i and j are

inside distinct outer current nodes}
δ8 = Min. {(cij − dij(π, µ)) : (i; j) ∈ A, one of i, j is in-

side an outer current node, and the other is inside
an unlabeled node}

δ = Min. {δ1, . . . , δ8}

If δ = +∞, go to Step 14. If δ is finite, it will be > 0 (proved
below), define the new dual solution π̂ = (π̂i), µ̂ = (µ̂σ) where

10.3. Minimum Cost 1-M/ECs 791

π̂i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

πi + δ if i is an outer current node, or is inside
an outer current pseudonode inMB, or is
inside an inner current pseudonode in CB

πi − δ if i is an inner current node, or is inside
an inner current pseudonode in MB, or is
inside an outer current pseudonode in CB

πi if i is inside an unlabeled node

µ̂σ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

µσ + 2δ if Yσ ∈MB forms a current inner labeled
pseudonode, or if Yσ ∈ CB forms a cur-
rent outer labeled pseudonode

µσ − 2δ if Yσ ∈MB forms a current outer labeled
pseudonode, or if Yσ ∈ CB forms a cur-
rent inner labeled pseudonode

µσ otherwise

Inspection

If δ = δ1, look for a t ∈ N
<
= which is an outer current node

associated with π̂t = 0, and then apply Step 8.

If δ = δ2, look for a u ∈ N
>
= which is an inner current node

associated with π̂u = 0, and then apply Step 5.

If δ = δ3, look for an i ∈ N
<
= associated with π̂i = 0, that is

inside an outer current pseudonode t with its predecessor j, and
then apply Step 8.

If δ = δ4, look for an i ∈ N
>
= associated with π̂i = 0, that is

inside an outer current pseudonode t with its predecessor j, and
then apply Step 8.

If δ = δ5 or δ6, look for an inner current pseudonode associated
with the set of original nodes Yσ for which µ̂σ = 0, and unshrink
it as in Step 11.

792 Ch. 10. Matching and Edge Covering Problems

If δ = δ7, look for current equality edges (p; j) joining two outer
current nodes, and perform Step 4 if p, j have different root in-
dices, or Step 10 if they have the same root index.

If δ = δ8, look for outer nodes p and unlabeled nodes j such that
(p; j) ∈ A1∗(π̂, µ̂), include such nodes p in the list.
Repeat the above checks as many times as possible. Every node or
edge whose price or weight led to the value of δ must be checked.
Then go to Step 2.

Step 13 Optimality We reach this step when there are no exposed
nodes left. Let E, x, (π, µ) be the present solution set of edges,
its incidence vector, and the dual solution at this stage. E is a
minimum cost 1-M/EC in G, x is the associated minimum cost
1-M/EC vector, and (π, µ) the optimum dual solution (optimum
for (10.57)). Terminate.

Step 14 Infeasibility We come to this step if δ = +∞ in a dual
solution change step. In this case there exists no 1-M/EC in G wrt
the given partition of the nodes, i.e., (10.6), (10.7) is infeasible.
Terminate.

Validity of the Algorithm and Its Computational Complexity

By verifying for each step, we can check that the algorithm main-
tains all the properties claimed for it, and that the Hungarian forest
conditions hold whenever the algorithm arrives at Step 12. These prop-
erties also guarantee that δ

>
= 0 in Step 12. For δ to be 0, at least one

among δ1 to δ8 must be 0, and if this happens the algorithm would have
gone to the appropriate Steps 4 to 11 during scanning and augmented
the matching and covering, or shrunk a simple blossom, or unshrunk a
type A pseudonode, or labeled an unlabeled node, violating the Hun-
garian forest conditions at the time of arrival at Step 12. Hence δ > 0
in Step 12 always.
Using exactly the same arguments as in Section 10.2.1, it can be

shown that the computational effort required by this algorithm is bounded
above by O(n2m), which can be reduced to O(n3) by implementing it
with the approach discussed in Section 10.1.2.

10.3. Minimum Cost 1-M/ECs 793

If x, (π, µ) are the final solution and dual vectors when the algorithm
terminates in Step 13, then clearly x is optimal to (10.55), and (π, µ) is
optimal to its dual (10.57) for the classesMB, CB as at the termina-
tion of the algorithm. It should be noted that (10.55) depends on the
choice of the classes MB, CB, and thus is not necessarily equivalent
to (10.6), (10.7). We will now prove that x is optimal to (10.6), (10.7)
even though (10.55) and (10.6), (10.7) are not necessarily equivalent.

THEOREM 10.25 Let x be an integer feasible solution of (10.6). Let

Yσ ⊂ N with |Yσ| >= 3 and odd. Then either Y−σ (x) <= (|Yσ|− 1)/2,or
Y+
σ (x)

>
= (|Yσ|+ 1)/2.

Proof Suppose there is an integer feasible solution x of (10.6)
which violates the hypothesis of the theorem. Then Y−σ (x) > (|Yσ| −
1)/2, Y+

σ (x) < (|Yσ| + 1)/2. But Y−σ (x) <
= Y+

σ (x). Hence (|Yσ| +
1)/2 > Y+

σ (x)
>
= Y−σ (x) > (|Yσ|− 1)/2, a contradiction since all these

quantities are integers.

THEOREM 10.26 Let B be a pseudonode formed during the algo-
rithm, associated with the pseudonode price µ(B). Suppose this pseudon-
ode B itself gets absorbed inside another pseudonode B1. Let (π

I, µI), (π̃, µ̃)
be the dual solutions at the beginning, and at the end respectively, of this
dormant period for pseudonode B. Then µI(B) = µ̃(B), and πIi = π̃i
for all original nodes i inside B.

Proof During this entire dormant period, the pseudonode price
of B does not change at all and so it remains equal to µI(B). So,
µI(B) = µ̃(B)
The pseudonode price of any newly formed pseudonode is 0 just

when it is formed. So µI(B1) = 0, at the beginning of this dormant
period. As long as B1 remains current, the change in µ(B1) is (−2)
times the change in πi for original nodes i contained inside it, in any
dual solution change step. So, for any original node i contained inside
B, the net effect on πi of all the dual solution change steps during the
time that B1 remains a current node, is (−1/2) times the net effect
on µ(B1) in the same steps. And B1 will not be unshrunk until its
pseudonode price becomes 0 again. So, for i ∈ B, the net effect on πi

794 Ch. 10. Matching and Edge Covering Problems

of all the dual solution change steps during the time that B1 remains
a current node from the time it is formed to the time it is unshrunk
again, is 0.
It is possible that B1 itself gets absorbed inside another pseudonode

B2 before it is unshrunk. As long as B2 remains current, the value of
µ(B1) remains unchanged and B1 will not be unshrunk until B2 is
unshrunk at some stage first. Using the same arguments as above, it
can be verified that for all original nodes i ∈ B, the net effect on πi,
of all the dual solution change steps during the time that B2 remains
a current node from the time it is formed to the time it is unshrunk
again, is 0. It is possible that B2 itself goes into dormancy and gets
absorbed into another pseudonode B3. The same argument can be
applied again.
The dormant period for pseudonodeB ends only when every pseudon-

ode containing B inside it, formed since the beginning of this period,
is unshrunk and B becomes a current node again. By repeating the
above argument for every pseudo- node containing B inside it, formed
during this period and unshrunk, we conclude that the net effect of all
the dual solution change steps carried out during this dormant period
on πi for i ∈ B is 0. So, πIi = π̃i for all i ∈ B

THEOREM 10.27 Let (π = (πi), µ) be the dual solution at some
stage of the algorithm. Suppose pseudonode B is a current node at

this stage, containing some nodes from both the sets N <
= and N >

=. For

j ∈ N <
= ∪N >

= contained inside B, let fj denote the node price of j at
the time that pseudonode B was just formed for the last time. Also, let
p be the BCI node of pseudonode B. Let µ(B) be the pseudonode price

of B in the present dual solution. Then for all j ∈ N <
=∪N >

= inside B,
and for p we have

(i) fj = πj +
1
2
µ(B)

(ii) |fp| = |πp|+ 1
2
|µ(B)|

(iii) |fj| >
= 1

2
|µ(B)|

(iv) |fp| >
= |πp|

(v) |πp| = Min. {|πi| : i ∈ N
<
= ∪N >

= inside B}

10.3. Minimum Cost 1-M/ECs 795

Proof While B is a current node, whenever Step 12 is carried out,
the change in the pseudonode price of B is (−2) times the change in
the node price for original nodes inside B. Also, the pseudonode price
associated with B is 0 just when it was formed. Hence (i) holds.
Since p is the BCI node of B, p is inside B and fp,πp, µ(B) all have

the same sign. From these, and by applying (i) to p, we get (ii).

