
Contents

2 Single Commodity Maximum Value Flow Problems in
Pure Networks 128
2.1 Simple Transformations 129
2.2 Some Results . 130
2.3 Single Path Labeling Methods Beginning With A Feasi-

ble Flow Vector . 139
2.3.1 An Initial Version of the Labeling Method . . . 139
2.3.2 The Scanning Version of the Labeling Method . 147
2.3.3 Shortest Augmenting Path Method 154

2.4 Multipath Labeling Methods Begi
-nning with a Feasible Flow Vector 159
2.4.1 Dinic’s Method 160
2.4.2 Dinic-MKM Method 168

2.5 The Preflow Push Algorithm 174
2.6 Phase 1 For Problems With f W= 0 179
2.7 Sensitivity Analysis . 189
2.8 Exercises . 191
2.9 References . 222

i

ii

Chapter 2

Single Commodity Maximum
Value Flow Problems in Pure
Networks

The problem of finding a maximum value flow in the directed single
commodity flow network G = (N ,A, f, k, s̆, t̆) can be solved by several
methods, one of which is the bounded variable simplex method. In
this chapter we discuss efficient network algorithms for this problem,
the augmenting path methods, and the recently developed preflow-
push algorithms.

If f = 0, one may be tempted to believe that this problem can be
solved by the following simple scheme. Since f = 0, one can begin with
the feasible flow vector f 0 = 0. Find a chain from s̆ to t̆ consisting
of unsaturated arcs only, and increase the flow on each arc on it by
the residual capacity of this chain; repeat this process until a stage
is reached where there is no chain from s̆ to t̆ consisting only of un-
saturated arcs. At that stage, terminate the process. We now have a
feasible flow vector f̃ wrt which there exists no FAC from s̆ to t̆. This
f̃ is a maximal or blocking feasible flow vector, but unfortunately, it
may not be of maximum value, as illustrated in Figure 1.26 in Example
1.3. In this scheme, the flow on each arc either stayed the same or in-
creased, but never decreased. To reach higher value flows, we may have
to decrease the flow on some of the arcs. This leads to the possibil-

128

2.1: Transformations 129

ity of flow augmentation using FAPs rather than FACs. For example,
there is no FAC from 1 to 4 in the network on the right of Figure 1.30.
However the path 1, (1, 3), 3, (2, 3), 2, (2, 4), 4 containing the reverse
arc (2, 3) is an FAP, and augmentation using it leads to an increase
in flow value by 1 unit. The first class of methods that we will discuss
are based on flow augmentation using FAPs. These methods are also
called labeling algorithms or label tree methods, since they grow
a tree rooted at s̆ in each step to look for an FAP, and the tree itself is
stored using predecessor labels on the nodes.

2.1 Simple Transformations

Supersource (Supersink) to Replace Several Source (Sink)
Nodes

If there are r(> 1) source nodes in the problem, i with ai units
available, for i = 1 to r, then introduce a new supersource s̆ with un-
limited availability and new arcs (s̆, i) with lower bound 0 and capacity
ai, fori = 1 to r. See Figure 2.1.

If there are p(> 1) sink nodes, with sink node n − j having a re-
quirement of bn−j units, for j = p− 1 to 0, introduce a new supersink
t̆ with unlimited requirement and new arcs (n− j, t̆) for j = p− 1 to 0.
If bn−j is a minimal requirement at node n − j, the lower bound and
capacity on the arc (n − j, t̆) can be set at bn−j and ∞ respectively.
If it is required to supply exactly bn−j units to node n− j, one of the
following strategies can be used: (i) Set both lower bound and capacity
on the arc (n− j, t̆) equal to bn−j, or (ii) set lower bound = 0, capacity
= bn−j on arc (n− j, t̆), and look for a flow vector in which this arc is
saturated.

Transformation of Node Capacities

If node i has a node transit capacity of ci in the original network,
replace it by an arc (i1, i2) with an arc flow capacity of ci. Nodes i1, i2
represent the receiving and departing ends of i. See Figure 2.2.

130 Ch.2. Maximum Value Flows

1

2

r

Supersource and the

new arcs introduced in

the transformed problem.

Data on arcs are lower

bound, capacity.

0 , a
1

0 , a
2

0 , a
r

1

2

r

Source nodes in

original network

with availability

at them entered

by their side .

a
1

a
2

a
r

Source

nodes

Figure 2.1:

Combining Parallel Arcs Into A Single Arc

If there are r parallel arcs joining i to j with lower bounds f1, . . . , fr
and capacities k1, . . . , kr respectively, replace them by a single arc (i, j)
with lower bound f1+ . . .+ fr and capacity k1+ . . .+ kr. In the sequel
we will assume that there is at most one arc from a node to any other
node.

2.2 Some Results

The conditions for the feasibility of a node-arc flow vector f = (fij) in
the single commodity flow network G = (N ,A, f, k, s̆, t̆) are:

f(i,N)− f(N , i) =
⎧⎪⎨⎪⎩

0 if i W= s̆, t̆
v if i = s̆
−v if i = t̆

(2.1)

2.2: Results 131

f
<
= f

<
= k (2.2)

j
p+q

j
p +1

j
1

j
p

i i
1

i
2

j
1

j
p

j
p +1

j
p+q

0, c
i

Figure 2.2: On the left is node i with transit capacity ci in the original
network. On right is the corresponding portion in the transformed
network in which i is replaced by arc (i1, i2) with lower bound, capacity
entered on it.

THEOREM 2.1 Let [X, X̄] be a cut separating s̆ and t̆, and let f be
a feasible flow vector in G. The quantity f(X, X̄) − f(X̄, X), called
the net flow across the cut [X, X̄] in f , is equal to v.

Proof The result follows by adding the conservation equations in
(2.1) over i ∈ X.
THEOREM 2.2 If a feasible flow vector exists in G, the maximum
flow value is

<
= the capacity of any cut separating s̆ and t̆. Also, if f̂ is

a feasible flow vector of value v̂, [Y, Ȳ] is a cut separating s̆ and t̆ in
G, and v̂ = the capacity of the cut [Y, Ȳ], then f̂ is a maximum value
feasible flow vector and [Y, Ȳ] is a minimum capacity cut separating
s̆ and t̆ in G.

Proof Let f be any feasible flow vector of value v, and let [X, X̄]
be any cut separating s̆ and t̆ in G. By Theorem 2.1 we have v = f(X,

X̄) − f(X̄, X)
<
= f(X, X̄) − f(X̄, X) (since f

>
= f)

<
= k(X, X̄)

− f(X̄, X) (since f
<
= k) = capacity of the cut [X, X̄]. The second

result now follows directly.

132 Ch.2. Maximum Value Flows

THEOREM 2.3 A feasible flow vector in G has maximum value iff
there exists no FAP from s̆ to t̆ wrt it.

Proof Let f be a feasible flow vector in G. If there exists an
FAP from s̆ to t̆ wrt f , we can get a flow vector of higher value by
augmentation, therefore f does not have maximum value.
Suppose there exists no FAP from s̆ to t̆ wrt f . We will now show

that f has maximum value. Define X = {i : i ∈ N , either i = s̆, or
there exists an FAP from s̆ to i wrt f}, X̄ = N\X.
If P is an FAP from s̆ to i wrt f (define P to be the empty path if

i = s̆), and j ∈ N is such that

either (i) (i, j) ∈ A and fij < kij, or (ii) (j, i) ∈ A and fji > fji

then by including (i, j) under case (i) or (j, i) under case (ii) at the end
of P, we extend it to j. This implies that if i ∈ X and j satisfies (i) or
(ii), then j ∈ X also. Hence, for (i, j) ∈ A, we have fij = kij if i ∈ X
and j ∈ X̄, or fij = fij if i ∈ X̄ and j ∈ X. So, f(X, X̄) − f(X̄, X)
= k(X, X̄) − f(X̄, X). And since there is no FAP from s̆ to t̆ wrt f ,
t̆ ∈ X̄. Therefore, [X, X̄] is a cut separating s̆ and t̆. By Theorems 2.1
and 2.2, these facts imply that f is a maximum value flow vector, and
[X, X̄] is a minimum capacity cut separating s̆ and t̆ in G.

Given a feasible flow vector f in G, the argument in the proof of
Theorem 2.3 suggests the following labeling or tree growth scheme
to determine the set X of nodes defined there.

TREE GROWTH SUBROUTINE TO FIND X

Step 1 Plant a tree with root at s̆ Label s̆ with ∅.
Step 2 Tree growth step Look for a labeled node i and an unla-

beled node j satisfying (i) or (ii) stated above. If (i) holds, label
j with (i,+); if (ii) holds label j with (i,−). In either case, i is
the immediate predecessor of j and the arc (i, j) in case (i) or the
arc (j, i) in case (ii) is known as the arc used in labeling node
j. It becomes an in-tree arc in this step.

Repeat Step 2 as often as possible. Terminate when no further
tree growth is possible.

2.2: Results 133

8

2
5

3 19

1

2

3

4

5

6

(1,+) (3,+)

(2, -)

(4,+)

(1,+)

ø
2

1 76

1

Figure 2.3: Only in-tree arcs are shown here. Node labels are entered
by the side of the nodes. All lower bounds are 0. Arc capacities are
entered on the arcs. If flow on an arc is nonzero, it is entered in a box
by its side.

The setX defined in the proof of Theorem 2.3 is the set of all labeled
(i.e., in-tree) nodes at termination. For each i ∈X, its predecessor path
written in reverse order beginning with s̆ is an FAP from s̆ to i wrt f .
As an example consider the flow vector in the network in Figure

1.24. The rooted tree obtained when this scheme is applied on it is
given in Figure 2.3. Nodes labeled in successive executions of Step 2
are 2, 3, 5, 4, 6, in that order. So, in this example X is N .
The rooted tree grown is usually called the label tree. At some

stage of the tree growth process, if t̆ gets labeled, it is an indication that
an FAP from s̆ to t̆ has been identified. This event is called a break-
through, and the label tree is said to have become an augmenting
tree when it occurs. It can be interpreted as the tree bearing fruit.
On the other hand if the tree growth stops without t̆ ever getting la-
beled, it is an indication that there exists no FAP from s̆ to t̆ wrt the
present flow vector f ; this event is known as a nonbreakthrough. By
Theorem 2.3, this implies that f has maximum value in G.

THEOREM 2.4 THE MAXIMUM FLOW MINIMUM CUT THE-
OREM If a feasible flow vector exists in the single commodity flow
network G = (N ,A, f, k, s̆, t̆), the maximum value among feasible flow
vectors is equal to the minimum capacity of cuts separating s̆ and t̆.

134 Ch.2. Maximum Value Flows

Proof The maximum flow value in G is infinite iff there exists a
chain from s̆ to t̆ consisting only of arcs of infinite capacity. If such a
chain exists, by the result in Exercise 1.12, every cut separating s̆ and
t̆ must contain an arc of this chain as a forward arc; hence the capacity
of every cut separating s̆ and t̆ is also infinite, and hence the theorem
holds.

If the maximum flow value in G is finite, this theorem follows from
Theorems 2.2 and 2.3.

Theorem 2.4 points out the connection between the maximum value
flow problem and the minimum capacity cut problem. Since a cut
separating s̆ and t̆ has the property of blocking all the paths between
s̆ and t̆, the minimum capacity cut problem arises in disconnecting the
network for interrupting the communication between s̆ and t̆ (i.e., for
the interdiction of the physical transportation of supplies at minimum
expense). A minimum capacity cut can be viewed as a minimum cost
subset of arcs that intersects every path from s̆ to t̆. In fact, it is a
project to evaluate the capacity of the Eastern European rail network
to support a large scale conventional war, and the effort required for
interdiction, formulated in 1956 by General F. S. Ross and T. E. Harris,
that motivated L. R. Ford and D. R. Fulkerson to study the maximum
value flow problem and led to their discovery of the maximum flow
minimum cut theorem. See Picard and Queyranne [1982], Billera and
Lucas [1978], and Hoffman [1978].

Unfortunately, the corresponding result does not hold for multicom-
modity flow problems (i.e., those dealing with the simultaneous

shipping of several commodities). Consider a p (
>
= 2) commodity flow

problem on the directed network Ḡ = (N ,A, f = 0, k). Assume that
each arc can be used for the flow of any combination of commodities,
that all commodities are measured in a common unit (e.g., a truckload)
and that the capacity on each arc applies to the sum of the flows of all
the commodities. Clearly, this problem can be transformed into one in
which there is a specified source and sink pair for each commodity. Let
sr, tr be the source and sink for the rth commodity, r = 1 to p. Here a
disconnecting set of arcs can be defined to be a subset of arcs whose
removal disconnects all the chains from sr to tr for each r = 1 to p. We

2.2: Results 135

1

3 20,1

0,1 0,1

s , t
2 3

13
s , t

1 2
s , t

Figure 2.4: A three commodity flow network. Lower bound, capacity
for total arc flow entered on the arcs; sr, tr are the source, sink nodes
for the rth commodity, r = 1 to 3.

define the capacity of such a disconnecting set to be the sum of their
capacities. In contrast to single commodity flows, the maximum value
flow which maximizes the sum of the flow values of all the commodities,
may be strictly less than the minimum disconnecting set capacity. We
now present an example from Ford and Fulkerson [1962 of Chapter 1]
to illustrate this point.

In the network in Figure 2.4, the maximum flow value is 3
2
obtained

by shipping 1
2
unit of the rth commodity across the unique chain from

sr to tr, r = 1 to 3. Any pair of arcs in this network, e.g., {(1, 2), (1,
3)}, is a disconnecting set, since removal of this pair disconnects the
chains from sr to tr, for all r = 1, 2, 3. So, the minimum disconnecting
set capacity is 2, strictly greater than the maximum flow value of 3

2
.

The Duality Interpretation of the Maximum Flow
Minimum Cut Theorem

Consider the maximum value flow problem in the directed con-
nected single commodity flow network Ḡ = (N ,A, f = 0, k, s̆, t̆). This
is the problem of maximizing v subject to (2.1), (2.2) with f = 0. As-
sociate the dual variable πi to the conservation equation corresponding
to node i, and the dual variable uij to the capacity constraint on arc
(i, j). From Chapter 1 we know that any one of the equality constraints

136 Ch.2. Maximum Value Flows

in (2.1) can be eliminated because of redundancy. We eliminate the
equation corresponding to t̆. This has the effect of setting πt̆ = 0 in
the dual problem. Hence the dual problem is equivalent to

Minimize z(π, u) =
3
(kijuij : over (i, j) ∈ A)

Subject to πj − πi + uij
>
= 0, for each (i, j) ∈ A (2.3)

πs̆ − πt̆ = 1

πt̆ = 0, and uij
>
= 0, for each (i, j) ∈ A

Let Γ = {(π, u) : (π, u) is feasible to (2.3) }. From the structure
of the constraints in (2.3), it is clear that the values of any of the uij
variables can be increased arbitrarily in any feasible solution without
affecting its feasibility. Thus Γ is an unbounded set in the π, u-space.
Let (π̃, ũ) ∈ Γ be an extreme point of it. Then the results in Exercise
2.1 state that all π̃ and ũij are 0 or 1, that [X, X̄] (whereX = {i : i ∈ N
is s. t. π̃i = 1}, and X̄ is its complement) is a cut separating s̆ and
t̆ in Ḡ, and that the set {(i, j) : (i, j) ∈ A is s. t. ũij = 1} is (X,
X̄). Thus, z(π̃, ũ) is the capacity of the cut [X, X̄]. Thus, every BFS
(π, u) of (2.3) corresponds to a cut separating s̆ and t̆ in Ḡ, such that
z(π, u) = the capacity of this cut. Hence, by the duality theorem of
LP, when feasible flows exist, the maximum flow value is equal to the
minimum capacity of cuts separating s̆ and t̆ in Ḡ; this is the result
in the maximum flow minimum cut theorem (Theorem 2.4). Also, the
weak duality theorem of LP implies that the value of any feasible flow
vector in Ḡ is

<
= the capacity of any cut separating s̆ and t̆ in Ḡ. This

is the first result in Theorem 2.2.
Assume that k is a finite positive vector. Consider the problem of

finding a maximum capacity cut separating s̆ and t̆ in Ḡ. Since there
are only a finite number of cuts separating s̆ and t̆ in Ḡ, and each
has finite capacity, this is a combinatorial optimization problem with
a finite optimum objective value. The minimum capacity among cuts
separating s̆ and t̆ is the optimum objective value in the LP (2.3). By
analogy, one is tempted to look at the LP: maximize {z(π, u): over
(π, u) ∈ Γ}, for the maximum capacity cut problem. However, since Γ
is unbounded, and k > 0, z(π, u) is unbounded above on Γ. So, the

2.2: Results 137

maximum capacity cut cannot be found directly from this LP; z(π, u)
has a finite minimum over Γ, but is unbounded above. See Figure 2.5.

Since only extreme points of Γ correspond to cuts, the maximum ca-
pacity cut problem is exactly the discrete optimization problem: max-
imize {z(π, u) : over the finite set of extreme points of Γ}. And the
minimum capacity cut problem is to minimize z(π, u) over the finite set
of extreme points of Γ. Both are discrete optimization problems requir-
ing the optimization of a linear function over the finite set of extreme
points of Γ. So, on the surface both problems seem very comparable.
The main difference between them is that there exists a solution to the
minimization problem which solves the LP (2.3) without any extreme
point condition. Better still, given an extreme point of Γ, there are nec-
essary and sufficient optimality conditions to check efficiently whether
that point solves the minimization problem. In contrast, given an ex-
treme point of Γ, no nontrivial optimality conditions (short of total
enumeration, i.e., comparing this point with every other extreme point
of Γ) are known to check whether it solves the maximization problem.

z(
) =

constant hyperplane

���

Increasing

direction for

z ()���

Decreasing

direction for

z ()���

Figure 2.5:

The maximum capacity cut problem is a special case of the follow-
ing:

138 Ch.2. Maximum Value Flows

GENERAL PROBLEM Given a finite system of linear constraints,
for which the set of feasible solutions is an unbounded convex polyhe-
dron K, and a linear function z(x) unbounded above over K, find an
extreme point of K which maximizes z(x) over the finite set of extreme
points of K.
It is a difficult discrete optimization problem for which no efficient

algorithms are known. When all the data is rational, this problem is
NP-hard. Several other hard combinatorial optimization problems such
as the traveling salesman problem are special cases of this problem. At
the moment, the only methods known for this problem are enumerative
methods with exponential growth in computational effort in the worst
case.

Exercises

2.1 Prove the following. If (π̃ = (π̃i), ũ = (ũij)) is a BFS of (2.3),
then (i) π̃i, ũij are all equal to either 0 or 1 for all i, j, (ii) for each
(i, j) ∈ A, ũij = 1 iff π̃i = 1 and π̃j = 0; ũij = 0 otherwise. Conversely,
if (π̃, ũ) is a feasible solution of (2.3) satisfying (i) and (ii), then it is a
BFS. Hence show that a feasible solution (π̃, ũ) for (2.3) is an extreme
point of Γ iff it satisfies (i) and (ii). Then show that every BFS (π, u)
of (2.3) corresponds to a cut separating s̆ and t̆ in Ḡ, such that z(π, u)
= the capacity of that cut, and vice versa.

2.2 LetA = (aij) be a given positive square matrix of order n. For any
X ⊂ {1, . . . , n}, define X̄ = {1, . . . , n}\ X. Consider the four problems
of minimizing or maximizing a(X, X̄), or a(X, X̄) + a(X̄, X), over the
class of subsets of {1, . . ., n}. Which of these problems can be solved
by network flow methods? Why?

2.3 Research Problem : Develop a system of linear constraints in π, u,
which, when combined with those in (2.3), describes the convex hull of
the set of extreme points of Γ.

2.3: Single Path Labeling Methods 139

2.3 Single Path Labeling Methods Begin-

ning With A Feasible Flow Vector

We consider the problem of finding a maximum value feasible flow vec-
tor in the directed single commodity flow network G = (N ,A, f, k, s̆, t̆).
It involves two phases. They are:

PHASE 1 This phase finds an initial feasible flow vector in G if one
exists. If f = 0, f = 0 is a feasible flow vector. Hence this phase is
not needed, and we go directly to Phase 2 with f = 0. Methods for
carrying out Phase 1 when f W= 0 are discussed in Section 2.6.
PHASE 2 This phase requires an initial feasible flow vector, say
f 0 in G, as an input. This phase constructs a sequence of feasible
flow vectors of strictly increasing values, and terminates only when a
maximum value feasible flow vector is obtained.
Here we discuss a class of algorithms for Phase 2. In each stage,

they try to find an FAP from s̆ to t̆ wrt the present feasible flow vector
f̄ , say. If none are found, f̄ is a maximum value flow vector, and the
method terminates. Otherwise an FAP is found, flow augmentation is
carried out using it, and the whole process is repeated with the new
flow vector. Since the methods deal with one FAP at a time, they are
called single path methods. The methods differ in the manner in
which the search for an FAP is carried out in each step.

2.3.1 An Initial Version of the Labeling Method

This version uses the tree growth scheme discussed earlier to search for
FAPs. Tree growth occurs one arc at a time.

INITIAL VERSION

Step 1 Plant a tree with root at s̆ Let f̄ = (f̄ij) be the present
feasible flow vector. Label s̆ with ∅.

Step 2 Tree growth Look for a pair of nodes i, j satisfying one of
the following.

140 Ch.2. Maximum Value Flows

(i) Forward labeling rule Node i is labeled; j is unlabeled;
(i, j) ∈ A and f̄ij < kij

(ii) Reverse labeling rule Node i is labeled; j is unlabeled;
(j, i) ∈ A and f̄ji > fji

If such a pair does not exist, there is a nonbreakthrough. Go to
Step 4. If a pair of nodes i, j satisfying one of the above rules is
found, label j with (i,+) under rule (i), or with (i,−) under rule
(ii). Node i is the immediate predecessor of j. If j = t̆, there is
a breakthrough. Go to Step 3. Otherwise, repeat this Step 2.

Step 3 Flow augmentation Since t̆ is labeled, the predecessor
path P of t̆, written in reverse order beginning with s̆ is an FAP.
Compute 6, the residual capacity of P , and f̂ = (f̂ij) where

f̂ij =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

f̄ij + 6 if (i, j) is a forward arc on P

f̄ij − 6 if (i, j) is a reverse arc on P

f̄ij if (i, j) is not on P

Erase the labels on all the nodes (this operation is called chop-
ping down the present tree) and go back to Step 1 with f̂ as
the new flow vector.