By the definition of the BCI node, we have |fj| >= |fp| for all nodes
j ∈ N <

= ∪N >
= inside B. Using this and (ii) leads to (iii).

(iv) follows from (ii).
From the definition of the BCI node, we have |fp| = min. {|fi| : i ∈

N <
=∪N >

= inside B} = min. {|πi+ 1
2
µ(B)| : i ∈ N <

=∪N >
= inside B } by

(i). So, by (ii), and since πp and µ(B) have the same sign, |πp+ 1
2
µ(B)|

= min. {|πi + 1
2
µ(B)| : i ∈ N <

= ∪N >
= inside B }. This implies (v).

THEOREM 10.28 Let (π, µ) be the dual solution at some stage of
the algorithm. Suppose pseudonode B containing some original nodes

from both N <
=,N >

=, with BCI node p is dormant at this stage. For

j ∈ N <
= ∪ N >

= contained inside B let fj [gj] be the node price of j at
the time that B was just formed [entered dormancy] for the last time.
Let µ(B)[µI(B)] be the pseudonode price associated with B at present
[at the beginning of this dormant period]. Then

(i) µ(B) = µI(B)
(ii) fj = gj +

1
2
µ(B) for all original nodes j inside B

(iii) |fp| = |gp|+ 1
2
|µ(B)|

(iv) |fj| >
= 1

2
|µ(B)|, for j ∈ N <

= ∪N >
= inside B

(v) |gp| = min. {|gj| : j ∈ N
<
= ∪N >

= inside B}
Proof (i) follows because the pseudonode price of any pseudonode

does not change at all during dormancy.
By Theorem 10.26, and the manner in which the dual solution is

updated in Step 12, the net effect of all the dual solution change steps
on the node price for original nodes i inside B is (−1/2) times the
net effect on the pseudonode price of B in the same steps. Also, the
pseudonode price of B was 0 when it was just formed. These facts
imply (ii).

796 Ch. 10. Matching and Edge Covering Problems

(iii) follows by applying (ii) for j = p, because fp, gp, µ(B) all have
the same sign.
From (iii) we have |fp| >= 1

2
|µ(B)|. Also, by the definition of the

BCI node we have |fj| >= |fk| for all j ∈ N
<
=∪N >

= inside B. These two
together imply (iv).
By the definition of the BCI node we have |fp| = min. { |fj| : j ∈

N <
=∪N >

= and inside B }. Using (ii) in this we get |gp+ 1
2
µ(B)| = min.

{ |gj + 1
2
µ(B)| : j ∈ N <

= ∪N >
= and inside B }. And from (iv) we have

|gj + 1
2
µ(B)|

l
= |gj|+ 1

2
|µ(B)|, if gj and µ(B) have the same sign

<
= |gj|+ 1

2
|µ(B)|, if gj and µ(B) have opposite signs

Since gp and µ(B) have the same sign, we have |gp + 1
2
µ(B)| = |gp| +

1
2
|µ(B)|. These facts together imply (v).

THEOREM 10.29 Let π, µ be the dual solution at some stage of the

algorithm. For each dormant original node i ∈ N <
= ∪N >

=, let yi be the
node price associated with it at the time that it became a noncurrent
node for the last time. Then |yi| >= 1

2

�
(|µσ| : over σ such that i ∈ Yσ).

Proof Let B1, . . . , Br be the sequence of all the shrunken blossoms
containing i inside them, where i is inside B1, and Bt is inside Bt+1 for
each t = 1 to r − 1, and Br is a current node. Let µ1, . . . , µr be the
pseudonode prices of B1, . . . , Br at this stage. Let f

t
i be the node price

of i when Bt was just shrunk for the last time.
If none of the pseudonodes containing node i inside it, have a BCI

node defined for them, the result in this theorem follows directly from
the manner in which the dual solution is updated whenever Step 12
is carried out in this algorithm, because the original node price πi of
i, and the pseudonode price µσ of any pseudonode containing node i
inside it, always have the same sign in this case.
Now consider the case where the lowest level pseudonode containing

node i, B1, itself has a BCI node defined for it. In this case, all the
pseudonodes B1, . . . , Br have BCI nodes defined for them. Let j be
any original node inside the current pseudonode Br. The proof in this
case is by induction. We now set up an induction hypothesis.

10.3. Minimum Cost 1-M/ECs 797

Induction Hypothesis For some u satisfying 1 < u
<
= r, we

have |f sj | >
= 1

2
(|µr| + |µr−1| + . . . , |µs|) for all u <

= s
<
= r and for all

j ∈ N <
= ∪N >

= inside Bs.
The induction hypothesis holds for u = r by (iii) of Theorem 10.27.

We will now prove that under the induction hypothesis, the statement
in it must also hold for s = u− 1. Let p be the BCI node of Bu−1. By
(i) and (iii) of Theorem 10.28, we have |fu−1p | = |fup |+ 1

2
|µu−1|. Since

p is the BCI node of Bu−1, we have for all j ∈ N
<
= ∪N >

= inside Bu−1

|fu−1j | >= |fu−1p | >= |fup | >=
1

2
(|µr|+ . . .+ |µu|)

This shows that if the induction hypothesis holds for u where 1
< u

<
= r, then it also holds for u− 1. So, by induction it must hold for

u = 1 too. But by definition, yi = f
1
i for all i ∈ N

<
= ∪N >

= inside B1,
and so the result in the theorem follows in this case by applying the
statement in the induction hypothesis for u = 1.
Now consider the case where some of the pseudonodes containing

node i inside them do not have a BCI node defined for them, and some
of the others do. In this case, the proof of the result in the theorem can
be accomplished by combining the arguments in the two cases discussed
above.

THEOREM 10.30 Let πI = (πIi), µ
I = (µIσ) be the dual feasible solu-

tion at some stage of the algorithm. For every original node i inside
a pseudonode (dormant or current) at this stage, let yi be the original
node price of i in the step that node i entered dormancy for the last time
in the algorithm. Then yi = πIi +

1
2

�
(µIσ : over σ such that i ∈ Yσ).

Proof For a dormant original node i, whenever Step 12 occurs,
the change in the node price πi is (−1/2) times the change in the
pseudonode price of the outermost pseudonode containing i, and the
pseudonode price of any other dormant pseudonodes containing i at
that stage does not change at all in that step. The theorem follows
from this fact.

THEOREM 10.31 Let xI, (πI = (πIi), µ
I = (µIσ)) be feasible solutions

to (10.55), (10.57) respectively when the blossom constraint specifi-
cation classes are chosen as MBI,CBI. Let B be a pseudonode at

798 Ch. 10. Matching and Edge Covering Problems

this stage, either current or dormant, with Yσ1 as the set of origi-
nal nodes inside it, with a BCI node. Suppose we move Yσ1 from the
class among MBI,CBI in which it is contained, into the other class.
LetMBII,CBII be the resulting blossom constraint specification classes.
Define πII = (πIIi), µ

II = (µIIσ) where π
II
i = πIi + µ

I
σ1
for all i ∈ Yσ1, and

= πIi for all i W∈ Yσ1; µ
II
σ = −µIσ1 for σ = σ1, and = µ

I
σ for σ W= σ1. Then

(πII, µII) is feasible to the modified dual (10.57) corresponding to blossom
constraint specification classesMBII,CBII, andW (πI, µI) =W (πII, µII).

Proof Clearly µIIσ satisfies the sign restrictions for dual feasibility
for all σ. Original node prices outside Yσ1 keep their values unchanged
and hence continue to satisfy the sign restrictions for dual feasibility.

It remains to be proved that πIIi
<
= 0 for i ∈ N <

= ∩ Yσ1 and πIIi
>
= 0

for i ∈ N >
= ∩Yσ1. Define yi for i ∈ Yσ1 as in Theorem 10.30. Then

by Theorems 10.27, 10.28, 10.30, for i ∈ Yσ1 , yi = πIi +
1
2

�
(µIσ :

over σ such that i ∈ Yσ) = (πIi + µ
I
σ1
) + 1

2
(
�
((µIσ : over σ such that

i ∈ Yσ)) −2µIσ1) = πIIi +
1
2

�
(µIIσ : over σ such that i ∈ Yσ). So,

πIIi = yi − 1
2

�
(µIIσ : over σ such that i ∈ Yσ). Since dual feasibility is

maintained during the algorithm, we have yi
<
= 0 for i ∈ N <

=∩Yσ1 and

yi
>
= 0 for i ∈ N >

= ∩ Yσ1 . This together with the result in Theorem

10. 29, and the formula derived above for πIIi implies that π
II
i
<
= 0 for

i ∈ N <
= ∩Yσ1 and π

II
i
>
= 0 for i ∈ N >

= ∩Yσ1 , establishing that (π
II, µII)

satisfies the sign restrictions for dual feasibility.
It can be verified that dij(π

II, µII) = dij(π
I, µI) for all (i; j) ∈ A.