Step 4 Termination The present flow vector f̄ is a maximum value
flow vector in G. Let X = set of in-tree (i.e., labeled) nodes, and
X̄ its complement. (X, X̄) is a minimum capacity cut separating
s̆ and t̆ in G. Terminate.

Discussion

In executing the algorithm, each time check whether the sink can
be labeled. If so, label it and move over to Step 3. If the sink cannot
be labeled, label some other unlabeled node if possible and continue.
Each time Step 2 is carried out, one new node and arc join the tree.
So, Step 2 can be carried out consecutively at most n − 1 times (n =

2.3.1: Initial Version 141

10

562 3 6 7

19

5

8

1

2

3

4

5

6

Source
Sink

ø

1

6

2

8

2

1

6

4

7

(3, -) (2, +)

(1, +)

(4, +)

Figure 2.6:

3

10

562 3 6 7

19

5

8

1

2

3

4

5

6

Source
Sink

ø
5

2

8

X X

_

8

2

4

1

6

Figure 2.7:

|N |) before going to Step 3 or 4. The work between two consecutive
occurrences of Steps 3 and 4 represents a tree growth routine, also
called a labeling routine. It terminates either with a breakthrough or
a nonbreakthrough. The total number of trees grown in this algorithm
is 1 + the number of flow augmentations carried out.

As an example, consider the network in Figure 1.24 with a feasible
flow vector of value 7 entered there. All lower bounds are zero, and
capacities are entered on the arcs. Nonzero flow amounts are entered
in little squares by the side of the arcs. We label the source, node 1
with ∅, then node 2 with (1, +), then node 5 with (2, −), and then the
sink, node 6 with (5, +), in that order. So, there is a breakthrough.

142 Ch.2. Maximum Value Flows

8

10

15

4

7

6

6

9

10

9

5

13

18

19

12

7

15

11

1

2

3

4 5

6

7

8

9

10Source Sink

Figure 2.8: All lower bounds are 0, and capacities are entered on the
arcs.

The FAP has forward arcs (5, 6), (1, 2) and reverse arc (5, 2); 61 =
min {7 − 0, 8− 6} = 2, 62 = min. {2} = 2, the residual capacity 6 =
min {61, 62} = 2. The new flow vector is shown in Figure 2.6.
We chop down the old tree, root another tree in Figure 2.6, and

grow it. There is a breakthrough again. The new FAP has forward
arcs (4, 6), (2, 4), and (1, 3) and reverse arc (2, 3). Flow augmentation
is carried out and the new flow vector is shown in Figure 2.7. A new tree
grown in Figure 2.7 ended in nonbreakthrough. So, the flow vector in
Figure 2.7, of value 10, is a maximum value flow vector in this network.
A minimum capacity cut [X, X̄] separating the source and the sink is
marked in Figure 2.7 with a dashed line.

Exercises

2.4 Discuss how to find a feasible flow vector of value equal to a
specified number v∗ in G.

2.5 Find a maximum value flow vector from source to sink in the
networks in Figures 2.8 to 2.10.

2.6 Prove that there exists r arc disjoint chains from s̆ to t̆ in the
directed network G = (N ,A, s̆, t̆) iff there is no cut separating s̆ and t̆
with less than r forward arcs.

2.3.1: Initial Version 143

Source Sink1 12

2

3

4

5

6

7

8

9

10

11

Figure 2.9: All the arcs are directed from left to right, all lower bounds
are 0, and capacities are 1.

Source Sink

25 3

4

2

5

2

8

10

2+ a

2

6

5

4

3

1

6

Figure 2.10: Here λ is a parameter. All lower bounds are 0, and ca-
pacities are entered on the arcs. Obtain the solution to the problem as
a function of λ, for λ

>
= 0.

2.7 In a club of m men and n women, compatibility is a mutual
relationship in a man-woman pair. The subset of women compatible
with the ith man, i = 1 to m is given. Formulate the problem of
forming the maximum number of compatible couples as a maximum
value flow problem.

2.8 Maximum Value Flows in Undirected Networks Consider
the maximum value flow problem in a connected undirected network
G = (N ,A, f = 0, k, s̆, t̆). One way of handling this problem is to
replace each edge (i; j) by the pair of arcs (i, j), (j, i) both with lower
bound 0 and capacity ki;j , but this is undesirable because it doubles
the number of lines. Another way is to orient each edge arbitrarily.
For example, make edge (i; j) into arc (i, j) say, with capacity ki;j and
lower bound −ki;j. Adopt the convention that if the flow amount on

144 Ch.2. Maximum Value Flows

3

2

4

1 6

5

7

8

11

10

9

14

13

12

17

16

15 19

18

22

21

20

25

24

23

8

5

15

3

20 10

1

6

10

3

4

7

9

1

10
17

3

7

5

4

1

22

6

7

4

1

1

1

6

4

2

2

2

3

Source

Sink

11

3

Figure 2.11:

this arc is a negative number, say −α, it implies that the actual flow on
the corresponding edge is +α in the direction opposite to the selected
orientation for this edge. Use this approach to solve the maximum
value flow problem on the network in Figure 2.11. All lower bounds
are zero, and capacities are entered on the edges.

If there exists an FAP from s̆ to t̆ wrt a feasible flow vector f̄ , all
the nodes along this path can be labeled and hence t̆ can be labeled.
Hence the sink will be labeled after at most (n− 1) tree growth steps,
where n = |N |, and a breakthrough will occur.
If f, k, and the initial feasible flow vector f 0 are all integer vectors,

the residual capacity of all the FAPs identified will always be a posi-
tive integer. Hence, in this case, either this version terminates with a
maximum value feasible flow vector after a finite number of trees are
grown, or it constructs an infinite sequence of flow vectors whose values
diverge to +∞.
Given an FAP which is a simple path, by labeling the nodes in

2.3.1: Initial Version 145

the order in which they appear on it, we can guarantee that the tree
growth routine will terminate by discovering that particular FAP. So,
if {f0, f 1, . . .} is a sequence of feasible flow vectors of increasing value,
satisfying the following Property 1, then we are guaranteed that this
version can be executed, beginning with f 0, so that it produces exactly
this sequence of flow vectors. Hence, in order to establish the worst
case computational complexity of this version, it is enough to study
the following question: “What is the maximum number of feasible flow
vectors in a sequence {f 0, f 1, . . . } satisfying Property 1 ?” Edmonds
and Karp [1972] have constructed the network in Figure 2.12 to answer
this question.

PROPERTY 1 For each r, f r+1 is obtained by augmenting the flow
vector f r using some FAP (which is a simple path) from s̆ to t̆ wrt f r.

Let ft denote the flow amount on arc et, t = 1 to 5 in the network
in Figure 2.12. f̄ = (f̄t : t = 1to 5)T = (M,M, 0,M,M)T of value
2M is a maximum value feasible flow vector. Define the sequence of
feasible flow vectors {f s : s = 0, 1, . . . , 2M} in this network, with f0=
0, f 2r−1 = (r, r−1, 1, r−1, r)T , f 2r = (r, r, 0, r, r)T , for r = 1 toM . In
this sequence f s has value s for each s = 0 to 2M . For r = 1 toM , f2r−1

is obtained by augmenting f2r−2 using the FAP 1, (1, 2), 2, (2, 3), 3,
(3, 4), 4 wrt it; and f 2r is obtained by augmenting f 2r−1 using the FAP
1, (1, 3), 3, (2, 3), 2, (2, 4), 4 wrt it. So this sequence of flow vectors
satisfies Property 1, and it has 2M +1 vectors in it. Assuming that M
is a positive integer, the size of the maximum value flow problem on the
network in Figure 2.12 (i.e., the number of binary digits needed to store
all the data in it) is log(1+M) plus a constant, and the computational
effort required by this version to solve this problem, if it follows this
sequence, is that for 2M tree growths, which grows exponentially with
the size. Thus even though the initial version is a finite algorithm for
problems with finite integer data, it is not a polynomially bounded
algorithm. Even on networks with few nodes and arcs, it may require
an unduly large amount of computational effort depending on the order
in which the nodes are selected for labeling.

EXAMPLE 2.1

146 Ch.2. Maximum Value Flows

1

2

3

4

0,1e
1

e
2

e
3

e
4

e
5

0, M

0, M

0, M

0, M

Figure 2.12: Network displaying the worst case behavior of the initial
version of the labeling method. Lower bounds, capacities entered on
the arcs. M is a positive integer.

Ford and Fulkerson [1962 of Chapter 1], have provided the following
example to illustrate the fact that if the arc capacities are irrational
numbers, and the starting feasible flow vector is an integer vector, the
initial version of the labeling method may not terminate and may even
converge in the limit to a flow vector whose value is strictly less than
the true maximum flow value. Let α = −1+√5

2
, an irrational number

satisfying αr+2 = αr − αr+1, for integer r
>
= 0. Since 0 < α < 1, the

infinite sum
�∞
p=0 α

p converges to a quantity which we denote by β.
The network G = (N ,A) is given by the following.

N = {s̆, t̆, xi, yi, i = 1 to 4}, |N | = 10

A = {(s̆, xi), (yi, t̆) : i = 1 to 4} ∪ {(yi, yj), (xi, yj), (yi, xj) : for i W= j = 1
to 4} ∪ {ei = (xi, yi) : i = 1 to 4}

with f = 0, capacities of e1, e2, e3, e4 to be 1, α,α
2,α2 respectively, and

the capacities of all other arcs to be β. In the initial feasible flow vector,
f 0, there is one unit of flow on arcs (s̆, x1), (x1, y1), and (y1, t̆), and zero
flow on all the other arcs. Hence, v(f0), the value of f 0, is 1. In f0, the
residual capacities of the arcs e1, e2, e3, e4 are 0, α,α

2,α2 respectively.
The following construction yields two feasible flow vectors per step and
generates a sequence of feasible flow vectors in this network satisfying
Property 1.

2.3.2: Scanning Version 147

GENERAL STEP At the beginning of this step, we have a
flow vector, f p, say, with value vp, such that there exists a permuta-
tion of the arcs e1, e2, e3, e4, which we will denote by e

I
1, e
I
2, e
I
3, e
I
4 with

residual capacities 0, αr,αr+1,αr+1 respectively, in fp, for some r. De-
note the tail and head nodes on eIi by x

I
i, y
I
i, i = 1 to 4. The chain

s̆, (s̆, xI2), x
I
2, (x

I
2, y
I
2), y

I
2, (y

I
2, x
I
3), x

I
3, (x

I
3, y
I
3), y

I
3, (y

I
3, t̆), t̆, is an FAC wrt

f p whose residual capacity is αr+1. Denote the flow vector obtained
after augmenting f p using this FAC by f p+1. The arcs eI1, e

I
2, e
I
3, e
I
4 have

residual capacities 0, αr−αr+1 = αr+2, 0,αr+1 respectively in f p+1. The
path consisting of arcs (s̆, xI2), (x

I
2, y
I
2), (y

I
2, y
I
1), (x

I
1, y
I
1), (x

I
1, y
I
3), (x

I
3, y
I
3),

(xI3, y
I
4), (y

I
4, t̆), in that order is an FAP wrt f

p+1 with residual capacity
αr+2. Let f p+2 be the feasible flow vector obtained after augmenting
f p+1 using this FAP, and vp+2 its value. vp+2 − vp = αr. In f p+2, the
arcs eI1, e

I
2, e
I
3, e
I
4 have residual capacities α

r+2, 0,αr+2,αr+1 respectively.
So, rearrange them in the order eI2, e

I
4, e
I
1, e
I
3, and go to the next step.

This procedure leads to an infinite sequence of feasible flow vectors
satisfying Property 1, whose value is strictly increasing and converges
to
�∞
r=0 α

r = β, whereas the maximum flow value in this network can
be verified to be 4β. So, even though the sequence {f p : p = 0, 1, . . .}
converges to a limit, its limit is not a maximum value flow vector in
this example.

2.3.2 The Scanning Version of the Labeling Method

In the initial version, when f̄ is the present feasible flow vector, we
search for a labeled node i and an unlabeled node j satisfying either
(i) or (ii) of Step 2. If such a labeled node i is found, we can label
not only this node j, but all other unlabeled nodes j that satisfy this
condition with i. This operation of labeling all the unlabeled nodes j
satisfying this condition is called scanning the labeled node i. The
use of scanning leads to an improved version. This version is often
called the Ford-Fulkerson Labeling Method. Here, nodes may
be in three possible states, unlabeled, labeled and unscanned,
labeled and scanned. List always refers to the present set of labeled
and unscanned nodes.

148 Ch.2. Maximum Value Flows

SCANNING VERSION

Step 1 Plant a tree with root at s̆ Let f̄ = (f̄ij) be the present
feasible flow vector. Label s̆ with ∅; s̆ is now labeled and un-
scanned. List = {s̆}.

Step 2 Select a node from list for scanning If list = ∅, go to
Step 5. Otherwise select a node from it to scan.

Step 3 Scanning Let i be the node to be scanned.

(i) Forward labeling Identify all unlabeled nodes j satisfying
(i, j) ∈ A and f̄ij < kij , and label all of them with (i,+).

(ii) Reverse labeling Identify all unlabeled nodes j satisfying
(j, i) ∈ A and f̄ji > fji, and label all of them with (i,−).

Each newly labeled node in this step is now labeled and un-
scanned. Include all of them in the list. Node i is now labeled
and scanned. Delete it from the list. If t̆ is now labeled, there is
a breakthrough, go to Step 4. If t̆ is not yet labeled. Go to Step
2.

Step 4 Flow augmentation Same as Step 3 in the initial version.

Step 5 Termination Same as Step 4 in the initial version.

Discussion

As an example consider the network in Figure 2.13 with an initial
feasible flow vector of value 1 marked there. When the source node
1 is scanned, both nodes 2 and 3 get labeled. At this stage the list
is {2, 3}, and we select 2 from it for scanning next. This leads to a
breakthrough. Node labels are shown in Figure 2.13. Notice that even
though 1, (1, 3), 3, (2, 3), 2, (2, 4), 4 is an FAP, which is a simple path,
we cannot obtain this FAP under the scanning version, because, when
node 1 is scanned, both nodes 3 and 2 get labeled with (1, +).
Flow augmentation can be carried out using the FAP identified in

Figure 2.13, and the method continued. It can be verified that the

2.3.2: Scanning Version 149

Source

Sink

(1,+)

(1,+)

(2,+)1

2

3

4

0,1 0, M

0, M0, M

0, M

ø

1

1

1

Figure 2.13: Data on the arcs is lower bound, capacity. Here M > 2.
Nonzero flow amounts are entered in boxes by the side of the arcs.

method terminates with the maximum value flow vector after growing
three trees. This compares with 2M trees that the initial version may
require.

Since it may not be possible to obtain some FAPs under the scan-
ning version, we cannot use the technique of constructing a sequence
of flow vectors satisfying Property 1 of Section 2.3.1 to study its com-
putational complexity, at least not in all the networks. However, we
will now show that given any network G, we can obtain a modified
network Ĝ such that the behavior of the initial version, when applied
on G, is exactly duplicated by the scanning version, when applied on
Ĝ, by choosing an appropriate order for scanning the nodes from the
list. The modification consists of adding an artificial node in the mid-
dle of each arc in G (i.e., replacing each arc (i, j) in G by the pair of
arcs (i, p), (p, j) both with the same data and the same flow amount as
the original arc (i, j) in G) where p is the artificial node introduced on
(i, j).

Let G = (N ,A) be the original network with |N | = n, |A| = m,
and Ĝ = (N̂ , Â) the corresponding modified network. So, |N̂ | = n +
m, |Â| = 2m. Each arc in G corresponds to a unique pair of arcs in
Ĝ. Under this correspondence every path in G corresponds to a unique
path in Ĝ with twice as many arcs. As an example, the modified
network corresponding to the one given in Figure 2.13 is shown in
Figure 2.14.

150 Ch.2. Maximum Value Flows

1

2

3

4

Source
Sink

0,1

0,1

p
1

p
2

p
3

p
4

p
5

1

1

1

1

1

1

Figure 2.14: Modified network corresponding to the one in Figure 2.13.
Lower bound, capacity on nonvertical arcs are 0, M ; p1 to p5 are the
artificial nodes inserted.

Let e1, . . . , em be the arcs in G, and pr the artificial node introduced
in the middle of er, r = 1 to m. Let e

I
r, e
II
r be the pair of arcs into which

er is split when pr is introduced in its middle. Let fr be the flow variable
associated with er in G, and f

I
r, f
II
r the flow variables associated with

eIr, e
II
r in Ĝ, r = 1 to m. In applying the scanning version on Ĝ, the

following facts can be verified to hold.

In every feasible flow vector (f Ir, f
II
r : r = 1 to m) in Ĝ, f

I
r = f

II
r for

all r, and by making fr equal to this common quantity, r = 1 to m,
we get a feasible flow vector in G, and vice versa. In Ĝ an artificial
node pr gets labeled only when tail(e

I
r) or head(e

II
r) is scanned. When

an original node i ∈ N is scanned in Ĝ, the only nodes that get labeled
are artificial nodes. When an artificial node pr is scanned in Ĝ, at most
one node gets labeled; it is either tail(eIr), or head(e

II
r).

From these facts we conclude that if P̂ is an FAP from s̆ to t̆ in Ĝ

2.3.2: Scanning Version 151

wrt a feasible flow vector f̂ , when the scanning version is applied on Ĝ
with f̂ as the flow vector, it is possible to scan the nodes on P̂ in the
order in which they appear on it, and if this is done, the tree growth
routine will terminate by discovering the FAP P̂.
As an example, let P be the FAP 1, (1, 3), 3, (2, 3), 2, (2, 4), 4

in the network G in Figure 2.13. We have seen earlier that this FAP
cannot be obtained under the scanning version. The corresponding
FAP, P̂ , in the modified network Ĝ drawn in Figure 2.14 is 1, (1, p2),
p2, (p2, 3), 3, (p3, 3), p3, (2, p3), 2, (2, p4), p4, (p4, 4), 4. It can be
verified that the nodes 1, p2, 3, p3, 2, p4 can be scanned in this order
when the scanning version is applied in Ĝ, leading to the FAP P̂ at
termination.
From these facts and the earlier results on the initial version, we

conclude that if all the data and the initial feasible flow vector are all
integral, then the scanning version will either terminate after a finite
number of steps with a maximum value flow vector or obtain an infinite
sequence of flow vectors whose value diverges monotonically to +∞.
And if some capacities are irrational and the initial feasible flow vector
is an integer, the scanning version may produce an infinite sequence of
flow vectors whose values converge to a quantity strictly less than the
maximum flow value (i.e., it may not work). However, surprisingly, a
simple selection rule fixes this problem.
A general selection rule, known as a consistent labeling proce-

dure, is one in which the choice for the node to be scanned from the
list is determined uniquely by the set of nodes currently in the list (i.e.,
whenever the list is a particular subset of nodes, it always selects the
same node from that subset to scan). We have the following theorem
by A. Tucker [1977] on the finite convergence of the scanning version
operated with a consistent labeling procedure.

THEOREM 2.5 When the scanning version is applied on the directed
single commodity flow network G = (N ,A, f, k, s̆, t̆) beginning with an
initial feasible flow vector f 0, using a consistent labeling procedure, the
scanning version finds a maximum value flow vector after growing at
most a finite number of trees.

Proof Let |N | = n. We do not assume that f, k, f0 are integer

152 Ch.2. Maximum Value Flows

vectors; the proof is valid in general. The proof is based on induction
on n. Number the nodes serially, beginning with 1 for the source and
ending with n for the sink. The statement of the theorem is obviously
true for n = 2.

Induction Hypothesis The statement of the theorem is true in
networks with number of nodes

<
= n− 1.

Now we will prove that the theorem must also hold for G = (N ,A)
with |N | = n, under the induction hypothesis. Proof is by contra-
diction. Suppose the theorem does not hold in G. So, there exists a
consistent labeling procedure such that when the scanning version is ap-
plied on G with it, the algorithm continues indefinitely. 1 is the source
node and the flow on arcs of the form (1, i) is never decreased during
the algorithm. Let S = {i : i ∈ A(1), and (1, i) is never saturated
in the algorithm}. S W= ∅ by the hypothesis. Suppose the consistent
labeling procedure requires the selection of the node p ∈ S for scanning
whenever the list is the set S.

Let {f 0, f 1, . . .} be the sequence of flow vectors generated by the
algorithm. From the definition of S, there exists a finite positive integer
r such that for all i ∈ A(1)\S, fu1i = k1i for all u

>
= r. Hence, for

all u
>
= r, during the uth tree growth in the algorithm, node p is

scanned immediately after 1. Also since (1, p) is never saturated in the
algorithm, the results obtained will remain unchanged if k1p is changed
to +∞. Make this change.
Form a new network Ḡ = (N̄ , Ā) by just coalescing node p into

node 1 in G, leaving all the data unchanged. For u
>
= r, let f̄u be

the flow vector obtained by deleting fu1p from f
u. Now apply the same

algorithm on Ḡ beginning with the initial feasible flow vector f̄ r in it.
Coalescing node p into 1 contracts the arc (1, p) into node 1; this has no
effect on the results of labeling in G, since k1p was changed to ∞. The
consistency of the labeling procedure for all nodes other than p is kept
unaffected while applying the algorithm on Ḡ. The sequence of scan-
ning remains the same, since node p was being scanned immediately
after node 1 in G. Thus applying the algorithm on Ḡ with the initial
flow f̄ r is equivalent to applying it in G beginning with f r. However,
since |N̄ | = n − 1, by the induction hypothesis, the algorithm finds a

2.3.2: Scanning Version 153

maximum value flow vector in Ḡ after a finite number of iterations and
terminates; a contradiction. Hence, the theorem must also hold for the
network G with |N | = n, under the induction hypothesis. Since the
theorem is true when the network has only two nodes, by induction it
is true in general.

Denote the arcs in G by e1, . . . , em. Correspondingly, let f =
(f1, . . . , fm), k = (k1, . . . , km), and f = (f1, . . . , fm) denote the lower
bound, capacity, and flow vectors. Given a feasible flow vector f =
(ft) in G define the partition of arcs corresponding to f to be
(Lf , If ,Uf), where Lf = {t : ft = ft}, If = {t : ft < ft < kt},Uf = {t :
ft = kt}. Clearly the total number of such distinct partitions is <

= 3m.
Another proof of Theorem 2.5 comes from the result in the following
exercise.

Exercise

2.9 Prove that the partitions of arcs corresponding to flow vectors in
the sequence of feasible flow vectors generated by the scanning version
using a consistent labeling rule applied on G are all distinct. And prove
that the number of flow vectors in this sequence is

<
= n!, where n = |N |

(Megiddo and Galil [1979]).

The result in Exercise 2.9 shows that the number of flow augmen-
tations carried out in the scanning version with a consistent labeling
procedure is

<
= min. {n!, 3m}. Even though this number is finite, it

grows very rapidly with n,m. In fact, Megiddo and Galil [1979] have
constructed an infinite class of maximum value problems with integer
capacities and zero lower bounds to demonstrate that the number of
flow augmentations in the scanning version under a general consistent
labeling procedure may grow exponentially with the size of the prob-
lem. Their construction involves the basic network structure of the
type in Figure 2.14; however, the arc capacities are different. The net-
work for the rth problem in their class is a combination of r similar
structures placed side by side with the leftmost node of each structure

154 Ch.2. Maximum Value Flows

coinciding with the rightmost node of the structure to its left, with
capacities of all the nonvertical arcs = 2r, and those of vertical arcs =
2r−1. This rth problem has 1+8r nodes and 10r arcs. They show that
the scanning version with a consistent labeling procedure specified by
them and initiated with the zero flow vector requires 2r flow augmenta-
tions before reaching a maximum value flow vector in the rth problem.
This is exponential growth with size.

2.3.3 Shortest Augmenting Path Method

Define the length of a simple path to be the number of arcs in it. In
this version, due to Edmonds and Karp [1972], the node to be scanned
is selected from the list in order to guarantee that the FAP obtained
is the shortest among all the FAPs from the source to the sink at
that stage. This is the reason for its name. It is also known as the
Edmonds-Karp version of the labeling method.

In this method, nodes are selected from the list for scanning on
a first labeled first scanned basis (i.e., nodes are scanned in the
order they are labeled). This makes the tree grow in a breadth-first
manner; hence the method uses a breadth-first search strategy to
find an FAP. It turns out that the FAPs obtained by a breadth-first
search strategy are the shortest.

The method is the same as the scanning version of Section 2.3.2
with one minor difference. Here the list is maintained as a queue, from
top to bottom. When new nodes are entered into the list in Step 3,
they are always entered at the bottom. When a node is to be selected
for scanning in Step 2, it is always the topmost node in the list.

As an example, we apply this method on the network in Figure
1.24 with the feasible flow vector entered there. Here the list has to
be maintained as an ordered set. We order the nodes in it from left
to right (left corresponds to top, and right to bottom). Source node 1
gets labeled with ∅, list = {1}. Node 1 is scanned leading to the label
of (1, +) for both nodes 2 and 3. Node 1 leaves the list and nodes
2, 3 are added to the list at the right in some order, say in natural
order, so the list is {2, 3} now. Node 2 is selected for scanning, node
4 gets labeled with (2, +), and node 5 with (2, −). The list is {3, 4,

2.3.3: Shortest Augmenting Path Method 155

5} now. Scanning of node 3 leads to no new labels. Then node 4 is
scanned, leading to the label of (4, +) to the sink node 6, and hence
a breakthrough. The FAP with arcs (1, 2), (2, 4), (4, 6), of length 3,
can be verified to be a shortest FAP wrt the present flow vector. Flow
augmentation can be carried out, and the method can be continued in
the same manner.

For the sake of discussion let di denote the depth label for labeled
node i at any stage of this algorithm. These di are not used or main-
tained in the algorithm. Clearly, di is the length of the FAP traced
by the current labels, from the source to i at that stage. Also, since a
node gets labeled only after its parent, the “first labeled, first scanned”
policy used in this algorithm guarantees that the node selected for scan-
ning is always a node with the smallest depth label among those in the
list.

Define the distance of node i at any stage of this algorithm to be
the length of a shortest FAP from source to i wrt the flow vector at
that stage, or +∞ if no FAP exists to i.

THEOREM 2.6 In this version, the FAP from the source to any la-
beled node i traced by the labels is a shortest FAP from the source to i
wrt the feasible flow vector at that stage.

Proof Let f̄ be the feasible flow vector at this stage, and let di
denote the depth label for the labeled node i in the tree being grown.
Let d be a positive integer.

Induction Hypothesis The following statements are true for
any r

<
= d− 1.

1. During the labeling routine, if the depth label of the node being
scanned is r, then the distance of all the unlabeled nodes at this
time is

>
= r + 1.

2. For all labeled nodes i with di = r, the FAP from source to i
traced by the current labels is a shortest FAP from source to i at
that stage.

156 Ch.2. Maximum Value Flows

Statements 1 and 2 are obviously true for r = 0. We will now prove
that under the induction hypothesis, these statements must also be
true for r = d.
Let j be a labeled node with dj = d. If the parent of j is p, then

dp = d − 1. Applying Statement 1 to the time when p was being

scanned, we conclude that the distance of j at this stage is
>
= d. But

the FAP from source to j traced by the current labels has length d, so
it is a shortest FAP from source to j at this stage. This proves that
Statement 2 must hold for r = d.
Let x be an unlabeled node at the time that j was being scanned; x

must also be unlabeled earlier when p was being scanned, which implies
by Statement 1 under the induction hypothesis that the distance of x
must be

>
= d. However, since x remained unlabeled when all the labeled

nodes of depth
<
= d − 1 were scanned, the distance of x cannot be d.

So, the distance of x must be
>
= d + 1. This proves that Statement 1

also holds when r = d.
Hence, by induction, the statements in the induction hypothesis are

true for all r. This proves the theorem.
Now we will study the worst case computational complexity of this

version. Let f0 denote the initial feasible flow vector and fu the flow
vector obtained after u trees are grown and the growth of the (u+1)th

tree is about to begin, for u
>
= 1. So, fu is the current feasible flow

vector during the growth of the (u+ 1)th tree. Let θu+1i be the length
of a shortest FAP from the source s̆ to i, and ϑu+1i the length of a
shortest FAP from i to the sink t̆ wrt fu. These quantities are defined
to be +∞ if an FAP of the type in its definition does not exist. So,
from Theorem 2.6, if i is a labeled node in the (u+1)th tree, its depth
in this tree is θu+1i .

THEOREM 2.7 For all nodes i and u
>
= 1 we have θu+1i

>
= θui , and

ϑu+1i
>
= ϑui .

Proof We will first prove θu+1i
>
= θui . If this is not true, there must

exist a p and some nodes i, for which θp+1i < θpi . Obviously p
>
= 1. Let

r be a node satisfying θpr > θp+1r = min. {θp+1i : i such that θp+1i < θpi }.
The source node s̆ satisfies θus̆ = 0 for all u

>
= 1. Also, for any

u
>
= 1, if θui = 0, i must be s̆. Since θp+1r < θpr , we have r W= s̆, and

2.3.3: Shortest Augmenting Path Method 157

hence θp+1r
>
= 1. Let the label on node r in the (p + 1)th tree growth

routine be (j,+). (A proof similar to the following holds when the
second symbol in the label is −.) Then (j, r) is an in-tree arc in the
(p+ 1)th tree, so f pjr < kjr, and from Theorem 2.6 we have

θp+1r = θp+1j + 1 (2.4)

From (2.4) and the choice of r, we have θp+1j
>
= θpj . So

θp+1r
>
= θpj + 1 (2.5)

Now, suppose f p−1jr < kjr. By the manner in which scanning is done,

it is clear that θpr
<
= θpj + 1. This and (2.5) together imply that θ

p
r
<
=

θpj + 1
<
= θp+1r ; this is a contradiction. Hence f p−1jr = kjr. This, and

the fact that (j, r) is a forward in-tree arc in the (p+ 1)th tree growth
routine, together imply that (j, r) must have been a reverse arc in the
FAP identified during the pth tree growth routine. By Theorem 2.6
and the manner in which labeling is done, this implies θpj = θpr + 1.

This together with (2.5) implies that θp+1r
>
= θpr + 2, a contradiction to

the choice of r. Hence we must have θu+1i
>
= θui for all i and u

>
= 1. A

similar proof holds for ϑu+1i
>
= ϑui for all i and u

>
= 1.

THEOREM 2.8 Let m,n be the number of arcs, nodes respectively
in the network G = (N ,A, f, k, s̆, t̆). Beginning with an initial feasible
flow vector in G, the shortest augmenting path method terminates with
a maximum value flow vector after at most mn/2 trees are grown.

Proof Let (i, j) be an arc on an FAP from s̆ to t̆ wrt a flow vector
f̃ in G, and f̂ the flow vector obtained after augmenting f̃ using this
FAP. Then (i, j) is said to be a critical forward arc if f̂ij = kij , a

critical reverse arc if f̂ij = fij , and a critical arc if it is either a
critical forward or reverse arc.
Suppose (i, j) is a critical arc in the FAP obtained during the ath

tree growth routine in the shortest augmenting path method applied
on G beginning with an initial feasible flow vector, and again for the
next time in the bth tree growth routine, b > a. Assume that (i, j)

158 Ch.2. Maximum Value Flows

was a critical forward arc in the FAP of the ath tree growth routine (a
proof similar to the following holds if it is a critical reverse arc on this
FAP). So,

faij = kij (2.6)

There are two cases to consider. Either f b−1ij = kij , or < kij. Consider

the case f b−1ij = kij first. In this case (i, j) must be a critical reverse
arc in the FAP of the bth tree growth routine. So, from the manner in
which labeling is done we have θaj = θai +1, and θ

b
i = θbj +1. Also, from

Theorem 2.7 we have θbj
>
= θaj . From all these we have θbi = θbj + 1

>
=

θaj + 1 = θai + 2. Also, from Theorem 2.7 we have ϑbi
>
= ϑai . So, in this

case we have
θbi + ϑbi

>
= θai + ϑai + 2 (2.7)

Now consider the case where f b−1ij < kij. From (2.6), we conclude that

this can only happen if there exists a w such that a + 1
<
= w

<
= b − 1,

and in the FAP obtained during the wth tree growth routine (i, j) is a
reverse arc. Using the same arguments as above, in this case we have

θwi + ϑwi
>
= θai + ϑai + 2 (2.8)

However, since b > w, by Theorem 2.7, θbi + ϑbi
>
= θwi + ϑwi . This,

together with (2.8) implies that (2.7) holds in this case also. Thus
(2.7) holds always.
If node i is on the FAP obtained in the uth tree growth routine,

the length of that FAP is θui + ϑui . By (2.7) we therefore conclude that
each succeeding FAP obtained during the algorithm in which the arc
(i, j) is critical, is longer than the preceding one by at least two arcs.
Also, in this algorithm, an FAP can have at most n − 1 arcs. So, no
arc can appear as a critical arc in an FAP obtained during this version
more than n/2 times. So, the total number of FAPs obtained during
this version cannot exceed mn/2.

The result in Theorem 2.8 holds irrespective of whether the data (
lower bounds, capacities, and the initial feasible flow vector) is integral,
rational, or irrational. Each application of the tree growth routine
requires at most O(m) effort in terms of comparisons, additions, or
lookups. So, the overall computational effort required by the shortest

2.4: Multipath Methods 159

augmenting path method is at most O(nm2). Since m
<
= n(n−1), this

is at most O(n5). Zadeh [1972] has constructed networks with n nodes
and m arcs on which this method requires O(nm) flow augmentations
to find a maximum value flow.

2.4 Multipath Labeling Methods Begi

-nning with a Feasible Flow Vector

For the maximum value flow problem in the directed single commod-
ity flow network G = (N ,A, f, k, s̆, t̆), we discuss here a new class of
augmentation methods that use all shortest FAPs simultaneously. In
each FAP used in a step, the orientation of the reverse arcs is changed
so that the FAP gets transformed into a chain from s̆ to t̆. When these
chains corresponding to all the FAPs used in a step are put together,
we get an acyclic network known as an auxiliary network wrt the
present flow vector in G; it will be a partial subnetwork of the residual
network at this stage, containing all the nodes and arcs that lie on at
least one shortest chain from s̆ to t̆ in it.

The auxiliary network wrt the flow vector f̄ is denoted by AN(f̄) =
(N(f̄), A(f̄)). Since it is a partial subnetwork of the residual network
G(f̄), arcs in it carry + or − labels. So, A(f̄) is partitioned into
A+(f̄) ∪ A−(f̄). All lower bounds in AN(f̄) are 0. If (i, j) ∈ A+(f̄),
it has a + label and capacity κij = kij − f̄ij and it corresponds to
(i, j) ∈ A which satisfies f̄ij < kij . If (i, j) ∈ A−(f̄), it has a − label
and capacity κij = f̄ji − fji and it corresponds to (j, i) ∈ A which
satisfies f̄ji > fji. Every chain in AN(f̄) from s̆ to t̆ becomes an FAP
wrt f̄ in G when the orientations of the − labeled arcs in it are reversed.
All these methods find a maximal or blocking flow vector in AN(f̄)

using efficient special procedures. To avoid confusion with flow vectors
in G, we will use the symbol g = (gij) to denote flow vectors in auxiliary
networks. The maximal flow vector in the auxiliary network is then
used to revise the flow vector in G, and the whole process is repeated.
Here are the steps in these methods.

THE GENERAL MULTIPATH METHOD

160 Ch.2. Maximum Value Flows

Step 1 Initialization Initiate the algorithm with a feasible flow
vector in G.

Step 2 Auxiliary network construction Let f̄ be the present
flow vector. Construct AN(f̄). This may lead to two possible
outcomes: (1) The conclusion that f̄ is of maximum value. In
this case terminate the algorithm. (2) AN(f̄) itself.

Step 3 Find a maximal feasible flow vector in the auxiliary network
Use a procedure to find a maximal feasible flow vector ĝ in AN(f̄).

Step 4 Augmentation Compute the new flow vector f̂ = (f̂ij) in
G by

f̂ij =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

f̄ij if (i, j) is not an arc in AN(f̄)

f̄ij + ĝij if (i, j) is a + arc in AN(f̄)

f̄ij − ĝij if (j, i) is a − arc in AN(f̄)

f̂ is a feasible flow vector in G of value v̄ + ŵ, where ŵ is the
value of ĝ in AN(f̄). Go to Step 2 with f̂ .

So, for each method we need only to describe the method to be used
for constructing the auxiliary network, and the procedure to be used
for finding a maximal feasible flow vector in it.

2.4.1 Dinic’s Method

In this method, the auxiliary network is called the layered network.
Nodes in it are partitioned into nonempty subsets N0,N1, . . . called
layers, and every arc in it joins a node in some layer to a node in
the next. The procedure for constructing it builds a layer at a time
and terminates when (i) t̆ lies in a layer (in this case this will be the
last layer), or (ii) t̆ is not in any layer so far, and there are no nodes
that can be included in the next layer (this implies that the present
flow vector in G has maximum value). So, if the procedure completes

2.4.1: Dinic’s Method 161

the construction of the layered network, the last layer contains t̆. The
length of a layered network is the number of layers in it.

PROCEDURE FOR CONSTRUCTING THE LAYERED NETWORK

Let f̄ be the present feasible flow vector in G of value v̄.

Defining the initial layer Define N0 = {s̆}.
Constructing the next layer Let Nr be the last layer constructed

so far. Define Xr =
	r
h=0Nh, X̄r = N\Xr, and Ar+1(f̄) =

A+r+1(f̄) ∪A−r+1(f̄), where

A+r+1(f̄) = {(i, j) : i ∈ Nr, j ∈ X̄r, (i, j) ∈ A, and f̄ij < kij}

A−r+1(f̄) = {(i, j) : i ∈ Nr, j ∈ X̄r, (j, i) ∈ A, and f̄ji > fji}

If Ar+1(f̄) = ∅, f̄ has maximum value in G and [Xr, X̄r] is a
minimum capacity cut separating s̆ and t̆ in G. Terminate the
whole method.

If Ar+1(f̄) W= ∅, define the next layer to be Nr+1 = {j : j is the
head of some arc in Ar+1(f̄)}, and include all the arcs in Ar+1(f̄)
in the layered network. Each arc (i, j) ∈ A+r+1(f̄) gets a + label,
and has capacity κij = kij − f̄ij. Each arc (i, j) ∈ A−r+1(f̄) gets a
− label, and has capacity κij = f̄ji − fji. The lower bounds for
all the arcs in the layered network are always zero.

If t̆ ∈ Nr+1, define N(f̄) = Xr ∪ Nr+1, and A(f̄) to be the set
of all arcs included so far. (N(f̄), A(f̄)) is the layered network;
terminate the construction procedure.

If t̆ W∈ Nr+1, repeat this step for constructing the next layer.

If Ar+1(f̄) = ∅, we have s̆ ∈ Xr and t̆ ∈ X̄r, so [Xr, X̄r] is a cut
separating s̆ and t̆. Besides, Ar+1(f̄) = ∅ implies that f̄ij = kij for
all (i, j) ∈ (Xr, X̄r) and that f̄ij = fij for all (i, j) ∈ (X̄r,Xr), i.e.,
f̄(Xr, X̄r)− f̄(X̄r,Xr) = k(Xr, X̄r)− f(X̄r,Xr). These facts together

162 Ch.2. Maximum Value Flows

Source Sink

1

2

3

4

5

6

7 8

9

15

14

10

10

15

15

25

5

30

5

14

7

10

15

2

7

5

10

10

5

7

15

5

Figure 2.15: All lower bounds are 0, and capacities are entered on the
arcs. Nonzero flow amounts are entered in boxes by the side of the
arcs.

with the results in Theorems 2.1 and 2.2 imply that in this case f̄ is
a maximum value flow and that [Xr, X̄r] is a minimum capacity cut
separating s̆ and t̆ in G.

Since all the arcs in a layered network are forward arcs joining a
node in a layer to the next layer, it is an acyclic network.

L, the length of the layered network wrt f̄ , is clearly the length (in
terms of the number of arcs) of a shortest FAP in G from s̆ to t̆ wrt f̄ .

L
<
= n − 1. Every chain from s̆ to t̆ in the layered network has length

L. If i ∈ Nh, any chain from s̆ to i in the layered network has length h
arcs, and any chain from i to t̆ has L −h arcs. And every chain from
s̆ to t̆ in the layered network corresponds to a shortest FAP in G wrt
the present flow vector.

In the procedure for constructing the layered network, we may have
to examine each arc in G at most twice, once from each of its nodes.
So, the computational effort needed to construct the layered network
is at most O(m), where m = |A|.
As an example consider the network in Figure 2.15 with an initial

2.4.1: Dinic’s Method 163

Source

Sink

1

2

3

4

5

6

7

9

+

+

+

+

+

+

+

+
+

_

5

5
5

7

5

7

5

5

5

5

Figure 2.16: The layered network. Capacities are marked on the arcs.
Arc labels, +,− are also entered. Length of this layered network is 3.

feasible flow vector f̄ of value 17 marked on it. The layered network
wrt f̄ in this example is given in Figure 2.16, with the nodes in each
layer aligned vertically.

DINIC’S PROCEDURE FOR FINDING A MAXIMAL FLOW
IN THE LAYERED NETWORK

Let L= (N, A, 0, κ, s̆, t̆) denote the layered network. The procedure
begins with the flow vector g0 = 0 in L. It augments the flow using
FACs detected by depth first search. It maintains a subset F of
unsaturated arcs satisfying the property that if there is an FAC from s̆
to t̆ in L wrt the present flow vector g, all the arcs on it must lie in F.
Arcs are deleted from F whenever they become saturated or whenever it
becomes clear that there exists no FAC containing them. Termination
occurs when F becomes ∅. Let N0, . . . ,NL be the layers in L.
Step 1 Initialization Start with the flow vector g0 in L. Let F =

A.

Step 2 Begin depth first search Label s̆ with ∅ and make it the
current node.

164 Ch.2. Maximum Value Flows

Step 3 Search for an arc incident out of the current node Let
i ∈ Nr be the current node. Look for an arc incident out of i in
F. If none, go to Step 6 if i = s̆, or to Step 5 otherwise. If there is
such an arc, suppose (i, j) is the one selected. Clearly j ∈ Nr+1.
Label j with predecessor index i. If j = t̆, an FAC has been
found; go to Step 4. Otherwise make j the new current node
replacing i from this status, and repeat this step.

Step 4 Flow augmentation Find the FAC by a backwards trace
of node labels beginning with t̆ and add its residual capacity to
the flow amounts on all its arcs. Delete all the saturated arcs in
the new flow vector from F. Erase the labels on all the nodes and
go back to Step 2.

Step 5 Arc deletion from F Since i is the current node, and there
exists no arc incident out of i in F, there exists no FAC from s̆ to
t̆ through i wrt the present flow vector. Let p be the predecessor
index of i. Delete all arcs incident into i from F; make p the
current node replacing i from this status, and go back to Step 3

Step 6 Termination The present flow vector ḡ is a maximal flow
vector in L. Terminate.

Discussion

When the procedure reaches Step 6, s̆ is the current node and there
exists no arc incident out of it in F. This implies that there exists no
FAC from s̆ to t̆ in L wrt the present flow vector ḡ (i.e., it is a maximal
flow vector).
Whenever Steps 4 or 5 occur, at least one arc is deleted from F. So,

the total number of times that either Step 4 or 5 can occur is m = |A|.
The amount of work in between two consecutive occurrences of either
Step 4 or 5 is at most that of L consecutive node labelings, which is
at most O(n), where n is the number of nodes in L. Thus the overall
computational effort in this procedure is at most O(mn).
As an example consider the layered network L in Figure 2.16. To

find a maximal flow vector in this by Dinic’s procedure, we begin with
g0 = 0, and F = set of all arcs in L. We label the nodes in the order 1,

2.4.1: Dinic’s Method 165

2, 4, 7, and then Step 5 occurs. Arcs (4, 7), (6, 7) get deleted from F
and 4 becomes the current node. Again Step 5 occurs, and the arc (2,
4) gets deleted from F. Now 2 becomes the current node, and nodes 5,
9 are labeled in this order next. We have an FAC consisting of arcs (1,
2), (2, 5), (5, 9), with residual capacity 5. The new flow vector is given
in Figure 2.17.

Source

Sink

3

7

9

+

+

+
+

+

+

+

+

+

_

5

5
5

7

5

7

5

5

5

5

5

5
5

2

1

4

6

5

Figure 2.17: Nonzero flow amounts are entered in boxes by the side of
the arcs. Thick arcs are those deleted from F at this stage.

At this stage the set F consists of only the thin arcs in Figure 2.17.
When the procedure continues, after some labeling, arcs (3, 5), (1, 3)
get deleted from F in that order, and the procedure terminates. The
flow vector in Figure 2.17 is maximal.

THEOREM 2.9 The layered network construction step has to be car-
ried out at most (n− 1) times in this method before a maximum value
flow vector is found in G, where n = |N |.
Proof We will prove that each successive layered network is strictly

longer than the previous one in this method. Let Lu denote the uth
layered network constructed in this method, and Lu its length, for u
= 1, 2,. . .. Let fu−1 = (fu−1ij) be the feasible flow vector in G at the
beginning of construction of Lu, u = 1, 2, Let N u

0 ,N u
1 , . . . ,N u

Lu be
the layers in Lu. Fix u. We will now prove that Lu+1 > Lu.