From this and the above result, it follows that (πII, µII) is feasible to
the modified dual corresponding to the blossom constraint specification
classes MBII,CBII.
From the fact that dij(π

I, µI) = dij(πII, µII) for all (i; j) ∈ A, and the
definition of πII, µII, it easily follows that W (πII, µII) =W (πI, µI).

THEOREM 10.32 If the algorithm discussed above terminates in
Step 13, x, the edge vector at termination, is a minimum cost 1-M/EC
vector in G.

Proof Let (π, µ) be the dual solution at termination. Let σ = 1
to L1 correspond to all the blossoms at all levels that are in existence

10.3. Minimum Cost 1-M/ECs 799

at termination. Of those, let σ = 1 to L2 refer to subsets of N
<
= ∪N=

or N >
= ∪ N= for which the type of blossom constraint (matching or

covering) is known, and let σ = L2 + 1 to L1 correspond to subsets of

nodes containing at least one node from each of N <
= and N >

=.
Let Yσ, σ = L1 + 1 to L be all the other odd subsets of N\N 0

of cardinality
>
= 3, the blossom constraint corresponding to which do

not appear at the termination of the algorithm. As discussed earlier,
every 1-M/EC vector has to satisfy either the matching or the covering
blossom constraint, or possibly both, corresponding to Yσ for every σ
= 1 to L. Because of this, in formulating the modified problem (10.55),
if we eliminate all the blossom constraints (both matching and covering
type) corresponding toYσ for σ = L1+1 to L, and yet obtain an integer
feasible solution for the resulting modified problem, then that integer
solution must be an optimum solution of the original problem (10.6),
(10.7).
LetMB,CB be the blossom constraint specification classes at ter-

mination. With this specification, x is an optimum solution to the
modified problem (10.55) as discussed earlier, and it is an integer vec-
tor. So, x is a 1-M/EC vector and its cost z(x) = W (π, µ) by the
duality theorem of LP. Also, by applying Theorem 10.31 repeatedly,
we see that if the blossom constraint specifications are given by any
sets MB, CB obtained from MB,CB by moving some of the Yσ for
σ between L2+1 to L1 that are inMB into the set CB and vice versa,
then the dual of the corresponding modified problem, has a dual fea-
sible solution (π, µ) satisfying W (π, µ) = W (π, µ). This, by the weak
duality theorem of LP implies that the optimum objective value in the
corresponding modified problem for that blossom constraint specifica-
tion, is

>
= W (π, µ) = z(x). Hence x gives the minimum value for z(x)

among all the integer feasible solutions of modified problems given by
such blossom constraint specifications. This and the earlier arguments
clearly imply that x is the optimum solution of (10.6), (10.7), i.e., a
minimum cost 1-M/EC vector in G.

The Infeasibility Conclusion

THEOREM 10.33 At each execution of Step 12 in the blossom al-

800 Ch. 10. Matching and Edge Covering Problems

gorithm discussed in this section, the dual objective value W (π, µ) in-
creases by δ times the number of exposed nodes at that stage.

Proof Let (π, µ) be the dual feasible solution when the algorithm
arrives at an occurrence of Step 12, and (π̂ = (π̂i), µ̂ = (µ̂σ)) the
new dual feasible solution at the end of this step. Let Yσ be the
set of original nodes inside a current pseudonode at this stage. Let
aσ = (|Yσ|− 1)/2 if Yσ ∈MB, or (|Yσ|+ 1)/2 if Yσ ∈ CB. Then

(aσµ̂σ +
3
(π̂i : over i ∈ Yσ))− (aσµσ +

3
(πi : over i ∈ Yσ))

= aσ(µ̂σ − µσ) +
3
(π̂i − πi : over i ∈ Yσ)

=

⎧⎪⎨⎪⎩
δ, if the pseudonode is outer
−δ, if the pseudonode is inner
0, if the pseudonode is unlabeled

Since dij(π, µ)
<
= cij for all (i; j) W∈ A\A−, min. {0, cij−dij(π, µ)} W=

0 only for edges (i; j) ∈ A−, and these edges are always current edges,
with πp = π̂p = 0 for all nodes p on these edges. Hence the term�
(min. {0, cij − dij(π, µ)}: over (i; j) ∈ A) remains unchanged during

any execution of Step 12.
Also µ̂σ = µσ ifYσ is the set of original nodes in a dormant pseudon-

ode at this stage. The number of outer current nodes at this stage is
clearly = the number of exposed nodes + the number of inner cur-
rent nodes, because of the Hungarian forest conditions holding at the
beginning of Step 12. These facts imply the result in this theorem.

THEOREM 10.34 If the value of δ turns out to be +∞ in a dual
solution change step during this algorithm, there exists no 1-M/EC in
G with the given partition of N .

Proof Let (π, µ) be the dual solution at the beginning of that
dual solution change step, andMB, CB the classes giving the blossom
constraint specifications at that stage. Let σ = 1 to L1 correspond to
all the blossoms at all levels that are in existence at this time. Of these,

let σ = 1 to L2 refer to subsets of N
<
= ∪ N= or N >

= ∪ N= for which
the type of blossom constraint (matching or covering) is known, and

10.3. Minimum Cost 1-M/ECs 801

let σ = L2+1 to L1 correspond to subsets of nodes containing at least

one node from each of N <
= and N >

=. So, MB∪CB contain all the Yσ

for σ = 1 to L1.
Define π̂(λ) = (π̂i(λ)), µ̂(λ) = (µ̂σ(λ)) by

π̂i(λ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

πi + λ if i is an outer current node, or is inside
an outer current pseudonode inMB, or is
inside an inner current pseudonode in CB

πi − λ if i is an inner current node, or is inside
an inner current pseudonode in MB, or is
inside an outer current pseudonode in CB

πi if i is inside an unlabeled node

µ̂σ(λ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

µσ + 2λ if Yσ ∈MB forms a current inner labeled
pseudonode, or if Yσ ∈ CB forms a cur-
rent outer labeled pseudonode

µσ − 2λ if Yσ ∈MB forms a current outer labeled
pseudonode, or if Yσ ∈ CB forms a cur-
rent inner labeled pseudonode

µσ otherwise

Then it can be verified that (π̂(λ), µ̂(λ)) is feasible to (10.57) with
the blossom constraint specification classes MB, CB as at present,
for all λ

>
= 0, and that W (π̂(λ), µ̂(λ)) = W (π, µ) + λγ, where γ =

number of exposed nodes at this stage. Since γ
>
= 1 (by the Hungarian

forest conditions there exists at least one exposed node at this stage)
as λ → +∞,W (π̂(λ), µ̂(λ)) → +∞. So, by the duality theory of LP
(10.55) is infeasible with the present blossom constraint specification
classesMB, CB. Using the arguments in the proof of Theorem 10.31,
it can be shown that if MB,CB is a blossom constraint specification
obtained from MB, CB by moving some of the Yσ for σ between
L2+1 to L1 that were inMB into the set CB and vice versa, the same
conclusion holds. As discussed earlier, if a 1-M/EC vector exists in G,
it must satisfy either the matching or the covering blossom constraint
corresponding to every σ = L2+1 to L1, including the other constraints
in (10.55). So, the conclusion that (10.55) remains infeasible even when
some of the Yσ for σ between L2+1 to L1 that were inMB are moved

802 Ch. 10. Matching and Edge Covering Problems

into CB or vice versa, implies that there are no 1-M/EC vectors in G.

Exercises

10.4 Specialize the blossom algorithms discussed in Sections 10.2.1,
and this section to the case when G is a bipartite network.

10.5 Let r, r denote the minimum and maximum cardinalities for a

1-M/EC in G = (N ,A) with (N <
=,N=,N >

=,N 0) as the partition of
N . Prove that there exists a 1-M/EC of cardinality r in G for every

r
<
= r

<
= r. (Cartensen, Murty, and Perin [1981])

A FORTRAN implementation of the blossom algorithm in this sec-
tion took on an average 0.333 CPU seconds (on an AMDAHL 470/V6
computer in 1980) to solve minimum cost 1-M/EC problems with ran-
domly generated data in networks with 50 nodes and 250 arcs, and
4.127 seconds in networks with 100 nodes and 3000 arcs (see Perin
[1980]).