166 Ch.2. Maximum Value Flows

There exists a chain of length Lu+1 in Lu+1 from s̆ to t̆. Let C
be such a chain and suppose the sequence of nodes on this chain is
s̆ = i0, i1, . . . , i−1+Lu+1, iLu+1 = t̆. Then ir ∈ N u+1

r for all r = 0 to Lu+1.
We consider two cases.

Case 1 All the nodes ir, r = 0 to Lu+1 appear in Lu : In this
case suppose ir ∈ N u

p . We will now show that r
>
= p by induction on

r. For r = 0, i0 = s̆ ∈ N u
0 , so the statement is true.

Induction Hypothesis For all a
<
= r, if ia ∈ N u

b , then a
>
= b.

We will now show that under the induction hypothesis, the state-
ment there must also hold for a = r + 1. ir ∈ N u

p and suppose

ir+1 ∈ N u
d . By the induction hypothesis, r

>
= p. We have to show

that these facts imply that r + 1
>
= d. If d

<
= p + 1, we are done.

Suppose d > p+ 1. This implies that (ir, ir+1) is not an arc in Lu. So,
the flow on the arc in G corresponding to (ir, ir+1) in Lu+1 must have
remained unchanged as we move from fu−1 to fu, and since (ir, ir+1)
is an arc in Lu+1, but not Lu, we have a contradiction. So d cannot be
> p+1. Hence the statement in the induction hypothesis must also be
true for a = r + 1. By induction it is true for all a.
Since iLu+1 = t̆, and t̆ ∈ N u

Lu, we have Lu+1
>
= Lu. If Lu+1 = Lu,

by the above statement the entire chain C must be in Lu. So, C is in
both Lu and Lu+1. If gu is the maximal flow vector obtained in Lu
in Dinic’s method, at least one arc in C must be saturated in gu, and
by the augmentation step in this method, this arc cannot be in Lu+1,
which is a contradiction. So, Lu+1 > Lu in this case.

Case 2 Not all the nodes ir, r = 0 to Lu+1 appear in Lu : i0
and iLu+1 (s̆ and t̆ respectively) are in both Lu and Lu+1. Let r + 1
be the smallest value of d such that id does not appear in Lu. So,
0 < r + 1 < Lu+1; ir appears in Lu, in the layer N u

p , say; and (ir, ir+1)
is an arc in Lu+1 but not in Lu. Let (i, j) be the arc in G corresponding
to (ir, ir+1) in Lu+1. Since (ir, ir+1) is not an arc in Lu, we must have
fuij = fu−1ij . This and the fact that (ir, ir+1) is an arc in Lu+1 imply
that the only possible reason for (ir, ir+1) not being an arc in Lu must
be that p+1 = Lu. By the inductive argument of Case 1, r

>
= p. Thus

r + 1
>
= Lu, and therefore Lu+1 > Lu in this case too.

2.4.1: Dinic’s Method 167

Source

Sinkr + 1

r - 1...

...

1 2r r r

1 1 1 1

Figure 2.18: Network for the rth problem in the class. All lower bounds
are 0. The horizontal arcs have capacity r, and others have capacity 1.

The length of any layered network is at most n−1, where n = |N |.
Since each successive layered network obtained in the method is strictly
longer than the previous, the maximum number of layered networks
constructed in Dinic’s method before termination is at most (n−1).
We will now provide a class of examples due to Waissi [1985] in

which Dinic’s method constructs (n−1) layered networks in an n node
network. The network for the rth problem in the class has r+1 nodes
and is given in Figure 2.18. The arc flow capacity is r for all arcs
(i, i+ 1), i = 1 to r− 1, and 1 for all arcs (i, r + 1), i = 1 to r. To find
a maximum value flow in it, beginning with the 0-flow vector, Dinic’s
method generates r layered networks, shown in Figure 2.19. There
is a unique simple chain from source to sink in each layered network,
and the unique maximal flow in this layered network consists of a flow
of 1 unit on each arc of this chain and zero flow on the other arcs.
The value of the flow vector in the original network goes up by 1 after
augmentation using the maximal flow vector in each successive layered
network, finally reaching the maximum value of r.

The effort required to construct a layered network and to find a
maximal flow vector in it have already been shown to be O(mn), where
m = |A|, n = |N |. By Theorem 2.9, at most n−1 layered networks are
constructed in the method before termination. Thus the overall effort
in Dinic’s method is at most O(mn2)

<
= O(n4).

168 Ch.2. Maximum Value Flows

Source

Sinkr + 1

r - 1

1

2

r...

.

.

r + 1

r + 1

1

1

2

2

Sink

Sink

Source

Source

r

r

2 3

3

3

1

r

r

1

1

Figure 2.19: The various layered networks generated. All arcs are +
arcs. Capacities are entered on the arcs.

2.4.2 Dinic-MKM Method

The auxiliary network used in this method is also Dinic’s layered net-
work. But to find a maximal flow in each layered network, it uses
an algorithm of V. M. Malhotra, M. P. Kumar, and S. N. Maheswari
[1978]. Let L = (N, A, 0, κ, s̆, t̆) be the layered network. This al-
gorithm does not use FACs; it changes the flow vector by operations
called flow pushing and pulling. It maintains a set of nodes Y and
a set of arcs F in L. Y will always be the set of nodes on arcs in F.
As the algorithm progresses, saturated arcs are deleted from F. Nodes
are also deleted from Y, and whenever a node is deleted from Y, all
the arcs incident at it are deleted from F. The following property will
always hold: If there is an FAC from s̆ to t̆ in L wrt the present flow
vector g, all the nodes on it must lie in Y, and all the arcs on it must
lie in F.

If ḡ is the present flow vector in L, and Y,F are the present sets,
for each i ∈ Y, define wrt ḡ, Y, F

2.4.2: Dinic-MKM Method 169

α(i) = in-potential of i =
3
(κji − ḡji : over j s. t. (j, i) ∈ F)

β(i) = out-potential of i =
3
(κij − ḡij : over j s. t. (i, j) ∈ F)

ρ(i) = flow-potential of i =

⎧⎪⎨⎪⎩
min. {α(i), β(i)} for i W= s̆, t̆
β(i) for i = s̆
α(i) for i = t̆

Whenever the flow vector g or the sets Y, F change, these flow
potentials have to be updated.

THE MKM ALGORITHM FOR FINDING A MAXIMAL FLOW
IN A LAYERED NETWORK

Step 1 Initialization Start with g0 = 0 in L. Let Y = N, F = A.
Compute ρ(i) for all i ∈ Y. If ρ(i) > 0 for all i ∈ Y, go to Step
2. If ρ(i) = 0 for at least one i ∈ Y, go to Step 6.

Step 2 Reference node selection Find ρ = min. {ρ(i) : i ∈ Y}.
Let p ∈ Y be a node which attains this minimum, break ties
arbitrarily. Node p is the present reference node, and ρ is the
present reference potential.

Step 3 Flow pushing and flow pulling Let p be the reference
node and ρ the reference potential.

FLOW PUSHING Begin at p, and push an excess flow of ρ
out of p. This requires increasing the flow on the arcs in F which
are in the forward star of p, one by one, saturating them one
after the other, until the total increase reaches ρ. In this process,
at most one outgoing arc has flow increased on it but remains
unsaturated.

Now the excess flow has been pushed from node p to its adjacent
nodes in Y in the next layer. If i is one of these nodes, and
the flow increase on the arc (p, i) was γ, push the excess flow
of γ out of node i in exactly the same way. Repeat with all

170 Ch.2. Maximum Value Flows

adjacent nodes of p which received excess flow. Then repeat this
process for nodes in the next layer that received excess flow, and
continue this way until all the excess flow of ρ units reaches t̆.
In this process we can never get stuck with excess supply that
cannot be pushed out of a node, because of the definition of ρ,
which implies that the potential of every node in Y is

>
= ρ.

FLOW PULLING Pull an excess flow of ρ units into p. This
requires increasing the flow on arcs in F incident into p, one by
one, saturating them one after the other, until the total increase
reaches ρ, making sure that at most one incoming arc has flow
added to it but remains unsaturated. If the flow increase on an
arc (j, p) was δ, pull an excess flow of δ into node j in exactly the
same way. Repeat with all adjacent nodes of p from which excess
flow was pulled into p. Then repeat this process for nodes in the
preceding layer from which excess flow was pulled, and continue
the same way until all the excess flow of ρ units is pulled out of
s̆. Again we can never get stuck in this pulling process.

After the flow pushing and pulling is completed, we again have a
feasible flow vector in L.

Step 4 Updating the sets Y, F after Step 3 Delete all the sat-
urated arcs from F. If all the arcs into or out of a node i are
deleted from F, delete that node i from Y and all arcs incident
at node i from F.

Step 5 Updating the potentials Update the in and out-potentials
and the flow potential of all the nodes in Y wrt the present flow
vector in L, and the present sets Y, F. If ρ(i) > 0 for all i ∈ Y,
go to Step 2; otherwise go to Step 6.

Step 6 Updating Y, F after Step 5 If there are iı Y with ρ(i)
= 0, go to Step 7 if either ρ(s̆) or ρ(t̆) is zero. If both ρ(s̆), ρ(t̆)
are > 0, delete all nodes i for which ρ(i) = 0 from Y and all the
arcs incident at such nodes from F. Go to Step 5.

Step 7 Termination Now, ρ(s̆), or ρ(t̆) has become 0. So, the
present flow vector is a maximal flow vector in L. Terminate.

2.4.2: Dinic-MKM Method 171

Discussion

An example of flow pushing and pulling is given in Figures 2.20 (a)
and (b). Node 5 is the reference node with reference potential of 17
units. Only nodes adjacent to node 5 in the present set Y are shown
in Figure 2.20. In pushing the flow out of node 5, we begin saturating
the arcs incident out of node 5 in F one by one in some order, say,
from top to bottom, until a total of 17 units is pushed. In pulling we
do the same thing with arcs incident into node 5. The situation after
the pushing and pulling at node 5 is indicated in Figure 2.20 (b).

5

7

9

2

6

8

3

5

4

1

2

3

4

5

6

7

8

9

10

11

6

(a) Arcs incident at reference

node 5 are shown with their

capacities and nonzero flow
amounts in boxes.

2

3

3

1

1

2

(b) Flows on arcs incident at

5 af ter pushing and pulling.
Amount by the side of each
node is the amount to be
pulled into or pushed out of
it.

5

7

9

2

6

8

3

5

4

1

2

3

4

5

6

7

8

9

10

11

6

5

5

6

1

3

5

6

2

1

8

9
5

1

3

5

7

2

6

Figure 2.20:

172 Ch.2. Maximum Value Flows

When we reach Step 7 in this algorithm, the flow potential of either
s̆ or t̆ is 0. Then there exists no FAC in L from s̆ to t̆ wrt the present
flow vector. Hence the flow vector in L at that time is a maximal flow
vector.

Whenever Step 3 is completed (i.e., after pushing reaches all the
way to t̆ and pulling reaches all the way to s̆) flow conservation holds
at all the nodes and the flow vector becomes feasible. The net result of
this step is to increase the flow value by the reference potential. Then
either all the incoming arcs or all the outgoing arcs at the reference node
have become saturated. These get deleted from F, and the reference
node gets deleted from Y when we move over to Step 4. Likewise, each
time an i ∈ Y with ρ(i) = 0 is noticed in Step 6, all the arcs at that
node are deleted from F and that node is deleted from Y. Thus Steps
3 and 4, or Step 6 with an i ∈ Y satisfying ρ(i) = 0, can occur at most
n times before termination, where n is the number of nodes in L.
Let br be the number of arcs deleted from F during the rth time

that a node is deleted from Y. If it has occurred in Step 6, the effort
involved in executing that step is O(br). If it has occurred in Step
4, the effort in flow pushing and pulling in the preceding Step 3 is at
most O(n+ br), because in Step 3, at each node, at most one outgoing
or incoming arc has flow added to it, but remains unsaturated in this
step. Thus the effort needed during the rth execution of Steps 3 and
4, or Step 6 with an i ∈ Y satisfying ρ(i) = 0, is at most O(n + br).
Summing over all these executions, we find that the overall effort is
at most O(

�n
r=1(n + br)). Since an arc deleted from F is never again

considered for flow change during the algorithm,
�
r br

<
= m, where

m is the number of arcs in L. Thus the overall effort needed by this
algorithm is at most O(n2 +m) = O(n2).

The practical efficiency of the MKM algorithm for finding a maxi-
mal flow in a layered network L = (N, A) can be improved considerably
by applying a routine known as the backward pass routine to find
a partial subnetwork of L known as the referent before applying the
algorithm. Let N0, . . . ,NL be the layers in L. This routine takes L+2
steps, and it prunes all the nodes and arcs in L which are not con-
tained on any chain from s̆ to t̆ in L very efficiently. The remaining
portion of the layered network after this pruning is completed is called

2.4.2: Dinic-MKM Method 173

the referent.

BACKWARD PASS ROUTINE

Step 0 Define N̂L = {t̆}.
General step r, r = 1 to L When we reach this step, the sets of

nodes N̂L, . . ., N̂L−r+1 would have been obtained. Define N̂L−r =
{i : i ∈ NL−r, and there is a j ∈ N̂L−r+1 s.t. (i, j) ∈ A}, ÂL−r+1
= {(i, j) : i ∈ N̂L−r, j ∈ N̂L−r+1, (i, j) ∈ A}.
N̂L−r W= ∅, as otherwise the referent is empty (i.e., there is no
chain from s̆ to t̆ in L). This cannot happen from the manner in
which the layered network is constructed. Go to the next step.

Step L+1 Let N̂ =
	L
r=0 N̂r, Â =

	L
r=1 Âr. L̂ = (N̂, Â) is the

referent. Terminate.

Discussion

As an example, consider the layered network in Figure 2.16. When
the backward pass is applied on it, nodes 7, 4 and arcs (4, 7), (6, 7),
(2, 4) get pruned as they do not lie on any chain from node 1 (source)
to node 9 (sink) in this network.
In the MKM algorithm for finding a maximal flow in L, the pruning

performed in the backward pass gets carried out at the beginning during
the sequence of steps consisting of Step 1, followed by consecutive pairs
of Steps 6 and 5, and finally another Step 6, before the method goes
to Step 2 for the first time. But this pruning is carried out much more
efficiently in the backward pass. Thus the practical efficiency of the
MKM algorithm for maximal flow in L improves considerably if the
backward pass is carried out immediately after Step 1 in the MKM
algorithm if there is at least one i ∈ Y with ρ(i) = 0 at that time,
instead of going to Step 6 from Step 1. Then, when the referent is
obtained, begin MKM algorithm again in Step 1 with the referent.
By Theorem 2.9, the layered network construction step has to be

carried out at most (n − 1) times in the Dinic-MKM method before
a maximum value flow vector is found in G beginning with a feasible

174 Ch.2. Maximum Value Flows

flow vector. The construction of each layered network and finding a
maximal flow vector in it by MKM algorithm needs an effort of at most
O(m) + O(n2) = O(n2), where n,m are the number of nodes and arcs
in G. Thus the overall effort for finding a maximum value flow vector
in G beginning with a feasible flow vector by Dinic-MKM method is at
most O(n3).

2.5 The Preflow Push Algorithm

In this section we consider the problem of finding a maximum value
flow in the directed single commodity flow network G=(N ,A, 0, k, s̆, t̆)
where k > 0, |N | = n, |A| = m. All the algorithms discussed so far for
this problem maintain a feasible flow vector throughout, and augment
the flow value along augmenting paths, either one path at a time or
all shortest augmenting paths at once using the layered network. An
alternative method for this problem based on the concept of preflows
has been initiated by Karzanov [1974]. A preflow in G is a vector

g = (gij; (i, j) ∈ A) which is bound feasible (i.e., 0 <
= g

<
= k) but in

which, for each i ∈ N , the amount of material flowing into node i is
only required to be greater than or equal to the amount flowing out of
node i. That is, a preflow g in G may not satisfy the flow conservation
equations; instead it satisfies

g(N , i)− g(i,N) >= 0, for all i ∈ N\{s̆, t̆}

Here we will describe an algorithm for the maximum value flow
problem in G by A.V. Goldberg and R.E. Tarjan [1986, 1988] that
maintains a preflow, and pushes local flow excess towards the sink.
Only when the algorithm terminates does the preflow become a flow,
and then it is a maximum value flow. In this section the symbol g
denotes a preflow in G.
In Section 2.6, we will describe how the maximum value flow in a

network with nonzero lower bounds on arc flows, can be found using
the preflow push algorithm twice in two phases.
Given a preflow g in G, for each i ∈ N\{s̆, t̆}, the excess in g at

node i is defined to be e(i) = g(N , i) − g(i,N), it is the net flow into

2.5: Preflow Push Algorithm 175

node i in the preflow g. A node i ∈ N\{s̆, t̆} is said to be an active
node wrt g if e(i) > 0. The algorithm works by pushing the excess from
active nodes to t̆ or to nodes estimated to be closer to t̆. However, if t̆
is not reachable from an active node, the algorithm pushes the excess
there to nodes estimated to be closer to s̆. The algorithm terminates
when there are no active nodes; at that time the preflow is a feasible
flow of maximum value.

In the residual network G(g) = (N ,A(g), 0,κ) wrt g, an estimate of
the distance of a node from t̆ in terms of the number of arcs, is kept by
maintaining a node label, called the distance label, denoted by d(i),
which is always a nonnegative integer or +∞. Since it estimates the
distance from the node to t̆, we define d(t̆) = 0, d(s̆) = n always. In
the algorithm, the preflow, distance label vector pair, g, d, are required
to always satisfy

d(t̆) = 0, d(s̆) = n

d(i)
<
= d(j) + 1, for every arc (i, j) in G(g) (2.9)

The purpose of this definition is to make sure that if d(i) < n for
any i, then d(i) is a lower bound on the actual distance from i to t̆ in

G(g); and if d(i)
>
= n, then d(i) − n is a lower bound on the actual

distance from s̆ to i in G(g). Conditions (2.9) are called the validity
conditions for the distance label vector d.

Given the preflow g and distance label vector d, an arc (i, j) in
G(g) is said to be admissible wrt g, d, if i is an active node and
d(j) = d(i)− 1.

PREFLOW PUSH ALGORITHM

Initialization Define the initial preflow g0 in G by g0s̆j = ks̆j for all
j ∈ A(s̆), and g0pq = 0 for all other arcs (p, q) ∈ A. The simplest
choice for the initial distance node labels is d0 = (d0(i)) where
d0(s̆) = n, d0(i) = 0 for all i ∈ N\{s̆}. A better choice which
improves the practical efficiency of the algorithm is to determine
d0(i) to be the distance labels obtained in a backward breadth-
first-search of G(g0) starting at node t̆.

176 Ch.2. Maximum Value Flows

General step Let g, d be the present preflow, distance label pair. If
there are no active nodes, terminate; g is a maximum value feasi-
ble flow vector in G. Otherwise perform one of the two following
operations in any order.

PUSH Select an active node i and an admissible arc (i, j) in
G(g) incident out of i. If (i, j) has a + label in G(g), increase gij
by ε = min{e(i),κij}; if (i, j) has a − label in G(g), decrease gji
by ε. This push is said to be saturating if ε = κij; otherwise it
is nonsaturating. This push has the effect of decreasing e(i) by
ε and increasing e(j) by ε if j W= t̆.

RELABEL Select an active node i which has no admissible
arc incident out of it in G(g). So, we have d(i)

<
= d(j) for every

j such that (i, j) ∈ A(g). It can be shown that we will have
0 < d(i) < n. Replace d(i) by min .{d(j) + 1 : j such that
(i, j) ∈ A(g)}. This relabel operation resets d(i) to the largest
value allowed by the validity conditions (2.9). It creates at least
one admissible arc at i on which a push operation can be carried
out next.

Discussion

1. At any stage of the algorithm, if node i is an active node, clearly
either a push or a relabel operation can be carried out at it.

2. If g, d are the present preflow, distance label pair, and a push
operation is carried out leading to the preflow g1 (a relabel op-
eration is carried out leading to distance label vector d1), then it
can be verified that g1, d (g, d1) satisfy (2.9). So, (2.9) will hold
throughout the algorithm.

3. If g, d are the present pair at some stage of the algorithm, there
exists no chain from s̆ to t̆ in the residual network G(g). This can
be seen from the following. If there is a chain from s̆ to t̆ in G(g),
there must be a simple chain. Suppose 1 = s̆, 2, . . . , l+1 = t̆ is the
sequence of nodes on a simple chain in G(g). From (2.9), we have

2.5: Preflow Push Algorithm 177

d(i)
<
= d(i+1)+1 for i = 1 to l. Hence d(s̆) = d(1)

<
= d(t̆)+ l < n

since d(t̆) = 0 and l
<
= n− 1, which contradicts d(s̆) = n.

4. If g, d are the present pair and i is an active node, then there
is a chain from i to s̆ in G(g). Suppose this is not the case.
Let X = {j : j ∈ N such that there is a chain from i to j
in G(g)}. So, s̆ W∈ X, and hence X = N\X W= ∅. From the
definition of G(g) and X, we must therefore have gpq = kpq for all
(p, q) ∈ A satisfying p ∈ X, q ∈ X; and gpq = 0 for all (p, q) ∈ A
satisfying p ∈ X, q ∈ X. Now e(X) = g(N ,X) − g(X,N) =
g(X,X) − g(X,X) = −g(X,X) by the above, and since g >

= 0

we have e(X)
<
= 0. But e(i) > 0 since i ∈ X is an active node

and e(p)
>
= 0 for all p as g is a preflow, there is a contradiction

in e(X)
<
= 0.

5. For all i ∈ N , d(i) never decreases during the algorithm, since
distance labels change only when relabeling is done, and from
the facts mentioned in the relabel operations.

6. Throughout the algorithm d(i)
<
= 2n − 1 for all i ∈ N . Since

d(t̆) = 0, d(s̆) = n always, this statement is true for s̆ and t̆.
Let i W= s̆ or t̆. Suppose i is active at some stage. Then by
4, there exists a simple chain on which the sequence of nodes
is io = i, i1, i2, . . . , il = s̆, say, in the residual network G(g) at

that stage. So l
<
= n − 1, and (ir, ir+1) is an arc in G(g) for

all r = 0 to l − 1. So by (2.9), d(ir)
<
= d(ir+1) + 1. Hence

d(i) = d(i0)
<
= d(il) + l

<
= d(s̆) + n− 1 = 2n− 1. So for all active

nodes d(i)
<
= 2n−1 always. Since the algorithm changes distance

labels for only active nodes, the statement holds for all i ∈ N .
7. The total number of relabeling operations carried out is at most
(2n−1) per node and (2n−1)(n−2) during the entire algorithm.
A relabeling operation carried out at a node i increases d(i) by
at least one. So, these facts follow from 6.

8. The total number of saturating push operations carried out is at
most 2nm. Consider an arc (i, j) ∈ A and a saturating push

178 Ch.2. Maximum Value Flows

from i to j on it. The next push operation on this arc (which will
decrease the flow on it, so it will be from j to i) cannot happen
until d(j) increases by at least 2. And similarly for the next time

in the other direction again. Since d(i) + d(j)
>
= 1, when the

first push between i and j occurs, and d(i) + d(j)
<
= 4n− 3 when

the last such push occurs (by 6), the above fact implies that the
total number of saturating pushes on (i, j) is at most 2n− 1. So,
the total number of saturating pushes over all edges is at most
(2n− 1)m < 2nm.

9. The total number of nonsaturating pushing operations is at most
4n2m in the algorithm. A nonsaturating push at an active node
i with the admissible arc (i, j) in G(g), makes node i inactive,

and at that time d(j) = d(i)− 1, hence d(i) must have been >
= 1.

Hence if we define L =
�
(d(i) : over active nodes i); L decreases

by at least 1 in each nonsaturating push operation.

Consider a saturating push at an active node i with the admissible
arc (i, j) in G(g). This might make node j active, hence by 6,
this operation may increase L by at most 2n − 1. So by 8, the
total increase in L due to saturating push operations is at most
(2n− 1)2nm.
In a relabeling operation carried out on a node i, its distance
label increases by γ

>
= 1, and it increases L by at most γ. By

5 and 6, the total increase in d(i) for any node i during the
entire algorithm by relabeling operations is at most 2n. Since
relabeling operations are carried out only at nodes W= s̆ or t̆,
the total increase in L by relabeling operations during the entire
algorithm is at most 2n(n− 2).
Initially L

>
= 0, and at termination, L = 0. Hence, the total

of decreases in L during the algorithm and the total number of
nonsaturating pushes, is

<
= the total of increases in L during the

algorithm, which is at most (2n− 1)2nm+ 2n(n− 2) <= 4n2m.

10. From 7, 8, and 9 we see that the total number of basic operations
carried out in this algorithm is at most 0(n2m).

2.6: Phase 1 179

The running time of this algorithm depends on the order in which
the push and relabel operations are applied and on the other
details of the implementation. The simple scheme which selects
an active node, maintains the set of residual arcs incident at it
in some order, carries out the push operation at this node using
these arcs in order, one after the other, and then relabels that
node, can be shown to have running time of 0(n2m). It has
been shown that maintaining the set of active nodes as a queue
and selecting the node for push/relabel operations using a first-
in first-out rule, the worst case running time of the algorithm
improves to 0(n3). Using different rules for selecting nodes for
push/relabel operations (for example, selecting the active node
with the highest distance label, etc.) and exploiting the other
flexible features of this algorithm, many different versions of the
algorithm with improved complexity bounds have been obtained.
From a theoretical worst case computational complexity aspect,
the best version so far, based on the dynamic tree data structures,
has a running time bound of 0(nm log(n2/m)).

2.6 Phase 1 For Problems With f W= 0
Let G = (N ,A, f, k, s̆, t̆) be a directed single commodity flow network
with 0

<
= f

<
= k. In this section we will discuss an algorithm for the

Phase 1 problem of finding a feasible flow vector in G, if one exists.

Let G1 be the network G with an additional artificial arc (t̆, s̆) with
lower bound 0 and capacity +∞. If f is a feasible flow vector of value v
in G, define f 1

t̆s̆
= v, and if f 1 = (f, f1

t̆s̆
), then f 1 is a feasible circulation

in G1. Conversely, given any feasible circulation f 1 in G1, let f 1
t̆s̆
be the

flow amount in f1 on the artificial arc (t̆, s̆), and f the vector obtained
by deleting the entry f 1

t̆s̆
from f 1. Then f is a feasible flow vector in

G of value f 1
t̆s̆
. Hence, the problem of finding a feasible flow vector

in G is equivalent to that of finding a feasible circulation in G1. For
this problem in G1, the original source and sink nodes s̆, t̆ do not play
any special role, they are like any other node since it is a circulation
problem. We will again transform this problem into that of finding

180 Ch.2. Maximum Value Flows

a maximum value flow on a further augmented network G∗ in which
the lower bounds for all the arc flows are 0. In G, for i ∈ N define
αi = f(N , i), βi = f(i,N). Add artificial source and sink nodes s∗ and
t∗ to G1. Introduce an artificial arc (s∗, i) with capacity αi for each
i ∈ N such that αi W= 0, and an artificial arc (i, t∗) with capacity βi for
each i ∈ N such that βi W= 0. Change the capacity on each original arc
(i, j) ∈ A to kij − fij . Make the lower bounds for flows on all the arcs
0. Let G∗ be the resulting network. Notice that the source and sink
nodes in G∗ are the artificial nodes s∗, t∗ respectively (the source and
the sink nodes s̆, t̆ in G are transit nodes in G∗ like all other nodes in
N).
Beginning with the initial feasible flow vector of 0, find a maximum

value flow, f ∗, say, in G∗. Let the value of f ∗ be v∗. The following
conclusions hold.

1. Find f(N ,N) in the original network G. If v∗ < f(N ,N), there
exists no feasible circulation in G1, and consequently no feasible
flow vector in G (see Theorem 2.10 below).

2. If v∗ = f(N ,N), define f̂ij = f ∗ij + fij for each (i, j) ∈ A. Then
f̂ = (f̂ij : (i, j) ∈ A) is a feasible flow vector in G, and (f̂ , f ∗t̆,s̆) is
a feasible circulation in G1.

THEOREM 2.10 A feasible circulation in G1, and consequently a
feasible flow vector in G, exist iff v∗, the maximum value in G∗ is
f(N ,N).

Proof Suppose f ∗ is a maximum value flow vector in G∗ of value
v∗ = f(N ,N). Then all the arcs of the form (s∗, i), (i, t∗) in G∗ are
saturated in f ∗, and the statements in 2 above can be verified to be
true.
To show the converse, assume that f = (fij) is a feasible flow vector

of value v in G. Define a flow vector f ∗ in G∗ by: f ∗ij = fij − fij for
all (i, j) ∈ A, f ∗

t̆s̆
= v, and f ∗s∗i = αi, f

∗
it∗ = βi for all such arcs in G

∗.
Verify that f ∗ is feasible for G∗ and that it saturates all the arcs of the
form (s∗, i), (i, t∗). This implies that f ∗ is a maximum value flow in G∗

and that its value is f(N ,N).

2.6: Phase 1 181

As an example consider the network G in Figure 2.21, left. Data
on the arcs is lower bound, capacity in that order. The corresponding
networks G1, G∗ are drawn in Figures 2.21 right and 2.22. A maximum
value flow in G∗ is entered in Figure 2.22, it saturates all the arcs of
the form (s∗, i), (i, t∗) and thus satisfies the condition in Theorem 2.10.
The feasible flow vector in G constructed from this maximum value
flow in G∗ is (f12, f13, f23, f32, f24, f34) = (3, 4, 1, 2, 4, 3).

1

2

3

4

3,6

2,8

1,3 2,4
0,11

3,12Source

Sink

Network G

1

2

3

4

3,6

2,8

1,3 2,4
0,11

3,12

Network G’

0, 8

Figure 2.21:

THEOREM 2.11 CONDITIONS FOR THE EXISTENCE OF A FEA-
SIBLE CIRCULATION Let G = (N ,A, f, k) be a directed single com-
modity flow network, where 0

<
= f

<
= k. A feasible circulation exists in

G iff
k(X, X̄)

>
= f(X̄,X), for all X ⊂ N , X̄ = N\X (2.10)

Proof Introduce the artificial source and sink nodes, s∗, t∗, and
arcs (s∗, i) with capacity f(N , i), (i, t∗) with capacity f(i,N), for each
i ∈ N . Make the lower bounds on all the arcs zero, and change the
capacity on (i, j) ∈ A to kij − fij . Let the resulting network be G

∗

= (N ∗,A∗, 0, k∗, s∗, t∗). From Theorem 2.10 we know that a feasible
circulation exists in G iff the maximum flow value from s∗ to t∗ in G∗

is f(N ,N). A necessary and sufficient condition for this is that the

capacity of every cut separating s∗ and t∗ in G∗ is >
= f(N ,N). Let

[X∗, X̄∗] be such a cut, and let X = X∗\{s∗}, X̄ = N\ X. The

182 Ch.2. Maximum Value Flows

1

2

3

4

t*

s*

5

3

3 11

5

2 2

9

1

3

5

6

5

3

2

7

4

1

3

5

5

Figure 2.22: Network G∗. Capacities are entered on the arcs. Nonzero
flows are shown in boxes by the side of the arcs.

capacity of the cut [X∗, X̄∗] in G∗ is
�
(k∗ij : over (i, j) ∈ A∗, with

i ∈ X∗, j ∈ X̄∗) = �(kij − fij : over (i, j) ∈ A with i ∈X, j ∈ X̄) +�
(f(N , j) : over j ∈ X̄) + �(f(i,N): over i ∈ X) = k(X, X̄) - f(X,

X̄) +f(N , X̄) + f(X, N) = k(X, X̄) + f(X̄, X̄) + f(X, N). This cut
capacity is

>
= f(N ,N), iff (2.10) holds. Therefore, a feasible circulation

exists in G iff (2.10) holds.

Let |N | = n. There are 2n conditions in (2.10). Thus the result
in Theorem 2.11 is not practically useful for verifying the existence of
feasible circulations in G unless n is small. Fortunately, the problem of
finding either a feasible circulation in G, or a subset X⊂ N violating
(2.10) can be carried out with at most O(n3) effort by applying the
methods discussed earlier to find a maximum value flow in the aug-
mented network G∗ discussed in the proof of Theorem 2.11. Suppose
f ∗ is a maximum value flow in G∗ of value v∗. If v∗ = f(N ,N), define
f = (fij) by fij = f

∗
ij+fij for each (i, j) ∈ A. It is a feasible circulation

in G. If v∗ < f(N ,N) (this happens if some of the arcs of the form
(s∗, i), (i, t∗) remain unsaturated in f ∗), let [Y∗, Ȳ∗] be a minimum ca-

2.6: Phase 1 183

pacity cut in G∗. Then the subset X = Y∗\{s∗} can be verified to
violate (2.10).
Conditions (2.10) have a practical interpretation. They require a

sufficient escape capacity from the set of nodes X to disperse the flow
forced into the set by the lower bound constraints on arc flows. They
provide a useful infeasibility analysis procedure. If X ⊂ N violates
(2.10), either the capacities on arcs in (X, X̄) have to be increased or
the lower bounds on arcs in (X̄, X) have to be reduced in order to
remedy the situation.
Necessary and sufficient conditions for the existence of feasible flow

vectors in any single commodity flow network can be derived by apply-
ing Theorem 2.11 to an appropriate modification of the network. As
an example consider the directed single commodity flow network G =
(N ,A, f, k, V), where V is the specified vector of exogenous flows at
the nodes. Let S = {i : Vi > 0}, N = {i : Vi < 0}. S, N are the sets of
source and sink nodes respectively in G. A flow vector in G is feasible
if it satisfies the constraints in (1.20). Modify G by introducing the
artificial nodes s, t, arcs (s, i) with lower bound and capacity equal to
Vi for each i ∈ S, arcs (j, t) with lower bound and capacity both equal
to |Vj| for each j ∈ N, and the arc (t, s) with lower bound 0 and ca-
pacity ∞. Let Ĝ = (N̂ , Â, f̂, k̂) denote the modified network. Clearly
a feasible flow vector exists in G iff a feasible circulation exists in Ĝ.
Condition (2.10) corresponding to X = {s, t}, N respectively lead to

V (S)
>
= −V (N), −V (N) >

= V (S). Since Vi = 0 for all i ∈ N\(S ∪N),
these conditions are equivalent to

V (N) = 0 (2.11)

which is the same as (1.21). Let X ⊂ N , X̄ = N\ X. Condition (2.10)
corresponding to the subset of nodes X, or X ∪{s}, or X ∪{s, t}, can
be verified to lead to

k(X, X̄)− f(X̄,X)
>
= V (X), for all X ⊂ N , X̄ = N\X (2.12)

Thus (2.11) and (2.12) are the necessary and sufficient conditions
for the existence of a feasible circulation in Ĝ, and consequently a

184 Ch.2. Maximum Value Flows

feasible flow vector in G. If (2.11) holds, the procedure discussed above
to find a feasible circulation in Ĝ, either finds a feasible flow vector in
G or a subset X violating (2.12).

1

2 3

4 53,10

4,10

0,6

2,6

1,2

4,8 2,101,3

4,6

0,2

0,3

Figure 2.23: Data on the arcs is lower bound, capacity, in that order.

1

2

3

4

5

6

7

6,10 3,9

2,8

5,25

3,6 0,10

0,10

10,20

10,20

0,100,10

0,10

0,2

29

15

2

2
_

4
_

16_

24_

Figure 2.24:

Exercises

2.10 Find a maximum value flow from 1 to 5 on the network in Figure
2.23.

2.6: Phase 1 185

2.11 Find feasible flow vectors in the networks in Figures 2.24 and
2.25. Data on the arcs is lower bound, capacity in that order. The
exogenous flow at each node is entered by its side.

1 2

3

4

5

6

7

0,100

2,100

3,100 0,100

0,100

0,100

0,100

0,5

0,5 0,100

0,10

0,100

0,10

0,5

50 50

40
_

5
_

10
_

5
_

40
_

Figure 2.25: Data on the arcs is lower bound, capacity, in that order.

2.12 G = (N ,A, 0, k) is a directed single commodity flow network.
S, N are the subsets of source, sink nodes respectively, and all the
nodes in N\(S ∪N) are transient nodes. For each source node i ∈ S,
a positive quantity ai is given; it is the maximum amount of material
available at i for shipping out. For each sink node j ∈ N, a positive
quantity bj is given; it is the minimum amount of material required to
be delivered at j. Prove that a feasible flow vector satisfying all these
constraints exists in G iff

k(X, X̄)
>
= b(N ∩ X̄)− a(S ∩ X̄), for all X ⊂ N , X̄ = N\X

Also, in this problem, if all ai, bj, kij are integers and a feasible flow
vector exists, then prove that an integer feasible flow vector exists.

2.13 G = (N ,A, f, k) is a directed single commodity network with
f
<
= k. For each i ∈ N , ai and bi are given integers satisfying ai <= bi. It

186 Ch.2. Maximum Value Flows

is required to find a flow vector f = (fij) in G satisfying f
<
= f

<
= k and

ai
<
= f(i,N) − f(N , i) <

= bi for each i ∈ N . Prove that a flow vector
satisfying these conditions exists in G iff

k(X, X̄)
>
= f(X̄,X)+ max. {a(X),−b(X̄)}, for all X ⊂ N , X̄ = N\X

Discuss an efficient procedure that will either find a feasible flow
vector if one exists, or determine a subset of nodes X violating the
above condition.

2.14 Consider a round robin tournament between n baseball teams,
with each team playing every other team exactly β times. For i = 1 to
n, let αi be the number of wins for the ith team at the conclusion of
the tournament. Derive necessary and sufficient conditions on a given
set of nonnegative integers α1, . . . ,αn in order that they represent a
possible win record (D. Gale).

2.15 f̃ is a non-integral circulation in a directed single commodity
flow network G. Prove that there exists an integral circulation f̄ in G
satisfying |f̄ij − f̃ij| < 1 for all arcs (i, j) in G. Discuss an efficient
algorithm for finding such an f̄ .

How to find a maximum value flow in G with f W= 0 using the
preflow push algorithm

There is one significant difference between networks with zero lower
bounds and those with nonzero lower bounds. If the lower bound vector
is zero and the capacity vector is nonnegative, there is always a feasible
flow vector, since the vector 0 is itself feasible. If the lower bound vector
is nonzero, it is possible that there is no feasible flow vector.
The preflow push algorithm discussed in Section 2.5 is based on

preflows. It obtains a sequence of preflows and terminates only when
the preflow becomes a feasible flow vector, at which time it will be a

2.6: Phase 1 187

maximum value flow. That’s why it cannot detect infeasibility directly
and is thus applied directly only for solving the maximum value flow
problem in networks with zero lower bounds. Let Algorithm 1 refer
to any such algorithm. Here we show that Algorithm 1 can be used to
find the maximum value flow in the network G = (N ,A, f, k, s̆, t̆) with
f W= 0, by using it in two phases. This two-phase procedure from Yi
and Murty [1991] is the following:

PROCEDURE

Phase I In this phase, try to find a feasible flow vector in G. As
discussed earlier, this problem can be transformed into that of
finding a maximum value flow in an augmented network G∗ in
which lower bounds for all arc flows are zero. Because of this, a
maximum value flow in G∗ can be found by Algorithm 1 directly.
From this either conclude that there is no feasible flow vector in
G and terminate or obtain a feasible flow vector in it.

Suppose a feasible flow vector f̄ = (f̄ij) of value v̄ has been found
in G.

Phase II Find a maximum value feasible flow vector in the residual
network G(f̄) = (N ,A(f̄), 0,κ = (κij), s̆, t̆) with the same nodes
s̆, t̆ as source, sink nodes. Since the lower bounds on all arc flows
are zero in G(f̄); this can be carried out by Algorithm 1. Let
h̄ = (h̄pq) be the maximum value flow vector obtained in G(f̄),
and ω its value. Lower bounds in the residual network G(f̄) are
0, and for a pair of nodes p, q, if there are arcs (p, q) and (q, p)
both with positive flows in h̄, then the flows on them can be
canceled (i.e., replace the larger of h̄pq, h̄qp by their difference
and the smaller by 0) and at least one of these flows converted
to 0, leading to another feasible flow vector in G(f̄) of the same
maximum value. We assume that this is done. So, without loss
of generality, we assume that for any pair of nodes, the vector h̄
has positive flows in at most one of the two orientations for arcs
joining them.

Define a flow vector f̂ = (f̂ij) in G, where for (i, j) ∈ A, f̂ij is
given by

188 Ch.2. Maximum Value Flows

f̂ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f̄ij + h̄ij if there is a + labeled arc
(i, j) in G(f̄), corresponding
to (i, j) ∈ A, with h̄ij > 0.

f̄ij − h̄ji if there is a − labeled arc
(j, i) in G(f̄), corresponding
to (i, j) ∈ A, with h̄ji > 0.

f̄ij otherwise

Then f̂ is a maximum value feasible flow vector in G and its value
is v̄ + ω. Terminate.

THEOREM 2.12 The flow vector f̂ obtained in Phase II of the above
procedure is a maximum value feasible flow vector in G.

Proof Since f̄ is a feasible flow vector in G of value v̄, and h̄ is
a feasible flow vector of value ω in G(f̄), the fact that f̂ is a feasible
flow vector of value v̄+ω follows from the flow conservation equations
satisfied by f̄ and h̄ in the respective networks G and G(f̄) and by the
definition of upper bounds in G(f̄).
Now, to show that f̂ is a mximum value flow in G, suppose it is not

true. Then there must exist an FAP from s̆ to t̆ wrt f̂ in G. Suppose
it is P . We will now show that using P we can construct an FAP from
s̆ to t̆,P1, in G(f̄) wrt h̄.
1. If (i, j) is a forward arc on P with f̂ij = f̄ij, we have f̄ij < kij , so
arc (i, j) exists in G(f̄) with + label and capacity kij − f̄ij > 0,
and since f̂ij = f̄ij, we must have h̄ij = 0. So put (i, j) as a
forward arc on P1.

2. If (i, j) is a forward arc on P with f̂ij > f̄ij, from the definition of
f̂ , (i, j) must be a + labeled arc in G(f̄) with h̄ij = f̂ij − f̄ij > 0,
and since f̂ij = f̄ij + h̄ij < kij , we have h̄ij < kij − f̄ij = κij. So
put (i, j) as a forward arc on P1.

3. If (i, j) is a forward arc on P with f̂ij < f̄ij, from the definition

of f̂ , (j, i) must be a − labeled arc in G(f̄) with h̄ji > 0. Put
(j, i) as a reverse arc on P1.

2.7: Sensitivity Analysis 189

4. If (i, j) is a reverse arc on P with f̂ij = f̄ij , we have f̄ij > fij ,
so arc (j, i) must be a − labeled arc in G(f̄) with capacity κji =
f̄ij − fij > 0, and from the definition of f̂ , h̄ji = 0. Put (j, i) as
a forward arc on P1.

5. If (i, j) is a reverse arc on P with f̂ij > f̄ij , from the definition of
f̂ , (i, j) must be a + labeled arc in G(f̄) with h̄ij = f̂ij − f̄ij > 0.
Put (i, j) as a reverse arc on P1.

6. If (i, j) is a reverse arc on P with f̂ij < f̄ij , from the definition of
f̂ , (j, i) must be a − labeled arc in G(f̄) with h̄ji = f̄ij − f̂ij > 0;
and since f̄ij − h̄ji = f̂ij > fij, we have h̄ji < f̄ij − fij = κji. Put
(j, i) as a forward arc on P1.

It can be verified that the path P1 constructed using statements
1 to 6 above is a path from s̆ to t̆ in G(f̄), with the forward, reverse
orientations for arcs on it as specified in these statements, and that it
is an FAP from s̆ to t̆ in G(f̄) with respect to h̄. This contradicts the
hypothesis that h̄ is a maximum value flow from s̆ to t̆ in G(f̄). So
there does not exist any FAP from s̆ to t̆ in G with respect to f̂ . Hence
f̂ is a maximum value flow in G.

The theorem shows that the two-phase procedure described here
always finds a maximum value feasible flow vector in the given network
G.

2.7 Sensitivity Analysis

Let G = (N ,A, f = 0, k, s̆, t̆) be a directed single commodity flow
network. Consider a particular arc (i, j) ∈ A. Sensitivity analysis
in G deals with the problem of deriving the maximum value flow as a
function of kij as it varies from 0 to∞, while all the other data remains
unchanged.
To avoid confusion, denote kij by ξ and let v(ξ) be the maximum

value of flow in G as a function of ξ. Let U1 (U2) denote the set of
all cuts separating s̆ and t̆ in G that contain (i, j) as a forward arc (do
not contain (i, j) as a forward arc).