The Convex Hull of 1-M/EC Vectors

We developed an algorithm for solving the minimum cost 1-M/EC

problem in G = (N ,A, c) with (N <
=,N=,N >

=,N 0) as the partition of
N , but we did not explicitly determine a system of linear constraints
whose solution set is the convex hull of all 1-M/EC vectors in G. We
will do that now.
Let Y ⊂ N\N 0 with |Y| odd and >

= 3, and let Y = N\Y. For
any edge vector x = (xij) defined on A define x(Y;Y) as in Chapter
1 to be the sum of xij over edges (i; j) joining nodes in Y to those in
Y. Verify that x(Y;Y) = Y+(x) −Y−(x). If E = {(i; j) : xij = 1},
then x(Y;Y) = the number of edges in E joining a node in Y to one
outside of Y.
Let s(i) be the slack variable corresponding to node i in the node

degree constraints in 1-M/EC problems, i.e., for any 1-M/EC vector x

10.3. Minimum Cost 1-M/ECs 803

s(i) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1− x(i) for i ∈ N <

=

0 for i ∈ N=

x(i)− 1 for i ∈ N >
=

0 for i ∈ N 0

Clearly s(i)
>
= 0 whenever x is a 1-M/EC vector.

THEOREM 10.35 Let Y⊂ N\N 0 with |Y| odd and >
= 3, and let

Y = N\Y. Let x, s = (s(i)) be a 1-M/EC vector and the corresponding
vector of slack variables defined above. Then

x(Y;Y) +
3
(s(i) : over i ∈ Y) >= 1 (10.65)

Proof Let E be the 1-M/EC corresponding to x. Since x(Y;Y)

and s(i) are nonnegative, the left hand side of (10.65) is
>
= 0. So, if

(10.65) is violated, we must have x(Y;Y) = 0, and s(i) = 0 for all i ∈
Y. x(Y;Y) = 0 implies that E contains no edges joining a node inY to
one outside it. s(i) = 0 for all i ∈ Y ⊂ N\N 0 implies that each node
in Y is incident to exactly one edge in E, and by the above, any such
edge must join two nodes in Y. Since |Y| is odd, this is impossible,
hence (10.65) must hold.

THEOREM 10.36 If x is the 1-M/EC vector in G obtained when
the minimum cost 1-M/EC problem is solved by the algorithm discussed
above, and Y is the set of original nodes inside a pseudonode at the
termination of the algorithm, then (10.65) will hold as an equation for
x and Y.

Proof Let s = (s(i)) be the slack vector corresponding to x. If
the pseudonode is type A or B, x(Y;Y) = 1 and s(i) = 0 for all i ∈ Y,
so (10.65) holds. If the pseudonode is type C, D, or E, let p be its apex
node, then x(Y;Y) = 0, s(p) = 1, and s(i) = 0 for all i ∈ Y, i W= p,
hence (10.65) holds again. Since every pseudonode at termination will
be type A, B, C, D, or E if 1-M/EC vectors exist, this completes the
proof of the theorem.

804 Ch. 10. Matching and Edge Covering Problems

We will show that (10.65) is in fact the blossom inequality for the
1-M/EC problem corresponding to the odd subset of nodes Y from

N\N 0. Define a(Y) = 1 + |Y ∩ N >
=| − |Y ∩ N <

=|, and g(x,Y) =
x(Y;Y) +

�
(x(i) : over i ∈ Y ∩ N >

=) −�(x(i) : over i ∈ Y ∩ N <
=).

Then after rearranging terms, (10.65) can be written as

g(x,Y)
>
= a(Y) (10.66)

(10.66), or the equivalent (10.65) is the blossom constraint correspond-
ing to the odd subset of nodes Y for the 1-M/EC problem. In this
problem, there is one blossom constraint of this type, for each subset
of N\N 0 of odd cardinality

>
= 3. Let Yσ,σ = 1 to L denote all the

subsets of N\N 0 of odd cardinality
>
= 3. Consider the LP (10.67) given

below, obtained from the minimum cost 1-M/EC problem (10.6), (10.7)
by replacing the integer requirements on the variables by the blossom
inequalities of the form (10.66).

Minimize
3
(cijxij : over (i; j) ∈ A)

Subject to x(i)

⎧⎪⎪⎨⎪⎪⎩
<
= 1, for i ∈ N <

=

= 1, for i ∈ N=

>
= 1, for i ∈ N >

=

(10.67)

g(x,Yσ)
>
= a(Yσ), σ = 1 to L

0
<
= xij

<
= 1 for all (i; j) ∈ A

To write the dual of (10.67), associate the dual variable ξi to the
node constraint at node i (with ξi defined to be = 0 for all i ∈ N 0

always), ησ to the blossom constraint corresponding to Yσ, and ωij, νij
to the bounds on xij . Let ξ = (ξi), η = (ησ). The dual of (10.67) is

Max.
3
i∈N

ξi +
L3
σ=1

a(Yσ)ησ +
3

(i;j)∈A
ωij

subject to δij(ξ, η) + ωij + νij = cij , for (i; j) ∈ A

ξi

⎧⎪⎪⎨⎪⎪⎩
<
= 0, for i ∈ N <

=

>
= 0, for i ∈ N >

=

= 0, for i ∈ N 0

(10.68)

10.3. Minimum Cost 1-M/ECs 805

ησ
>
= 0,σ = 1 to L , and ωij

<
= 0, νij

>
= 0 for (i; j) ∈ A

where for (i; j) ∈ A

bij(Yσ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 if both i, j ∈ N >
=∩Yσ, or if one

of i or j is ∈ N >
= ∩Yσ, and the

other W∈ Yσ

1 if one of i, j is ∈ N= ∩Yσ, and

the other is either ∈ N >
= ∩Yσ,

or W∈ Yσ

0 if both i, j ∈ N= ∩ Yσ; or if
both i, j W∈ Yσ; or if one of i, j

is ∈ N >
= ∩Yσ, and the other is

∈ N <
= ∩ Yσ; or if one of i, j is

∈ N <
=∩Yσ, and the other W∈ Yσ

−1 if one of i, j is ∈ N <
= ∩Yσ, and

the other is ∈ N= ∩Yσ

−2 if both i, j ∈ N <
= ∩Yσ

(10.69)

δij(ξ, η) = ξi + ξj +
L3
σ=1

bij(Yσ)ησ (10.70)

From the structure of the dual problem (10.68), it is clear that at an
optimum solution (ξ, η,ω, ν), we will have for each (i; j) ∈ A

ωij = min. {0, cij − δij(ξ, η)}, νij = max. {0, cij − δij(ξ, η)} (10.71)

Using this, we can express the complementary slackness optimality
conditions for the primal-dual pair (10.67), (10.68) in terms of x, ξ, η
only. These are, for each i ∈ N , (i; j) ∈ A, and σ = 1 to L

ξi(x(i)− 1) = 0

δij(ξ, η)

l
> cij implies xij = 1
< cij implies xij = 0

(10.72)

ησ(g(x,Yσ)− a(Yσ)) = 0

806 Ch. 10. Matching and Edge Covering Problems

THEOREM 10.37 Let x̃, (π̃, µ̃),M̃B, C̃B be the 1-M/EC vector, dual
solution, and the blossom constraint specification sets obtained when
the 1-M/EC problem in G is solved by the algorithm discussed above.
So, µ̃σ = 0 if Yσ W∈ M̃B ∪ C̃B. Define ξ̃ = (ξ̃i), η̃ = (η̃σ) where for
i ∈ N , σ = 1 to L

ỹi = π̃i +
3
(
1

2
µ̃σ : over σ s. t. Yσ ∈ M̃B ∪ C̃B and contains i)

η̃σ =
1

2
|µ̃σ|

ξ̃i =

⎧⎪⎪⎨⎪⎪⎩
ỹi for i ∈ N 0 ∪N=

ỹi +
�
(η̃σ : over σ s. t. Yσ contains i) for i ∈ N <

=

ỹi −�(η̃σ : over σ s. t. Yσ contains i) for i ∈ N >
=

Then x̃, (ξ̃, η̃) are optimal to the primal dual pair of problems (10.67),
(10.68); with the corresponding ω, ν given by (10.71).

Proof x̃ is clearly feasible to (10.67). (ξ̃, η̃) satisfy the sign
constraints on them in (10.68) because of the results proved in The-
orem 10.29. By considering the various cases corresponding to the
nodes i, j on an arc (i; j) ∈ A lying in various subsets in the partition
(N <

=,N=,N >
=,N 0) of N separately, it can be verified that δij(ξ̃, η̃) =

dij(π̃, µ̃) for all (i; j) ∈ A.
By the complementary slackness optimality conditions (10.61) sat-

isfied by x̃, (π̃, µ̃), this implies that for each (i; j) ∈ A, δij(ξ̃, η̃) > cij
implies that x̃ij = 1; and δij(ξ̃, η̃) < cij implies that x̃ij = 0. From this,
and Theorems 10.36, 10.29, it can be verified that x̃, (ξ̃, η̃) satisfy the
complementary slackness optimality conditions (10.72); and since x̃ is
feasible to (10.67), and (ξ̃, η̃) is feasible to its dual (10.68), we conclude
that x̃, (ξ̃, η̃) are optimal to the primal dual pair of problems (10.67),
(10.68).