190 Ch.2. Maximum Value Flows

The capacity of any cut in U2 is unaffected by changes in the ca-
pacity ξ of arc (i, j). Suppose the minimum capacity among cuts in
U2 is c2; c2 is defined to be +∞ if U2 = ∅.
Let c1 be the minimum capacity of cuts in U1 when ξ = 0. Since

all cuts in U1 contain (i, j) as a forward arc, the minimum capacity
among cuts in U1 as a function of ξ is c1 + ξ.

Hence the minimum capacity of cuts separating s̆ and t̆ in G, as a
function of ξ is min. {c1 + ξ, c2 }. Thus v(ξ) = min. {c1 + ξ, c2}.
Therefore, if c1

>
= c2, V (ξ) = c2 for every ξ

>
= 0. In this case there is

a minimum capacity cut separating s̆ and t̆ in G which does not contain
(i, j) as a forward arc, for every ξ

>
= 0.

Suppose c1 < c2. In this case v(ξ) = c1+ξ for 0
<
= ξ

<
= c2−c1, and in

this interval for ξ there is a minimum capacity cut separating s̆ and t̆ in
G, which contains (i, j) as a forward arc. For ξ > c2−c1, v(ξ) = c2. So,
v(ξ) increases as ξ increases from 0 to c2−c1, and beyond c2−c1 it does
not change. The number c2−c1 is therefore called the critical capacity
of arc (i, j) and denoted by k∗ij . So, we have c1 = v(0), c2 = v(∞), and
v(ξ) = min. {v(0) + ξ, v(∞)}, for all ξ >

= 0. See Figure 2.26.

0
v (0)

v ()

Arc capacity

Maximum

flow value

k *
ij

Figure 2.26: The maximum flow value as a function of the capacity of
arc (i, j).k∗ij is the critical capacity.

2.8: Exercises 191

To compute the critical capacity k∗ij = v(∞) − v(0), we have to
solve two maximum value flow problems, one with the capacity of this
arc set at ∞, and the other with this capacity set at 0. We have the
following facts.

1. Whenever kij < k∗ij, (i, j) is a forward arc in every minimum
capacity cut separating s̆ and t̆. If kij > k

∗
ij, (i, j) is not a forward

arc in any minimum capacity cut separating s̆ and t̆. If kij =
k∗ij, there exists a minimum capacity cut separating s̆ and t̆ that
contains (i, j) as a forward arc, and another that does not.

2. Destroying an arc in a network is equivalent to reducing its ca-
pacity to 0. The amount by which the maximum flow value would
decrease if arc (i, j) is destroyed is min. {kij , k∗ij}.

2.8 Exercises

2.16 In the single commodity flow network in Figure 2.27 all lower
bounds are zero, and capacities are entered on the arcs. Find a max-
imum value flow, a minimum capacity cut, and the critical capacities
of arcs (3, 5), (2, 6).

2.17 Discuss an efficient scheme for finding an arc, the destruction of
which reduces the maximum flow value from the source to the sink the
most.

2.18 Let kij , k
∗
ij be the present capacity and critical capacities respec-

tively of arc (i, j). Maximum {k∗ij − kij, 0} is the scope for increasing
the maximum flow value by developing the arc (i, j). Discuss an effi-
cient scheme for finding an arc with maximum scope from those in a
specified subset of arcs.

2.19 Let (i, j), (p, q) be two arcs in a directed single commodity flow
network G = (N ,A, 0, k, s̆, t̆). Let v(ξ, η) denote the maximum flow

value in G as a function of ξ = kij, η = kpq, in the region ξ
>
= 0, η

>
= 0,

while all the other data remains unchanged. Prove that v(ξ, η) = min
{v(0, 0)+ξ+η, v(0,∞)+ξ, v(∞, 0)+η, v(∞,∞)}. Using this, show that

192 Ch.2. Maximum Value Flows

1

2

3

4

5

6

7

5

13

8

2

7

10

6

1

4

6

9

6

Source

Sink

Figure 2.27:

in the nonnegative quadrant of the ξ, η− plane, v(ξ, η) is a piecewise
linear function, dividing this quadrant into at most four convex regions
in each of which v(ξ, η) is linear. Illustrate with a numerical example.

2.20 Using the notation of Exercise 2.19, prove that for all rectangles
with vertices (ξ, η), (ξ + h, η), (ξ, η+ r), (ξ + h, η+ r) in the ξ, η− non-
negative quadrant, the difference quotient (v(ξ+h, η+r)−v(ξ+h, η)−
v(ξ, η + r) + v(ξ, η))/hr always has the same sign.

2.21 Let [X, X̄] be a cut, and f a feasible flow vector in the directed
single commodity flow network G = (N ,A, f, k, V). Prove that the net
flow across the cut [X, X̄] in f is V (X).

2.22 f̄ = (f̄ij) is a feasible flow vector of value v̄ in a directed single
commodity flow network G = (N ,A, f, k, s̆, t̆) with 0 < f < k < ∞
and |A| = m. δ is a given small positive number, much smaller than
any kij − fij . We plant a rooted tree at s̆ and grow it by the following
labeling rules.

Forward labeling If i is labeled, j is unlabeled, and (i, j) ∈ A and
f̄ij

<
= kij − δ; label j with (i,+).

2.8: Exercises 193

22

8910111213

14

151617181920 21

645 413

12109872 36

1 1 1 10

1 2 4 6

Figure 2.28:

Reverse labeling If i is labeled, j is unlabeled, and (j, i) ∈ A and
f̄ij

>
= fij + δ; label j with (i,−).

The tree growth routine has terminated without t̆ ever getting la-
beled. X is the set of labeled nodes, and X̄ its complement at termina-
tion. Prove that the maximum flow value in G is

<
= v̄ +mδ, and that

the minimum capacity of cuts separating s̆ and t̆ in G is
>
= capacity of

[X, X̄] - mδ.

2.23 In Figure 2.28, we show the arcs incident at the reference node
14 in a layered network in which a maximal flow is being found by the
MKM algorithm. The number on each arc is its capacity in this layered
network. Nonzero flow amounts at this stage are entered in little boxes
by the side of the arcs. Of the nodes shown, only 10 to 20 are in the set
Y at this stage, 8, 9, 21, 22 are not. Clearly, the arcs incident at nodes
8, 9, 21, 22 are not in the set F at this stage. Compute the reference
potential at this stage. Do flow pushing and pulling at node 14, and

194 Ch.2. Maximum Value Flows

indicate the new flow amounts on the arcs shown in Figure 2.28. Also
indicate how much flow pushing or pulling has to be carried out at each
of the adjacent node of 14 as this step is continued.

2.24 Discuss the main difference in the strategies employed by the fol-
lowing algorithms: (a) Ford-Fulkerson labeling algorithm, (b) Edmonds-
Karp labeling algorithm, (c) Dinic’s algorithm for finding a maximum
value flow in a directed single commodity flow network. Are all three
algorithms guaranteed to solve the problem always? If not, mention
the conditions under which they can solve the problem. What is the
worst case computational complexity of each of these algorithms?

1

2

3

4

5

6

7

Sink

8

9

10

11

Source

15

50

10

35

15

50

50

1020

5

50

10

80

5

50

2

50

10

50

30

50

20

10

35

5

15

10

10

80

5

3 2

20

30

20

15

20

10

43

30

5

50

Figure 2.29:

Consider the network in Figure 2.29. All lower bounds are zero,
and the capacities are entered on the arcs. Nonzero flow amounts in a
feasible flow vector are marked in little boxes by the side of the arcs.
Draw the layered network wrt this flow vector, and obtain the referent

2.8: Exercises 195

by carrying out any pruning that is necessary. Use the MKM algorithm
to find a maximal flow vector in the referent. Augment the flow vector
in the original network using this maximal flow.

2.25 Consider the following variant of the initial version of the label-
ing method for finding the maximum value flow in the directed single
commodity flow network G = (N ,A, f, k, s̆, t̆) beginning with the fea-
sible flow vector fo = (f 0ij), called “Capacity.” At each stage choose
the next node to be labeled by the following procedure: let f = (fij)
be the feasible flow vector in G at that stage. Define E+ = {(i, j) : i
labeled, j unlabeled, (i, j) ∈ A, and fij < kij}, E− = {(i, j) : j labeled,
i unlabeled, (i, j) ∈ A and fij > fij}. Define εij = kij − fij for (i, j) ∈
E+, or fij−fij for (i, j) ∈ E−. Select the next arc to be made in-tree to
be (p, q) ∈ E+∪ E− satisfying εpq = maximum {εij : (i, j) ∈ E+∪ E−}.
If (p, q) ∈ E+, label q with the label (p,+); and if (p, q) ∈ E−, label p
with (q,−). Prove the following about this algorithm “Capacity.”

Source

Sink

1

2

3

4

5

6

7 8

1

1

r

s

t

ur s

s

st

t t

u

u

u

1

r

r

Figure 2.30:

(i) In each iteration, the FAP obtained gives the largest possible flow
augmentation among all FAPs from s̆ to t̆ wrt f at that stage.

(ii) When f, k, f o are all integer vectors, it terminates with the max-
imum value flow vector after at most 0(m(logm + log c)) flow
augmentations, where m = |A| and c is the average of (kij − fij)
over arcs in G if all kij are finite, or the logarithm of the finite

196 Ch.2. Maximum Value Flows

capacity of any cut in G if some kij is infinite. This establishes
that the algorithm is polynomially bounded.

(iii) Consider the network Gr = (N ,A, 0, kr, s̆, t̆) which is the same as
the network discussed in Example 2.1, except that the capacity
of arc (i, j) is now krij = u2rkijJ, where kij is the real capacity of
(i, j) as defined in Example 2.1. Here log(c) = O(r). Beginning
with the zero flow vector in prove that the algorithm “Capacity”
takes 0(r) flow augmentations to find the maximum value flow in
Gr, establishing that on networks with integer data and integer
initial feasible flow vector, the computational effort needed by
this algorithm may continue to grow with the size of the capacity
data, indefinitely, on the same network.

(iv) Consider the network in Figure 2.30 with capacity data entered
on the arcs, where α = 1

2
(−1+√5), r = α, s = α/2, t = (1+α)/2

and u = 1/2. All lower bounds are 0. Beginning with the initial
flow vector f o = 0, prove that the algorithm “Capacity” produces
an infinite sequence of feasible flow vectors converging to a max-
imum value flow vector in an infinite number of iterations. This
establishes that on networks with nonrational data “Capacity”
may not find a maximum value flow within a finite number of
iterations.

(v) Prove that the sequence of flows constructed by “Capacity” al-
ways converges to a maximum value flow vector, whether the data
is rational or not.

(Queyranne [1980])

2.26 Rectilinear Distance Facility Location Located at (ai, bi), i =
1 tom in IR2 arem existing factories. We need to determine (xj , yj), j =
1 to n, optimum locations for n new facilities to minimize the weighted
sum of rectilinear distances

z(x, y) =
n3
j=1

m3
i=1

wji(|xj − ai|+ |yj − bi|) +

1

2

n3
j=1

n3
r=1

vjr(|xj − xr|+ |yj − yr|)

2.8: Exercises 197

where x = (x1. . . . , xn)
T , y = (y1, . . . , yn)

T , wji
>
= 0, vjr = vrj

>
= 0 for

all r, j, i · z(x, y) can be written as g(x) + h(y), so problem equivalent
to minimizing g(x) and h(y) separately. We consider the problem of
minimizing g(x).

g(x) =
n3
j=1

m3
i=1

wji|xj − ai|+ 1
2

n3
j=1

n3
r=1

vjr|xj − xr|.

(i) Prove that there exists an x∗ = (x∗j) minimizing g(x) in which
x∗j ∈ {a1, . . . , am} for all j = 1 to n.

(ii) Consider the special case in which ai = i, i = 1 to m. Let f(x) be
the value of g(x) in this special case. So, consider the problem:

minimize f(x)

subject to xj ∈ {1, . . . ,m}, j = 1 to n (2.13)

For any p ∈ {1, . . . ,m} and x = (xj) feasible to (2.13), let

Sp = {j : xj <
= p},Sp = {j : xj > p}. Prove that f(x) =�m−1

p=1 cp(Sp,Sp) where

cp(Sp,Sp) =
�
j∈Sp
�m
i=p+1wji+

�
j∈Sp
�p
i=1wji+

�
j∈Sp
�
r∈Sp vjr.

Consider the undirected network Gp = (N ,A, 0, kp) with N =
{s, 1, . . . , n, t},A = {(s; j), (j; t) : for all j = 1 to n} ∪ {(j1; j2);
for all jj W= j2 ∈ {1, . . . , n}}, called the p locale network, where
the capacity vector kp is given by the following:

kps;j =
p3
i=1

wji, k
p
j;t =

m3
i=p+1

wji, j = 1 to n

kpj1;j2 = vj1,j2 for all j1 W= j2 ∈ {1, . . . , n}.

If X∪X is a partition of {1, . . . , n}, show that the capacity of the
cut ({s}∪X; {t}∪X) in Gp is cp(X,X). Prove that xo = (xoj) is
an optimum solution of (2.13) iff for each p = 1 to m− 1, the cut
({s} ∪Xp; {t} ∪Xp), where Xp = {j : xoj <

= p},Xp = {j : xoj >
=

p + 1}, is a minimum capacity cut in Gp. Conversely, if ({s}∪
Yp; {t} ∪ Yp) is a minimum capacity cut in Gp, show that there

198 Ch.2. Maximum Value Flows

exists an optimum solution of (2.13), x∗ = (x∗j) satisfying x
∗
j
<
= p

for all j ∈ Yp and x
∗
j
>
= p + 1 for all j ∈ Yp. From this, show

that (2.13) can be solved as a minimum capacity cut problem, if
m = 2.

(iii) Consider (2.13) when m
>
= 3. Let N1, . . . ,Nq be a partition of

{1, . . . , n} and let B1, . . . , Bq be integers satisfying 1 <
= B1

<
=

B2
<
= · · · <= Bq <

= m. Consider the problem:

minimize f(x)

subject to Bs
<
= xj

<
= Bs+1, for j ∈ Ns, s = 1 to q (2.14)

xj integer for all j.

Prove that for any s = 1 to q, the optimum values of xj for
j ∈ Ns are independent of the actual locations of those facilities
(new and old) located outside the interval Bs to Bs+1, but are

dependent on which of these facilities are located at points
<
= Bs

and which are located at points
>
= Bs+1.

wji
old facility i = 1 2 3 4

new facility j = 1 3 2 3 1
2 1 2 1 2
3 9 1 2 2

vjr
r = 1 2 3

j = 1 · 3 2
2 3 · 1
3 2 1 ·

Using this, show that (2.14) can be decomposed into q problems
of the same form as (2.13), where for each s all new facilities
j ∈ ∪(Np; p = 1 to s − 1) and j ∈ ∪(Np : p = s + 1 to q)
are treated as old facilities located at Bs, Bs+1, respectively and

2.8: Exercises 199

old facilities i
<
= Bs, and i

>
= Bs+1 are treated as old facilities

located at Bs, Bs+1 respectively. From these results, develop an
algorithm for solving (2.13) by finding a minimum capacity cut
in each of the p local networks Gp, for p = 1 to m− 1. Solve the
numerical problem (2.13) with m = 4, n = 3, and the data in the
tables given above.

(iv) Now consider the original problem of minimizing g(x). Assume
that ais are ordered so that a1 < a2 < . . . < am. If x

o = (xoj) is
an optimum solution of (2.13), then prove that x∗ = (x∗j), where
x∗j = ai when x

o
j = i, is an optimum solution of this problem.

(Picard and Ratliff [1978])

2.27 The Sharing Problem G = (N ,A, 0, k) is a single commod-
ity directed flow network with S⊂ N as the set of source nodes with ai
units material available at source node i ∈ S; and D⊂ N as the set of
sink nodes with wj being the weight of sink node j ∈ D for allocation
of material in a shortage situation. Under shortage, an equitable distri-
bution of material should attempt to maximize the minimum weighted
net flow reaching the sink nodes in D. Discuss an approach for solving
this problem. Solve the numerical problem in Figure 2.31 using this
approach(Brown [1979]).

1

2

3

4

5

6

9

1
5

5

8

2

Source

nodes

Sink

nodes

w = 10

w = 2

w = 3

4

5

6

a = 9

a = 9

1

2

Figure 2.31: All lower bounds are 0. Capacities are entered on the arcs.

2.28 D is a finite set of points. For each d ∈ D, cd is the cost of
choosing it. c = (cd) > 0 is given. P is a class of subsets of D.

200 Ch.2. Maximum Value Flows

For each element σ ∈ P, pσ is the profit of choosing that element.
p = (pσ) > 0 is given. A selection is a collection of elements from
P together with all points of D which belong to this collection. If
{σ1, . . . ,σr} ⊂ P is the set of elements in a selection, its value is
defined to be

�r
i=1 pσi −

�
(cd : over d ∈ 	ri=1 σi). It is required to find

a selection of maximum value. Consider a directed bipartite network
G = (N1,N2;A, 0, k) with N1 = {s̆}∪ D, N2 = {t̆} ∪ P where s̆, t̆
are source and sink nodes, and arcs (s̆, σ) with capacity ksσ = pσ,
for each σ ∈ P, (d, t̆) with capacity kdt = cd, for each d ∈ D, and
(di, σj) with capacity ∞, for each di ∈ σj , for each σj ∈ P. Show
that there is a one-to-one correspondence between selections, and cuts
in G separating s̆ and t̆ which contain no forward arcs of the type
(di, σj). Using this, show that a maximum value selection corresponds
to a minimum capacity cut separating s̆ and t̆ in G, and hence can be
found efficiently by finding a maximum value flow from s̆ to t̆ in G.
As an application, consider the following problem of a transport

undertaking. They are considering the installation of freight handling
terminals at locations d1, d2, d3, and d4. The cost of installing the
terminals at any of these locations is $5 million. The existence of
terminals at certain pairs of terminals permits a service to be operated
between those terminals, which is associated with a net profit. These
pairs are: (d1, d2) with a profit of $2 million, (d1; d3) with a profit of
$9 million, (d2; d3) with a profit of $4 million, and (d3; d4) with a profit
of $6 million. Find a selection of services and terminals to maximize
excess of profit over cost. (Rhys [1970], Balinski [1970] both of Chapter
1, Murchland [1968])

2.29 Let G = (N ,A, 0, k, 1, n) be a directed single commodity flow
network with |N | = n, and nodes 1, n as the source, sink nodes respec-
tively, with k > 0. Any partition of the nodes in N into X,X with
1 ∈ X, n ∈ X, can be represented by the 0-1 vector x = (x1, x2, . . . , xn)
defined on N by

xi =

l
1, if i ∈ X
0, if i ∈ X

and conversely any 0 − 1 vector x defined on N with x1 = 1, xn = 0
defines such a partition of N .

2.8: Exercises 201

(i) If [X,X] is a cut separating 1 and n in G, associated with the
0-1 vector x = (xi) on N , prove that its capacity k(X,X) =�
(kijxi(1− xj); over(i, j) ∈ A).

(ii) From the above result, show that the quadratic 0-1 integer pro-

gramming problem, where qjr
>
= 0 for all j and r, can be solved

very efficiently by solving a maximum value flow problem on a
related network. Based on this, develop an efficient algorithm for
this quadratic programming problem.

minimize
n3
j=1

pjyj −
n3
j=1

n3
r=1

qjryjyr

subject to yj = 0 or 1 for all j = 1 to n

(Picard and Ratliff [1975])

2.30 Let Γ = {1, . . . , n}, {S1, . . . ,Sr} is a family of subsets of Γ each
of cardinality

>
= 2. Consider the following 0-1 nonlinear programming

problem.

maximize z(x) =
r3
t=1

at(Πj∈Stxj) +
n3
j=1

cjxj

subject to xj ∈ {0, 1}, for all j ∈ Γ. (2.15)

where (a1, . . . , ar) > 0. Now define new variables y1, . . . , yr, with yt
corresponding to the set St for t = 1 to r. Show that (2.15) is equivalent
to the following 0-1 integer program (2.16). Show that (2.16) is a

“selection problem” as it is defined in Exercise 2.28. In (2.16) if cj
>
= 0

for some j, prove that xj = 1 in an optimum solution. Hence such
variables can be fixed equal to 1 and the problem size reduced. In the
sequel we assume that cj < 0 for all j. Create a network G with node
set N = {s̆,S1, . . . ,Sr, 1, . . . , n, t̆}. Arcs in it are (s̆,St) with capacity
at for t = 1 to r; (St, j) for each j ∈ St, t = 1 to r with capacity ∞;
and (j, t̆) with capacity −cj for j = 1 to n. All lower bounds in G are
0.

202 Ch.2. Maximum Value Flows

maximize
r3
t=1

atyt +
r3
j=1

cjxj

subject to yt
<
= xj , for all j ∈ St, for all t = 1 to r (2.16)

yt = 0 or 1 for all t = 1 to r
xj = 0 or 1 for all t = 1 to n.

Prove that the variables xj which take on a value of 1 in an optimum
solution of (2.15) or (2.16) correspond to labeled vertices j ∈ N after
a maximum value flow in G from s̆ to t̆ has been found by any of the
labeling algorithms. Solve the following numerical problem using this
approach.

max z(x) = 2x1x2 + 2x1x2x3 + 6x1x2x4
+x2x3x4 + x1x2x3x4 − 2x1
−x2 − 5x3 − 2x4

subject to xj = 0 or 1, for j = 1 to 4.

(Picard and Queyranne [1982a])

2.31 Let G = (N ,A, f, k, s̆, t̆) be a directed connected single com-
modity flow network with k > f. Among all minimum capacity cuts
separating s̆ and t̆ in G, it is required to find one satisfying one of
the following additional properties: (i) it has the smallest number of
forward arcs, (ii) it has the smallest number of reverse arcs, or (iii) it
has the smallest number of arcs. Develop efficient algorithms for these
problems (Hamacher [1982]).

2.32 Consider the connected directed single commodity flow network
G = (N , A, 0, k, s̆, t̆) where k > 0. Let f ∗ be a maximum value
feasible flow vector in G of value v∗, and f a feasible flow vector of
value v < v∗. Define a feasible flow vector g in the residual network
wrt f , G (f) = (N ,A(f), 0,κ, s̆, t̆) by the following:
1. For each (i, j) ∈ A satisfying 0 < fij < kij , we have (i, j) ∈
A(f) and (j, i) ∈ A(f), make gij = maximum {0, f ∗ij − fij}, gji =
maximum {0, fij − f ∗ij}.

2.8: Exercises 203

2. For each (i, j) ∈ A satisfying fij = 0, we have (i, j) ∈ A(f), make
gij = f

∗
ij .

3. For each (i, j) ∈ A satisfying fij = kij , we have (j, i) ∈ A(f),
make gji = −(f ∗ij − fij).

Prove that g is a maximum value feasible flow vector in G(f). Prove
that if the node partition [X,X] defines minimum capacity cut sepa-
rating s̆ and t̆ in G, then it defines a minimum capacity cut separating
s̆ and t̆ in G(f) (Ramachandran [1987]).

2.33 The Maximum Flow Problem is Not Easier in an Acyclic
Network Than in a General Network. Let G = (N ,A, 0, k, s̆, t̆)
be a connected directed single commodity flow network. Without any
loss of generality we assume that every node and arc in G lies on at
least one chain from s̆ to t̆ (otherwise such things could be deleted).
Find a depth first search spanning tree dd rooted at s̆ in G and let

B be the set of arcs in G that are back arcs wrt dd. Get a new network
G∗ = (NA∗, 0, k∗, s̆, t̆) from G, and a feasible flow vector g in it by
doing the following for each (i, j) ∈ B: Replace (i, j) by (j, i) but keep
its capacity the same, kij . Define the flow gji on this new arc to be its
capacity kij . Introduce new arcs (s̆, j), (i, t̆) also of the same capacity
kij, and make the flow on both of them equal to this capacity. Verify
that the resulting network G∗ is acyclic, that the flow defined on it, g,
has value

�
(kij : over (i, j) ∈ B) and that it saturates all the newly

introduced arcs.
Let G∗(g) be the residual network of G∗ wrt g. Verify that G∗(g) is

G together with some additional arcs either incident into s̆ or incident
out of t̆. So, any partition of the nodes in N that defines a minimum
capacity cut separating s̆ and t̆ for G∗(g) also defines a minimum ca-
pacity cut for G. By Exercise 2.32, the node partition that induces a
minimum capacity cut separating s̆ and t̆ in G∗ induces also a mini-
mum capacity cut for G∗(g). Using these facts show that the problem
of finding a minimum capacity cut separating the source and sink in the
general directed network G reduces in linear time to a corresponding
problem in an acyclic network. Then show that the maximum value
flow problem is a general directed network reduces in linear time to a
corresponding problem in an acyclic network (Ramachandran [1987]).

204 Ch.2. Maximum Value Flows

2.34 Consider the single commodity flow network G = (N ,A, 0, k, s̆, t̆).
A subset A⊂ A, |A| = r is said to be the set of r most vital arcs in
this network, if the simultaneous removal of the arcs in A results in the
greatest decrease in the maximum flow value in the remaining network,
among all subsets of arcs of cardinality r. Prove that the r most vital
arcs in G are the r largest capacity arcs in a particular cut separating s̆
and t̆ in G. Develop an algorithm for finding such a set of arcs (Ratliff,
Sicilia and Lubore [1975]).

2.35 Consider the following discrete quadratic programming problem.
Define N = {1, . . . , n},A = {(i, j) : i, j ∈ N such that dij W= 0}, G =
(N ,A, k), where for (i, j) ∈ A, ki;j = dij . Define the capacity of a cut in
G to be the sum of kij over (i, j) in the cut. Show that this quadratic
program is equivalent to the problem of finding a maximum capacity
cut in G.

minimize
n−13
i=1

n3
j=i+1

dijxixj

subject to xi ∈ {−1, 1}, for each i = 1 to n.
(Barahona [1982])

2.36 Let G = (N ,A, 0, k) be a connected undirected single commod-
ity flow network, with k > 0. Let v(x, y) denote the maximum flow
value in this network with x as the source node and y as the sink node.
Hence v(x, y) is a positive valued function defined for pairs of distinct
nodes of G, which will be called a flow value function of G. Prove the
following:

(i) v(x, y) = v(y, x), for all x W= y ∈ N .
(ii) v(x, y)

>
= min {v(x, z), v(z, y)}, for every three distinct nodes

x, y, z in N .
(iii) v(x1, xr)

>
= min {v(x1, x2), v(x2, x3), . . . , v(xr−1, xr}, for any

sequence of distinct nodes x1, . . . , xr in G.

(iv) From (ii) show that among v(x, y), v(x, z) and v(z, y), at

least two must be equal, and the third is
>
= their common

value.

2.8: Exercises 205

(v) Let |N | = n. Let H be the complete undirected network
on N with v(x; y) as the length of the edge (x; y), for x W=
y ∈ N . Let dd be a maximum length spanning tree in H.
Using (iii) show that the length of every out-of-tree edge in
H must be equal to the length of some in-tree edge. Thus
prove that of the n(n− 1) flow values v(x, y) in G, there are
at most (n− 1) numerically distinct values.

(vi) Given any positive symmetric function v(·, ·) defined over
pairs of distinct nodes in N , satisfying the “traingle” in-
equality in (ii), prove that a spanning tree spanning the
nodes in N can be constructed and capacities of edges in
this tree defined in such a way that v(·, ·) is the flow value
function on this tree.

(vii) Devise a scheme to determine the flow value function v(·, ·)
on G by the successive solution of at most (n−1) maximum
value flow problems.

(Gomory and Hu [1961])

2.37 The Allocation of Specialists to Hospitals in a Region
There are four hospitals, h1, h2, h3, h4, in a region. There are seven spe-
cialties for which there are plans to develop additional facilities (i.e.,
hospital beds dedicated to those specialties) in the region, these are s1
to s7 as indicated in the table given below. Lower and upper bounds
are imposed on the total number of beds allocated to (i) each speciality
in each hospital, and (ii) to each hospital. Determine one feasible al-
location of speciality beds to hospitals satisfying all these constraints,
using a network formulation. Discuss how one can determine an “op-
timum allocation” among all feasible allocations of specialty beds to
hospitals in this problem (Duncan [1979]).

206 Ch.2. Maximum Value Flows

Lower/upper bounds on no. of beds Total beds
allocated to specialty in hospital allocated

Specialty h1 h2 h3 h4 to specialty
ENT s1 17/28 7/11 - - 28
Dental surgery s2 3/5 1/2 - - 5
Plastic surgery s3 24/39 10/15 - - 39
Rheumatology s4 4/10 2/5 2/8 4/9 14
T. & O. surgery s5 80/97 34/51 - - 131
General surgery s6 51/136 50/71 34/92 183
General medicine s7 51/139 40/73 50/111 28/75 187
Lower/upper bounds
on number of beds 0/247 0/176 0/183 0/100
allocated to hospital
T. & O. is Traumatic and Orthopedic

2.38 There are n jobs ordered as 1, 2, . . . , n, to be processed on either
of two available machines. Job i has processing time of pi, qi respec-
tively, depending on whether it is processed on machine A or B. In the
subset of jobs assigned to each machine, they can only be processed in
the order of lowest number job first. The flow time of a job is defined
to be the duration of time lapse from the beginning (i.e., time point 0)
till its processing is completed. It is required to assign the jobs to the
two machines so as to minimize the sum of flow times of all the jobs.
Define xi = 1, if job i is assigned to machine A, 0 if it is assigned to
B. The 0-1 assignment vector is x = (x1, . . . , xn)

T . Show that the total
flow time corresponding to the assignment x is xTCx+

�n
j=1wj , where

C = (cij) is a symmetric matrix given by

wj =
j3
i=1

qj

cij =

⎧⎪⎨⎪⎩
(pi + qi)/2, if j > i
−[wj + (n− j + 1)qj − (pj + qj)], if j = i, i = 1 to n
(pj + qj)/2, if j < i

So, the problem of finding an optimum assignment of jobs to ma-

2.8: Exercises 207

chines A, B is equivalent to

minimize xTCx
subject to xi = 0 or 1 for all i

Augment the matrix C into a symmetric matrix C I = (C Iij) of order
(n+ 1)× (n+1) by adding a dummy row (row 0) and dummy column
(column 0) so that the sum of all entries in each row and in each column
of C I is zero. Thus

C Ioi = C
I
io = −[

i3
j=1

((pj − qj)/2) + (n− i+ 1)(pi − qi)/2], i = 1 to n

C Ioo = −
n3
i=1

C Ioi, and C
I
ij = Cij for i, i = 1 to n.

Let X = (x0, x1, . . . , xn)
T . Show that the above optimum assignment

problem is equivalent to

minimizeXTC IX
subject to xi = 0 or 1, i = 0, 1, . . . , n.

Formulate this as the problem of finding a maximum capacity cut in
a network for which the set of nodes is N = {0, 1, . . . , n}. Using the
special property that C Iij = ri = (pi + qi)/2 for all j > i, develop
an efficient direct algorithm for solving this maximum capacity cut
problem. Discuss how to solve the job assignment problem using this
algorithm.
Solve the numerical problem with n = 5 and p = (pi) = (2, 6, 7, 9, 8), q =

(qi) = (4, 4, 11, 3, 14) using this approach (Lakshminarayanan, Laksh-
manan, Papineau, and Rochette [1979]).

2.39 Let G = (N ,A, 0, k, s̆, t̆) be a directed single commodity flow
network, with the capacity vector k

>
= 0. Define y = (yij : (i, j) ∈ A)

to be a vector of variables associated with the arcs in G. Consider the
following problem

minimize
3
(kijyij : over (i, j) ∈ A)

208 Ch.2. Maximum Value Flows

subject to
3
(yij : over (i, j) ∈ C) >= 1, for chains C from s̆ to t̆ in G

yij = 0 or 1 for all (i, j) ∈ A.
Show that this is the arc-chain formulation of the problem of finding

a minimum capacity cut separating s̆ and t̆ in G. Show that the LP
relaxation obtained by replacing the 0-1 constraints on y by y

>
= 0 has

an optimum solution which satisfies yij = 0 or 1 for all (i, j). Give an
interpretation for the dual of the LP relaxation discussed above, as an
alternative formulation of the maximum value flow problem in G.

2.40 Let G = (N ,A, 0, k, s̆, t̆) be a directed connected single com-
modity flow network. Suppose we are given a feasible flow vector of
maximum value from s̆ to t̆ in G. Then the labeling procedure dis-
cussed in the proof of Theorem 2.3 can be used to generate a minimum
capacity cut separating s̆ and t̆ in G with a computational effort of
at most 0(|A|). Conversely suppose we are given a minimum capacity
cut separating s̆ and t̆ in G. Is there a procedure that can use this
information to generate a maximum value flow from in G efficiently?
(Picard and Queyranne [1982b])

2.41 Maximum Weighted Closure of a Network Let G =
(N ,A) be a directed network with w = (wi : i ∈ N) as the vector of
vertex weights that may be of any sign. A closure of G is any subset U
⊂ N satisfying the property that i ∈U and (i, j) ∈ A imply that j ∈U
also. A closure of G is also called a hereditary subset, or initial subset or
a selection. The closure has application in the selection of contingent
investments. Suppose we are given a set of projects (represented by
nodes in a network) and a set of contingency relations among them.
Project i is contingent to project j means that if we decide to select
project i, then we must also select project j (this is represented by an
arc (i, j) in the network). Every project is associated with a net profit
(which may be negative for a project presumably useful to the selection
of other more profitable projects). The problem of selecting the subset
of projects to implement in order to maximize net profit then becomes
that of finding a maximum weight closure in the network. Define the
variables yi for i ∈ N by yi = 1 if i is included in the closure, or yi

2.8: Exercises 209

= 0 otherwise. Show that the problem of finding a maximum weight
closure in G is equivalent to the 0-1 nonlinear program.

maximize
3
(wiyi : over i ∈ N)

subject to yi(1− yj) = 0, for each (i, j) ∈ A
yi = 0 or 1 for all i ∈ N .

When λ is sufficiently large (λ > 1 +
�
i∈N |wi|), show that this

problem is equivalent to the 0-1 quadratic program (QP) given below.
Augment G into a network GI by the following procedure. Make the
capacity of all the arcs in G equal to λ. Introduce a new source node
s̆ and a new sink node t̆. For each i ∈ N if wi

>
= 0 include on arc (s̆, i)

with capacity wi; if wi < 0 include (i, t̆) with capacity −wi. The lower
bounds on all the arcs in GI is 0. Let [X,X] be a minimum capacity cut
separating s̆ and t̆ in GI. Show that the incidence vector of X\{s} is an
optimum solution of the 0-1 QP below, and that X\{s} is a maximum
weight closure of G.

maximize
3
i∈N

wiyi − λ
3
(yi(1− yj) : over (i, j) ∈ A)

yi = 0 or 1 for all i ∈ N.

1 2

3 4

5

w = + 8
1

+ 7

+ 6

- 9

- 10

Figure 2.32:

Find a maximum weight closure in the network in Figure 2.32 with
the minimum cut approach outlined above (Picard and Queyranne
[1982b]).

210 Ch.2. Maximum Value Flows

2.42 Activity Selection Game A is a set of activities. Selection
of activity i yields a profit wi (of arbitrary sign), and selection of ac-

tivity i without the selection of activity j leads to a penalty of λij
>
= 0.

It is required to find a subset of activities U⊂A which yields the max-
imum net profit. Show that this problem is equivalent to finding a
y = (yi : i ∈A) that solves

maximize [
3
i∈A
wiyi −

3
i,j∈A,iW=j

λijyi(1− yj)]

subject to yi = 0 or 1 for all i ∈ A.
Show how this problem can be transformed into a minimum capacity
cut problem in a network, using the approach discussed in Exercises
2.29 and 2.41 (Picard and Queyranne [1982 b], Topkis [1980]).

2.43 Binary Posynomial Maximization Let y = (y1, . . . , yn)
T

be a vector of binary variables and let S1, . . . ,Sr be r distinct nonempty
subsets of {1, . . . , n}. The function P (y) = �r

t=1 ct(Πi∈Styi) is said to
be a posynomial in y if ct > 0 for all t = 1 to r. Maximizing P (y) has
the trivial solution y = e, the vector of all 1’s. However, the problem

maximize P (y)− by

subject to yi = 0 or 1 for all i

where b is an arbitrary real n−vector, is nontrivial, it is called the
binary posynomial maximization problem.
Generate a directed network G = (N ,A) with node weight vector

w by the following procedure: Associate a node in N with the set St
for each t = 1 to r, make its weight wt = ct if |St| >= 2, or ct − bi if S
is the singleton set {yi}. For each i = 1 to n such that the singleton
set {yi} is not among the sets S1, . . . ,Sr, associate a node in N with
its weight −bi. Let N1, be the set of nodes introduced so far. For each
Q ⊂ {1, . . . , n} associated with which there is a node in N1, introduce
a new node associated with the set Q\{j} if it is not there already, and
an arc directed from the node associated with Q to this node, for each
j ∈ Q. Make the weights of all the nodes for which the weight is not

2.8: Exercises 211

defined above equal to zero. N is the set of all the nodes and A is the
set of all the arcs defined above.
Show that the above problem is equivalent to the maximum weight

closure problem (defined in Exercise 2.41) in G (Picard and Queyranne
[1982 b]).

2.44 Let G = (N ,A, 0, k, s̆, t̆) be a directed connected network with
k > 0. Using the transformation of the minimum capacity cut problem
into a binary quadratic programming problem discussed in Exercise
2.29 and the fact that the maximum capacity cut problem is NP-hard,
show that cardinality constrained minimum cut problems (i.e., the two
problems, finding a minimum capacity cut [(X, X̄)] separating s̆ and
t̆ in G with either the constraint that |(X, X̄)| = r or the constraint
|X| = r, for specified r) are NP-hard problems (Picard and Queyranne
[1982 b]).

2.45 A nursing staff scheduling problem There are three de-
partments in a hospital, each of which operates on three shifts daily,
with staff members working one shift per day. The daily requirements
are spelled out in the table given below. It is required to determine the
minimum number of nurses to staff these three departments subject to
the constraints and bounds described above. Formulate this as a flow
problem and find an optimum solution for it.

Lower bound-upper bound
Minimum no. of nurses for nurses in shift in department

Shift required in shift 1 2 3
1 26 6-8 11-12 7-12
2 24 4-6 11-12 7-12
3 19 2-4 10-12 5-7

minimum no. of nurses
required in dept. over all 13 32 22
these shifts put together

(Khan and Lewis [1987])

2.46 Another Version of a Maximum Cut Problem Let G =
(N ,A) be a directed network with c = (cij) as the vector of arc weights.

212 Ch.2. Maximum Value Flows

Define a cut in G to be a partition of N into [X,X], and its value to
be c(X,X)− c(X,X,). Define a node i ∈ N to be an overall source if
c(i,N) > c(N , i), overall sink if c(N , i,) > c(i,N), and neutral if it is
neither an overall source nor an overall sink. Under these definitions,
prove that a cut [X,X] is a maximum value cut in G if every overall
source is in the set X and every overall sink is in the set X. From this
result construct an efficient algorithm to find a maximum value cut in
G by the definition given here (Farley and Proskurowski [1982]).

2.47 A Maximum Value Cut Problem in a Tree Let dd be a
tree in which every line is an arc. Let c = (cij) be the vector of arc
weights in dd. Define a cut in dd to be a partition of its nodes into
(X,X), and its value to be c(X,X). Develop a linear-time algorithm
to find a maximum value cut in dd under this definition (Farley and
Proskurowski [1982]).

2.48 G = (N ,A, 0, k) is a connected directed capacitated network.
For a pair of distinct nodes i, j in N , let vi,j denote the capacity of
minimum capacity cut separating i and j. For i1, . . . , ir ∈ N , prove
that vi1,ir

>
= min. {vit,it+1 : t = 1, . . . , r − 1}. Prove that the set of

distinct values of vij, i W= j ∈ N is at most |N |− 1.

2.49 G = (N ,A, 0, k, s̆, t̆) is a directed single commodity flow net-
work. E= {(i1, j1), . . . , (ir, jr)} ⊂ A. It is required to check whether
E is a subset of a set of forward arcs of a cut separating s̆ and t̆ in
G, and if so to find such a cut of a minimum capacity. Develop neces-
sary conditions, and an efficient algorithm for this problem based on a
maximum value flow formulation.

2.50 Preemptive Scheduling of Jobs with Due Dates T1, . . . , Tn
are n tasks to be processed on a single machine. Task Ti is decomposed
into two subtasks denoted byMi (mandatory subtask) and Oi (optional
subtask). The processing times of Mi, Oi are mi,σi respectively. The
time at which Mi becomes ready for execution is ri, and Oi becomes
ready for execution when Mi is completed. The deadline for Ti (the
time at which Ti must be completed) is di. For each i,Mi must be ex-
ecuted to completion, but preemption is allowed. Oi can be executed

2.8: Exercises 213

any time within the interval between its ready time and the deadline.
It is terminated at the deadline di even if it is not completed.

A schedule is an assignment of the tasks Mi, Oi, i = 1 to n to the
machine in disjoint intervals of time. There are precedence constraints
specified for processing the tasks. This defines a precedence successor
relationship among them. If Tj is a successor of Ti, then execution of
Mj cannot begin until Mi is completed.

A schedule is said to be a valid schedule if each Mi is executed to
completion in the time interval [ri,∞] and the precedence constraints
between all tasks are obeyed. A valid schedule is said to be feasible if
each Mi is completed in the interval [ri, di]. Let pi denote the machine
time allotted to Oi in a feasible schedule (since the processing of Oi
is terminated at di, pi may be

<
= σi). If pi = σi, the task Ti is said

to be precisely scheduled in this schedule. Otherwise, if pi < σi, the
error of the task Ti in this schedule is defined to be εi = σi − pi (this
portion of Oi is essentially discarded if this schedule is implemented).
The total error in the schedule is

�n
i=1 εi. A feasible schedule is said to

be a precise schedule if all the εi are zero in it.

Let Ai denote the set of all successors (i.e., descendents) of Ti in
the precedence relationship. Define d̄i = min{di,min{dj : j ∈ Ai}}.
Working with the modified deadlines d̄i instead of di allows the prece-
dence constraints to be ignored temporarily (from an invalid schedule in
which portions of Ti are scheduled after some portion of Tj for Tj ∈ Ai,
a valid schedule can be constructed by appropriate exchange of the
time segments).

Let a1, . . . , ag be the strictly increasing sequence of all the distinct

entries in the set {r1, . . . , rn, d̄1, . . . , d̄n}, so g <
= 2n. This sequence

divides time into g − 1 intervals [ah, ah+1] for h = 1 to g − 1. The
length of the hth interval is th = ah+1 − ah.
Define a directed network G(δ) = (N ,A) by the following. N

contains a source node s̆, a sink node t̆, two nodes called Ti and T
1
i

for each task Ti, nodes called Mi, Oi for each i, a node called [ah, ah+1]
representing the hth interval defined above for each h, and another
vertex called I. A contains the following arcs: (s̆, Ti) for each i = 1 to
n with capacity τi = mi + σi; (Ti,Mi) with capacity mi and (Ti, Oi)
with capacity σi for i = 1 to n; (Mi, T

1
i) with capacity mi, and (Oi, T

1
i)

214 Ch.2. Maximum Value Flows

with capacity σi, for i = 1 to n; (T 1i , [ah, ah+1]) with capacity th for

each h such that ri
<
= ah and d̄i

>
= ah+1 (this implies that the task

Ti can be scheduled in this interval); ([ah, ah+1], t̆) with capacity th for
each h; (Oi, I) with capacity σi for each i = 1 to n; and (I, t̆) with
capacity δ. All lower bounds for arch flows in G(δ) are 0.
Define G1(δ) = (N ,A1) to be the network obtained from G(δ) by

deleting all the arcs (Ti, Oi) and (Oi, T
1
i) for i = 1 to n, from it.

(i) Show that a feasible schedule exists if v = maximum flow value
from s̆ to t̆ in G1(0), is

�n
i=1mi. If v <

�n
i=1mi, no feasible

schedule exists. Given a feasible flow vector in G1(0) of value�n
i=1mi, discuss a procedure for generating a feasible schedule

from it.

(ii) Assume that a feasible schedule exists. Show that a precise sched-
ule exists if F = the maximum flow value from s̆ to t̆ in G(0) is�n
i=1(mi + σi) = u. Given a feasible flow vector in G(0) of value

u, discuss a procedure for generating a precise schedule from it.

(iii) Suppose a feasible schedule exists but not a precise schedule. Let
δ = u − F . Show that a feasible schedule with minimum total
error can be constructed from a maximum value flow in G(δ) and
that its total error is δ.