THEOREM 10.38 The system of constraints in (10.67) provides a
linear constraint representation for the convex hull of all the 1-M/EC
vectors in G.

10.4. Specified Cardinality 1-M/EC 807

Proof If 1-M/ECs exist in G, we have shown that for any cost
vector c, the algorithm discussed in this section terminates with an x̃
which is a minimum cost 1-M/EC vector, and by Theorem 10.37, this
x̃ is an optimum solution of (10.67). Hence, when 1-M/ECs exist in
G, for every cost vector c, (10.67) has an optimum solution that is a
1-M/EC vector. And every 1-M/EC vector in G is feasible to (10.67).
When there exist no 1-M/ECs in G, we have shown that (10.57) is

unbounded above, using this and the arguments in the proof of Theo-
rem 10.37, it can be shown that the objective function in (10.68) is also
unbounded above in this case, which implies that (10.67) is infeasible
by the duality theorem of LP.
These facts imply that every extreme point of the set of feasible

solutions of (10.67) is a 1-M/EC vector. Also, every 1-M/EC vector in
G is a 0-1 vector which is feasible to (10.67), and since all the variables
in (10.67) are bounded by 0 and 1, every 0-1 feasible solution for it is
an extreme point of its set of feasible solutions. Thus every extreme
point of the set of feasible solutions of (10.67) is a 1-M/EC vector in
G and vice versa, so this set is the convex hull of all 1-M/EC vectors
in G.

Comment 10.4 The algorithm and the results in this section are
taken from Perin [1980]. In it, he also derived an out-of-kilter type
blossom algorithm for the 1-M/EC problem, and used it to develop
efficient techniques for performing sensitivity analysis in the 1-M/EC
problem.

10.4 The Minimum Cost 1-M/EC Prob-

lem with Specified Cardinality

Consider the undirected network G = (N ,A, c) with the partition
(N <

=,N=,N >
=, N 0) of N , and |N | = n, |A| = m. Here we consider the

problem of finding a minimum cost 1-M/EC in G having a specified
cardinality r. This is the problem (10.6), (10.7), with the additional
constraint

�
(xij : over (i; j) ∈ A) = r. Associate a single Lagrange

multiplier λ to this constraint, and include it in the objective function.

808 Ch. 10. Matching and Edge Covering Problems

This partial Lagrangian relaxation leads to the problem of finding a
1-M/EC in G which minimizes (c− λeT)x, where eT is the row vector
in IRm all of whose entries are 1. When λ is given a specific value,
this is a 1-M/EC problem that can be solved efficiently by the blossom
algorithm of Section 10.3. Let x(λ) = (xij(λ)) denote an optimum 1-
M/EC vector for this problem as a function of λ. Let r(λ) =

�
(xij(λ) :

over (i; j) ∈ A), the cardinality of x(λ). Then it can be shown that
x(λ) is a minimum cost 1-M/EC vector when the specified cardinal-
ity r = r(λ), and that r(λ) increases with λ. Using this result, an
algorithm for solving the specified cardinality minimum cost 1-M/EC
problem, treating the cardinality, r, as an integer valued parameter,
has been developed in Carstensen, Murty, and Perin [1981], based on
the blossom algorithm for the 1-M/EC problem of Section 10.3. That
algorithm finds x(λ) for some specific value of λ first, and then varies
λ, treating it as a parameter, through efficient parametric procedures.
This produces minimum cost 1-M/ECs of all possible cardinalities, by
the above result.

10.5 Degree Constrained Subnetworks,

b-Matching Problems, and the

General Matching Problem

Let G = (N ,A, c) be an undirected multinetwork (i.e., there may be
parallel edges in A). Let b = (bi) be a vector of specified positive inte-
gers defined on N . The problem of finding a minimum cost subnetwork
of G, subject to the constraints that for each i ∈ N the degree of i in
the subnetwork should be equal to (or

<
=) bi is known as a minimum

cost degree constrained subnetwork problem, or a minimum
cost b-matching problem. Verify that if bi = 1 for all i, this prob-
lem becomes a minimum cost 1-matching problem. So, the b-matching
problem is a generalization of the 1-matching problems discussed so far.
It can be shown that every b-matching problem can be transformed into
a 1-matching problem on an enlarged network, but this transformation
leads to an inefficient algorithm for it. The 1-matching blossom algo-
rithms have been generalized into blossom algorithms operating on the

10.6. Exercises 809

original network G itself for the b-matching problems, see Edmonds
and Johnson [1970], and Edmonds and Pulleyblank [1975]. These al-
gorithms can be used to solve integer programming problems of the
following form

Minimize
n3
j=1

cjxj

subject to
n3
j=1

aijxj

l
= bi, i = 1, . . . ,m
<
= bi, i = m+ 1, . . . ,m+ p

(10.73)

fj
<
= xj

<
= uj, j = 1, . . . , n

xj integer for all j

where all the data is integer, and the aij satisfy the conditions

m+p3
i=1

|aij| <= 2, for each j = 1 to n

An integer program of this form is called a general matching
problem, and the b-matching blossom algorithms can be used to solve
such a problem efficiently.
We have seen that the 1-matching/edge covering problems on gen-

eral undirected networks are a generalization of the assignment problem
on bipartite networks. In the same way, it can be verified that the b-
matching problems on general undirected networks, are a generalization
of the transportation problem on bipartite networks.

10.6 Exercises

10.6 Let Let G = (N ,A, c = (cij)) be a connected undirected network
with c

>
= 0 as the vector of edge lengths, and s̆, t̆ as the specified origin

and destination nodes. Make 2 copies of G side by side, with the same
edge lengths as above. To distinguish the 2 copies, add a prime, iI, to
the node numbers in the right hand side copy. On the left hand side
copy delete t̆ and all the edges incident at it. On the right hand side
copy delete s̆I and all the edges incident at it. For each i introduce

810 Ch. 10. Matching and Edge Covering Problems

the new edge (i; iI), and define its length to be 0. Let G̃ denote the
resulting network.
(i) Let P = s̆, (s̆; i1), i1, (i1; i2), i2, . . . , (i2r−2; i2r−1), i2r−1, (i2r−1; t̆), t̆

be a simple path consisting of an even number, 2r, edges between s̆
and t̆ in G. Define the set of edges, M(P), in G̃, corresponding to the
simple path P in G, to be, M(P) = {(s̆; i1), (iI1; iI2), (i2; i3), (iI3; iI4),
. . . , (i2r−2; i2r−1), (iI2r−1; t̆

I), and (i; iI) for each i ∈ N not on P}.
Whenever P is a simple path between s̆ and t̆ in G consisting of an

even number of edges, the set M(P) constructed as above is a perfect
matching in G̃ of the same length as that of the path P in G. Conversely
every perfect matching in G̃ corresponds to a simple path consisting
of an even number of edges in G between s̆ and t̆, of the same length.
Using this develop an algorithm for finding a shortest path between s̆
and t̆ in G, subject to the constraint that the path consist of an even
number of edges.
(ii) Put 2 copies of G side by side again, as discussed above. Delete

nodes s̆I, t̆I and all the edges incident at them from the right hand side
copy. For each i W= s̆, t̆, introduce the edge (i; iI) as above. Let the
resulting network be called Ĝ. Show that a one to one correspondence,
preserving lengths, can be established as above, between perfect match-
ings in Ĝ and simple paths in G between s̆ and t̆ consisting of an odd
number of edges. Using this develop an algorithm for finding a short-
est path between s̆ and t̆ in G, subject to the constraint that the path
consist of an odd number of edges.

10.7 Consider the network in Figure 10.30 with the wavy matching
M1 marked in it. Is it possible to include another edge in the set
M1 and still retain the matching property for it? From this, can you
conclude thatM1 is a maximum cardinality matching in this network?
Why?

10.8 M is a perfect matching in the undirected network G = (N ,A, c)
with c as the vector of edge cost coefficients. Given an alternating path
or cycle wrt M, P say, define its cost to be �(cij : over (i; j) ∈ P\M)
−�(cij : over (i; j) ∈ P∩M). Prove thatM is a minimum cost perfect
matching in G iff there exists no negative cost alternating cycle wrt it.

10.6. Exercises 811

3

7

1

4

5

9

62

8

11 10

Figure 10.30: Matching edges are wavy.