(iv) Find a feasible schedule with minimum total error in the problem
with the following data, using this approach. n = 5. T1 precedes
both T2 and T3, T2 precedes T4, and T3 precedes T5.

ri di mi Oi
i = 1 0.0 0.6 0.2 0.2

2 0.2 0.7 0.1 0.3
3 0.4 1.0 0.2 0.3
4 1.2 1.5 0.1 0.2
5 0.6 2.0 0.5 0.3

(v) Suppose we are given a weight wi which measures the relative
importance of the task Ti, i = 1 to n. Develop a formulation for

2.8: Exercises 215

30

Elevator

40

40

70

70

6080 80

100

50

60

200

40

120

150

60

20 150 40

||

||

|||||

|||||

Stairs

|||
|||

||
|||

||

||
||

E
lev

ato
r

tairs
S

Figure 2.33: Floor plan of third (top) Floor.

the problem of finding a feasible schedule that minimizes the to-
tal weighted error,

�n
i=1wiεi, as a minimum cost flow problem.

(Shih, Liu, Chung and Gillies [1989])

2.51 A large building, or building complex, occupied by hundreds of
people at the same time, may contain several floors, have several cor-
ridors in each floor, and have a combination of elevators and stairways
connecting the floors. Hotels, hospitals, schools and universities, li-
braries, large office complexes, malls, entertainment facilities, etc., are
examples of such buildings. In an emergency situation, such a building
has to be evacuated in a short time period. In evaluating building de-
signs, an important characteristic is the number of people that can be
moved out of the building per unit time using all available exits. This
depends on the capacities of the corridors, doors, stairways, and ele-

216 Ch.2. Maximum Value Flows

vators of the building; it also depends on the distribution, or expected
concentration of people in various areas of the building.
In a network model of emergency evacuation, the corridors, a point

on a line where two corridors intersect, the points where a corridor
leads to a stairway or an elevator, or the rooms, halls, or the labs
where people collect can all be represented as nodes. In Figure 2.33,
the floor plan of the third floor of a three-floor building is shown, with
all the relevant data.

60

Elevator

70

70
80 80

200

100

|| |||

|||

200

20

10

10

30

70

Stairs

E
lev

ato
r

||
||

|||

||
||

|||

S
tairs

Figure 2.34: Floor plan of second Floor.

Each room contains a little box with the number of people expected
in that room entered inside it. Doors are marked with two or three lines
(|| or |||) with capacities of evacuating 50 and 75 persons/minute respec-
tively. Each stairway has a capacity of evacuating 100 persons/minute,
while each elevator has a capacity of evacuating 12 person/minute. The
capacities of corridors (persons/minute) are entered along the corridor.
The floor plans of the second and first (ground) floors are given in
Figures 2.34 and 2.35 respectively.

2.8: Exercises 217

The entrance door marked with four lines (||||) has a capacity of
evacuating 500 persons/minute. Formulate the problem of determin-
ing the maximum number of persons that can be evacuated from this
building per minute in case of an emergency as a network flow problem,
clearly showing the network on which the problem is posed.

60

Elevator

70

70

80

|||

|||

80

80

10

10

20

70

|||

60

7

ENTRANCE

ROOM

10 10

||||

|||

Stairs

E
lev

ato
r

80

||

||
||

|||

||

|||

|||
|||

||

80

S
tairs

Figure 2.35: Floor plan of First (ground) Floor.

2.52 There are p = nm students to be formed into n groups of m
students each. Each group will work on a separate project. For every
pair of distinct students i, j we are given uij > 0, the utility of assigning
both of them to the same group, whichever group it may be. The p×p
matrix u = (uij) is given. It is required to form the groups so that the
total utility is as large as possible. Give a formulation for this problem
and check whether it is NP-hard.

2.53 Hall’s Theorem C = {S1, . . . ,Sr} is a class of nonempty
subsets of Γ = {1, . . . , n}. A subset ∆ of r distinct elements of Γ,∆ =

218 Ch.2. Maximum Value Flows

{i1, . . . , ir} is said to be an SDR (system of distinct representatives) for
the class C if ih ∈ Sh for each h = 1 to r, in this case ih is said to
represent Sh for h = 1 to r. As an example, for the class {S1 = {1, 2,
3, 4}, S2 = {3, 4, 5, 6}}, the set {1, 4} is an SDR as 1 can represent
S1 and 4 can represent S2 in it. But the set {3} is not an SDR for this
class even though 3 is in both S1 and S2.

Formulate the problem of finding an SDR for C as a flow problem.
Draw the networks, and find the SDRs for the classes {S1 = {2, 4, 5},
S2 = {1, 5}, S3 = {3, 4}, S4 = {3, 4}}, {S1 = {1, 2}, S2 = {2}, S3
= {2, 3, 4, 5}, S4 = {1, 2}} respectively, by solving the corresponding
flow problems. Prove that an SDR exists for the class C iff every union
of u sets of C contains at least u distinct elements, for u = 1,2, . . . , r.
(Ford and Fulkerson [1962 of Chapter 1])

2.54 G = (N ,A, f, k) is a directed connected single commodity flow
network and (p, q) is a selected arc in G. It is required to find a feasible
circulation f = (fij) in G which (i) maximizes fpq, (ii) minimizes fpq.
Discuss methods for solving these problems. Apply your methods to
solve these problems in the network in Figure 2.23 with (p, q) = (4, 1).

2.55 Let f 1 = (f1ij), f
2 = (f 2ij) be two feasible flow vectors in G =

(N ,A, f, k, s̆, t̆) of values v1, v2 respectively. Generate a flow vector
h in the residual network G(f 1) by the following rules: (a) For each

(i, j) ∈ A satisfying f1ij > f
2
ij , we must have fij

<
= f 2ij < f

1
ij, so the arc

(j, i) exists in G(f 1) with a − label, make hji = f 1ij − f 2ij. (b) For each
(i, j) ∈ A satisfying f 1ij < f

2
ij , we must have f

1
ij < f

2
ij

<
= kij, so the arc

(i, j) exists in G(f1) with a + label, make hij = f
2
ij − f1ij. (c) On all

the arcs in G(f 1) on which a flow amount is not defined by (a), (b)
above, make the flow in the vector h to be zero. Then show that h is a
feasible flow vector in the residual network G(f1) with flow value from
s̆ to t̆ of v2 − v1.
Similarly, if f 1 = (f 1ij) is a feasible flow vector in G of value v1, and

h = (hpq) a feasible flow vector in the residual network G(f
1) of value

ω from s̆ to t̆, define a flow vector f̂ = (f̂ij) in G, where f̂ij is given by

2.8: Exercises 219

f̂ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f 1ij + hij if there is a + labeled arc
(i, j) in G(f 1), correspond-
ing to (i, j) ∈ A, with hij >
0.

f 1ij − hji if is a − labeled arc (j, i)
in G(f 1), corresponding to
(i, j) ∈ A, with hji > 0.

f 1ij otherwise

Then show that f̂ is a feasible flow vector in G and its value is
v1 + ω.
Use these results to provide an alternate proof of Theorem 2.12

2.56 The Minimum Value Flow Problem Consider the single
commodity flow network G = (N ,A, f, k, s̆, t̆) with 0 <

= f
<
= k, in

which some or all of the capacities kij may be infinite.

(i) Assuming that k =∞ and f > 0, develop an efficient algorithm
for finding a feasible flow vector in G, if one exists; by specializing
the methods of Section 2.6 as applied to G. In this case show that
the maximum value flow from s̆ to t̆ in G is infinite.

(ii) When, f W= 0, f = 0 is not a feasible flow vector in G. So, in
this case, the problem of finding a minimum value flow (i.e., one
which has the least possible value among all feasible flow vectors
in G) is of interest. Given a feasible flow vector f̄ = (f̄ij) of value
v̄ in G, a path P from s̆ to t̆ in G satisfying

(i, j) is a forward arc onP implies f̄ij > fij

(i, j) is a reverse arc onP implies f̄ij < kij

is known as a flow reduction path (FRdP) from s̆ to t̆ wrt f̄ .
Given a FRdP P from s̆ to t̆ wrt f̄ , the flow reduction step using it
generates the new flow vector f̂ = (f̂ij) where 6 = min. {f̄ij− fij :

220 Ch.2. Maximum Value Flows

over (i, j) forward on P} ∪ {kij − f̄ij : over (i, j) reverse on P},
and

f̂ij =

⎧⎪⎨⎪⎩
f̄ij − 6 if (i, j) is forward on P
f̄ij + 6 if (i, j) is reverse on P
f̄ij otherwise

Show that the new flow vector f̂ is a feasible flow vector in G of
value v̂ = v̄ − 6.

Prove that a feasible flow vector f in G is a minimum value
feasible flow vector iff there exists no FRdP from s̆ to t̆ wrt it.
Using this result, develop algorithms analogous to those discussed
in this chapter, to find a minimum value feasible flow vector in G.
Apply your algorithm to find minimum value feasible flow vectors
in the networks in Figures 2.22, 2.25, 2.26, and 2.27.

(iii) Prove that if a feasible flow vector exists in G, then the minimum
value in G is equal to the maximum of f(X,X) −k(X,X) over all
X ⊂ N , X = N\X, such that s̆ ∈ X, t̆ ∈ X. This result is the
analogue of Theorem 2.4 to the minimum value flow problem.

Comment 2.1 Ford and Fulkerson [1962 of Chapter 1] state that the
problem of maximizing flow from one point to another in a capacity-
constrained network was posed to them in the spring of 1955 by T. E.
Harris and General F.S. Ross. Shortly afterwards the maximum flow
minimum cut theorem was established by Ford and Fulkerson in their
1956 paper listed in this chapter’s references. The relationship of this
theorem to the duality theorem of linear programming was recognized
almost at the same time. The scanning version of the labeling algo-
rithm was devised by Ford and Fulkerson in 1957. Johnson [1966 of
Chapter 5] suggested a supplemental rule to guarantee finite termina-
tion of this algorithm for arbitrary data. Edmonds and Karp [1972]
demonstrated that if the node to scan from the list is selected by the
FIFO rule, then the worst case computational complexity of this al-
gorithm is of order O(nm2) where n,m are the number of nodes, arcs
in the network. This is the shortest augmenting path implementation.

2.8: Exercises 221

Zadeh [1972] constructed examples to show that this bound is tight in
dense networks.

Multipath methods using all available shortest augmenting paths in
each iteration were introduced by Dinic [1970] and refined by Malho-
tra, Kumar and Maheswari [1978], and others. Methods based on pre-
flows were introduced by Karzanov [1974]. Goldberg and Tarjan [1986,
1988] developed simple and elegant preflow-push algorithms based on
push/relabel steps. These methods have several advantages.

These are the algorithms that have given good computational per-
formance. However, the literature on algorithms for the maximum
value flow problem is vast. Cherkasky [1977] and Galil [1980] made
improvements on Karzanov algorithm. Galil and Naamad [1980] and
Sleater and Tarjan [1983] discuss improvements in Dinic’s algorithm
using new data structures. Gabow [1985] discusses an approach based
on scaling. Cheriyan and Maheswari [1987] and Ahuja, Orlin, and Tar-
jan [1987] discuss variants of the Goldberg-Tarjan algorithm. Gold-
farb and Hao [1990] developed an O(mn2) complexity primal simplex
variant for this problem. Ramachandran [1987] has shown that in a
theoretical worst-case sense, the minimum capacity cut and the maxi-
mum value flow problems are not easier in an acyclic network than in
a network that is not acyclic.

So far, no one has succeeded in developing an algorithm with the
worst case computational complexity of O(nm) for the maximum value
flow problem in sparse networks. So, the search goes on.

For results of computational studies comparing the various algo-
rithms, see Cheung [1980], Glover, Klingman, Mote, and Whitman
[1979], Imai [1983], and Hamacher [1979]. But these studies were car-
ried out before the development of preflow-push algorithms. Currently
the computational performance of preflow-push algorithms is being
evaluated by several groups.

Accounts of the contributions of D. R. Fulkerson can be found in
Billera and Lucas [1978] and Hoffman [1978].

A variety of applications of the minimum capacity cut problem
are discussed in Picard and Ratliff [1975] and Picard and Queyranne
[1982a, 1982b]. Several other applications of the maximum value flow,
minimum capacity cut problems are discussed in many papers in the

222 Ch.2. Maximum Value Flows

following references, notable among those are included among the ex-
ercises given above.
Necessary and sufficient conditions for the feasibility of flow and

circulation problems are due to Gale [1957] and Hoffman [1960].

2.9 References

R. K. AHUJA and J. B. ORLIN, Sept.-Oct. 1989, “A Fast and Simple Algorithm

for the Maximum Flow Problem,” OR, 37, no. 5 (748-759).

R. K. AHUJA, J. B. ORLIN, and R. E. TARJAN, 1987, “Improved Time Bounds

for the Maximum Flow Problem,” Sloan School of Management, MIT, Cambridge,

MA.

F. BARAHONA, 1982, “On the Computational Complexity of the Ising Spin Mod-

els,” Journal of Physics A: Mathematics and General, 15(3241-3250).

L. J. BILLERA and W. F. LUCAS, 1978, “Delbert Ray Fulkerson: August 14, 1924

- January 10, 1976,” MPS, 8(1-16).

J. R. BROWN, Mar.-Apr. 1979, “The Sharing Problem,” OR, 27, no. 2(324-340).

V. CABOT, R. L. FRANCIS, and M. A. STARY, 1970, “A Network Flow Solution

to a Rectilinear Distance Facility Location Problem,” AIIE Transactions, 2(132-

141).

J. CHERIYAN and S. N. MAHESWARI, 1989, “Analysis of Preflow Push Algo-

rithms for Maximum Network Flow,” SIAM J. on Computing, 18(1057-1086).

R. V. CHERKASKY, 1977, “Algorithms of Construction of Maximal Flow in Net-

works with Complexity O(n2
√
m) Operations,” Mathematical Methods of Solution

of Economical Problems, 7(112-125).

T. CHEUNG, 1980, “Computational Comparison of Eight Methods for the Maxi-

mum Network Flow Problem,” ACM Transactions on Mathematical Software, 6(1-

16).

E. A. DINIC, 1970, “Algorithms for Solution of a Problem of Maximum Flow in

Networks with Power Estimation,” Soviet Mathematics Doklady, 11(1277-1280).

I. B. DUNCAN, Nov. 1979, “The Allocation of Specialities to Hospitals in a Health

District,” JORS, 30, no. 11(953-961).

J. EDMONDS and R. M. KARP, 1972, “Theoretical Improvements in Algorithmic

Efficiency for Network Flow Problems,” JACM, 19(248-264).

P. ELIAS, A. FEINSTEIN, and C. E. SHANNON, 1956, “Note on Maximum Flow

Through a Network,” IRE Transactions on Information Theory, IT-2(117-119).

2.9: References 223

A. M. FARLEY and A. PROSKUROWSKI, Dec. 1982, “Directed Maximal-Cut

Problems,” IPL, 15, no. 5(238-241).

L. R. FORD Jr. and D. R. FULKERSON, 1956, “Maximum Flow Through a Net-

work,” Canadian Journal of Mathematics, 8(399-404).

H. N. GABOW, 1985, “Scaling Algorithms for Network Problems,” Journal of

Computer and System Sciences, 31(148-168).

D. GALE, 1957, “A Theorem on Flows in Networks,” Pacific Journal of Mathe-

matics, 7(1073-1082).

Z. GALIL, 1980, “An O(n5/3m2/3) Algorithm for the Maximal Flow Problem,”

Acta Informatica, 14(221-242).

Z. GALIL and A. NAAMAD, 1980, “An O(nmlog2n) Algorithm for the Maximal

Flow Problem,” Journal of Computer and System Sciences, 21(203-217).

G. GALLO, M. D. GRIGORIADIS, and R. E. TARJAN, Feb. 1989, “A Fast Para-

metric Maximum Flow Algorithm,” SIAM J. on Computing, 18, no. 1(30-55).

F. GLOVER, D. KLINGMAN, J. MOTE and D. WHITMAN, 1979, “Compre-

hensive Computer Evaluation and Enhancement of Maximum Flow Algorithms,”

Graduate School of Business Administration, University of Colorado, Boulder, CO,

extended abstract in DAM, 2 (1980)(251-254).

A. V. GOLDBERG and R. E. TARJAN, 1986, “A New Approach to the Maximum

Flow Problem,” Proceedings of the 18th Symposium on the Theory of Computing,(136-

146).

A. V. GOLDBERG and R. E. TARJAN, Oct. 1988, “A New Approach to the

Maximum Flow Problem,” JACM, 35, no. 4(921-940).

D. GOLDFARB and J. HAO, Aug. 1990, “A Primal Simplex Algorithm that Solves

the Maximum Flow Problem in at Most nm Pivots and O(n2m) Time,” MP, 47,

no. 3(353-365).

R. E. GOMORY and T. C. HU, Dec. 1961, “Multi-terminal Network Flows,” Jour-

nal of SIAM, 9, no. 4(551-570).

D. GUSFIELD, C. MARTEL and D. FERNANDEZ-BACA, 1987, “Fast Algorithms

for Bipartite Network Flow,” SIAM J. on Computing, 16(237-251).

H. HAMACHER, 1979, “Numerical Investigations on the Maximal Flow Algorithm

of Karzanov,” Computing, 22(17-29).

H. HAMACHER, 1982, “Determining Minimal Cuts with a Minimal Number of

Arcs,” Networks, 12, no.4(493-504).

A. J. HOFFMAN, 1960,“Some recent applications of the Theory of Linear Inequal-

ities to Extremal Combinatorial Analysis,” Proceedings of the Symposia on Applied

224 Ch.2. Maximum Value Flows

Math., 10(113-128).

A. J. HOFFMAN, 1978, “Ray Fulkerson’s Contributions to Polyhedral Combina-

torics,” MPS, 8(17-23).

H. IMAI, 1983, “On the Practical Efficiency of Various Flow Algorithms,” Journal

of the OR Society of Japan, 26(61-82).

A. V. KARZANOV, 1974, “Determining the Maximal Flow in a Network by the

Method of Preflows,” Soviet Mathematics Doklady, 15(434-437).

M. R. KHAN and D. A. LEWIS, 1987, “A Network Model forNursing Staff Schedul-

ing,” Zeittschrift fur Operations Research, 31, no. 6(B161- B171).

S. LAKSHMINARAYANAN, R. LAKSHMANAN, R. L. PAPINEAU and R. RO-

CHETTE, Aug. 1979,“Order Preserving Allocation of Jobs to Two Non-identical

Parallel Machines: A Solvable Case of the Maximum Cut Problem,” INFOR, 17,

no. 3(230-241).

V. M. MALHOTRA, M. P. KUMAR and S. N. MAHESWARI, 1978, “An O(n3)

Algorithm for Finding Maximum Flows in Networks,” IPL, 7(277-278).

N. MEGIDDO and Z. GALIL, 1979, “On Fulkerson’s Conjecture About Consistent

Labeling Processes,” MOR, 4(265-267).

J. D. MURCHLAND, 1968, “Rhy’s Combinatorial Station Selection Problem,” Lon-

don Graduate School of Business.

J. C. PICARD and H. D. RATLIFF, 1975, “Minimum Cuts and Related Problems,”

Networks, 5(357-370).

J. C. PICARD and H. D. RATLIFF, May-June 1978, “A Cut Approach to the

Rectilinear Distance Facility Location Problem,” OR, 26, no. 3(422-433).

J. C. PICARD and M. QUEYRANNE, 1982a, “A Network Flow Solution to Some

Nonlinear 0-1 Programming Problems with Applications to Graph Theory,” Net-

works, 12(141-159).

J. C. PICARD and M. QUEYRANNE, Nov. 1982b, “Selected Applications of Max-

imum Flows and Minimum Cuts in Networks,” INFOR, 20, no. 4(394-422).

M. QUEYRANNE, 1980, “Theoretical Efficiency of the Algorithm ‘ Capacity’ for

the Maximum Flow Problem,” MOR, 5(258-266).

V. RAMACHANDRAN, 1987, “The Complexity of Minimum Cut and Maximum

Flow Problems in an Acyclic Network,” Networks, 17, no. 4(387-392).

H. D. RATLIFF, G. T. SICILIA and S. H. LUBORE, Jan. 1975, “Finding the n

Most Vital Links in Flow Networks,” MS, 21, no. 5(531-539).

W. K. SHIH, J. W. S. LIU, J. Y. CHUNG and D. W. GILLIES, July 1989, “Schedul-

ing Tasks with Ready Times and Deadlines to Minimize Average Error,” Operating

2.9: References 225

Systems Review, 23, no. 3(14-28).

D. SLEATOR and R. E. TARJAN, 1983, “A Data Structure for Dynamic Trees,”

Journal of Computer and System Sciences, 24(362-391).

D. SLEATOR and R. E. TARJAN, 1985, “Self-adjusting Binary Search Trees,”

JACM, 32(652-686).

R. E. TARJAN, 1984, “A Simple Version of Karzanov’s Blocking Flow Algorithm,”

OR Letters, 2(265-268).

D. M. TOPKIS, 1980, “Activity Selection Games and the Minimum Cut Problem,”

Technical report, Bell Labs. Holmdel, NJ.

A. TUCKER, May 1977, “A Note on Convergence of the Ford-Fulkerson Flow Al-

gorithm,” MOR, 2(143-144).

G. R. R. WAISSI, 1985, “Acyclic Network Generation and Maximal Flow Algo-

rithms for Single Commodity Flow,” Ph. D. dissertation, Dept. of Civil Engineer-

ing, University of Michigan, Ann Arbor, Mich.

R. D. WOLLMER, “Removing Arcs From A Network,” OR, 12, no. 6(934-940).

T. YI and K GMURTY, 1991, “Finding Maximum Flows in Networks with Nonzero

Lower Bounds Using Preflow Methods,” Tech. report, IOE Dept., University of

Michigan, Ann Arbor, Mich.

N. ZADEH, 1972, “Theoretical Efficiency of Edmonds-Karp Algorithm For Com-

puting Maximal Flows,” JACM, 19(184-192).

Index

For each index entry we provide
the page number where it is de-
fined or discussed first.

Active node 175
Augmenting Path methods 128

Shortest 154
Augmenting tree 133
Auxiliary network 159

Backward pass routine 173
Breakthrough 133

Critical arc 157
Forward 157
Reverse 157

Critical capacity 190

Dinic’s method 160
Dinic-MKM method 168
Disconnecting set 134
Distance label 175

Feasibility conditions 181
Flow

Augmentation 140
Pulling 168
Pushing 168

Labeling 129
Algorithms 129
Scheme 132
Tree 133
Tree methods 129

Labeling methods
Edmonds-Karp version 154
Ford-Fulkerson 147
Multiple path 159
Scanning version 147
Single path 139

Layered network 160
Length of 161

Nonbreakthrough 133

Preflow 174
-Push algorithm 174

Reference 169
Node 169
Potential 169

Referent 172

Sensitivity analysis 189

Tree growth scheme 132, 139,
141

226