10.9 M is a matching in the undirected network G = (N ,A, c) with
c as the vector of edge cost coefficients. Let IPi(M) denote the set
of all augmenting paths wrt M beginning with an unmatched node i,
and IP(M) the set of all augmenting paths wrt M. Define the cost of
any path in IP(M) exactly as in Exercise 10.8. Assume that there
exists no negative cost alternating cycle wrt M, and that P is a least
cost augmenting path wrt M in some IPi(M) or in IP(M). Let M

I

be the matching obtained by rematching M using P . Prove that MI
also satisfies the property that there exists no negative cost alternating
cycle wrt it (Derigs [1981]).

10.10 A matchingM in an undirected network G = (N ,A) is said to
be a maximal matching if it is impossible to add another edge to the set
M and still keep its matching property. Let r, r denote the minimum
and maximum cardinalities of maximal matchings in G. Prove that
r
<
= 2r.

10.11 M is a perfect matching in the undirected network G = (N ,A, c).
Let (i; j) ∈M. Prove that there exists a negative cost alternating cycle
CC wrt M containing edge (i; j) iff the cost of the shortest augmenting
path wrt MI = M\{(i; j)} is < cij. Hence show that the problem of

812 Ch. 10. Matching and Edge Covering Problems

finding negative cost alternating cycles can be solved by computing
shortest augmenting paths (Derigs [1986]).

10.12 A Delivery Problem A commodity has to be supplied to
several users in a geographical region from a central depot by truck.
Each truck has a finite capacity and hence can fulfill two users only
on a trip. We are given the distance between the depot and each user,
and the distance between every possible pair of users. Formulate the
problem of fulfilling the user demands at minimum cost (which can be
assumed to be proportional to the distance traveled by the trucks) as
a matching problem (DeMaio and Roveda [1971]).

10.13 E is a specified subset of edges in an undirected network G =
(N ,A). It is required to check whether there exists a perfect matching
in G consisting of at most r edges from E. Formulate this problem as
a minimum cost maximum cardinality matching problem.

10.14 M1 is a perfect matching in an undirected network G = (N ,A).
Prove thatM1 is not the only perfect matching in G iff there exists an
even alternating cycle wrt M in G.

10.15 M1 is a maximum cardinality matching that is not perfect in
an undirected network G. Prove that M1 is not the only maximum
cardinality matching in G iff at least one of the following things exists.
(i) an even alternating cycle wrt M1 in G, (ii) a matching edge (i; j)
and an unmatched node k adjacent to i or j in G (Itai, Rodeh, and
Tanimoto [1978]).

10.16 M is a matching in a rooted tree dd with node 1 as the root.
M is said to be a proper matching of dd if it satisfies the following
property: if a node i W= 1 is unmatched, then there exists a brother j of
i such that (j; P(j)) ∈M where P(j) is the parent node of j. Prove that
every proper matching in dd must be a maximum cardinality matching.
Using this develop an O(n) algorithm (n is the number of nodes in dd)
for finding a maximum cardinality matching in a tree (Savage [1980]).

10.17 dd is a depth first search spanning tree in an undirected net-
work G. M(G), M(dd) are maximum cardinality matchings in G, dd
respectively. Prove |M(G)|/|M(dd)| <= 2 (Savage [1980]).

10.6. Exercises 813

10.18 A vertex cover or node cover in an undirected network is a
subset of nodes satisfying the property that every edge in the network
is incident to at least one node in the subset. The problem of finding
a minimum cardinality vertex cover is NP-hard in general.

(i) In a bipartite network, prove that the cardinality of a minimum
cardinality vertex cover is the same as the cardinality of a maxi-
mum cardinality matching. This result may not be true in non-
bipartite networks.

(ii) M is a proper matching in a rooted tree dd with node 1 as the root
(see Exercise 10.16 for definition). Let S be the set of nonroot
nodes i such that (i; P(i)) ∈M, where P(i) is the parent of i in
dd. Let F = {P(j): j ∈ S}. Show that any node not in S, F
is unmatched, and that F is a minimum cardinality vertex cover
for dd.

(iii) Let dd be a depth first search spanning tree in an undirected
network G (the following results may not be true for arbitrary
spanning trees in G). Let L(dd),NL(dd) be the sets of leaf, non-
leaf nodes in dd respectively. LetM(dd) be a proper matching in
dd as defined in Exercise 10.16, andM(G) a maximum cardinality
matching in G. Let C(G) be a minimum cardinality vertex cover
in G.

Since dd is a depth first search spanning tree, prove that NL(dd)
is a vertex cover for G. Prove the following string of inequalities.

|M(dd)| <= |M(G)| <= |C(G)| <= |NL(dd)| <= 2|M(dd)|

From this we get |M(G)|/|M(dd)| <= 2 (result in Exercise 10.17)
and |NL(dd)|/|C(G)| <= 2. So, NL(dd) forms a vertex cover of
G guaranteed to be within a factor of 2 of the minimum vertex
cover in size. Show that this bound is tight by considering the
case in which G is a path of odd length and the depth first search
is done from a vertex of degree 1.

(iv) Show that |C(G)|/M(G)| <= 2 for any undirected network G.

814 Ch. 10. Matching and Edge Covering Problems

(v) Let M1 be any maximal matching in G (i.e., a matching sat-
isfying the property that any pair of unmatched nodes are non-
adjacent in G), and letV(M1) be the set of nodes on edges inM1.

ThenV(M1) is a vertex cover for G. Prove that |C(G)|/|V(M1)| <=
2.

(Savage [1982]).

10.19 Degree Constrained Subnetwork Problem in Undirected
Networks G= (N ,A) is an undirected network withN = {1, . . . , n}.
b1, . . . , bn are nonnegative integers. We are required to find a subnet-
work GI = (N ,AI) of G such that |AI| is maximized subject to the
constraint that for each i = 1 to n, the degree of i in GI is <

= bi. This
is the undirected version of the same problem for directed networks
discussed in Exercise 1.57. As stated there, in directed networks the
problem easily reduces to a max-flow problem, this is not the case in
undirected networks.
Construct an undirected network H = (NH ,AH) from G by the

following procedure: for each i ∈ N put bi copies of node i, i1, . . . , ibi
say, in NH . On each edge e ∈ A introduce two new nodes ue, ve, and
transform the edge e into the subnetwork H(e) as shown in the following
Figure 10.31.

i
b
i

j
b
j

i
1

i
2

u
e

ve

1
j

j
2

Figure 10.31:

Let M be a maximum cardinality matching in H and let G =
(N ,AI) be an optimum subnetwork of G to our degree constrained
subnetwork problem. Then prove the following.

10.6. Exercises 815

(a) |M| = 2|AI|+ |A\AI| = |A|+ |AI|.
(b) Given a maximum cardinality matching M in H, the set of edges

AI for an optimum subnetwork of G to our problem is obtained
by the rule: e ∈ A is in AI iff |H(e) ∩M| = 2, and this satisfies
|AI|+ |A| = |M|.

(c) Conversely, given an optimum subnetwork G = (N ,AI) for our
problem, define a matching M in H by the rules : (i) for each
e ∈ A, (ue; ve) ∈ M iff e W∈ AI, (ii) if e = (i; j) ∈ AI, then
(ir; ue), (ve; js) are inM for some 1

<
= r

<
= bi, 1

<
= s

<
= bj. Since the

degree of node i in G
I
is

<
= bi, this matching can be accomplished

without any conflicts. Then prove that this matching will satisfy
|M| = 2|AI|+ |A\AI|.

(Shiloach [1981]).

10.20 Weighted Degree Constrained Subnetwork Problem in
Undirected Networks Consider the degree constrained subnetwork
problem discussed in Exercise 10.19, with the exception that the ob-
jective function is to maximize

�
(w(e) : over e ∈ AI) rather than

|AI|, where w(e) are specified weights for edges in G. Construct the
undirected network H from G as in Exercise 10.19, and define edge
weights in H by the rule: every edge in H(e) gets the same weight
in H, as that of e in G. Given a feasible subnetwork GI = (N ,AI) of
G, define a matching M in H as in (c) of Exercise 10.19. Show that
w(M) = 2w(AI) + w(A\AI) = w(A) + w(AI). So, maximizing w(AI)
is equivalent to maximizing w(M). Using this, show that this problem
in G gets transformed into a maximum weight matching problem in H
(Shiloach [1981]).

10.21 General Degree Constrained Subnetwork Problems in
Undirected Networks Let G = (N ,A) be an undirected network
with N = {1, . . . , n}. We are given nonnegative integers a1, . . . , an;
b1, . . . , bn satisfying ai

<
= bi for all i. w(e) is the weight of e ∈ A. It

is required to find a subnetwork GI = (N ,AI) of G, such that dG (i)
= degree of node i in GI is between ai and bi for all i; and either

816 Ch. 10. Matching and Edge Covering Problems

maximize |AI| in the cardinality problem, or �(w(e) : over e ∈ AI)
in the weighted problem. In Exercises 10.19, 10.20, we considered the
cases in which all the ai are 0.
(i) Consider the cardinality problem first. Replace all the ai by 0

and solve the resulting problem which is now in the same form as that in
Exercise 10.19, and let Gr be the resulting optimal subnetwork. If Gr is
not feasible to our problem, there must be some nodes i whose degree
in Gr is < ai, call them deficient nodes. If our problem is feasible,
show that we can use alternating paths (not necessarily simple) to
transform Gr into an optimum solution of our problem, reducing the
total deficiency by one in each step while preserving the cardinality.
(ii) Consider the weighted problem. Construct the network H as

in Exercise 10.19 (this does not use the ais), and for each e ∈ A make
the weight of each edge in H(e) in H the same as w(e). Define N1 =
∪ni=1{i1, . . . , iai}. Show that our problem has a solution iff there exists
a matching in H in which all the nodes in N1 are matched. Moreover,
show that an optimum solution of our problem can be obtained from
an optimum solution of the constrained weighted matching problem in
H in which it is required to find a maximum weight matching subject
to the constraint that every node in N1 must be matched, using the
transformation in (b) of Exercise 10.19.
Change the data in H as follows: add α (2α) to the weight of each

edge incident to exactly one node (two nodes) in N1, where α is a large
positive number. Denote the network with the resulting data as HI.
Find a maximum weight matching MI in HI. Show that if some nodes
inN1 are unmathed inMI, then the constrained matching problem in H
discussed above has no solution. And if all the nodes inN1 are matched
inMI, thenMI solves the constrained weighted matching problem in H.
Using these, discuss an algorithm for solving our weighted subnetwork
problem with any maximum weighted 1-matching algorithm (Shiloach
[1981]).

10.22 It is required to find a minimum cost matching in an undirected
network G = (N ,A, c) subject to the constraint that all the nodes in
a specified subset N1 must be matched. Discuss a way of transforming
this constrained matching problem into an unconstrained minimum
cost matching problem.

10.6. Exercises 817

10.23 The Edge Partitioning Problem For any undirected net-
work L, let ∆(L) denote the maximum degree among its nodes. Let G
= (N ,A) be an undirected network. Let α, β be positive integers such
that α + β = ∆(G). It is required to partition A into disjoint subsets
A1,A2 such that if Gt = (N ,At), t = 1, 2, then∆(G1) = α,∆(G2) = β.
Formulate this as a special case of the degree constrained subnetwork
problem of Exercise 10. 21 (Shiloach [1981]).

10.24 In a connected bipartite network, prove that there exists a
matching M, and a node cover N such that every edge in M contains
exactly one node in N; and every node in N is contained on exactly
one edge in M.

10.25 Nt, t = 1, 2 are two subsets of nodes in an undirected network
G, satisfying |N1| < |N2|. Mt is a matching in G covering all the
nodes in Nt, t = 1, 2. Prove that there must exist a matching in G,
that covers all the nodes in N1 and at least one node in N2\N1.

10.26 N is a specified subset of nodes in an undirected network G =
(N ,A, c) with edge cost vector c >

= 0. It is required to find a subset
of edges A in G satisfying the constraint that in the subnetwork (N ,
A) all nodes in N have odd degree and all nodes not in N have even
degree. Formulate the problem of finding a minimum cost subset of
edges subject to this constraint, as a matching problem.

Comment 10.5 Matchings have been studied by graph theorists
since 1891. At that time it was known that the famous four color
conjecture is true if every cubic (i.e., one in which every node has
degree 3) planar graph can be factorized into three perfect matchings,
this heightened interest in the study of matchings.
Then in the early 1900s matchings in bipartite graphs were studied

extensively. Necessary and sufficient conditions for a bipartite graph
to have a perfect matching have been derived. These can be explained
easily using a marriage interpretation as follows. Think of the two
sets of nodes of the bipartite graph as representing men, women re-
spectively. Interpret each edge in the graph as representing a man,
woman pair acquainted with each other. A matching in the graph cor-
responds to a set of man-woman couples (one couple determined by

818 Ch. 10. Matching and Edge Covering Problems

each matching edge) so that each couple is acquainted. To have a per-
fect matching, clearly the number of men and the number of women
should be equal. In this context, the conditions state that if we have
n men and n women, a set of n acquainted man-woman couples can
be formed iff for each 1

<
= r

<
= n, each set of r men collectively are

acquainted with at least r women. This result was the forerunner of
another fundamental result in bipartite matchings, Hall’s theorem
on distinct representatives. It states that if St, t = 1 to n are finite
sets, there is a set of distinct elements, x1, . . . , xn, such that xt ∈ St, t
= 1 to n, iff for each 1

<
= r

<
= n, the union of any r of the Sts contains

at least r elements. Also around this time, all the theory necessary for
finding a maximum cardinality matching in a bipartite graph had been
worked out by König and Egerváry.

Then in 1947, a big step in the study of matchings was taken by
Tutte. He gave a characterization of general (i.e., nonbipartite) graphs
that have a perfect matching, this can be viewed as a generalization of
the corresponding result in bipartite graphs. Tutte’s characterization
states that a connected graph has no perfect matching iff there exists a
set S of nodes in it, the deletion of which leaves more than |S| compo-
nents having an odd number of points each. Tutte’s characterization
is not algorithmic, it prompted attempts to find efficient algorithms
for perfect (or maximum cardinality) matchings in nonbipartite net-
works. Berge [1957] and Norman and Rabin [1959] have shown that
the concepts of alternating and augmenting paths do generalize from
the bipartite to the nonbipartite networks, and in fact the augmenting
path theorem holds in nonbipartite networks without any change, i.e.,
that a matching in a nonbipartite network is of maximum cardinality
iff it admits no augmenting path. By this time matching problems
in bipartite networks became efficiently solvable through the Hungar-
ian method. People believed for a long time that the result of Berge,
Norman and Rabin leads to an efficient algorithm for the maximum
cardinality matching problem in nonbipartite networks. One begins
with the empty matching and repeatedly performs augmentations un-
til there are no augmenting paths. Matters stood there until 1965 when
Edmonds showed that the search for augmenting paths in nonbipartite
networks is very intricate, and could take exponential time unless spe-

10.6. Exercises 819

cial techniques are developed for it. We begin at an unmatched node,
and advance along an AP. If this reaches another unmatched node, we
have found an augmenting path. This procedure always works nicely
in bipartite networks, but in nonbipartite networks, odd cycles create
subtle difficulties for it. A node can appear on an AP in either parity
(outer or inner); and if we allow two visits to a node, one in each parity,
the path is no longer simple; if we don’t, we miss the augmenting path.

The algorithmic study of matchings took a giant step with the
work of Edmonds [1965a, b]. There, he developed the elegant solu-
tion to the problem of finding augmenting paths efficiently by detecting
and shrinking blossoms as they appear. In these papers he introduced
the characterization of the convex hull of matching incidence vectors
through the system of blossom inequalities. Using this characteriza-
tion, he extended the Hungarian method for the bipartite minimum
cost matching problem into the blossom algorithm for minimum cost
matching problem in nonbipartite networks, and showed that it is poly-
nomially bounded. In these papers, Edmonds has also proposed poly-
nomial time property as the prime characteristic for designating al-
gorithms as good algorithms. This has become a fundamental tenet
of theoretical computer science ever since.

Another major outgrowth from these papers is the study of other
combinatorially defined polyhedra with the aim of characterizing them
through a system of linear constraints, this area is now called polyhe-
dral combinatorics.

Earlier in 1962, the Chinese mathematician Kwan Mei-Ko posed the
important postman’s route problem. Hence Edmonds called this the
Chinese postman problem and developed the efficient procedure
for solving it using the blossom algorithm for the minimum cost perfect
matching problem on the complete network defined on the set of odd
degree nodes in the original network, as described in Section 1.3.8.

With the Hungarian method in bipartite networks, and the blossom
algorithm in nonbipartite networks, the study of optimization problems
involving matchings has taken off with a vigorous start. Several new
algorithms for matching problems, as well as efficient implementations
based on appropriate data structures, have been developed. Many ap-
plications in a variety of areas have come up. Some recent applications

820 Ch. 10. Matching and Edge Covering Problems

in VLSI chip design etc. lead to matching problems on such large net-
works, that it is impractical to solve them with the O(n3) blossom
or other exact algorithms. Hence, even though mathematically effi-
cient exact algorithms exist for them, heuristic algorithms of low order
complexity are being developed for tackling very large scale matching
problems.
For other algorithms for matching problems see Avis [1983], Ball

and Derigs [1983], Cunningham and Marsh [1978], Derigs [1981, 1985,
1986, 1988 of Chapter 1, 1991], Even and Kariv [1975], Gabow [1976],
Kameda and Munro [1974], Murty and Perin [1982], and Perin [1980].

10.7 References

Y. A. ALYAHYA, 1984, “Matching and Covering Algorithms,” Ph. D. disserta-

tion, Dept. of Industrial and Operations Engineering, University of Michigan, Ann

Arbor, Mich., USA,

D. AVIS, 1983, “A Survey of Heuristics for the Weighted Matching Problem,” Net-

works, 13(475-493).

M. O. BALL and U. DERIGS, 1983, “An Analysis of Alternate Strategies for Im-

plementing Matching Algorithms,” Networks, 13(517-549).

C. BERGE, 1957, “Two Theorems in Graph Theory,” Proceedings of the National

Academy of Sciences, USA, 43(842-844).

J. BROWN, 1977, “Shortest Alternating Path Algorithms,” Networks, 4(311-334).

P. CARSTENSEN, K. G. MURTY, and C. PERIN, 1981, “Parametric Speci-

fied Cardinality 1-Matching/Edge Covering Problems and Intermediate Feasibility

Property,” Technical Report 81-6, Dept. of Industrial and Operations Engineering,

University of Michigan, Ann Arbor, Mich., USA,

N. CHRISTOFIDES, 1976, “Worst-case Analysis of a New Heuristic for the Trav-

eling Salesman Problem,” Technical Report, GSIA, Carnegie-Mellon University,

Pittsburgh, PA, USA.

W. H. CUNNINGHAM and A. B. MARSH III, 1978, “A Primal Algorithm for

Optimum Matching,” MPS, 8(50-72).

A. O. DEMAIO and C. A. ROVEDA, 1971, “The Minimal Cost Maximum Match-

ing of a Graph,” Unternehmens-Forschung Operations Research, 15, no. 3(196-210).

U. DERIGS, 1981, “A Shortest Augmenting Path Method for Solving Minimal Per-

fect Matching Problems,” Networks, 11(379-390).

10.7. References 821

U. DERIGS, Nov. 1985, “An Efficient Dijkstra-like Labeling Method for Comput-

ing Shortest Odd/Even Paths,” IPL, 21, no. 5(253-258).

U. DERIGS, 1986, “Solving Large-Scale Matching Problems Efficiently: A New

Primal Matching Approach,” Networks, 16(1-16).

U. DERIGS and A. METZ, Mar. 1991, “Solving (Large Scale) Matching Problems

Combinatorially,” MP, Series A, 50, no. 1(113-121).

J. EDMONDS, 1962, “Covers and Packings in a Family of Sets,” BAMS, 68(494-

499).

J. EDMONDS, 1965a, “Paths, Trees, and Flowers,” Canadian Journal of Mathe-

matics, 17(449-467).

J. EDMONDS, 1965b, “Maximum Matching and a Polyhedron With 0, 1 Vertices,”

Journal Research NBS, 69(B)(130-165).

J. EDMONDS, 1965c, “The Chinese Postman Problem,” OR, 13, Suppl. 1(373).

J. EDMONDS and E. L. JOHNSON, 1970, “Matching: A Well Solved Class of

Integer Linear Programs,” PP 89-92 in R. Guy(ed.) Combinatorial Structures and

Their Applications , Gordon and Breach, N.Y.

J. EDMONDS and W. PULLEYBLANK, 1975, “The Matching Problem and the

Blossom Algorithm,” Lecture notes, John Hopkins University, Baltimore, MD,

USA.

S. EVEN and O. KARIV, 1975, “An O(n2.5) algorithm for the Maximum Matching

in General Graphs,” Proceedings of the 16th Annual Symposium on Foundations of

Computer Science, IEEE, N.Y. (100-112).

M. FUJII, T. KASAMI, and K. NINOMIYA, 1969, “Optimal Sequencing of Two

Equivalent Processors,” SIAM Journal on Applied Mathematics, 17(784-789), Er-

ratum ibid 20, 1971(141).

H. N. GABOW, 1976, “An Efficient Implementation of Edmond’s Algorithm for

Maximum Matching on Graphs,” JACM, 23(221-234).

A. ITAI, M. RODEH, and J. L. TANIMOTO, Oct. 1978, “Some Matching Prob-

lems for Bipartite Graphs,” JACM, 25, no. 4(517-525).

T. KAMEDA and I. MUNRO, 1974, “An O(|V | |E|) Algorithm for Maximum

Matching of Graphs,” Computing, 12(91-98).

A. S. LAPAUGH and C. H. PAPADIMITRIOU, 1984, “The Even-Path Problem

for Graphs and Digraphs,” Networks, 14, no. 4(507-513).

KWAN MEI-KO, 1962, “Graphic Programming Using Odd or Even Points,” Chi-

nese Math. , 1(273-277).

B. MONTREUIL, H. D. RATLIFF, and M. GOETSCHALCKX, Sept. 1987, “Match-

822 Ch. 10. Matching and Edge Covering Problems

ing Based Interactive Facility Layout,” IIE Transactions, 19, no. 3(271-279).

K. G. MURTY and C. PERIN, 1982, “A Blossom Type Algorithm for the Minimum

Cost Edge Covering Problem,” Networks, 12(379-391).

R. Z. NORMAN and M. O. RABIN, 1959, “An Algorithm for a Minimum Cover

of a Graph,” Proceedings of the American Math. Soc., 10(315-319).

M. W. PADBERG and M. R. RAO, 1982, “OddMinimum Cut-Sets and b-Matchings,”

MOR, 7(67-80).

C. PERIN, 1980, “Matching and Edge Covering Algorithms,” Ph. D. dissertation,

Dept. of Industrial and Operations Engineering, University of Michigan, Ann Ar-

bor, Mich., USA,

W. R. PULLEYBLANK, 1983, “Polyhedral Combinatorics,” PP 312-345 in A.

Bachem, M. Grotschel, and B. Korte (eds.), Mathematical Programming, The

State of the Art: Bonn 1982, Springer-Verlag, Berlin.

C. SAVAGE, 1980, “Maximum Matchings and Trees,” IPL, 10, no. 4/5(202-205).

C. SAVAGE, July 1982, “Depth First Search and the Vertex Cover Problem,” IPL,

14, no. 5(233-235).

A. SCHRIJVER, 1983, “Short Proofs of the Matching Polyhedron,” Journal of

Combinatorial Theory, (B), 34(104-108).

Y. SHILOACH, April 1981, “Another Look at the Degree Constrained Subgraph

Problem,” IPL, 12, no. 2(89-92).

W. T. TUTTE, 1947, “The Factorization of Linear Graphs,” Journal of the London

Math. Soc. , 22(107-111).

L. J. WHITE, 1971, “Minimum Covers of Fixed Cardinality in Weighted Graphs,”

SIAM Journal of Applied Math., 21(104-113).

L. J. WHITE and M. L. GILLENSON, 1975, “An Efficient Algorithm for Minimum

k-Covers in Weighted Graphs,” MP, 8(20-42).

Index

For each index entry we provide
the page number where it is de-
fined or discussed first.

AP 681
Alternating tree 682
Alternating forest 715
Augmenting tree 685

Blossom algorithm 670, 714
Blossom constraints 679, 718

Covering 760
Matching 718

Blossoms 687
BCI node of 784
Revision of 722
Rooted simple 689
Shrinking of 690
Simple 687

Contraction 691
Current 692

Blossoms 699
Edges 699
Equality subnetwork 720, 763,

783
Matching 692
Network 692
Nodes 699

Degree constrained subnet-
work 808

Dominating edge set 670, 671

Edges 670
Equality 763
Matching 670
Nonmatching 670
Solution 762

1-Edge cover 670, 757
Edge independence no. 669
Edge vector 673

Edge covering 673, 778
1-M/EC 673
Matching 673
Perfect matching 673

1-Factor 669

Hungarian 708, 730, 749, 767
Forest conds. 730, 749, 768,

786
Trees 708

Independent edge set 669

1-M/EC 672, 779
1-Matching 669

823

824 Ch. 10. Matching/Edge Coverings

Perfect 669
Mate 670

Nested class 703
Nodes 670

Apex 764
Base 688, 700, 764
Exposed 747
Inner 685
Matched 670
Nonexposed 747
Outer 685
Unmatched 670

Node cover 671

Odd alternating cycle 688

Paths 681
Alternating 681
Augmenting 681

Planted forest 713
Pseudonode 691

Dormant 701
Expanding of 695
Level of 702
Prices 719
Rooted 692
Unshrinking of 728

Reducing paths 759
Rematching 682

Star 757
Symmetric assignments 680

